
ar
X

iv
:1

40
6.

18
56

v2
 [

cs
.L

G
]

30
 O

ct
 2

01
4

A Drifting-Games Analysis for Online Learning and
Applications to Boosting

Haipeng Luo
Department of Computer Science

Princeton University
Princeton, NJ 08540

haipengl@cs.princeton.edu

Robert E. Schapire∗

Department of Computer Science
Princeton University
Princeton, NJ 08540

schapire@cs.princeton.edu

Abstract

We provide a general mechanism to design online learning algorithms based on
a minimax analysis within a drifting-games framework. Different online learning
settings (Hedge, multi-armed bandit problems and online convex optimization) are
studied by converting into various kinds of drifting games.The original minimax
analysis for drifting games is then used and generalized by applying a series of
relaxations, starting from choosing a convex surrogate of the 0-1 loss function.
With different choices of surrogates, we not only recover existing algorithms, but
also propose new algorithms that are totally parameter-free and enjoy other useful
properties. Moreover, our drifting-games framework naturally allows us to study
high probability bounds without resorting to any concentration results, and also a
generalized notion of regret that measures how good the algorithm is compared to
all but the top small fraction of candidates. Finally, we translate our new Hedge
algorithm into a new adaptive boosting algorithm that is computationally faster as
shown in experiments, since it ignores a large number of examples on each round.

1 Introduction

In this paper, we study online learning problems within a drifting-games framework, with the aim of
developing a general methodology for designing learning algorithms based on a minimax analysis.

To solve an online learning problem, it is natural to consider game-theoretically optimal algorithms
which find the best solution even in worst-case scenarios. This is possible for some special cases
([7, 1, 3, 21]) but difficult in general. On the other hand, many other efficient algorithms with optimal
regret rate (but not exactly minimax optimal) have been proposed for different learning settings (such
as the exponential weights algorithm [14, 15], and follow the perturbed leader [18]). However, it is
not always clear how to come up with these algorithms. Recentwork by Rakhlin et al. [26] built a
bridge between these two classes of methods by showing that many existing algorithms can indeed
be derived from a minimax analysis followed by a series of relaxations.

In this paper, we provide a parallel way to design learning algorithms by first converting online
learning problems into variants of drifting games, and thenapplying a minimax analysis and relax-
ations.Drifting games[28] (reviewed in Section 2) generalize Freund’s “majority-vote game” [13]
and subsume some well-studied boosting and online learningsettings. A nearly minimax optimal
algorithm is proposed in [28]. It turns out the connections between drifting games and online learn-
ing go far beyond what has been discussed previously. To showthat, we consider variants of drifting
games that capture different popular online learning problems. We then generalize the minimax
analysis in [28] based on one key idea:relax a 0-1 loss function by a convex surrogate. Although

∗R. Schapire is currently at Microsoft Research in New York City.

1

http://arxiv.org/abs/1406.1856v2

this idea has been applied widely elsewhere in machine learning, we use it here in a new way to
obtain a very general methodology for designing and analyzing online learning algorithms. Using
this general idea, we not only recover existing algorithms,but also design new ones with special
useful properties. A somewhat surprising result is that ournew algorithms are totallyparameter-
free, which is usually not the case for algorithms derived from a minimax analysis. Moreover, a
generalized notion of regret (ǫ-regret, defined in Section 3) that measures how good the algorithm is
compared to all but the topǫ fraction of candidates arises naturally in our drifting-games framework.
Below we summarize our results for a range of learning settings.

Hedge Settings:(Section 3) The Hedge problem [14] investigates how to cleverly bet across a set
of actions. We show an algorithmic equivalence between thisproblem and a simple drifting game
(DGv1). We then show how to relax the original minimax analysis step by step to reach a general
recipe for designing Hedge algorithms (Algorithm 3). Threeexamples of appropriate convex sur-
rogates of the 0-1 loss function are then discussed, leadingto the well-known exponential weights
algorithm and two other new ones, one of which (NormalHedge.DT in Section 3.3) bears some sim-
ilarities with the NormalHedge algorithm [10] and enjoys a similar ǫ-regret boundsimultaneously
for all ǫ and horizons. However, our regret bounds do not depend on thenumber of actions, and thus
can be applied even when there are infinitely many actions. Our analysis is also arguably simpler
and more intuitive than the one in [10] and easy to be generalized to more general settings. More-
over, our algorithm is more computationally efficient sinceit does not require a numerical searching
step as in NormalHedge. Finally, we also derive high probability bounds for the randomized Hedge
setting as a simple side product of our frameworkwithoutusing any concentration results.

Multi-armed Bandit Problems: (Section 4) The multi-armed bandit problem [6] is a classic ex-
ample for learning with incomplete information where the learner can only obtain feedback for the
actions taken. To capture this problem, we study a quite different drifting game (DGv2) where ran-
domness and variance constraints are taken into account. Again the minimax analysis is generalized
and the EXP3 algorithm [6] is recovered. Our results could beseen as a preliminary step to answer
the open question [2] on exact minimax optimal algorithms for the multi-armed bandit problem.

Online Convex Optimization: (Section 4) Based the theory of convex optimization, onlineconvex
optimization [31] has been the foundation of modern online learning theory. The corresponding
drifting game formulation is a continuous space variant (DGv3). Fortunately, it turns out that all
results from the Hedge setting are ready to be used here, recovering the continuous EXP algorithm
[12, 17, 24] and also generalizing our new algorithms to thisgeneral setting. Besides the usual
regret bounds, we also generalize theǫ-regret, which, as far as we know, is the first time it has been
explicitly studied. Again, we emphasize that our new algorithms are adaptive inǫ and the horizon.

Boosting: (Section 4) Realizing that every Hedge algorithm can be converted into a boosting algo-
rithm ([29]), we propose a new boosting algorithm (NH-Boost.DT) by converting NormalHedge.DT.
The adaptivity of NormalHedge.DT is then translated into training error and margin distribution
bounds that previous analysis in [29] using nonadaptive algorithms does not show. Moreover, our
new boosting algorithm ignores a great many examples on eachround, which is an appealing prop-
erty useful to speeding up the weak learning algorithm. Thisis confirmed by our experiments.

Related work: Our analysis makes use of potential functions. Similar concepts have widely ap-
peared in the literature [8, 5], but unlike our work, they arenot related to any minimax analysis and
might be hard to interpret. The existence of parameter free Hedge algorithms for unknown number
of actions was shown in [11], but no concrete algorithms weregiven there. Boosting algorithms
that ignore some examples on each round were studied in [16],where a heuristic was used to ignore
examples with small weights and no theoretical guarantee isprovided.

2 Reviewing Drifting Games

We consider a simplified version of drifting games similar tothe one described in [29, chap. 13]
(also called chip games). This game proceeds throughT rounds, and is played between a player and
an adversary who controlsN chips on the real line. The positions of these chips at the endof round
t are denoted byst ∈ R

N , with each coordinatest,i corresponding to the position of chipi. Initially,
all chips are at position0 so thats0 = 0. On every roundt = 1, . . . , T : the player first chooses a
distributionpt over the chips, then the adversary decides the movements of the chipszt so that the

2

new positions are updated asst = st−1 + zt. Here, eachzt,i has to be picked from a prespecified
setB ⊂ R, and more importantly, satisfy the constraintpt · zt ≥ β ≥ 0 for some fixed constantβ.

At the end of the game, each chip is associated with a nonnegative loss defined byL(sT,i) for some
nonincreasing functionL mapping from the final position of the chip toR+. The goal of the player
is to minimize the chips’ average loss1N

∑N
i=1 L(sT,i) afterT rounds. So intuitively, the player

aims to “push” the chips to the right by assigning appropriate weights on them so that the adversary
has to move them to the right byβ in a weighted average sense on each round. This game captures
many learning problems. For instance, binary classification via boosting can be translated into a
drifting game by treating each training example as a chip (see [28] for details).

We regard a player’s strategyD as a function mapping from the history of the adversary’s de-
cisions to a distribution that the player is going to play with, that is,pt = D(z1:t−1) where
z1:t−1 stands forz1, . . . , zt−1. The player’s worst case loss using this algorithm is then denoted
by LT (D). The minimax optimal loss of the game is computed by the following expression:
minD LT (D) = minp1∈∆N

maxz1∈Zp1
· · ·minpT∈∆N

maxzT∈ZpT

1
N

∑N
i=1 L(

∑T
t=1 zt,i), where

∆N is theN dimensional simplex andZp = BN ∩ {z : p · z ≥ β} is assumed to be compact.
A strategyD∗ that realizes the minimum inminD LT (D) is called a minimax optimal strategy.
A nearly optimal strategy and its analysis is originally given in [28], and a derivation by directly
tackling the above minimax expression can be found in [29, chap. 13]. Specifically, a sequence of
potential functions of a chip’s position is defined recursively as follows:

ΦT (s) = L(s), Φt−1(s) = min
w∈R+

max
z∈B

(Φt(s+ z) + w(z − β)). (1)

Let wt,i be the weight that realizes the minimum in the definition ofΦt−1(st−1,i), that is,wt,i ∈
argminw maxz(Φt(st−1,i + z) + w(z − β)). Then the player’s strategy is to setpt,i ∝ wt,i. The
key property of this strategy is that it assures that the sum of the potentials over all the chips never
increases, connecting the player’s final loss with the potential at time0 as follows:

1

N

N
∑

i=1

L(sT,i) ≤
1

N

N
∑

i=1

ΦT (sT,i) ≤
1

N

N
∑

i=1

ΦT−1(sT−1,i) ≤ · · · ≤ 1

N

N
∑

i=1

Φ0(s0,i) = Φ0(0).

