Skip to main content

Im2Pano3D: Extrapolating 360° Structure and Semantics Beyond the Field of View

Author(s): Song, Shuran; Zeng, Andy; Chang, Angel X; Savva, Manolis; Savarese, Silvio; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr13r70
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSong, Shuran-
dc.contributor.authorZeng, Andy-
dc.contributor.authorChang, Angel X-
dc.contributor.authorSavva, Manolis-
dc.contributor.authorSavarese, Silvio-
dc.contributor.authorFunkhouser, Thomas-
dc.date.accessioned2021-10-08T19:46:28Z-
dc.date.available2021-10-08T19:46:28Z-
dc.date.issued2018en_US
dc.identifier.citationSong, Shuran, Andy Zeng, Angel X. Chang, Manolis Savva, Silvio Savarese, and Thomas Funkhouser. "Im2Pano3D: Extrapolating 360° Structure and Semantics Beyond the Field of View." In IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018): pp. 3847-3856. doi:10.1109/CVPR.2018.00405en_US
dc.identifier.issn1063-6919-
dc.identifier.urihttps://openaccess.thecvf.com/content_cvpr_2018/papers/Song_Im2Pano3D_Extrapolating_360deg_CVPR_2018_paper.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr13r70-
dc.description.abstractWe present Im2Pano3D, a convolutional neural network that generates a dense prediction of 3D structure and a probability distribution of semantic labels for a full 360° panoramic view of an indoor scene when given only a partial observation (= 50%) in the form of an RGB-D image. To make this possible, Im2Pano3D leverages strong contextual priors learned from large-scale synthetic and real-world indoor scenes. To ease the prediction of 3D structure, we propose to parameterize 3D surfaces with their plane equations and train the model to predict these parameters directly. To provide meaningful training supervision, we use multiple loss functions that consider both pixel level accuracy and global context consistency. Experiments demonstrate that Im2Pano3D is able to predict the semantics and 3D structure of the unobserved scene with more than 56% pixel accuracy and less than 0.52m average distance error, which is significantly better than alternative approaches.en_US
dc.format.extent3847 - 3856en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE/CVF Conference on Computer Vision and Pattern Recognitionen_US
dc.rightsAuthor's manuscripten_US
dc.titleIm2Pano3D: Extrapolating 360° Structure and Semantics Beyond the Field of Viewen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1109/CVPR.2018.00405-
dc.identifier.eissn2575-7075-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
Im2Pano3D360StructureSemanticBeyond.pdf2.88 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.