arXiv:1406.1856v2 [cs.LG] 30 Oct 2014

A Drifting-Games Analysis for Online Learning and
Applications to Boosting

Haipeng Luo Robert E. Schapire*
Department of Computer Science Department of Computer Science
Princeton University Princeton University
Princeton, NJ 08540 Princeton, NJ 08540
haipengl@cs.princeton.edu schapire@cs.princeton.edu
Abstract

We provide a general mechanism to design online learningrithgns based on
a minimax analysis within a drifting-games framework. Bifint online learning
settings (Hedge, multi-armed bandit problems and onlimeewoptimization) are
studied by converting into various kinds of drifting gam&ke original minimax

analysis for drifting games is then used and generalizedoplymg a series of
relaxations, starting from choosing a convex surrogatef®-1 loss function.
With different choices of surrogates, we not only recovestixg algorithms, but

also propose new algorithms that are totally parametergnal enjoy other useful
properties. Moreover, our drifting-games framework nallyrallows us to study

high probability bounds without resorting to any concetidraresults, and also a
generalized notion of regret that measures how good theitdgois compared to
all but the top small fraction of candidates. Finally, wenskate our new Hedge
algorithm into a new adaptive boosting algorithm that is patationally faster as
shown in experiments, since it ignores a large number of gk@son each round.

1 Introduction

In this paper, we study online learning problems within dtithgj-games framework, with the aim of
developing a general methodology for designing learniggrithms based on a minimax analysis.

To solve an online learning problem, it is natural to consgeme-theoretically optimal algorithms
which find the best solution even in worst-case scenarioss i§tpossible for some special cases
([2,11,.3,21]) but difficult in general. On the other hand, mather efficient algorithms with optimal
regret rate (but not exactly minimax optimal) have been pseg for different learning settings (such
as the exponential weights algorithmI[14} 15], and follow grerturbed leader [18]). However, it is
not always clear how to come up with these algorithms. Rewenk by Rakhlin et al.|[26] built a
bridge between these two classes of methods by showing #ray existing algorithms can indeed
be derived from a minimax analysis followed by a series aixations.

In this paper, we provide a parallel way to design learnirggpathms by first converting online
learning problems into variants of drifting games, and thpplying a minimax analysis and relax-
ations. Drifting gamed[28] (reviewed in Sectiohl2) generalize Freund’s “majonigte game”[[13]
and subsume some well-studied boosting and online leasdttmgs. A nearly minimax optimal
algorithm is proposed in [28]. It turns out the connectioasAeen drifting games and online learn-
ing go far beyond what has been discussed previously. To ghaiywve consider variants of drifting
games that capture different popular online learning mnoisl. We then generalize the minimax
analysis inl[28] based on one key idaalax a 0-1 loss function by a convex surrogafdthough

*R. Schapire is currently at Microsoft Research in New YortyCi

http://arxiv.org/abs/1406.1856v2

this idea has been applied widely elsewhere in machineilegrwe use it here in a new way to
obtain a very general methodology for designing and anadyainline learning algorithms. Using
this general idea, we not only recover existing algorithing, also design new ones with special
useful properties. A somewhat surprising result is thatraw algorithms are totallparameter-
free, which is usually not the case for algorithms derived fromiaimax analysis. Moreover, a
generalized notion of regret-¢egret, defined in Sectidd 3) that measures how good theitgois
compared to all but the topfraction of candidates arises naturally in our drifting¥ges framework.
Below we summarize our results for a range of learning ggtin

Hedge Settings:(Sectior 8) The Hedge probleim [14] investigates how to clgJeet across a set
of actions. We show an algorithmic equivalence betweengtoblem and a simple drifting game
(DGv1). We then show how to relax the original minimax analytep by step to reach a general
recipe for designing Hedge algorithms (Algoritfiin 3). Thesamples of appropriate convex sur-
rogates of the 0-1 loss function are then discussed, leaditite well-known exponential weights
algorithm and two other new ones, one of which (NormalHedgen Sectiori 3.B) bears some sim-
ilarities with the NormalHedge algorithm [10] and enjoysimitar e-regret boundsimultaneously
for all e and horizons. However, our regret bounds do not depend anutihéer of actions, and thus
can be applied even when there are infinitely many actions. aDalysis is also arguably simpler
and more intuitive than the one in [10] and easy to be gerremlio more general settings. More-
over, our algorithm is more computationally efficient siftcgoes not require a numerical searching
step as in NormalHedge. Finally, we also derive high prdiigthiounds for the randomized Hedge
setting as a simple side product of our framewwaithoutusing any concentration results.

Multi-armed Bandit Problems: (Sectio %) The multi-armed bandit problem [6] is a classic e
ample for learning with incomplete information where tharteer can only obtain feedback for the
actions taken. To capture this problem, we study a quitedfit drifting game (DGv2) where ran-
domness and variance constraints are taken into accouain g minimax analysis is generalized
and the EXP3 algorithm [6] is recovered. Our results couldd®n as a preliminary step to answer
the open question|[2] on exact minimax optimal algorithnratie multi-armed bandit problem.

Online Convex Optimization: (Sectior %) Based the theory of convex optimization, ontioevex
optimization [31] has been the foundation of modern onlemrhing theory. The corresponding
drifting game formulation is a continuous space variant {Bfs Fortunately, it turns out that all
results from the Hedge setting are ready to be used here/a®eg the continuous EXP algorithm
[12,[17,[24] and also generalizing our new algorithms to feseral setting. Besides the usual
regret bounds, we also generalize theegret, which, as far as we know, is the first time it has been
explicitly studied. Again, we emphasize that our new alionis are adaptive inand the horizon.

Boosting: (Sectior %) Realizing that every Hedge algorithm can be eded into a boosting algo-

rithm ([29]), we propose a new boosting algorithm (NH-Bob3t) by converting NormalHedge.DT.

The adaptivity of NormalHedge.DT is then translated in&ining error and margin distribution

bounds that previous analysis In [29] using nonadaptiveratyns does not show. Moreover, our
new boosting algorithm ignores a great many examples onreactd, which is an appealing prop-
erty useful to speeding up the weak learning algorithm. Ehi®nfirmed by our experiments.

Related work: Our analysis makes use of potential functions. Similarcemts have widely ap-
peared in the literature![8} 5], but unlike our work, they aot related to any minimax analysis and
might be hard to interpret. The existence of parameter fredgd algorithms for unknown number
of actions was shown in_[11], but no concrete algorithms vggven there. Boosting algorithms
that ignore some examples on each round were studied/injb&fe a heuristic was used to ignore
examples with small weights and no theoretical guarantpeigsded.