(2)
It has been shown in [28] that this upper bound on the loss is optimal in a very strong sense.

Moreover, in some cases the potential functions have nice closed forms and thus the algorithm can
be efficiently implemented. For example, in the boosting setting,B is simply{−1,+1}, and one can
verifyΦt(s) =

1+β
2 Φt+1(s+1)+ 1−β

2 Φt+1(s−1) andwt,i =
1
2 (Φt(st−1,i − 1)− Φt(st−1,i + 1)).

With the loss functionL(s) being1{s ≤ 0}, these can be further simplified and eventually give
exactly the boost-by-majority algorithm [13].

3 Online Learning as a Drifting Game

The connection between drifting games and some specific settings of online learning has been no-
ticed before ([28, 23]). We aim to find deeper connections or even an equivalence between variants
of drifting games and more general settings of online learning, and provide insights on designing
learning algorithms through a minimax analysis. We start with a simple yet classic Hedge setting.

3.1 Algorithmic Equivalence

In the Hedge setting [14], a player tries to earn as much as possible (or lose as little as possible) by
cleverly spreading a fixed amount of money to bet on a set of actions on each day. Formally, the game
proceeds forT rounds, and on each roundt = 1, . . . , T : the player chooses a distributionpt overN
actions, then the adversary decides the actions’ lossesℓt (i.e. actioni incurs lossℓt,i ∈ [0, 1]) which
are revealed to the player. The player suffers a weighted average losspt · ℓt at the end of this round.
The goal of the player is to minimize his “regret”, which is usually defined as the difference between
his total loss and the loss of the best action. Here, we consider an even more general notion of regret
studied in [20, 19, 10, 11], which we callǫ-regret. Suppose the actions are ordered according to
their total losses afterT rounds (i.e.

∑T
t=1 ℓt,i) from smallest to largest, and letiǫ be the index

3

Input : A Hedge AlgorithmH
for t = 1 to T do

QueryH: pt = H(ℓ1:t−1).
Set:DR(z1:t−1) = pt.
Receive movementszt from the adversary.
Set:ℓt,i = zt,i −minj zt,j, ∀i.

Algorithm 1: Conversion of a Hedge Algo-
rithmH to a DGv1 AlgorithmDR

Input : A DGv1 AlgorithmDR

for t = 1 to T do
QueryDR: pt = DR(z1:t−1).
Set:H(ℓ1:t−1) = pt.
Receive lossesℓt from the adversary.
Set:zt,i = ℓt,i − pt · ℓt, ∀i.

Algorithm 2: Conversion of a DGv1 Algo-
rithmDR to a Hedge AlgorithmH

of the action that is the⌈Nǫ⌉-th element in the sorted list (0 < ǫ ≤ 1). Now, ǫ-regret is defined
asRǫ

T (p1:T , ℓ1:T) =
∑T

t=1 pt · ℓt −
∑T

t=1 ℓt,iǫ . In other words,ǫ-regret measures the difference
between the player’s loss and the loss of the⌈Nǫ⌉-th best action (recovering the usual regret with
ǫ ≤ 1/N), and sublinearǫ-regret implies that the player’s loss is almost as good as all but the top
ǫ fraction of actions. Similarly,Rǫ

T (H) denotes the worst caseǫ-regret for a specific algorithmH.
For convenience, whenǫ ≤ 0 or ǫ > 1, we defineǫ-regret to be∞ or−∞ respectively.

Next we discuss how Hedge is highly related to drifting games. Consider a variant of drifting games
whereB = [−1, 1], β = 0 andL(s) = 1{s ≤ −R} for some constantR. Additionally, we impose
an extra restriction on the adversary:|zt,i − zt,j | ≤ 1 for all i andj. In other words, the difference
between any two chips’ movements is at most1. We denote this specific variant of drifting games
by DGv1 (summarized in Appendix A) and a corresponding algorithm by DR to emphasize the
dependence onR. The reductions in Algorithm 1 and 2 and Theorem 1 show that DGv1 and the
Hedge problem are algorithmically equivalent (note that both conversions are valid). The proof is
straightforward and deferred to Appendix B. By Theorem 1, itis clear that the minimax optimal
algorithm for one setting is also minimax optimal for the other under these conversions.

Theorem 1. DGv1 and the Hedge problem are algorithmically equivalent in the following sense:
(1) Algorithm 1 produces a DGv1 algorithmDR satisfyingLT (DR) ≤ i/N wherei ∈ {0, . . . , N}
is such thatR(i+1)/N

T (H) < R ≤ R
i/N
T (H).

(2) Algorithm 2 produces a Hedge algorithmH withRǫ
T (H) < R for anyR such thatLT (DR) < ǫ.

3.2 Relaxations

From now on we only focus on the direction of converting a drifting game algorithm into a Hedge
algorithm. In order to derive a minimax Hedge algorithm, Theorem 1 tells us it suffices to derive
minimax DGv1 algorithms. Exact minimax analysis is usuallydifficult, and appropriate relaxations
seem to be necessary. To make use of the existing analysis forstandard drifting games, the first
obvious relaxation is to drop the additional restriction inDGv1, that is,|zt,i − zt,j| ≤ 1 for all i
andj. Doing this will lead to the exact setting discussed in [23] where a near optimal strategy is
proposed using the recipe in Eq. (1). It turns out that this relaxation is reasonable and does not give
too much more power to the adversary. To see this, first recallthat results from [23], written in our

notation, state thatminDR
LT (DR) ≤ 1

2T

∑

T−R
2

j=0

(

T+1
j

)

, which, by Hoeffding’s inequality, is upper

bounded by2 exp
(

− (R+1)2

2(T+1)

)

. Second, statement (2) in Theorem 1 clearly remains valid ifthe input

of Algorithm 2 is a drifting game algorithm for this relaxed version of DGv1. Therefore, by setting

ǫ > 2 exp
(

− (R+1)2

2(T+1)

)

and solving forR, we haveRǫ
T (H) ≤ O

(
√

T ln(1ǫ)
)

, which is the known

optimal regret rate for the Hedge problem, showing that we lose little due to this relaxation.

However, the algorithm proposed in [23] is not computationally efficient since the potential functions
Φt(s) do not have closed forms. To get around this, we would want theminimax expression in Eq.
(1) to be easily solved, just like the case whenB = {−1, 1}. It turns out that convexity would allow
us to treatB = [−1, 1] almost asB = {−1, 1}. Specifically, if eachΦt(s) is a convex function of
s, then due to the fact that the maximum of a convex function is always realized at the boundary of
a compact region, we have

min
w∈R+

max
z∈[−1,1]

(Φt(s+ z) + wz) = min
w∈R+

max
z∈{−1,1}

(Φt(s+ z) + wz) =
Φt(s− 1) + Φt(s+ 1)

2
,

(3)

4

Input : A convex, nonincreasing, nonnegative functionΦT (s).
for t = T down to 1 do

Find a convex functionΦt−1(s) s.t.∀s, Φt(s− 1) + Φt(s+ 1) ≤ 2Φt−1(s).
Set:s0 = 0.
for t = 1 to T do

Set:H(ℓ1:t−1) = pt s.t.pt,i ∝ Φt(st−1,i − 1)− Φt(st−1,i + 1).
Receive lossesℓt and setst,i = st−1,i + ℓt,i − pt · ℓt, ∀i.

Algorithm 3: A General Hedge AlgorithmH

with w = (Φt(s − 1) − Φt(s + 1))/2 realizing the minimum. Since the 0-1 loss functionL(s) is
not convex, this motivates us to find a convex surrogate ofL(s). Fortunately, relaxing the equality
constraints in Eq. (1) does not affect the key property of Eq.(2) as we will show in the proof of
Theorem 2. “Compiling out” the input of Algorithm 2, we thus have our general recipe (Algorithm
3) for designing Hedge algorithms with the following regretguarantee.

Theorem 2. For Algorithm 3, ifR andǫ are such thatΦ0(0) < ǫ andΦT (s) ≥ 1{s ≤ −R} for all
s ∈ R, thenRǫ

T (H) < R.

Proof. It suffices to show that Eq. (2) holds so that the theorem follows by a direct applica-
tion of statement (2) of Theorem 1. Letwt,i = (Φt(st−1,i − 1) − Φt(st−1,i + 1))/2. Then
∑

iΦt(st,i) ≤
∑

i (Φt(st−1,i + zt,i) + wt,izt,i) sincept,i ∝ wt,i andpt·zt ≥ 0. On the other hand,
by Eq. (3), we haveΦt(st−1,i + zt,i) +wt,izt,i ≤ minw∈R+

maxz∈[−1,1] (Φt(st−1,i + z) + wz) =
1
2 (Φt(st−1,i − 1) + Φt(st−1,i + 1)), which is at mostΦt−1(st−1,i) by Algorithm 3. This shows
∑

iΦt(st,i) ≤
∑

iΦt−1(st−1,i) and Eq. (2) follows.

Theorem 2 tells us that if solvingΦ0(0) < ǫ for R givesR > R for some valueR, then the regret
of Algorithm 3 is less than any value that is greater thanR, meaning the regret is at mostR.

3.3 Designing Potentials and Algorithms

Now we are ready to recover existing algorithms and develop new ones by choosing an appropriate
potentialΦT (s) as Algorithm 3 suggests. We will discuss three different algorithms below, and
summarize these examples in Table 1 (see Appendix C).

