Skip to main content

Averaging random projection: A fast online solution for large-scale constrained stochastic optimization

Author(s): Liu, Jialin; Gu, Yuantao; Wang, Mengdi

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr14b7s
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Jialin-
dc.contributor.authorGu, Yuantao-
dc.contributor.authorWang, Mengdi-
dc.date.accessioned2020-02-24T23:01:51Z-
dc.date.available2020-02-24T23:01:51Z-
dc.date.issued2015-04en_US
dc.identifier.citationLiu, Jialin, Yuantao Gu, and Mengdi Wang. "Averaging random projection: A fast online solution for large-scale constrained stochastic optimization." In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2015): 3586-3590. doi:10.1109/ICASSP.2015.7178639en_US
dc.identifier.issn1520-6149-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr14b7s-
dc.description.abstractStochastic optimization finds wide application in signal processing, online learning, and network problems, especially problems processing large-scale data. We propose an Incremental Constraint Averaging Projection Method (ICAPM) that is tailored to optimization problems involving a large number of constraints. The ICAPM makes fast updates by taking sample gradients and averaging over random constraint projections. We provide a theoretical convergence and rate of convergence analysis for ICAPM. Our results suggests that averaging random projections significantly improves the stability of the solutions. For numerical tests, we apply the ICAPM to an online classification problem and a network consensus problem.en_US
dc.format.extent3586 - 3590en_US
dc.language.isoen_USen_US
dc.relation.ispartof2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)en_US
dc.rightsAuthor's manuscripten_US
dc.titleAveraging random projection: A fast online solution for large-scale constrained stochastic optimizationen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1109/ICASSP.2015.7178639-
dc.identifier.eissn2379-190X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
OA_AveragingRandomProjectionFastOnlineSolutionLargeScaleConstrainedStochasticOptimization.pdf224.47 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.