2 Reviewing Drifting Games

We consider a simplified version of drifting games similathe one described in_[29, chap. 13]
(also called chip games). This game proceeds thr@ugiunds, and is played between a player and
an adversary who control§ chips on the real line. The positions of these chips at theoénalind

t are denoted by, € R™, with each coordinate; ; corresponding to the position of chiplnitially,

all chips are at positiofl so thatsy, = 0. On every round = 1,..., T the player first chooses a
distributionp; over the chips, then the adversary decides the movemeriis chipsz; so that the

new positions are updated ss= s;_1 + z;. Here, each, ; has to be picked from a prespecified
setB C R, and more importantly, satisfy the constraint z; > § > 0 for some fixed constarit.

At the end of the game, each chip is associated with a nonmedass defined by. (st ;) for some
nonincreasing functioft mapping from the final position of the chip®,. The goal of the player

is to minimize the chips’ average Io%g Zf.vzl L(st,) afterT rounds. So intuitively, the player
aims to “push” the chips to the right by assigning appropne¢ights on them so that the adversary
has to move them to the right i/in a weighted average sense on each round. This game captures
many learning problems. For instance, binary classifioatia boosting can be translated into a
drifting game by treating each training example as a chip [88] for details).

We regard a player’s strategy as a function mapping from the history of the adversary’s de-
cisions to a distribution that the player is going to playhwithat is,p; = D(z1.:—1) where
z1..—1 Stands forzy,...,z;, 1. The player’s worst case loss using this algorithm is themotk
by Lr(D). The minimax optimal loss of the game is computed by the ¥ahg expression:

minp L7 (D) = minp, eay MaXy ez, *+ Milpreay MaXyrez,,, ¥ Zfil L(Zthl i), Where
Ay is the N dimensional simplex an&, = BN N {z:p-z > B} is assumed to be compact.
A strategyD* that realizes the minimum iminp Lo (D) is called a minimax optimal strategy.
A nearly optimal strategy and its analysis is originallyegivin [28], and a derivation by directly
tackling the above minimax expression can be found.in [28pci3]. Specifically, a sequence of
potential functions of a chip’s position is defined recuegias follows:

Or(s) =L(s), Pi—1(s) = min max(P:(s + 2) + w(z — F)). (1)

w€eRy zeB

Let w; ; be the weight that realizes the minimum in the definitionbef ; (s;—1 ;), that is,w;; €
arg min,, max,(®;(si—1,; + z) + w(z — B)). Then the player’s strategy is to g8t; < w; ;. The
key property of this strategy is that it assures that the stitheopotentials over all the chips never
increases, connecting the player’s final loss with the ptkst time0 as follows:

1Y 1Y 1 Y 1 Y
N ;L(STZ) < N ;@T(Sm) < N ;@TA(STAJ) <---< N ;(I)O(So,i) = $y(0).
2

It has been shown i [28] that this upper bound on the losstimapin a very strong sense.

Moreover, in some cases the potential functions have nasedlforms and thus the algorithm can
be efficiently implemented. For example, in the boostintiregtB is simply{—1,+1}, and one can
verify ®;(s) = #(I)Hl(s—i—l)—i—#(ﬁtﬂ(s—l) andwy; = 3 (P4(s¢—1, — 1) — Pe(se—1, + 1))
With the loss functionL(s) being1{s < 0}, these can be further simplified and eventually give
exactly the boost-by-majority algorithm [13].

3 Online Learning as a Drifting Game

The connection between drifting games and some specifiogef online learning has been no-
ticed before ([28, 23]). We aim to find deeper connections/enen equivalence between variants
of drifting games and more general settings of online leaynand provide insights on designing
learning algorithms through a minimax analysis. We statth&isimple yet classic Hedge setting.

3.1 Algorithmic Equivalence

In the Hedge setting [14], a player tries to earn as much asilleqor lose as little as possible) by
cleverly spreading a fixed amount of money to bet on a set afraecbn each day. Formally, the game
proceeds foff” rounds, and on each round= 1, ..., T the player chooses a distributipp over N
actions, then the adversary decides the actions’ logdge. action: incurs los<, ; € [0, 1]) which

are revealed to the player. The player suffers a weightedhgedos; - £, at the end of this round.
The goal of the player is to minimize his “regret”, which isiafly defined as the difference between
his total loss and the loss of the best action. Here, we cenaitleven more general notion of regret
studied in [[20| 19, 10, 11], which we cadlregret Suppose the actions are ordered according to

their total losses aftef’ rounds (i.e. Zthl ¢, ;) from smallest to largest, and lét be the index

Input: A Hedge Algorithm?#{ Input: A DGv1 AlgorithmDg

for t=1to 7T do for t=1to 7T do
QueryH: py = H(£1:4—1). QueryDg: p; = Dr(2z1:4—1).
Set:DR(zM,l) = Pt- Set:H(ZM,l) = P¢-
Receive movementsg from the adversary Receive losseg; from the adversary.
Set:&m‘ = 2t — minj 2t.75 V4. Set:zt,i = Zt,i — Pt -Et, V1.

Algorithm 1. Conversion of a Hedge Algo-Algorithm 2: Conversion of a DGv1l Algo-
rithm to a DGv1 AlgorithmDpg rithm Dy, to a Hedge AlgorithmH

of the action that is thé N¢]-th element in the sorted lisb (< ¢ < 1). Now, e-regret is defined
asR%(pi.r,b1.7) = Zle Pt - b — Zle ;.. In other wordsg-regret measures the difference
between the player’s loss and the loss of &]-th best action (recovering the usual regret with
e < 1/N), and sublineae-regret implies that the player’s loss is almost as good lasualthe top

e fraction of actions. SimilarlyR%.(#) denotes the worst caseregret for a specific algorithri.
For convenience, when< 0 or e > 1, we defines-regret to bexo or —oo respectively.