Exponential Weights (EXP) Algorithm. Exponential loss is an obvious choice forΦT (s) as it
has been widely used as the convex surrogate of the 0-1 loss function in the literature. It turns
out that this will lead to the well-known exponential weights algorithm [14, 15]. Specifically, we
pick ΦT (s) to beexp (−η(s+R)) which exactly upper bounds1{s ≤ −R}. To computeΦt(s)
for t ≤ T , we simply letΦt(s − 1) + Φt(s + 1) ≤ 2Φt−1(s) hold with equality. Indeed, direct

computations show that allΦt(s) share a similar form:Φt(s) =
(

eη+e−η

2

)T−t

· exp (−η(s+R)) .

Therefore, according to Algorithm 3, the player’s strategyis to set

pt,i ∝ Φt(st−1,i − 1)− Φt(st−1,i + 1) ∝ exp (−ηst−1,i) ,

which is exactly the same as EXP (note thatR becomes irrelevant after normalization). To derive re-

gret bounds, it suffices to requireΦ0(0) < ǫ, which is equivalent toR > 1
η

(

ln(1ǫ) + T ln eη+e−η

2

)

.

By Theorem 2 and Hoeffding’s lemma (see [9, Lemma A.1]), we thus knowRǫ
T (H) ≤ 1

η ln
(

1
ǫ

)

+

Tη
2 =

√

2T ln
(

1
ǫ

)

where the last step is by optimally tuningη to be
√

2(ln 1
ǫ)/T . Note that this

algorithm isnot adaptivein the sense that it requires knowledge ofT andǫ to set the parameterη.

We have thus recovered the well-known EXP algorithm and given a new analysis using the drifting-
games framework. More importantly, as in [26], this derivation may shed light on why this algorithm
works and where it comes from, namely, a minimax analysis followed by a series of relaxations,
starting from a reasonable surrogate of the 0-1 loss function.

2-norm Algorithm. We next move on to another simple convex surrogate:ΦT (s) = a[s]2− ≥
1{s ≤ −1/

√
a}, wherea is some positive constant and[s]− = min{0, s} represents a truncating

operation. The following lemma shows thatΦt(s) can also be simply described.

5

Lemma 1. If a > 0, thenΦt(s) = a
(

[s]2− + T − t
)

satisfiesΦt(s− 1) + Φt(s+ 1) ≤ 2Φt−1(s).

Thus, Algorithm 3 can again be applied. The resulting algorithm is extremely concise:

pt,i ∝ Φt(st−1,i − 1)− Φt(st−1,i + 1) ∝ [st−1,i − 1]2− − [st−1,i + 1]2−.

We call this the “2-norm” algorithm since it resembles thep-norm algorithm in the literature when
p = 2 (see [9]). The difference is that thep-norm algorithm sets the weights proportional to the
derivative of potentials, instead of the difference of themas we are doing here. A somewhat sur-
prising property of this algorithm is that it is totally adaptive and parameter-free (sincea disappears
under normalization), a property that we usually do not expect to obtain from a minimax analy-
sis. Direct application of Theorem 2 (Φ0(0) = aT < ǫ ⇔ 1/

√
a >

√

T/ǫ) shows that its regret
achieves the optimal dependence on the horizonT .

Corollary 1. Algorithm 3 with potentialΦt(s) defined in Lemma 1 produces a Hedge algorithmH
such thatRǫ

T (H) ≤
√

T/ǫ simultaneously for allT andǫ.

NormalHedge.DT. The regret for the 2-norm algorithm does not have the optimaldependence on
ǫ. An obvious follow-up question would be whether it is possible to derive an adaptive algorithm
that achieves the optimal rateO(

√

T ln(1/ǫ)) simultaneously for allT andǫ using our framework.
An even deeper question is: instead of choosing convex surrogates in a seemingly arbitrary way, is
there a more natural way to find theright choice ofΦT (s)?

To answer these questions, we recall that the reason why the 2-norm algorithm can get rid of the
dependence onǫ is thatǫ appears merely in the multiplicative constanta that does not play a role
after normalization. This motivates us to letΦT (s) in the form ofǫF (s) for someF (s). On the
other hand, from Theorem 2, we also wantǫF (s) to upper bound the 0-1 loss function1{s ≤
−
√

dT ln(1/ǫ)} for some constantd. Taken together, this is telling us that the right choice ofF (s)

should be of the formΘ
(

exp(s2/T)
)

1. Of course we still need to refine it to satisfy the monotonicity
and other properties. We defineΦT (s) formally and more generally as:

ΦT (s) = a
(

exp
(

[s]2
−

dT

)

− 1
)

≥ 1

{

s ≤ −
√

dT ln
(

1
a + 1

)

}

,

wherea andd are some positive constants. This time it is more involved tofigure out what other
Φt(s) should be. The following lemma addresses this issue (proof deferred to Appendix C).

Lemma 2. If bt = 1− 1
2

∑T
τ=t+1

(

exp
(

4
dτ

)

− 1
)

, a > 0, d ≥ 3 andΦt(s) = a
(

exp
(

[s]2
−

dt

)

− bt

)

(defineΦ0(s) ≡ a(1 − b0)), then we haveΦt(s − 1) + Φt(s + 1) ≤ 2Φt−1(s) for all s ∈ R and
t = 2, . . . , T . Moreover, Eq.(2) still holds.

Note that even ifΦ1(s− 1) + Φ1(s+ 1) ≤ 2Φ0(s) is not valid in general, Lemma 2 states that Eq.
(2) still holds. Thus Algorithm 3 can indeed still be applied, leading to our new algorithm:

pt,i ∝ Φt(st−1,i − 1)− Φt(st−1,i + 1) ∝ exp
(

[st−1,i−1]2
−

dt

)

− exp
(

[st−1,i+1]2
−

dt

)

.

Here,d seems to be an extra parameter, but in fact, simply settingd = 3 is good enough:

Corollary 2. Algorithm 3 with potentialΦt(s) defined in Lemma 2 andd = 3 produces a Hedge
algorithmH such that the following holds simultaneously for allT andǫ:

Rǫ
T (H) ≤

√

3T ln
(

1
2ǫ

(

e4/3 − 1
)

(lnT + 1) + 1
)

= O
(

√

T ln (1/ǫ) + T ln lnT
)

.

We have thus proposed a parameter-free adaptive algorithm with optimal regret rate (ignoring the
ln lnT term) using our drifting-games framework. In fact, our algorithm bears a striking similarity
to NormalHedge [10], the first algorithm that has this kind ofadaptivity. We thus name our algorithm
NormalHedge.DT2. We include NormalHedge in Table 1 for comparison. One can see that the main
differences are: 1) On each round NormalHedge performs a numerical search to find out the right
parameter used in the exponents; 2) NormalHedge uses the derivative of potentials as weights.

1Similar potential was also proposed in recent work [22, 25] for a different setting.
2“DT” stands for discrete time.

6

Compared to NormalHedge, the regret bound for NormalHedge.DT has no explicit dependence on
N , but has a slightly worse dependence onT (indeedln lnT is almost negligible). We emphasize
other advantages of our algorithm over NormalHedge: 1) NormalHedge.DT is more computationally
efficient especially whenN is very large, since it does not need a numerical search for each round;
2) our analysis is arguably simpler and more intuitive than the one in [10]; 3) as we will discuss
in Section 4, NormalHedge.DT can be easily extended to deal with the more general online convex
optimization problem where the number of actions is infinitely large, while it is not clear how to
do that for NormalHedge by generalizing the analysis in [10]. Indeed, the extra dependence on the
number of actionsN for the regret of NormalHedge makes this generalization even seem impossible.
Finally, we will later see that NormalHedge.DT outperformsNormalHedge in experiments. Despite
the differences, it is worth noting that both algorithms assign zero weight to some actions on each
round, an appealing property whenN is huge. We will discuss more on this in Section 4.

3.4 High Probability Bounds

We now consider a common variant of Hedge: on each round, instead of choosing a distribution
pt, the player has to randomly pick a single actionit, while the adversary decides the lossesℓt at
the same time (without seeingit). For now we only focus on the player’s regret to the best action:
RT (i1:T , ℓ1:T) =

∑T
t=1 ℓt,it −mini

∑T
t=1 ℓt,i. Notice that the regret is now a random variable, and

we are interested in a bound that holds with high probability. Using Azuma’s inequality, standard
analysis (see for instance [9, Lemma 4.1]) shows that the player can simply drawit according to
pt = H(ℓ1:t−1), the output of a standard Hedge algorithm, and suffers regret at mostRT (H) +
√

T ln(1/δ) with probability1 − δ. Below we recover similar results as a simple side product of
our drifting-games analysiswithoutresorting to concentration results, such as Azuma’s inequality.

For this, we only need to modify Algorithm 3 by settingzt,i = ℓt,i − ℓt,it . The restriction
pt · zt ≥ 0 is then relaxed to hold in expectation. Moreover, it is clearthat Eq. (2) also still
holds in expectation. On the other hand, by definition and theunion bound, one can show that
∑

i E[L(sT,i)] =
∑

i Pr[sT,i ≤ −R] ≥ Pr[RT (i1:T , ℓ1:T) ≥ R]. So settingΦ0(0) = δ shows that
the regret is smaller thanR with probability1− δ. Therefore, for example, if EXP is used, then the
regret would be at most

√

2T ln(N/δ) with probability1−δ, giving basically the same bound as the
standard analysis. One draw back is that EXP would needδ as a parameter. However, this can again
be addressed by NormalHedge.DT for the exact same reason that NormalHedge.DT is independent
of ǫ. We have thus derived high probability bounds without usingany concentration inequalities.

