Free energy of proton transfer at the water–TiO2 interface from ab initio deep potential molecular dynamics
Author(s): Calegari Andrade, Marcos F; Ko, Hsin-Yu; Zhang, Linfeng; Car, Roberto; Selloni, Annabella
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1513tw3x
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Calegari Andrade, Marcos F | - |
dc.contributor.author | Ko, Hsin-Yu | - |
dc.contributor.author | Zhang, Linfeng | - |
dc.contributor.author | Car, Roberto | - |
dc.contributor.author | Selloni, Annabella | - |
dc.date.accessioned | 2024-06-13T12:53:26Z | - |
dc.date.available | 2024-06-13T12:53:26Z | - |
dc.date.issued | 2020-01-28 | en_US |
dc.identifier.citation | Calegari Andrade, Marcos F, Ko, Hsin-Yu, Zhang, Linfeng, Car, Roberto, Selloni, Annabella. (Free energy of proton transfer at the water–TiO2 interface from ab initio deep potential molecular dynamics. Chemical Science, 11 (9), 2335 - 2341. doi:10.1039/c9sc05116c | en_US |
dc.identifier.issn | 2041-6520 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1513tw3x | - |
dc.description.abstract | TiO2 is a widely used photocatalyst in science and technology and its interface with water is important in fields ranging from geochemistry to biomedicine. Yet, it is still unclear whether water adsorbs in molecular or dissociated form on TiO2 even for the case of well-defined crystalline surfaces. To address this issue, we simulated the TiO2–water interface using molecular dynamics with an ab initio-based deep neural network potential. Our simulations show a dynamical equilibrium of molecular and dissociative adsorption of water on TiO2. Water dissociates through a solvent-assisted concerted proton transfer to form a pair of short-lived hydroxyl groups on the TiO2 surface. Molecular adsorption of water is ΔF = 8.0 ± 0.9 kJ mol−1 lower in free energy than the dissociative adsorption, giving rise to a 5.6 ± 0.5% equilibrium water dissociation fraction at room temperature. Due to the relevance of surface hydroxyl groups to the surface chemistry of TiO2, our model might be key to understanding phenomena ranging from surface functionalization to photocatalytic mechanisms. | en_US |
dc.format.extent | 2335 - 2341 | en_US |
dc.language | en | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Chemical Science | en_US |
dc.rights | Final published version. This is an open access article. | en_US |
dc.title | Free energy of proton transfer at the water–TiO2 interface from ab initio deep potential molecular dynamics | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1039/c9sc05116c | - |
dc.identifier.eissn | 2041-6539 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Free energy of proton transfer at the water–TiO2 interface from ab initio deep potential molecular dynamics.pdf | 2.21 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.