Next we discuss how Hedge is highly related to drifting gan@msider a variant of drifting games
whereB = [-1,1], 5 = 0 andL(s) = 1{s < —R} for some constank. Additionally, we impose
an extra restriction on the adversaly;; — z; ;| < 1 for all i andj. In other words, the difference
between any two chips’ movements is at mbsiVe denote this specific variant of drifting games
by DGv1 (summarized in Appendix]A) and a corresponding allgor by Dr to emphasize the
dependence oR. The reductions in Algorithra]1 arid 2 and Theoreim 1 show thavDénd the
Hedge problem are algorithmically equivalent (note thahlmmnversions are valid). The proof is
straightforward and deferred to Appendix B. By Theofdm 1Is itlear that the minimax optimal
algorithm for one setting is also minimax optimal for theetiinder these conversions.

Theorem 1. DGv1 and the Hedge problem are algorithmically equivalerthie following sense:
(1) Algorithm[1 produces a DGv1 algorithfy, satisfyingL(Dr) < i/N wherei € {0,...,N}

is such thaR{""/™ (1) < R < RY/YN ().
(2) Algorithn{2 produces a Hedge algorittthwith RS.(#) < R for any R such thatL(Dgr) < e.

3.2 Relaxations

From now on we only focus on the direction of converting atainif game algorithm into a Hedge
algorithm. In order to derive a minimax Hedge algorithm, direen[1 tells us it suffices to derive
minimax DGv1 algorithms. Exact minimax analysis is usudiRicult, and appropriate relaxations
seem to be necessary. To make use of the existing analysstafiedard drifting games, the first
obvious relaxation is to drop the additional restrictiorDiGv1, that is,|z;; — z ;| < 1 for all ¢
andj. Doing this will lead to the exact setting discussed.in [28jene a near optimal strategy is
proposed using the recipe in Ef] (1). It turns out that tHexaion is reasonable and does not give
too much more power to the adversary. To see this, first rdzatlresults from [23], written in our

T—R
notation, state thahinp, Lr(Dr) < 5r ;% (le), which, by Hoeffding’s inequality, is upper

bounded by exp (— %) . Second, statement (2) in Theorien 1 clearly remains vafictifnput
of Algorithm[2 is a drifting game algorithm for this relaxedrgion of DGv1. Therefore, by setting
€ > 2exp (— ;?;i)lj) and solving forR, we haveR%.(H) < O (1 /Tln(%)), which is the known
optimal regret rate for the Hedge problem, showing that \ge litle due to this relaxation.

However, the algorithm proposed in [23] is not computatilyredficient since the potential functions
®,(s) do not have closed forms. To get around this, we would wantrtilémax expression in Eq.
(D) to be easily solved, just like the case whgr= {—1, 1}. It turns out that convexity would allow
us to treatB = [—1, 1] almost asB = {—1, 1}. Specifically, if eachb,(s) is a convex function of
s, then due to the fact that the maximum of a convex functiomvigys realized at the boundary of
a compact region, we have

min max (®;(s+2)+wz) = min max (P(s+ 2) +wz) = Di(s— 1)+ P(s+1)

weR, z€[—1,1] weR, ze{—1,1} 2 ’

®3)

Input : A convex, nonincreasing, nonnegative functibp(s).
for t =T downto1do
Find a convex functio®;_; (s) s.t. Vs, ®;(s — 1) + ®4(s + 1) < 2P, _1(s).
Set:sy = 0.
for t=1to T do
Set:?—[(fl;t_l) =p: St.p; X (I)t(st_l,i - 1) — q)t(st—l,i + 1)
Receive losseé; and sets; ; = s;—1,; + {1; — Dt - £, Vi.

Algorithm 3: A General Hedge Algorithri{

with w = (®4(s — 1) — (s + 1))/2 realizing the minimum. Since the 0-1 loss functib(s) is
not convex, this motivates us to find a convex surrogate(ef. Fortunately, relaxing the equality
constraints in Eqg.[{1) does not affect the key property of @&).as we will show in the proof of
Theoreni 2. “Compiling out” the input of Algorithid 2, we thuawe our general recipe (Algorithm
[3) for designing Hedge algorithms with the following regyeiarantee.

Theorem 2. For Algorithm[3, if R ande are such that,(0) < e and®r(s) > 1{s < —R} for all
s € R, thenR%(H) < R.

Proof. It suffices to show that Eq.[]J(2) holds so that the theorem Wedldy a direct applica-
tion of statement (2) of Theorem 1. Let;; = (P(si—1,; — 1) — P(s¢—1,; + 1))/2. Then
Do Pe(sei) <D0 (Pr(se—1,i + 2¢,5) + wei2,3) SINCEPy ; o< wy ; @andpy-z; > 0. Onthe other hand,
by Eq. [3), we haveb; (s; 1, + 2¢,i) + we,i2e,s < Minger, maxze(—1,1) (Pe(st-1, + 2) + wz) =

1 (Pe(s¢—1.4 — 1) + Pe(s¢—14 + 1)), which is at mostb,_;(s;—1,;) by Algorithm[3. This shows
$ @, (s04) < 32, ey (s1-1.4) and Eq. [?) follows. 0

Theorem 2 tells us that if solving,(0) < ¢ for R givesR > R for some valueR, then the regret
of Algorithm[3 is less than any value that is greater tf&ameaning the regret is at maBt

3.3 Designing Potentials and Algorithms

Now we are ready to recover existing algorithms and devetapones by choosing an appropriate
potential®7(s) as Algorithm[B suggests. We will discuss three differenbathms below, and
summarize these examples in Tdble 1 (see Appéndix C).

Exponential Weights (EXP) Algorithm. Exponential loss is an obvious choice i (s) as it
has been widely used as the convex surrogate of the 0-1 lossidn in the literature. It turns
out that this will lead to the well-known exponential weiglaigorithm [[14| 15]. Specifically, we
pick &1 (s) to beexp (—n(s + R)) which exactly upper bounds{s < —R}. To computed,(s)
fort < T, we simply let®;(s — 1) + ®:(s + 1) < 29,_4(s) hold with equality. Indeed, direct
. o\ T—t

computations show that all, (s) share a similar form®, (s) = (%) -exp (—n(s + R)).
Therefore, according to Algorithid 3, the player’s strategip set

Dri X Py(si—1,i — 1) — Py(se—14 + 1) x exp (—0St—1.4)
which is exactly the same as EXP (note tRdbecomes irrelevant after normalization). To derive re-
gret bounds, it suffices to requitie (0) < ¢, whichis equivalent td? > (ln(%) +Tln %) .
By Theoreni 2 and Hoeffding’s lemma (see [9, Lemma A.1]), westknowR S (H) < %m (1) +

algorithm isnot adaptiven the sense that it requires knowledgeé/bénde to set the parametex

L1 = | /2TIn (1) where the last step is by optimally tuningo be/2(In 1)/7. Note that this

We have thus recovered the well-known EXP algorithm andrgaveew analysis using the drifting-
games framework. More importantly, aslinl[26], this deiimaimay shed light on why this algorithm
works and where it comes from, namely, a minimax analysiediad by a series of relaxations,
starting from a reasonable surrogate of the 0-1 loss fumctio

2-norm Algorithm. We next move on to another simple convex surrogdte(s) = a[s]?> >

1{s < —1/+/a}, wherea is some positive constant afg_ = min{0, s} represents a truncating
operation. The following lemma shows thb{(s) can also be simply described.