4 Generalizations and Applications

Multi-armed Bandit (MAB) Problem: The only difference between Hedge (randomized version)
and the non-stochastic MAB problem [6] is that on each round,after pickingit, the player only sees
the loss for this single actionℓt,it instead of the whole vectorℓt. The goal is still to compete with
the best action. A common technique used in the bandit setting is to build an unbiased estimatorℓ̂t

for the losses, which in this case could beℓ̂t,i = 1{i = it}·ℓt,it/pt,it . Then algorithms such as EXP
can be used by replacingℓt with ℓ̂t, leading to the EXP3 algorithm [6] with regretO(

√
TN lnN).

One might expect that Algorithm 3 would also work well by replacingℓt with ℓ̂t. However, doing so
breaks an important property of the movementszt,i: boundedness. Indeed, Eq. (3) no longer makes
sense ifz could be infinitely large, even if in expectation it is still in [−1, 1] (note thatzt,i is now a
random variable). It turns out that we can address this issueby imposing a variance constraint onzt,i.
Formally, we consider a variant of drifting games where on each round, the adversary picks a random
movementzt,i for each chip such that:zt,i ≥ −1,Et[zt,i] ≤ 1,Et[z

2
t,i] ≤ 1/pt,i andEt[pt · zt] ≥ 0.

We call this variant DGv2 and summarize it in Appendix A. The standard minimax analysis and the
derivation of potential functions need to be modified in a certain way for DGv2, as stated in Theorem
4 (Appendix D). Using the analysis for DGv2, we propose a general recipe for designing MAB
algorithms in a similar way as for Hedge and also recover EXP3(see Algorithm 4 and Theorem
5 in Appendix D). Unfortunately so far we do not know other appropriate potentials due to some
technical difficulties. We conjecture, however, that thereis a potential function that could recover
the poly-INF algorithm [4, 5] or give its variants that achieve the optimal regretO(

√
TN).

7

Online Convex Optimization: We next consider a general online convex optimization setting [31].
LetS ⊂ R

d be a compact convex set, andF be a set of convex functions with range[0, 1] onS. On
each roundt, the learner chooses a pointxt ∈ S, and the adversary chooses a loss functionft ∈ F
(knowingxt). The learner then suffers lossft(xt). The regret afterT rounds isRT (x1:T , f1:T) =
∑T

t=1 ft(xt) − minx∈S

∑T
t=1 ft(x). There are two general approaches to OCO: one builds on

convex optimization theory [30], and the other generalizesEXP to a continuous space [12, 24]. We
will see how the drifting-games framework can recover the latter method and also leads to new ones.

To do so, we introduce a continuous variant of drifting games(DGv3, see Appendix A). There are
now infinitely many chips, one for each point inS. On roundt, the player needs to choose a distribu-
tion over the chips, that is, a probability density functionpt(x) onS. Then the adversary decides the
movements for each chip, that is, a functionzt(x) with range[−1, 1] onS (not necessarily convex
or continuous), subject to a constraintEx∼pt

[zt(x)] ≥ 0. At the end, each pointx is associated with
a lossL(x) = 1{∑t zt(x) ≤ −R}, and the player aims to minimize the total loss

∫

x∈S
L(x)dx.

OCO can be converted into DGv3 by settingzt(x) = ft(x)−ft(xt) and predictingxt = Ex∼pt
[x] ∈

S. The constraintEx∼pt
[zt(x)] ≥ 0 holds by the convexity offt. Moreover, it turns out that the

minimax analysis and potentials for DGv1 can readily be usedhere, and the notion ofǫ-regret, now
generalized to the OCO setting, measures the difference of the player’s loss and the loss of a best
fixed point in a subset ofS that excludes the topǫ fraction of points. With different potentials, we
obtain versions of each of the three algorithms of Section 3 generalized to this setting, with the same
ǫ-regret bounds as before. Again, two of these methods are adaptive and parameter-free. To derive
bounds for the usual regret, at first glance it seems that we have to setǫ to be close to zero, leading
to a meaningless bound. Nevertheless, this is addressed by Theorem 6 using similar techniques in
[17], giving the usualO(

√
dT lnT) regret bound. All details can be found in Appendix E.

Applications to Boosting: There is a deep and well-known connection between Hedge and boost-
ing [14, 29]. In principle, every Hedge algorithm can be converted into a boosting algorithm; for
instance, this is how AdaBoost was derived from EXP. In the same way, NormalHedge.DT can be
converted into a new boosting algorithm that we call NH-Boost.DT. See Appendix F for details and
further background on boosting. The main idea is to treat each training example as an “action”, and
to rely on the Hedge algorithm to compute distributions overthese examples which are used to train
the weak hypotheses. Typically, it is assumed that each of these has “edge”γ, meaning its accuracy
on the training distribution is at least1/2 + γ. The final hypothesis is a simple majority vote of the
weak hypotheses. To understand the prediction accuracy of aboosting algorithm, we often study the
training error rate and also the distribution of margins, a well-established measure of confidence (see
Appendix F for formal definitions). Thanks to the adaptivityof NormalHedge.DT, we can derive
bounds on both the training error and the distribution of margins after any number of rounds:

Theorem 3. AfterT rounds, the training error of NH-Boost.DT is of order̃O(exp(− 1
3Tγ

2)), and
the fraction of training examples with margin at mostθ(≤ 2γ) is of orderÕ(exp(− 1

3T (θ− 2γ)2)).

Thus, the training error decreases at roughly the same rate as AdaBoost. In addition, this theorem
implies that the fraction of examples with margin smaller than2γ eventually goes to zero asT gets
large, which means NH-Boost.DT converges to the optimal margin 2γ; this is known not to be true
for AdaBoost (see [29]). Also, like AdaBoost, NH-Boost.DT is an adaptive boosting algorithm that
does not requireγ or T as a parameter. However, unlike AdaBoost, NH-Boost.DT has the striking
property that it completely ignores many examples on each round (by assigning zero weight), which
is very helpful for the weak learning algorithm in terms of computational efficiency. To test this, we
conducted experiments to compare the efficiency of AdaBoost, “NH-Boost” (an analogous boosting
algorithm derived from NormalHedge) and NH-Boost.DT. All details are in Appendix G. Here we
only briefly summarize the results. While the three algorithms have similar performance in terms
of training and test error, NH-Boost.DT is always the fastest one in terms of running time for the
same number of rounds. Moreover, the average faction of examples with zero weight is significantly
higher for NH-Boost.DT than for NH-Boost (see Table 3). On one hand, this explains why NH-
Boost.DT is faster (besides the reason that it does not require a numerical step). On the other hand,
this also implies that NH-Boost.DT tends to achieve larger margins, since zero weight is assigned to
examples with large margin. This is also confirmed by our experiments.

Acknowledgements.Support for this research was provided by NSF Grant #1016029. The authors
thank Yoav Freund for helpful discussions and the anonymousreviewers for their comments.

8

References

[1] Jacob Abernethy, Peter L. Bartlett, Alexander Rakhlin,and Ambuj Tewari. Optimal strategies and mini-
max lower bounds for online convex games. InProceedings of the 21st Annual Conference on Learning
Theory, 2008.

[2] Jacob Abernethy and Manfred K. Warmuth. Minimax games with bandits. InProceedings of the 22st
Annual Conference on Learning Theory, 2009.

[3] Jacob Abernethy and Manfred K. Warmuth. Repeated games against budgeted adversaries. InAdvances
in Neural Information Processing Systems 23, 2010.

[4] Jean-Yves Audibert and Sébastien Bubeck. Regret bounds and minimax policies under partial monitoring.
The Journal of Machine Learning Research, 11:2785–2836, 2010.

[5] Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. Regret in online combinatorial optimization.
Mathematics of Operations Research, 39(1):31–45, 2014.

[6] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
bandit problem.SIAM Journal on Computing, 32(1):48–77, 2002.

[7] Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire, and Man-
fred K. Warmuth. How to use expert advice.Journal of the ACM, 44(3):427–485, May 1997.

[8] Nicolò Cesa-Bianchi and Gábor Lugosi. Potential-based algorithms in on-line prediction and game theory.
Machine Learning, 51(3):239–261, 2003.

[9] Nicolò Cesa-Bianchi and Gábor Lugosi.Prediction, Learning, and Games. Cambridge University Press,
2006.

[10] Kamalika Chaudhuri, Yoav Freund, and Daniel Hsu. A parameter-free hedging algorithm.Advances in
Neural Information Processing Systems 22, 2009.

[11] Alexey Chernov and Vladimir Vovk. Prediction with advice of unknown number of experts.arXiv preprint
arXiv:1006.0475, 2010.

[12] Thomas M. Cover. Universal portfolios.Mathematical Finance, 1(1):1–29, January 1991.
[13] Yoav Freund. Boosting a weak learning algorithm by majority. Information and Computation,

121(2):256–285, 1995.
[14] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an

application to boosting.Journal of Computer and System Sciences, 55(1):119–139, August 1997.
[15] Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights.Games and

Economic Behavior, 29:79–103, 1999.
[16] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: A statistical view

of boosting.Annals of Statistics, 28(2):337–407, April 2000.
[17] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmicregret algorithms for online convex optimiza-

tion. Machine Learning, 69(2-3):169–192, 2007.
[18] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems.Journal of Com-

puter and System Sciences, 71(3):291–307, 2005.
[19] Robert Kleinberg. Anytime algorithms for multi-armedbandit problems. InProceedings of the seven-

teenth annual ACM-SIAM symposium on Discrete algorithm, pages 928–936. ACM, 2006.
[20] Robert David Kleinberg.Online decision problems with large strategy sets. PhD thesis, MIT, 2005.
[21] Haipeng Luo and Robert E. Schapire. Towards Minimax Online Learning with Unknown Time Horizon.

