Skip to main content

DETECTABLE SEISMIC CONSEQUENCES OF THE INTERACTION OF A PRIMORDIAL BLACK HOLE WITH EARTH

Author(s): Luo, Yang; Hanasoge, Shravan; Tromp, Jeroen; Pretorius, Frans

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr13q14
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLuo, Yang-
dc.contributor.authorHanasoge, Shravan-
dc.contributor.authorTromp, Jeroen-
dc.contributor.authorPretorius, Frans-
dc.date.accessioned2018-07-20T15:08:55Z-
dc.date.available2018-07-20T15:08:55Z-
dc.date.issued2012-05-20en_US
dc.identifier.citationLuo, Yang, Hanasoge, Shravan, Tromp, Jeroen, Pretorius, Frans. (2012). DETECTABLE SEISMIC CONSEQUENCES OF THE INTERACTION OF A PRIMORDIAL BLACK HOLE WITH EARTH. ASTROPHYSICAL JOURNAL, 751 (10.1088/0004-637X/751/1/16en_US
dc.identifier.issn0004-637X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr13q14-
dc.description.abstractGalaxies observed today are likely to have evolved from density perturbations in the early universe. Perturbations that exceeded some critical threshold are conjectured to have undergone gravitational collapse to form primordial black holes (PBHs) at a range of masses. Such PBHs serve as candidates for cold dark matter, and their detection would shed light on conditions in the early universe. Here, we propose a mechanism to search for transits of PBHs through/nearby Earth by studying the associated seismic waves. Using a spectral-element method, we simulate and visualize this seismic wave field in Earth’s interior. We predict the emergence of two unique signatures, namely, a wave that would arrive almost simultaneously everywhere on Earth’s free surface and the excitation of unusual spheroidal modes with a characteristic frequency spacing in free oscillation spectra. These qualitative characteristics are unaffected by the speed or proximity of the PBH trajectory. The seismic energy deposited by a proximal M-PBH = 10(15) g PBH is comparable to a magnitude M-w = 4 earthquake. The non-seismic collateral damage due to the actual impact of such small PBHs with Earth would be negligible. Unfortunately, the expected collision rate is very low even if PBHs constituted all of dark matter, at similar to 10(-7) yr(-1), and since the rate scales as 1/M-PBH, fortunately encounters with larger, Earth-threatening PBHs are exceedingly unlikely. However, the rate at which non-colliding close encounters of PBHs could be detected by seismic activity alone is roughly two orders of magnitude larger-that is once every hundred thousand years-than the direct collision rate.en_US
dc.language.isoen_USen_US
dc.relation.ispartofASTROPHYSICAL JOURNALen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleDETECTABLE SEISMIC CONSEQUENCES OF THE INTERACTION OF A PRIMORDIAL BLACK HOLE WITH EARTHen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1088/0004-637X/751/1/16-
dc.date.eissued2012-04-30en_US
dc.identifier.eissn1538-4357-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Luo_2012_ApJ_751_16.pdf3.83 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.