Lemmal. If a > 0, then®,(s) = a ([s]> + T — t) satisfiesP;(s — 1) + ;(s + 1) < 2P _1(s).

Thus, Algorithm 3 can again be applied. The resulting athariis extremely concise:

pri o Du(se—1s— 1) — Pe(se—1,; + 1) oc [sp—1, — 12 — [se-1 + 12,
We call this the “2-norm” algorithm since it resembles haorm algorithm in the literature when
p = 2 (seel9]). The difference is that thenorm algorithm sets the weights proportional to the
derivative of potentials, instead of the difference of thasnwe are doing here. A somewhat sur-
prising property of this algorithm is that it is totally adiMe and parameter-free (sinealisappears
under normalization), a property that we usually do not ekpe obtain from a minimax analy-
sis. Direct application of Theorem 2¢(0) = aT < € < 1/+4/a > /T /e) shows that its regret
achieves the optimal dependence on the horiZon
Corollary 1. Algorithm[3 with potentiafp, (s) defined in Lemmla 1 produces a Hedge algoritHm
such thalR5.(H) < /T /e simultaneously for all” ande.

NormalHedge.DT. The regret for the 2-norm algorithm does not have the optidapendence on
€. An obvious follow-up question would be whether it is possito derive an adaptive algorithm
that achieves the optimal rat® /T In(1/¢)) simultaneously for all” ande using our framework.
An even deeper question is: instead of choosing convexgaites in a seemingly arbitrary way, is
there a more natural way to find thight choice of®(s)?

To answer these questions, we recall that the reason why-tteer2 algorithm can get rid of the
dependence oais thate appears merely in the multiplicative constarthat does not play a role
after normalization. This motivates us to Bt (s) in the form ofeF'(s) for someF(s). On the
other hand, from Theoref 2, we also waift(s) to upper bound the 0-1 loss functid{s <

—+/dT In(1/¢)} for some constant. Taken together, this is telling us that the right choicé¢f)
should be of the forn® (exp(sQ/T))El]. Of course we still need to refine it to satisfy the monotdwici
and other properties. We defide-(s) formally and more generally as:

D7(s) = a (exp (%) ~1) 21 {s < —\/dTn (2 + 1)},

wherea andd are some positive constants. This time it is more involvefigore out what other
®,(s) should be. The following lemma addresses this issue (prefefited to Appendik1C).

2
Lemmaz2. Ifb, =1— % ZF;F:Hl (exp (%) — 1) ,a>0,d>3and®.(s) =a (exp (%) — bt)
(define®q(s) = a(l — b)), then we hav@,(s — 1) + ®;(s+ 1) < 2P, 4(s) forall s € R and
t=2,...,T. Moreover, Eq2) still holds.

Note that even ifb; (s — 1) + @1 (s + 1) < 2®((s) is not valid in general, Lemnid 2 states that Eq.
(@) still holds. Thus Algorithrill3 can indeed still be appliéshding to our new algorithm:

se—1,i—1]% se—1,i+1]%
Pri < Py(si—1, —1) — Py(sp—1,; + 1) x exp (%) —exp (%) .

Here,d seems to be an extra parameter, but in fact, simply settiag is good enough:

Corollary 2. Algorithm[3 with potentiafb,(s) defined in Lemm@al 2 and = 3 produces a Hedge
algorithm# such that the following holds simultaneously for’Alande:

Ri(H) < 3T (& (42 = 1) T+ 1) +1) =0 (VT (1/e) + T T) .

We have thus proposed a parameter-free adaptive algoriithmoptimal regret rate (ignoring the
InIn T term) using our drifting-games framework. In fact, our altfon bears a striking similarity
to NormalHedge [10], the first algorithm that has this kin&déptivity. We thus name our algorithm
NormaIHedge.Dﬁ. We include NormalHedge in Tallé 1 for comparison. One carits& the main
differences are: 1) On each round NormalHedge performs grigat search to find out the right
parameter used in the exponents; 2) NormalHedge uses tivatter of potentials as weights.

!Similar potential was also proposed in recent work [22, 25K different setting.
2DT” stands for discrete time.

Compared to NormalHedge, the regret bound for NormalH&ifeas no explicit dependence on
N, but has a slightly worse dependencelofindeedin In 7' is almost negligible). We emphasize
other advantages of our algorithm over NormalHedge: 1) Ndifadge.DT is more computationally
efficient especially wheV is very large, since it does not need a numerical search @ eaind;

2) our analysis is arguably simpler and more intuitive tha®m one inl[10]; 3) as we will discuss
in Sectior#, NormalHedge.DT can be easily extended to ditalthe more general online convex
optimization problem where the number of actions is infigitarge, while it is not clear how to
do that for NormalHedge by generalizing the analysis in.[10leed, the extra dependence on the
number of actionsv for the regret of NormalHedge makes this generalization seem impossible.
Finally, we will later see that NormalHedge.DT outperfoiitemalHedge in experiments. Despite
the differences, it is worth noting that both algorithmsigiszero weight to some actions on each
round, an appealing property whéhis huge. We will discuss more on this in Sectidn 4.