In Proceedings of the 31st International Conference on Machine Learning, 2014.
[22] H Brendan McMahan and Francesco Orabona. Unconstrained online linear learning in hilbert spaces:

Minimax algorithms and normal approximations. InProceedings of the 27th Annual Conference on
Learning Theory, 2014.

[23] Indraneel Mukherjee and Robert E. Schapire. Learning with continuous experts using drifting games.
Theoretical Computer Science, 411(29):2670–2683, 2010.

[24] Hariharan Narayanan and Alexander Rakhlin. Random walk approach to regret minimization. InAd-
vances in Neural Information Processing Systems 23, 2010.

[25] Francesco Orabona. Simultaneous model selection and optimization through parameter-free stochastic
learning. InAdvances in Neural Information Processing Systems 28, 2014.

[26] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Relax and localize: From value to algorithms. In
Advances in Neural Information Processing Systems 25, 2012. Full version available in arXiv:1204.0870.

[27] Lev Reyzin and Robert E. Schapire. How boosting the margin can also boost classifier complexity. In
Proceedings of the 23rd International Conference on Machine Learning, 2006.

[28] Robert E. Schapire. Drifting games.Machine Learning, 43(3):265–291, June 2001.
[29] Robert E. Schapire and Yoav Freund.Boosting: Foundations and Algorithms. MIT Press, 2012.
[30] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in Ma-

chine Learning, 4(2):107–194, 2011.
[31] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. InPro-

ceedings of the Twentieth International Conference on Machine Learning, 2003.

9

A Summary of Drifting Game Variants

We study three different variants of drifting games throughout the paper, which corresponds to the
Hedge setting, the multi-armed bandit problem and online convex optimization respectively. The
protocols of these variants are summarized below.

DGv1

Given: a loss functionL(s) = 1{s ≤ −R}.
For t = 1, . . . , T :

1. The player chooses a distributionpt overN chips.

2. The adversary decides the movement of each chipzt,i ∈ [−1, 1] subject topt · zt ≥ 0
and|zt,i − zt,j | ≤ 1 for all i andj.

The player suffers loss
∑N

i=1 L(
∑T

t=1 zt,i).

DGv2

Given: a loss functionL(s) = 1{s ≤ −R}.
For t = 1, . . . , T :

1. The player chooses a distributionpt overN chips.

2. The adversary randomly decides the movement of each chipzt,i ≥ −1 subject to
Et[zt,i] ≤ 1,Et[z

2
t,i] ≤ 1/pt,i andEt[pt · zt] ≥ 0.

The player suffers loss
∑N

i=1 L(
∑T

t=1 zt,i).

DGv3

Given: a compact convex setS, a loss functionL(s) = 1{s ≤ −R}.
For t = 1, . . . , T :

1. The player chooses a density functionpt(x) onS.

2. The adversary decides a functionzt(x) : S → [−1, 1] subject toEx∼pt
[zt(x)] ≥ 0.

The player suffers loss
∫

x∈S
L(
∑T

t=1 zt(x))dx.

B Proof of Theorem 1

Proof. We first show that both conversions are valid. In Algorithm 1,it is clear thatℓt,i ≥ 0. Also,
ℓt,i ≤ 1 is guaranteed due to the extra restriction of DGv1. For Algorithm 2,zt,i lies inB = [−1, 1]
sinceℓt,i ∈ [0, 1], and direct computation showspt·zt = 0 ≥ β(= 0) and|zt,i−zt,j| = |ℓt,i−ℓt,j| ≤
1 for all i andj.

(1) For any choices ofzt, we have
N
∑

i=1

L(sT,i) =

N
∑

i=1

L

(

N
∑

t=1

zt,i

)

≤
N
∑

i=1

L

(

N
∑

t=1

(zt,i − pt · zt)
)

,

where the inequality holds sincept · zt is required to be nonnegative andL is a nonincreasing
function. By Algorithm 1,zt,i − pt · zt is equal toℓt,i − pt · ℓt, leading to

N
∑

i=1

L(sT,i) ≤
N
∑

i=1

L

(

N
∑

t=1

(ℓt,i − pt · ℓt)
)

=
N
∑

i=1

1

{

R ≤
N
∑

t=1

(pt · ℓt − ℓt,i)

}

.

10

SinceR(i+1)/N
T (H) < R ≤ R

i/N
T (H), we must have

∑N
t=1 (pt · ℓt − ℓt,j) < R except for the best

i actions, which means
∑N

i=1 L(sT,i) ≤ i. This holds for any choices ofzt, soLT (DR) ≤ i/N .

(2) By Algorithm 2 and the conditionLT (DR) < ǫ , we have

1

N

N
∑

i=1

1

{

R ≤
N
∑

t=1

(pt · ℓt − ℓt,i)

}

=
1

N

N
∑

i=1

L(sT,i) ≤ LT (DR) < ǫ,

which means there are at most⌈Nǫ⌉ − 1 actions satisfyingR ≤
∑N

t=1 (pt · ℓt − ℓt,i), and thus
∑N

t=1 (pt · ℓt − ℓt,iǫ) < R. Since this holds for any choices ofℓt, we haveRǫ
T (H) < R.

C Summary of Hedge Algorithms and Proofs of Lemma 1, Lemma 2 and
Corollary 2

Table 1: Different algorithms derived from Algorithm 3, andcomparisons with NormalHedge

EXP 2-norm NormalHedge.DT NormalHedge

ΦT (s) e−η(s+R) a[s]2− a
(

e[s]
2
−
/3T − 1

)

N/A

pt,i ∝ e−ηst−1,i
[st−1,i − 1]2−
−[st−1,i + 1]2−

e[st−1,i−1]2
−
/3t

−e[st−1,i+1]2
−
/3t

−[st−1,i]−e
[st−1,i]

2
−
/c (c is

s.t.
∑

i e
[st−1,i]

2
−
/c = Ne)

Rǫ
T (H) O

(
√

T ln 1
ǫ

)

O
(

√

T/ǫ
)

O

(

√

T ln lnT
ǫ

)

O
(
√

T ln 1
ǫ + ln2 N

)

Adaptive? No Yes Yes Yes

Proof of Lemma 1.It suffices to show[s − 1]2− + [s + 1]2− ≤ 2[s]2− + 2. Whens ≥ 0, LHS =
[s− 1]2− ≤ 1 < 2 = RHS. Whens < 0, LHS≤ (s− 1)2 + (s+ 1)2 = 2s2 + 2 = RHS.

Proof of Lemma 2.LetF (s) = exp
(

[s−1]2
−

dt

)

+exp
(

[s+1]2
−

dt

)

−2 exp
(

[s]2
−

d(t−1)

)

. It suffices to show

F (s) ≤ 2(bt − bt−1) = exp

(

4

dt

)

− 1,

which is clearly true for the following 3 cases:

F (s) =















0 if s > 1;

exp
(

(s−1)2

dt

)

− 1 < exp
(

1
dt

)

− 1 if 0 < s ≤ 1;

exp
(

(s−1)2

dt

)

+ 1− 2 exp
(

s2

d(t−1)

)

< exp
(

4
dt

)

− 1 if −1 < s ≤ 0.

For the last cases ≤ −1, if we can show thatF (s) is increasing in this region, then the lemma
follows. Below, we show this by provingF ′(s) is nonnegative whens ≤ −1.

Let h(s, c) =
∂ exp(s2/c)

∂s = 2s
c exp

(

s2

c

)

. F ′(s) can now be written as

F ′(s) = h(s− 1, c) + h(s+ 1, c)− 2h(s, c) + 2(h(s, c)− h(s, c′)),

wherec = dt andc′ = d(t − 1). Next we apply (one-dimensional) Taylor expansion toh(s− 1, c)
andh(s+ 1, c) arounds, andh(s, c′) aroundc, leading to

F ′(s) =
∞
∑

k=1

(−1)k

k!

∂kh(s, c)

∂sk
+

∞
∑

k=1

1

k!

∂kh(s, c)

∂sk
− 2

∞
∑

k=1

(c′ − c)k

k!

∂kh(s, c)

∂ck

= 2

∞
∑

k=1

(

1

(2k)!

∂2kh(s, c)

∂s2k
− (−d)k

k!

∂kh(s, c)

∂ck

)

.

11

Direct computation (see Lemma 3 below) shows that∂kh(s,c)
∂ck

and ∂2kh(s,c)
∂s2k

share exact same forms
only with different constants:

∂kh(s, c)

∂ck
= exp

(

s2

c

) k
∑

j=0

(−1)kαk,j ·
s2j+1

ck+j+1
,

∂2kh(s, c)

∂s2k
= exp

(

s2

c

) k
∑

j=0

βk,j ·
s2j+1

ck+j+1
,

(4)

whereαk,j andβk,j are recursively defined as:

αk+1,j = αk,j−1 + (k + j + 1)αk,j ,

βk+1,j = 4βk,j−1 + (8j + 6)βk,j + (2j + 3)(2j + 2)βk,j+1,
(5)

with initial valuesα0,0 = β0,0 = 2 (whenj 6∈ {0, . . . , k}, αk,j andβk,j are all defined to be0).
Therefore,F ′(s) can be further simplified as

F ′(s) = 2 exp

(

s2

c

) ∞
∑

k=1

k
∑

j=0

s2j+1

ck+j+1

(

βk,j

(2k)!
− dkαk,j

k!

