Skip to main content

Ice sheet contributions to future sea-level rise from structured expert judgment

Author(s): Bamber, Jonathan L; Oppenheimer, Michael; Kopp, Robert E; Aspinall, Willy P; Cooke, Roger M

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr12f7jq6n
Abstract: Despite considerable advances in process understanding, numerical modeling, and the observational record of ice sheet contributions to global mean sea-level rise (SLR) since the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change, severe limitations remain in the predictive capability of ice sheet models. As a consequence, the potential contributions of ice sheets remain the largest source of uncertainty in projecting future SLR. Here, we report the findings of a structured expert judgement study, using unique techniques for modeling correlations between inter- and intra-ice sheet processes and their tail dependences. We find that since the AR5, expert uncertainty has grown, in particular because of uncertain ice dynamic effects. For a +2 °C temperature scenario consistent with the Paris Agreement, we obtain a median estimate of a 26 cm SLR contribution by 2100, with a 95th percentile value of 81 cm. For a +5 °C temperature scenario more consistent with unchecked emissions growth, the corresponding values are 51 and 178 cm, respectively. Inclusion of thermal expansion and glacier contributions results in a global total SLR estimate that exceeds 2 m at the 95th percentile. Our findings support the use of scenarios of 21st century global total SLR exceeding 2 m for planning purposes. Beyond 2100, uncertainty and projected SLR increase rapidly. The 95th percentile ice sheet contribution by 2200, for the +5 °C scenario, is 7.5 m as a result of instabilities coming into play in both West and East Antarctica. Introducing process correlations and tail dependences increases estimates by roughly 15%.
Publication Date: 4-Jun-2019
Citation: Bamber, Jonathan L., Michael Oppenheimer, Robert E. Kopp, Willy P. Aspinall, and Roger M. Cooke. "Ice sheet contributions to future sea-level rise from structured expert judgment." Proceedings of the National Academy of Sciences 116, no. 23 (2019): 11195-11200. DOI: 10.1073/pnas.1817205116.
DOI: DOI: 10.1073/pnas.1817205116
ISSN: 1091-6490
Pages: 11195 - 11200
Language: eng
Type of Material: Journal Article
Journal/Proceeding Title: Proceedings of the National Academy of Sciences of the United States of America
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.