3.4 High Probability Bounds

We now consider a common variant of Hedge: on each roundtadsbf choosing a distribution
p:, the player has to randomly pick a single actipnwhile the adversary decides the losgest

the same time (without seeirig. For now we only focus on the player’s regret to the besbacti
Rr(ivr, l1.7) = Zthl 4y 5, —min; Zthl ¢, ;. Notice that the regret is now a random variable, and
we are interested in a bound that holds with high probabilitging Azuma'’s inequality, standard
analysis (see for instance [9, Lemma 4.1]) shows that thgeplean simply draw, according to

p: = H(¢1..—1), the output of a standard Hedge algorithm, and suffers tegmaostR(H) +
+/T'n(1/6) with probability1 — §. Below we recover similar results as a simple side product of
our drifting-games analysisithoutresorting to concentration results, such as Azuma'’s indgua

For this, we only need to modify Algorithi 3 by setting; = ¢, — ¢;;,. The restriction
p: - z: > 0 is then relaxed to hold in expectation. Moreover, it is cldwt Eq. [2) also still
holds in expectation. On the other hand, by definition anduthien bound, one can show that
Y E[L(s74)] = >, Prisri < —R] > Pr{Ry(i1.7, £1.:7) > R]. So settingPy(0) = § shows that
the regret is smaller thaR with probabilityl — 4. Therefore, for example, if EXP is used, then the
regret would be at mosy27 In(N/§) with probability1 — ¢, giving basically the same bound as the
standard analysis. One draw back is that EXP would heesla parameter. However, this can again
be addressed by NormalHedge.DT for the exact same reasoNdhaalHedge.DT is independent
of e. We have thus derived high probability bounds without ugsing concentration inequalities.

4 Generalizations and Applications

Multi-armed Bandit (MAB) Problem: The only difference between Hedge (randomized version)
and the non-stochastic MAB problem [6] is that on each roaftér pickingi., the player only sees
the loss for this single actiofy ;, instead of the whole vectd;. The goal is still to compete with

the best action. A common technique ysed in the bandit gettito build an unbiased estimatéyr
for the losses, which in this case coulde = 1{i = 4;} - ¢; ;, /p+.i,.- Then algorithms such as EXP
can be used by replacirfy with £,, leading to the EXP3 algorithrh|[6] with regré(vTNIn N).

One might expect that Algorithid 3 would also work well by @ghgé; with £,. However, doing so
breaks an important property of the movements boundedness. Indeed, EQ] (3) no longer makes
sense ifz could be infinitely large, even if in expectation it is stifl -1, 1] (note thatz, ; is now a
random variable). It turns out that we can address this isgimposing a variance constraint eyy.
Formally, we consider a variant of drifting games where arheaund, the adversary picks arandom
movement, ; for each chip such that; ; > —1,E;[z; ;] < 1,Et[z§7i] <1/p,; andE;[p; - z;] > 0.
We call this variant DGv2 and summarize it in Apperidix A. Tkenslard minimax analysis and the
derivation of potential functions need to be modified in daiarway for DGv2, as stated in Theorem
[4 (AppendixD). Using the analysis for DGv2, we propose a ganecipe for designing MAB
algorithms in a similar way as for Hedge and also recover E¥¢eg Algorithn % and Theorem
in AppendiXD). Unfortunately so far we do not know other aggiate potentials due to some
technical difficulties. We conjecture, however, that thisra potential function that could recover
the poly-INF algorithmi[4, 5] or give its variants that ackeehe optimal regred(vTN).

Online Convex Optimization: We next consider a general online convex optimizationrsg{B1].
Let S c R? be a compact convex set, afbe a set of convex functions with ranfe1] on S. On
each round, the learner chooses a poitt € .S, and the adversary chooses a loss funcfioa F
(knowingx;). The learner then suffers logs(x;). The regret aftef” rounds isRr(x1.7, fi1.1) =

Zthl fe(x) — mingeg ZtT:1 fi(x). There are two general approaches to OCO: one builds on
convex optimization theory [30], and the other generalEX¥® to a continuous spacde [12) 24]. We
will see how the drifting-games framework can recover tttetanethod and also leads to new ones.

To do so, we introduce a continuous variant of drifting gafisv3, see Appendik]A). There are
now infinitely many chips, one for each point$h On round;, the player needs to choose a distribu-
tion over the chips, that is, a probability density functig(x) onS. Then the adversary decides the
movements for each chip, that is, a functigiix) with range[—1, 1] on S (not necessarily convex
or continuous), subject to a constrali)t. ,, [2;(x)] > 0. At the end, each point is associated with
alossL(x) = 1{}_, 2:(x) < —R}, and the player aims to minimize the total lo§s ¢ L(x)dx.

OCO can be converted into DGv3 by settingx) = f;(x)— f:(x:) and predictinge; = Exp, [x] €

S. The constrainEx.~,, [2:(x)] > 0 holds by the convexity of;. Moreover, it turns out that the
minimax analysis and potentials for DGv1 can readily be us&d, and the notion efregret, now
generalized to the OCO setting, measures the differendeegblayer’s loss and the loss of a best
fixed point in a subset of that excludes the topfraction of points. With different potentials, we
obtain versions of each of the three algorithms of Sefioer&ealized to this setting, with the same
e-regret bounds as before. Again, two of these methods apgiee@nd parameter-free. To derive
bounds for the usual regret, at first glance it seems that we toasete to be close to zero, leading
to a meaningless bound. Nevertheless, this is addressetdnyrdni using similar techniques in

[17], giving the usuaD(v/dT In T') regret bound. All details can be found in Appendix E.

Applications to Boosting: There is a deep and well-known connection between Hedge aost-b
ing [14,129]. In principle, every Hedge algorithm can be aanted into a boosting algorithm; for
instance, this is how AdaBoost was derived from EXP. In theesavay, NormalHedge.DT can be
converted into a new boosting algorithm that we call NH-Bdo§. See Appendik]F for details and
further background on boosting. The main idea is to treah &raining example as an “action”, and
to rely on the Hedge algorithm to compute distributions dliese examples which are used to train
the weak hypotheses. Typically, it is assumed that eacheskthas “edgey, meaning its accuracy
on the training distribution is at leasf2 + ~. The final hypothesis is a simple majority vote of the
weak hypotheses. To understand the prediction accurachadsting algorithm, we often study the
training error rate and also the distribution of margins gdla@stablished measure of confidence (see
AppendixF for formal definitions). Thanks to the adaptivifyNormalHedge.DT, we can derive
bounds on both the training error and the distribution ofgiver after any number of rounds:

Theorem 3. After T' rounds, the training error of NH-Boost.DT is of OI‘dé(exp(—%TvQ)), and
the fraction of training examples with margin at mégx 2+) is of orderO(exp(—%T(e —2v)?)).