)

.

Sinces is negative, it suffices to show thatβk,j

(2k)! ≤ dkαk,j

k! holds for allk andj, which turns out
to be true as long asd ≥ 3, as shown by induction in the technical lemma 4 below. To sum up,
Φt(s− 1) + Φt(s+ 1) ≤ 2Φt−1(s) for all s ∈ R andt = 2, . . . , T .

Finally, we need to show that Eq. (2) still holds. The inequality we just proved above implies
∑

iΦt(st,i) ≤
∑

i Φt−1(st−1,i) for t = 2, . . . , T , as shown in Theorem 2. Thus the only thing we
need to show here is the case whent = 1. Note thatΦ1(s − 1) + Φ1(s + 1) ≤ 2Φ0(s) does not
hold for all s apparently. However, in order to prove

∑

i Φ1(s1,i) ≤
∑

i Φ0(s0,i), we in fact only
need a much weaker statement:Φ1(−1) + Φ1(1) ≤ 2Φ0(0) sinces0,i ≡ 0. This is equivalent to
exp (1/d)− 1 ≤ exp (4/d)− 1, which is true trivially.

Lemma 3. Leth(s, c) = 2s
c exp

(

s2

c

)

. The partial derivatives ofh(s, c) satisfy Eq.(4) and (5).

Proof. The base case holds trivially. Assume Eq. (4) holds for a fixedk. Then we have

∂k+1h(s, c)

∂ck+1
= exp

(

s2

c

) k
∑

j=0

(−1)kαk,j ·
(

−s2

c2
s2j+1

ck+j+1
− (k + j + 1)

s2j+1

ck+j+2

)

= exp

(

s2

c

) k
∑

j=0

(−1)k+1αk,j ·
(

s2(j+1)+1

c(k+1)+(j+1)+1
+ (k + j + 1)

s2j+1

c(k+1)+j+1

)

= exp

(

s2

c

) k+1
∑

j=0

(−1)k+1 (αk,j−1 + (k + j + 1)αk,j) ·
s2j+1

c(k+1)+j+1

= exp

(

s2

c

) k+1
∑

j=0

(−1)k+1αk+1,j ·
s2j+1

c(k+1)+j+1
,

and

∂2(k+1)h(s, c)

∂s2(k+1)
= ∂



exp

(

s2

c

) k
∑

j=0

βk,j ·
(

2s2j+2

ck+j+2
+ (2j + 1)

s2j

ck+j+1

)





/

∂s

= exp

(

s2

c

) k
∑

j=0

βk,j ·
(

4s2j+3

ck+j+3
+ (8j + 6)

s2j+1

ck+j+2
+ (2j + 1)2j

s2j−1

ck+j+1

)

= exp

(

s2

c

) k+1
∑

j=0

(4βk,j−1 + (8j + 6)βk,j + (2j + 3)(2j + 2)βk,j+1) ·
s2j+1

ck+j+2

12

= exp

(

s2

c

) k+1
∑

j=0

βk+1,j ·
s2j+1

ck+j+2
,

concluding the proof.

Lemma 4. Letαk,j andβk,j be defined as in Eq.(5). Then βk,j

(2k)! ≤
dkαk,j

k! holds for allk ≥ 0 and
j ∈ {0, . . . , k} whend ≥ 3.

Proof. We prove the lemma by induction onk. The base casek = 0 is trivial. Assume βk,j

(2k)! ≤
dkαk,j

k! holds for a fixedk and allj ∈ {0, . . . , k}, then we have∀j,

βk+1,j

(2k + 2)!
=

4βk,j−1 + (8j + 6)βk,j + (2j + 3)(2j + 2)βk,j+1

(2k + 2)!

≤ dk (4αk,j−1 + (8j + 6)αk,j + (2j + 3)(2j + 2)αk,j+1)

(2k + 2)(2k + 1)k!
.

We need to show that the above expression is at mostdk+1αk+1,j/(k + 1)!, which, after arrange-
ments, is equivalent to2αk,j−1 + (4j + 3)αk,j + (2j + 3)(j + 1)αk,j+1 ≤ d(2k + 1)αk+1,j . We
will prove this by another induction onk. Then the lemma follows.

The base case (k = 0) is simplified to6 ≤ 2d, which is true by our assumptiond ≥ 3. Assume the
inequality holds for a fixedk, then by the definition ofαk,j , one has

2αk+1,j−1 + (4j + 3)αk+1,j + (2j + 3)(j + 1)αk+1,j+1

= (2αk,j−2 + (4j + 3)αk,j−1 + (2j + 3)(j + 1)αk,j)+

(2(k + j)αk,j−1 + (4j + 3)(k + j + 1)αk,j + (2j + 3)(j + 1)(k + j + 2)αk,j+1)

= (2αk,j−2 + (4j − 1)αk,j−1 + (2j + 1)jαk,j)+

(k + j + 2) (2αk,j−1 + (4j + 3)αk,j + (2j + 3)(j + 1)αk,j+1)

≤ d(2k + 1)(αk+1,j−1 + (k + j + 2)αk+1,j) (by induction)

= d(2k + 1)αk+2,j

≤ d(2k + 3)αk+2,j ,

completing the induction.

Proof of Corollary 2. Recall thatΦT (s) ≥ 1

{

s ≤ −
√

dT ln
(

1
a + 1

)

}

. So by settingΦ0(0) =

a(1− b0) < ǫ and applying Theorem 2, we arrive at

Rǫ
T (H) ≤

√

dT ln

(

1− b0
ǫ

+ 1

)

.

It suffices to upper bound1 − b0, which, by definition, is12
∑T

t=1

(

exp
(

4
dt

)

− 1
)

. Sinceex − 1 ≤
ec−1

c x for anyx ∈ [0, c], we have

T
∑

t=1

(

exp

(

4

dt

)

− 1

)

≤ (e4/d − 1)

T
∑

t=1

1

t
≤ (e4/d − 1)(lnT + 1).

Pluggingd = 3 gives the corollary.

13

D A General MAB Algorithm and Regret Bounds

Input : A convex, nonincreasing, nonnegative functionΦT (s) ∈ C2, with nonincreasing second
derivative.

for t = T down to 1 do
Find a convex functionΦt−1(s) s.t. the conditions of Theorem 4 hold.

Set:s0 = 0.
for t = 1 to T do

Set:pt,i ∝ Φt(st−1,i − 1)− Φt(st−1,i + 1).
Draw it ∼ pt and receive lossℓt,it .
Set:zt,i = 1{i = it} · ℓt,it/pt,it − ℓt,it , ∀i.
Set:st = st−1 + zt.

Algorithm 4: A General MAB Algorithm

Theorem 4. SupposeΦt(s) is convex, twice continuously differentiable (i.e.Φt(s) ∈ C2), have
nonincreasing second derivative, and satisfies:

(

1
2 +Nαt

)

Φt(s− 1) +
(

1
2 −Nαt

)

Φt(s+ 1) ≤ Φt−1(s), ∀s ∈ R (6)

whereαt =
1
2 maxs

Φ′′

t (s−1)
Φt(s−1)−Φt(s+1) . If the player’s strategy is such thatpt,i ∝ Φt(st−1,i − 1)−

Φt(st−1,i + 1), then Eq.(2) holds in expectation.

Proof of Theorem 4.As discussed before, the main difficulty here is the unboundedness ofzt,i.
However, the expectation ofzt,i is still in [−1, 1] as in DGv1. To exploit this fact, we apply Taylor’s
theorem toΦt(st−1,i + zt,i) to the second order term:

Φt(st,i) = Φt(st−1,i + zt,i)

= Φt(st−1,i) + Φ′
t(st−1,i)zt,i +

1
2Φ

′′
t (ξt,i)z

2
t,i

≤ Φt(st−1,i) + Φ′
t(st−1,i)zt,i +

1
2Φ

′′
t (st−1,i − 1)z2t,i,

whereξt,i is betweenst−1,i+zt,i andst−1,i, and the inequality holds becauseΦ′′
t (s) is nonincreasing

andzt,i ≥ −1 by assumption. Now taking expectation on both sides with respect to the randomness
of zt,i, using the convexity ofΦt(s), and plugging the assumptionEt[z

2
t,i] ≤ 1/pt,i give:

Et[Φt(st,i)] ≤ Φt(st−1,i) + Φ′
t(st−1,i)Et[zt,i] +

1
2Φ

′′
t (st−1,i − 1)Et[z

2
t,i]

≤ Φt (st−1,i + Et[zt,i]) +
1
2Φ

′′
t (st−1,i − 1)/pt,i.

Let wt,i =
1
2 (Φt(st−1,i − 1)− Φt(st−1,i + 1)). Further pluggingpt,i ∝ wt,i and summing over

all i, we arrive at

N
∑

i=1

Et[Φt(st,i)] ≤
N
∑

i=1

(

Φt (st−1,i + Et[zt,i]) +
Φ′′

t (st−1,i − 1)

2wt,i
·

N
∑

i=1

wt,i

)

≤
N
∑

i=1

(

Φt (st−1,i + Et[zt,i]) + 2αt

N
∑

i=1

wt,i

)

(by the defintion ofαt)

=

N
∑

i=1

(Φt (st−1,i + Et[zt,i]) + 2Nαtwt,i) .

