Skip to main content

A kinesin-3 recruitment complex facilitates axonal sorting of enveloped alpha herpesvirus capsids

Author(s): Scherer, Julian; Hogue, Ian B; Yaffe, Zachary A; Tanneti, Nikhila S; Winer, Benjamin Y; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1251fj7w
Full metadata record
DC FieldValueLanguage
dc.contributor.authorScherer, Julian-
dc.contributor.authorHogue, Ian B-
dc.contributor.authorYaffe, Zachary A-
dc.contributor.authorTanneti, Nikhila S-
dc.contributor.authorWiner, Benjamin Y-
dc.contributor.authorVershinin, Michael-
dc.contributor.authorEnquist, Lynn W-
dc.date.accessioned2022-01-25T14:50:34Z-
dc.date.available2022-01-25T14:50:34Z-
dc.date.issued2020-01-29en_US
dc.identifier.citationScherer, Julian, Hogue, Ian B, Yaffe, Zachary A, Tanneti, Nikhila S, Winer, Benjamin Y, Vershinin, Michael, Enquist, Lynn W. (2020). A kinesin-3 recruitment complex facilitates axonal sorting of enveloped alpha herpesvirus capsids.. PLoS pathogens, 16 (1), e1007985 - ?. doi:10.1371/journal.ppat.1007985en_US
dc.identifier.issn1553-7366-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1251fj7w-
dc.description.abstractAxonal sorting, the controlled passage of specific cargoes from the cell soma into the axon compartment, is critical for establishing and maintaining the polarity of mature neurons. To delineate axonal sorting events, we took advantage of two neuroinvasive alpha-herpesviruses. Human herpes simplex virus 1 (HSV-1) and pseudorabies virus of swine (PRV; suid herpesvirus 1) have evolved as robust cargo of axonal sorting and transport mechanisms. For efficient axonal sorting and subsequent egress from axons and presynaptic termini, progeny capsids depend on three viral membrane proteins (Us7 (gI), Us8 (gE), and Us9), which engage axon-directed kinesin motors. We present evidence that Us7-9 of the veterinary pathogen pseudorabies virus (PRV) form a tripartite complex to recruit Kif1a, a kinesin-3 motor. Based on multi-channel super-resolution and live TIRF microscopy, complex formation and motor recruitment occurs at the trans-Golgi network. Subsequently, progeny virus particles enter axons as enveloped capsids in a transport vesicle. Artificial recruitment of Kif1a using a drug-inducible heterodimerization system was sufficient to rescue axonal sorting and anterograde spread of PRV mutants devoid of Us7-9. Importantly, biophysical evidence suggests that Us9 is able to increase the velocity of Kif1a, a previously undescribed phenomenon. In addition to elucidating mechanisms governing axonal sorting, our results provide further insight into the composition of neuronal transport systems used by alpha-herpesviruses, which will be critical for both inhibiting the spread of infection and the safety of herpesvirus-based oncolytic therapies.en_US
dc.format.extente1007985 - e1007985en_US
dc.languageengen_US
dc.language.isoen_USen_US
dc.relation.ispartofPLoS Pathogensen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleA kinesin-3 recruitment complex facilitates axonal sorting of enveloped alpha herpesvirus capsidsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1371/journal.ppat.1007985-
dc.date.eissued2020-01-29en_US
dc.identifier.eissn1553-7374-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
A_kinesin_3_recruitment_complex_alpha_herpesvirus_capsids.pdf3.4 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.