Thus, the training error decreases at roughly the same sadel@Boost. In addition, this theorem
implies that the fraction of examples with margin smallertB~ eventually goes to zero dsgets
large, which means NH-Boost.DT converges to the optimagmay; this is known not to be true
for AdaBoost (see [29]). Also, like AdaBoost, NH-Boost.D¥lan adaptive boosting algorithm that
does not require or T as a parameter. However, unlike AdaBoost, NH-Boost.DT hastriking
property that it completely ignores many examples on eaghddgby assigning zero weight), which
is very helpful for the weak learning algorithm in terms ofquutational efficiency. To test this, we
conducted experiments to compare the efficiency of AdaBost-Boost” (an analogous boosting
algorithm derived from NormalHedge) and NH-Boost.DT. Aditdils are in Appendix1G. Here we
only briefly summarize the results. While the three algongthave similar performance in terms
of training and test error, NH-Boost.DT is always the faista® in terms of running time for the
same number of rounds. Moreover, the average faction of pemwith zero weight is significantly
higher for NH-Boost.DT than for NH-Boost (see Table 3). O drand, this explains why NH-
Boost.DT is faster (besides the reason that it does notmeguiumerical step). On the other hand,
this also implies that NH-Boost.DT tends to achieve largargins, since zero weight is assigned to
examples with large margin. This is also confirmed by our grpents.

Acknowledgements.Support for this research was provided by NSF Grant #1016D28 authors
thank Yoav Freund for helpful discussions and the anonymatiswers for their comments.

References

(1]

(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]
[11]

[12]
[13]

[14]
[15]
[16]
[17]
(18]
[19]

[20]
[21]

[22]

(23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]

[31]

Jacob Abernethy, Peter L. Bartlett, Alexander Rakhdingd Ambuj Tewari. Optimal strategies and mini-
max lower bounds for online convex games.Pimceedings of the 21st Annual Conference on Learning
Theory 2008.

Jacob Abernethy and Manfred K. Warmuth. Minimax gamethwiandits. InProceedings of the 22st
Annual Conference on Learning Thep2009.

Jacob Abernethy and Manfred K. Warmuth. Repeated gagaisst budgeted adversaries.Advances
in Neural Information Processing Systems 23810.

Jean-Yves Audibert and Sébastien Bubeck. Regret lmand minimax policies under partial monitoring.
The Journal of Machine Learning Researdli:2785—-2836, 2010.

Jean-Yves Audibert, Sebastien Bubeck, and Gabor &iudg®egret in online combinatorial optimization.
Mathematics of Operations Resear@9(1):31-45, 2014.

Peter Auer, Nicold Cesa-Bianchi, Yoav Freund, and RbBe Schapire. The nonstochastic multiarmed
bandit problem SIAM Journal on Computing2(1):48-77, 2002.

Nicolo Cesa-Bianchi, Yoav Freund, David Haussler, [da®. Helmbold, Robert E. Schapire, and Man-
fred K. Warmuth. How to use expert advicdournal of the ACM44(3):427-485, May 1997.

Nicolo Cesa-Bianchi and Gabor Lugosi. Potentialdzhalgorithms in on-line prediction and game theory.
Machine Learning51(3):239-261, 2003.

Nicolo Cesa-Bianchi and Gabor Lugo$trediction, Learning, and Game€ambridge University Press,
2006.

Kamalika Chaudhuri, Yoav Freund, and Daniel Hsu. A paeter-free hedging algorithmAdvances in
Neural Information Processing Systems 2209.

Alexey Chernov and Vladimir Vovk. Prediction with adei of unknown number of expertXiv preprint
arXiv:1006.04752010.

Thomas M. Cover. Universal portfoliodMathematical Financel(1):1-29, January 1991.

Yoav Freund. Boosting a weak learning algorithm by mgjo Information and Computatign
121(2):256-285, 1995.

Yoav Freund and Robert E. Schapire. A decision-théoigeneralization of on-line learning and an
application to boostingJournal of Computer and System Sciené&#g1):119-139, August 1997.

Yoav Freund and Robert E. Schapire. Adaptive game ptaysing multiplicative weightsGames and
Economic Behavigr29:79-103, 1999.

Jerome Friedman, Trevor Hastie, and Robert Tibshirawiditive logistic regression: A statistical view
of boosting.Annals of Statistic28(2):337—-407, April 2000.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithm&gret algorithms for online convex optimiza-
tion. Machine Learning69(2-3):169-192, 2007.

Adam Kalai and Santosh Vempala. Efficient algorithmsdnline decision problemsJournal of Com-
puter and System Scien¢&4(3):291-307, 2005.

Robert Kleinberg. Anytime algorithms for multi-armédndit problems. IfProceedings of the seven-
teenth annual ACM-SIAM symposium on Discrete algorjtbages 928—936. ACM, 2006.

Robert David KleinbergOnline decision problems with large strategy sé?&D thesis, MIT, 2005.
Haipeng Luo and Robert E. Schapire. Towards Minimaxi@nLearning with Unknown Time Horizon.
In Proceedings of the 31st International Conference on Machiearning 2014.

H Brendan McMahan and Francesco Orabona. Unconsttainéne linear learning in hilbert spaces:
Minimax algorithms and normal approximations. Pmoceedings of the 27th Annual Conference on
Learning Theory2014.

Indraneel Mukherjee and Robert E. Schapire. Learniit§ wontinuous experts using drifting games.
Theoretical Computer Scienc£11(29):2670-2683, 2010.

Hariharan Narayanan and Alexander Rakhlin. Randonkwapproach to regret minimization. Kd-
vances in Neural Information Processing System<P30.

Francesco Orabona. Simultaneous model selection pichiaation through parameter-free stochastic
learning. InAdvances in Neural Information Processing System2Q84.

Alexander Rakhlin, Ohad Shamir, and Karthik SridhaRelax and localize: From value to algorithms. In
Advances in Neural Information Processing System2@52. Full version available in arXiv:1204.0870.
Lev Reyzin and Robert E. Schapire. How boosting the imacgn also boost classifier complexity. In
Proceedings of the 23rd International Conference on Maetiiaarning 2006.

Robert E. Schapire. Drifting gamelachine Learning43(3):265-291, June 2001.

Robert E. Schapire and Yoav Freur@bosting: Foundations and AlgorithmMIT Press, 2012.

Shai Shalev-Shwartz. Online learning and online carygtimization. Foundations and Trends in Ma-
chine Learning4(2):107-194, 2011.

Martin Zinkevich. Online convex programming and gealized infinitesimal gradient ascent. Rro-
ceedings of the Twentieth International Conference on lifechearning 2003.