SinceEt[pt · zt] ≥ 0 implies
∑N

i=1 wt,iEt[zt,i] ≥ 0, we thus have

N
∑

i=1

Et[Φt(st,i)] ≤
N
∑

i=1

(Φt (st−1,i + Et[zt,i]) + wt,iEt[zt,i] + 2Nαtwt,i)

≤
N
∑

i=1

(

max
z∈[−1,+1]

(Φt (st−1,i + z) + wt,iz) + 2Nαtwt,i

)

14

=

N
∑

i=1

(

max
z∈{−1,+1}

(Φt (st−1,i + z) + wt,iz) + 2Nαtwt,i

)

(by the convexity ofΦt(s))

=

N
∑

i=1

((

1
2 +Nαt

)

Φt(st−1,i − 1) +
(

1
2 −Nαt

)

Φt(st−1,i + 1)
)

≤
N
∑

i=1

Φt−1(st−1,i). (by assumption)

The theorem follows by taking expectation on both sides withrespect to the past (i.e. the randomness
of z1, . . . , zt−1).

Theorem 5. For Algorithm 4, ifR and ǫ are such thatΦ0(0) < ǫ andΦT (s) ≥ 1{s ≤ −R} for
all s ∈ R, thenE[

∑T
t=1 ℓt,it −

∑T
t=1 ℓt,iǫ] < R for any non-oblivious adversary. Moreover, using

ΦT (s) = exp(−η(s + R)) (and let Eq. (6) hold with equality) gives exactly the EXP3 algorithm
with regretO(

√

TN ln(1/ǫ)).

Proof of Theorem 5.We first show that Algorithm 4 converts the multi-armed bandit problem to a
valid instance of DGv2. It suffices to prove thatzt,i = 1{i = it} · ℓt,it/pt,it − ℓt,it satisfies all
conditions defined in DGv2, as shown below (zt,i ≥ −1 is trivial):

Et[zt,i] = ℓt,i − pt · ℓt ≤ 1,

Et[z
2
t,i] = pt,i

(

ℓt,i
pt,i

− ℓt,i

)2

+
∑

j 6=i

pt,jℓ
2
t,j ≤ pt,i

(

1

pt,i
− 1

)2

+
∑

j 6=i

pt,j =
1

pt,i
− 1 ≤ 1

pt,i
,

Et[pt · zt] = Et



ℓt,it −
N
∑

j=1

pt,jℓt,it



 = 0.

Therefore, we can apply Theorem 4 directly, arriving at:

1

N

N
∑

i=1

E[ΦT (sT,i)] ≤ · · · ≤ 1

N

N
∑

i=1

E[Φ0(s0,i)] = Φ0(0) ≤ ǫ.

On the other hand, by applying Jensen’ inequality, we have

E[ΦT (sT,i)] ≥ ΦT (E[sT,i]) ≥ 1{E[sT,i] ≤ −R}.

Note thatE[sT,i] is equal toE
[

∑T
t=1 (ℓt,i − ℓt,it)

]

. We thus know

1

N

N
∑

i=1

1

{

E

[

T
∑

t=1

(ℓt,i − ℓt,it)

]

≤ −R

}

< ǫ,

which impliesE
[

∑T
t=1 ℓt,it −

∑T
t=1 ℓt,iǫ

]

< R for any non-oblivious adversary for the exact same

argument used in the proof of Theorem 2.

Finally, we show how to recover EXP3 using Algorithm 4 with inputΦT (s) = exp(−η(s+R)). To
computeΦt(s) for t < T , we simply use Eq. (6) with equality. One can verify using induction that

Φt(s) = exp (−η(s+R))

(

eη + e−η +Neηη2

2

)T−t

,

αt =
1

2
max

s

η2Φt(s− 1)

Φt(s− 1)− Φt(s+ 1)
=

eηη2

2(eη − e−η)
,

Φ′′′
t (s) = −η3Φt(s) ≤ 0.

15

The player’s strategy is thuspt,i ∝ exp(−η
∑t−1

τ=1 ℓ̂τ,i) (recall ℓ̂t,i = 1{i = it} · ℓt,it/pt,it is the
estimated loss), which is exactly the same as EXP3 (in fact a simplified version of the original EXP3,
see for example [30]). Moreover, the regret can be computed by settingΦ0(0) = ǫ, leading to

R =
1

η
ln

(

1

ǫ

)

+
T

η
ln

(

eη + e−η

2
+

1

2
Neηη2

)

≤ 1

η
ln

(

1

ǫ

)

+
T

η
ln

(

eη
2/2 +

1

2
Neηη2

)

(by Hoeffding’s Lemma)

≤ 1

η
ln

(

1

ǫ

)

+
T

η

(

η2

2
+

1

2
Neη−

η2

2 η2
)

(ln(1 + x) ≤ x)

If η ≤ 1 so thateη−η2/2 ≤ √
e, then we haveR ≤ 1

η ln(1ǫ) + Tη
(

1
2 + N

√
e

2

)

, which is
√

2T (1 +N
√
e) ln(1/ǫ) after optimally choosingη (η ≤ 1 will be satisfied whenT is large

enough).

E A General OCO Algorithm and Regret Bounds

Input : A convex, nonincreasing, nonnegative functionΦT (s)
for t = T down to 1 do

Find a convex functionΦt−1(s) s.t.∀s, Φt(s− 1) + Φt(s+ 1) ≤ 2Φt−1(s).
Set:s0(x) ≡ 0.
for t = 1 to T do

Predictxt = Ex∼pt
[x] wherept is such thatpt(x) ∝ Φt(st−1(x) − 1)− Φt(st−1(x) + 1).

Receive loss functionft from the adversary.
Set:zt(x) = ft(x) − ft(xt).
Set:st(x) = st−1(x) + zt(x).

Algorithm 5: A General OCO Algorithm

Definition of ǫ-regret in the OCO setting: Let Sǫ ⊂ S be such that the ratio of its volume and the
one ofS is ǫ and also

∑T
t=1 ft(x

′) ≤∑T
t=1 ft(x) for all x′ ∈ Sǫ andx ∈ S\Sǫ (it is clear that such

set exists). Thenǫ-regret is defined asRǫ
T (x1:T , f1:T) =

∑T
t=1 ft(xt)− infx∈S\Sǫ

∑T
t=1 ft(x).

Theorem 6. For Algorithm 5, ifR is such thatΦT (s) ≥ 1{s ≤ −R} andΦ0(0) < ǫ, then we have
Rǫ

T (x1:T , f1:T) < R andRT (x1:T , f1:T) < R+ T ǫ1/d. Specifically, ifR = O(
√

T ln(1/ǫ)), then
settingǫ = T−d givesRT (x1:T , f1:T) = O(

√
dT lnT).

Proof of Theorem 6.Letwt(x) =
1
2 (Φt(st−1(x)− 1)− Φt(st−1(x) + 1)). Similarly to the Hedge

setting, the “sum” of potentials never increases:
∫

x∈S

Φt(st(x))dx ≤
∫

x∈S

(Φt(st−1(x) + zt(x)) + wt(x)zt(x)) dx ≤
∫

x∈S

Φt−1(st−1(x))dx.

Here, the first inequality is due toEx∼pt
[zt(x)] ≥ 0, and the second inequality holds for the exact

same reason as in the case for Hedge. Therefore, we have
∫

x∈S

1{sT (x) ≤ −R}dx ≤
∫

x∈S

ΦT (sT (x))dx ≤ · · · ≤
∫

x∈S

Φ0(0)dx < ǫV,

whereV is the volume ofS. Recall the construction ofSǫ. There must exist a pointx′ ∈ Sǫ such
thatsT (x′) > −R, otherwise

∫

x
1{sT (x) ≤ −R}dx would be at leastǫV . UnfoldingsT (x′), we

arrive at
∑

t ft(xt) −
∑

t ft(x
′) < R. Using the fact

∑

t ft(x
′) ≤ infx∈S\Sǫ

∑

t ft(x) gives the
bound forǫ-regret.

Next consider a shrunk version ofS: S′
ǫ = {(1 − ǫ

1
d)x∗ + ǫ

1
dx : x ∈ S} wherex∗ ∈

argminx
∑

t ft(x). Then
∫

x∈S 1{sT (x) ≤ −R}dx is at least
∫

x∈S′

ǫ

1{sT (x) ≤ −R}dx = ǫ

∫

x∈S

1

{

sT

(

(1− ǫ
1
d)x∗ + ǫ

1
dx

)

≤ −R
}

dx,

16

which, by the convexity and the boundedness offt(x), is at least

ǫ

∫

x∈S

1

{

T
∑

t=1

(

(1− ǫ
1
d)ft(x

∗) + ǫ
1
d ft(x)− ft(xt)

)

≤ −R

}

dx

≥ ǫ

∫

x∈S

1

{

T
∑

t=1

(ft(x
∗)− ft(xt)) ≤ −R− T ǫ

1
d

}

dx

= ǫV · 1
{

T
∑

t=1

(ft(x
∗)− ft(xt)) ≤ −R− T ǫ

1
d

}

.

Following the previous discussion, the expression in the last line above is strictly less thanǫV ·,
which means that the value of the indicator function has to be0, namely,RT (x1:T , f1:T) < R +
T ǫ1/d.

