Skip to main content

Probability Estimation in the Rare-Events Regime

Author(s): Wagner, Aaron B; Viswanath, Pramod; Kulkarni, Sanjeev R

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr13b5w78s
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWagner, Aaron B-
dc.contributor.authorViswanath, Pramod-
dc.contributor.authorKulkarni, Sanjeev R-
dc.date.accessioned2023-12-24T15:34:59Z-
dc.date.available2023-12-24T15:34:59Z-
dc.date.issued2011-05-23en_US
dc.identifier.citationWagner, Aaron B, Viswanath, Pramod, Kulkarni, Sanjeev R. (2011). Probability Estimation in the Rare-Events Regime. IEEE Transactions on Information Theory, 57 (6), 3207 - 3229. doi:10.1109/tit.2011.2137210en_US
dc.identifier.issn0018-9448-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr13b5w78s-
dc.description.abstractWe address the problem of estimating the probability of an observed string that is drawn i.i.d. from an unknown distribution. Motivated by models of natural language, we consider the regime in which the length of the observed string and the size of the underlying alphabet are comparably large. In this regime, the maximum likelihood distribution tends to overestimate the probability of the observed letters, so the Good–Turing probability estimator is typically used instead. We show that when used to estimate the sequence probability, the Good–Turing estimator is not consistent in this regime. We then introduce a novel sequence probability estimator that is consistent. This estimator also yields consistent estimators for other quantities of interest and a consistent universal classifier.en_US
dc.format.extent3207 - 3229en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE Transactions on Information Theoryen_US
dc.rightsAuthor's manuscripten_US
dc.titleProbability Estimation in the Rare-Events Regimeen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1109/tit.2011.2137210-
dc.identifier.eissn1557-9654-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
WVK09.pdf304.63 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.