A Summary of Drifting Game Variants

We study three different variants of drifting games thromgtithe paper, which corresponds to the
Hedge setting, the multi-armed bandit problem and onlinever optimization respectively. The
protocols of these variants are summarized below.

DGv1l

Given: a loss functior(s) = 1{s < —R}.
Fort=1,...,T:

1. The player chooses a distributippover N chips.

2. The adversary decides the movement of each ghige [—1, 1] subject top; - z, > 0
and|z; ; — z ;| < 1forall ¢ andj.

The player suffers loss " | L(31_, z:.4).

DGv2

Given: a loss functior(s) = 1{s < —R}.
Fort=1,...,T:

1. The player chooses a distributippover N chips.

2. The adversary randomly decides the movement of eachghip> —1 subject to
Eilzi] < 1,E[27,] < 1/pis andEq[p; - 2] > 0.

The player suffers losy " | L(>1_, z:.4).

DGv3

Given: a compact convex s8t a loss functior.(s) = 1{s < —R}.
Fort=1,...,T:

1. The player chooses a density functigiix) on S.
2. The adversary decides a functiofx) : S — [—1, 1] subject tdEx~,, [2:(x)] > 0.

The player suffers los§,__ LN, 2(x))dx

B Proof of Theorem[1

Proof. We first show that both conversions are valid. In Algorifanit is clear that’; ; > 0. Also,
¢y ; < 1is guaranteed due to the extra restriction of DGv1. For Athor(2, z; ; liesin B = [—1,1]
sincel, ; € [0, 1], and direct computation shows-z, = 0 > 8(= 0) and|z; ;—z ;| = |€¢.i—¢4 ;| <
1 for all i andj.

(1) For any choices of;, we have

éL(st ZL <Zzt> < ZL <Z zt,i—pt-zt)>,

t=1 t=1

where the inequality holds singe, - z; is reqwred to be nonnegative atidis a nonincreasing
function. By Algorithnﬂ 2t — Pt - Z¢ is equal tol, ; — p; - £, leading to

N
ZLSTz SZ (Z fti—Pt'et)>=Zl{R<Z (pe - et_étz}-
i1 im1 =1 i—1 t=1

10

sinceRY ™Y (1) < R < RYY (1), we must have™ | (p, - £ — £, ;) < R except for the best
1 actions, which meanEfV:1 L(s7;) < i. This holds for any choices @, soLy(Dr) < i/N.

(2) By Algorithm[2 and the conditiodr(Dg) < €, we have

1 N
NZI{R<Z Pt Et_gtz }—
i=1 t=1

which means there are at mdsVe| — 1 actions satisfyingR < Zf’zl (pt - £ — 44 ;), and thus
Zf[:l (pt - £+ — ¢¢;.) < R. Since this holds for any choices &f, we haveR¢$.(H) < R. O

N

1

N E L(ST_’Z') < LT(DR) <€
=1

C Summary of Hedge Algorithms and Proofs of Lemmall, Lemm&al2 ad
Corollary 21

Table 1: Different algorithms derived from AlgoritHmh 3, aodimparisons with NormalHedge

EXP 2-norm NormalHedge.DT] NormalHedge
Dp(s) e s+ R) als]* a (6[812*/3,‘? - 1) N/A
_) [Stfl_i — 1]2_ [St—l,ifl]i/gt _[St—l i]_e[st’l'i’]i/c (C is
. MSt—1,i ’ e s
Dti X e 1 —[sto1i 4+ 12 | —elserat2/3t | gy) else—14l% /e — Ne)
Ry(H) | O(/Tmi) | o(yT/e) | o (,/Tm¥> (Tl +m’N)
Adaptive? No Yes Yes Yes
Proof of LemmalLlt suffices to shows — 1]> + [s + 1]2 < 2[s]2 + 2. Whens > 0, LHS =
[s —1]2 <1< 2=RHS. Whens < 0,LHS< (s —1)?2 + (s + 1) = 2s> + 2 = RHS. O

2
Proof of Lemmal2Let F'(s) = exp ([5;1]*) +ex

[s+1]2
P (at

F(s) < 2(by — by 1)—exp<;t)—1,

which is clearly true for the following 3 cases:

2
) —2exp (%) It suffices to show

0 if s >1;
F(s) = { €xp —(S;tl)z —1<exp(%)—1 if0<s<1;
exp (s— 1) +1—26Xp(= 1)) <exp(%)—1 if —1<s<0.

For the last case < —1, if we can show thaf’(s) is increasing in this region, then the lemma

follows. Below, we show this by proving’(s) is nonnegative whea < —1.

2
Leth(s,c) = % 2s exp() F’(s) can now be written as
F'(s) = h(s—1,¢) + h(s+1,¢) — 2h(s,c) + 2(h(s,c) — h(s,)),

wherec = dt andc¢’ = d(t — 1). Next we apply (one-dimensional) Taylor expansiorfe — 1, ¢)
andh(s + 1, c) arounds, andh(s, ¢’) arounde, leading to

F(s) = — (=1)F OFh(s,c) | = 1 0"h(s,c) 2§: (¢ =)k 9%n(s,¢)
ko 0s” k! Osk ! Dk
k=1 k=1 =1
_ Qi 1 0%N(s,0) (—d)* 9h(s,c)
AN T A

11

Direct computation (see Lemrha 3 below) shows ﬁq«éﬁ(s—c) an daah# share exact same forms
only with different constants:

% h(s,c) 2\ & & 521
g = (=) D (D an; S

j*O

9% h(s, c) g2i+1 @
sk () Zﬁk” okt
whereqy, ; andgy, ; are recursively defined as:
g1l = Qg -1+ (k} + 7+ 1)0%, i
J J J (5)

Br+1,j = 4Bk j—1 + (85 +6)Brk; + (25 + 3)(25 + 2) Bk j+1,

with initial valuesag,o = B0 = 2 (Whenj & {0,...,k}, ax; and Sy ; are all defined to be).
Therefore F’(s) can be further simplified as

o\ > ko 9541 ‘ LT
) B s E Br.j d” o,
F'(s) = 2exp (;) > ((2k)! R) '

k=1 j=0

dozk]

Sinces is negative, it suffices to show th%}c’fg! < holds for allk andj, which turns out

to be true as long a¢ > 3, as shown by induction |n the technical lemida 4 below. To spm u
Du(s— 1)+ Pi(s+1) <2P;,_4(s)forallse Randt =2,...,T.