F NH-Boost.DT, NH-Boost and Proof of Theorem 3

Input : Training examples(xi, yi) ∈ Rd × {−1,+1}, i = 1, . . . , N.
Input : A weak learning algorithm.
Input : Number of roundsT .
Output : A HypothesisH(x) : Rd → {−1,+1}.
Set:s0 = 0.
for t = 1 to T do

Set:pt,i ∝ exp
(

[st−1,i − 1]2−/3t
)

− exp
(

[st−1,i + 1]2−/3t
)

, ∀i.
Invoke the weak learning algorithm to getht with edgeγt = 1

2

∑

i pt,iyiht(xi).
Set:st,i = st−1,i +

1
2yiht(xi)− γt, ∀i.

Set:H(x) = sign(
∑T

t=1 ht(x)).

Algorithm 6: NH-Boost.DT

Input : Training examples(xi, yi) ∈ Rd × {−1,+1}, i = 1, . . . , N.
Input : A weak learning algorithm.
Input : Number of roundsT .
Output : A HypothesisH(x) : Rd → {−1,+1}.
Set:s0 = 0.
for t = 1 to T do

if t = 1 then
Set:p1 to be a uniform distribution.

else
Find: c such that

∑N
i=1 exp

(

[st−1,i]
2
−/c

)

= Ne.
Set:pt,i ∝ −[st−1,i]− exp

(

[st−1,i]
2
−/c

)

, ∀i.
Invoke the weak learning algorithm to getht with edgeγt = 1

2

∑

i pt,iyiht(xi).
Set:st,i = st−1,i +

1
2yiht(xi)− γt, ∀i.

Set:H(x) = sign(
∑T

t=1 ht(x)).

Algorithm 7: NH-Boost

In the boosting setting for binary classification, we are given a set of training examples
(xi, yi)i=1,...,N wherexi ∈ Rd is an example andyi ∈ {−1,+1} is its label. A boosting algo-
rithm proceeds forT rounds. On each round, a distributionpt over the examples is computed and
fed into a weak learning algorithm which returns a “weak” hypothesisht : R

d → {−1,+1} with a
guaranteed small edge, that is,γt =

1
2

∑

i pt,iyiht(xi) ≥ γ > 0. At the end, a linear combination
of all ht is computed as the final “strong” hypothesis which is expected to have low training error
and potentially low generalization error.

The conversion of a Hedge algorithm into a boosting algorithm is to treat each example as an “ac-
tion” and setℓt,i = 1{ht(xi) = yi} so that the booster tends to increase weights for those “hard”

17

examples. The final hypothesis is a simple majority vote of all ht, that is,H(x) = sign(
∑

t ht(x))
where sign(x) is the sign function that outputs1 if x is positive, and−1 otherwise. Themargin
of examplexi is defined as1T

∑T
t=1 yiht(xi), that is, the difference between the fractions of cor-

rect hypotheses and incorrect hypotheses on this example. The boosting algorithms derived from
NormalHedge.DT and NormalHedge in this way are given in Algorithm 6 and 7.

Proof the Theorem 3.Let (x̃i, ỹi)i=1,...,N be a permutation of the training examples such that their
margins are sorted from smallest to largest:

∑

t ỹ1ht(x̃1) ≤ · · · ≤ ∑

t ỹNht(x̃N), which also
implies

∑

t 1{ht(x̃1) = ỹ1} ≤ · · · ≤ ∑

t 1{ht(x̃N) = ỹN}. Recall that NormalHedge.DT is
essentially playing a Hedge game using NormalHedge.DT withlossℓt,i = 1{ht(xi) = yi}. There-
fore, theǫ-regret bound for the Hedge setting together with the assumption on the weak learning
algorithm implies:∀j ∈ {1, . . . , N},

1

2
+ γ ≤ 1

T

T
∑

t=1

N
∑

i=1

pt,i1{ht(xi) = yi} ≤ 1

T

T
∑

t=1

1{ht(x̃j) = ỹj}+
R

j/N
T

T
, (7)

whereRj/N
T = Õ(

√

3T ln(N/j)) is thej/N -regret bound for NormalHedge.DT. So ifj is such

thatγ > R
j/N
T /T , we have1

T

∑T
t=1 1{ht(x̃j) = ỹj} > 1

2 , which is saying that example(x̃j , ỹj)
will eventually be classified correctly byH(x) due to the fact thatH(x) is taking a majority vote of
all ht. This is in fact true for all examples(x̃i, ỹi) such thati ≥ j and thus the training error rate
will be at most(j − 1)/N , which is of orderÕ(exp(− 1

3Tγ
2)).

For the margin bound, by plugging1{ht(x̃j) = ỹj} = (ỹjht(x̃j) + 1)/2, we rewrite Eq. (7) as:

2

(

γ − R
j/N
T

T

)

≤ 1

T

T
∑

t=1

ỹjht(x̃j).

Therefore, ifj is such thatθ < 2(γ −R
j/N
T /T), then the fraction of examples with margin at most

θ is again at most(j − 1)/N , which is of orderÕ(exp(− 1
3T (θ − 2γ)2)).

G Experiments in a Boosting Setting

We conducted experiments to compare the performance of three boosting algorithms for binary
classification: AdaBoost [14], NH-Boost (Algorithm 7) and NH-Boost.DT (Algorithm 6), using a
set of benchmark data available from the UCI repository3 and LIBSVM datasets4. Some datasets
are preprocessed according to [27]. The number of features,training examples and test examples
can be found in Table 2.

All features are binary. The weak learning algorithm is a simple (exhaustive) decision stump (see
for instance [29]). On each round, the weak learning algorithm enumerates all features, and for each
feature computes the weighted error of the corresponding stump on the weighted training examples.
Therefore, if the number of examples with zero weight is relatively large, then the weak learning
algorithm would be faster in computing the weighted error and thus faster in finding the best feature.

All boosting algorithms are run for two hundred rounds. The results are summarized in Table 3, with
bold entries being the best ones among the three (AB, NB and NBDT stand for AdaBoost, NH-Boost
and NH-Boost.DT respectively). As we can see, in terms of training error and test error, all three
algorithms have similar performance. However, our NH-Boost.DT algorithm is always the fastest
one. The average fraction of examples with zero weights for NH-Boost.DT is significantly higher
than the one for NH-Boost (note that AdaBoost does not assignzero weight at all). We plot the
change of this fraction over rounds in Figure 1 (using three datasets). As both algorithms proceed,
they tend to ignore more and more examples on each round, but NH-Boost.DT consistently ignores
more examples than NH-Boost.

Sincest,i is positively correlated to the margin of examplei (1t
∑t

τ=1 yihτ (xi)) and largest,i leads
to zero weight, the above phenomenon in fact implies that theexamples’ margins should be larger for

3http://archive.ics.uci.edu/ml/
4http://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/

18

http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

NH-Boost.DT than for NH-Boost. This is confirmed by Figure 2,where we plot the final cumulative
margins on three datasets (i.e. each point represents the fraction of examples with at most some fixed
margin). One can see that the lines for NH-Boost.DT are belowthe ones for NH-Boost (and even
AdaBoost) for most time, meaning that NH-Boost.DT achieveslarger margins in general. This could
explain NH-Boost.DT’s better test error on some datasets.

Table 2: Description of datasets

Data #feature #training #test
a9a 123 32,561 16,281

census 131 1,000 1,000
ocr49 403 1,000 1,000
splice 240 500 500
w8a 300 49,749 14,951

Table 3: Experiment results

Time (s) Zeros (%) Training Error (%) Test Error (%)
Data AB NB NBDT NB NBDT AB NB NBDT AB NB NBDT
a9a 57.5 72.5 46.2 1.1 22.1 15.4 15.8 15.5 15.0 15.6 15.2

census 1.7 2.2 1.4 2.2 19.2 15.6 17.0 15.4 18.7 18.6 18.3
ocr49 5.1 4.7 3.0 17.1 42.0 1.7 1.7 2.4 5.5 5.9 5.8
splice 1.6 1.5 0.9 22.2 45.1 0.0 0.0 0.4 9.4 8.6 8.2
w8a 237.6 244.7 170.7 3.0 29.3 2.6 2.2 2.4 2.7 2.3 2.6

20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

#Rounds

F
ra

ct
io

n
of

 Z
er

o
W

ei
gh

ts

NB
NBDT

(a) census

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

#Rounds

F
ra

ct
io

n
of

 Z
er

o
W

ei
gh

ts

NB
NBDT

(b) splice

20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

#Rounds

F
ra

ct
io

n
of

 Z
er

o
W

ei
gh

ts

NB
NBDT

(c) w8a

Figure 1: Comparison of fraction of zero weights

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Margin

F
ra

ct
io

n

AB
NB
NBDT

(a) census

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Margin

F
ra

ct
io

n

AB
NB
NBDT

(b) splice

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Margin

F
ra

ct
io

n

AB
NB
NBDT

(c) w8a

Figure 2: Comparison of cumulative margins

19

	1 Introduction
	2 Reviewing Drifting Games
	3 Online Learning as a Drifting Game
	3.1 Algorithmic Equivalence
	3.2 Relaxations
	3.3 Designing Potentials and Algorithms
	3.4 High Probability Bounds

	4 Generalizations and Applications
	A Summary of Drifting Game Variants
	B Proof of Theorem 1
	C Summary of Hedge Algorithms and Proofs of Lemma 1, Lemma 2 and Corollary 2
	D A General MAB Algorithm and Regret Bounds
	E A General OCO Algorithm and Regret Bounds
	F NH-Boost.DT, NH-Boost and Proof of Theorem 3
	G Experiments in a Boosting Setting