Finally, we need to show that Eq. (2) still holds. The inegyake just proved above implies
> Pi(sei) <30, Pi—1(se—14) fort =2,...,T, as shown in Theorefd 2. Thus the only thing we
need to show here is the case whes 1. Note thatd,(s — 1) + ®4(s + 1) < 2P (s) does not
hold for all s apparently. However, in order to proYe, ®1(si;) < >, ®o(s0,;), we in fact only
need a much weaker statemefit;(—1) + ®,(1) < 29,(0) sincesy; = 0. This is equivalent to
exp (1/d) — 1 < exp (4/d) — 1, which is true trivially. O

Lemma 3. Leth(s,c) = 22 exp () The partial derivatives of (s, ¢) satisfy Eq.(d) and (B).

Proof. The base case holds trivially. Assume Hd. (4) holds for a fixethen we have

OFt1h(s, c) $2\ & i §2 g2+l 251
Tk = eXp (;) ZO<—1> Ok ° (‘?W (k+j+1) k+J+2)

k 2(j+1)+1 2j+1
S k+1 ‘ S) S
(Z) Z k.j (c(k+1)+(j+1)+1 +(k+j+ 1)C(k+1)+j+1)
7=0
52 k+1 . 82j+1
= exp <?> Z(—l)kJrl (arj—1+ (k+j+1agy) - Sy EwEy
j=0
s2\ k! . §20+1
_ +1 -
= exXp (;) (_1) ak-‘,—l,] C(k+1)+j+17
§=0
and
O*F+D (s, c) 52 2J+2 . 5%
2\ & 4520+3 . §20+1 . g2i-1
= exp (?) Zﬁk,j : (W + (85 + 6)W + (27 + 1)2j W)
§=0
$2\ k! s2i+1
—oxp (2) 3 (o + (854 008y + 24+ 32 + D) s
j=0

12

k41 §20+1
= exp () § Bk-’-l,] Ck+]+27

7=0

concluding the proof. O

Lemma 4. Letay, ; and Sy, ; be defined as in E(E). Then @’;;, < d* a’“ = Zk31 holds for allk > 0 and
j€{0,...,k}whend > 3.

Proof. We prove the lemma by induction dn The base caske = 0 is trivial. Assume—==Z Br g p <

a" L holds for a fixed: and allj € {0, ...k}, then we hav&/s,

Bry1s ABrj—1+ (85 +6)Bry + (27 + 3)(2) + 2)Br,j+1

(2k +2)! (2k +2)!
< dF (40%.,3'71 + (8] + 6)Oék j (2_] + 3)(2] + 2)Oék J+1)
= (2k + 2)(2k + 1)k!

We need to show that the above expression is at @fostay.1,;/(k + 1)!, which, after arrange-
ments, is equivalent t®ay, j_1 + (45 + 3)ak,; + (25 + 3)(J + Dok, j+1 < d(2k + 1)ags1,;. We
will prove this by another induction ol Then the lemma follows.

The base casé: (= 0) is simplified to6 < 2d, which is true by our assumptiah> 3. Assume the
inequality holds for a fixed, then by the definition o, ;, one has

2041€+17j_1 + (4] + 3)0%.,_17]‘ + (2] + 3)(] + 1)ak+1,j+1
= 20k, -2+ (45 + 3)agj—1 + (25 +3)(J + Dag,;) +
(2(k+ j)ag j—1+ (45 +3)(k+ 5+ Dou; + (25 +3)(G + 1) (k+ j + 2)ak j+1)
(20¢k,j72 + (4] — 1)Oék7j71 + (2] + l)jak,j) +
(k47 +2) (2o, j—1+ (45 +3)ar; + (25 +3)(5 + Do j+1)

< d(2k + 1)(0%.,_17]‘_1 +(k+j+ 2)&]@.:,_1,]') (by induction)
=d(2k + 1)04k+2,j
S d(2k + 3)ak+27j7

completing the induction. O

Proof of Corollary(2. Recall that®(s) > 1 {s < —y/dTIn (1 + 1)} So by settingd(0) =
a(l — bgy) < e and applying Theorefd 2, we arrive at

RS (H) < \/dTln <1 —b +1).
€

It suffices to upper bountl — by, which, by definition, ist 3>/_ (exp (4) —1). Sincee® — 1 <
[0, c], we have

ZT:(GXP(;>—1) et/ — ZT:% (€~ 1)(InT +1).

t=1

Pluggingd = 3 gives the corollary. O

13

D A General MAB Algorithm and Regret Bounds

Input: A convex, nonincreasing, nonnegative functibp(s) € C2, with nonincreasing second
derivative.
for t =T downto1do
Find a convex functio®;_; (s) s.t. the conditions of Theorelm 4 hold.
Set:sy = 0.
for t=1to T do
Setipy; o (-1 — 1) — Py(si—1, + 1).
Drawsi; ~ p; and receive los§; ;,.
Setizy; = i =it} lei,/Pri, — Criy, Vi
Set:s; = s;_1 + 2.

Algorithm 4: A General MAB Algorithm

Theorem 4. Supposed,(s) is convex, twice continuously differentiable (i®,(s) € C2), have
nonincreasing second derivative, and satisfies:

(3 4+ Nay) (s — 1)+ (3 = Nay) @e(s +1) < &41(s),Vs € R (6)
whereq, = 1 max % If the player’s strategy is such that; o< ®;(s;_1,; — 1) —
®4(s4—1,; + 1), then Eq.(2) holds in expectation.

Proof of Theorerhl4 As discussed before, the main difficulty here is the unbodnédss ofz; ;.
However, the expectation ef ; is still in [—1, 1] as in DGv1. To exploit this fact, we apply Taylor’s
theorem tod;(s;—1; + z:,;) to the second order term:

Dy(s15) = Pu(se—1.i + 2.0
= ®i(si-1,4) + Phse-14) 2t + 59/ (€1,0)27
< Oy(sp-1,) + Pp(s1—1,0)20i + 2P (511 — 1)274,

whereg, ; is betweers;_; ;+z;; ands;_; ;, and the inequality holds becauBg(s) is nonincreasing
andz;; > —1 by assumption. Now taking expectation on both sides witheetto the randomness
of 2,4, using the convexity ob,(s), and plugging the assumptid[z7,] < 1/p.; give:

Ei[®(s1,i)] < Pu(se-1,0) + Py(s1—1,6)Eefze,6] + 3PF (se-1,i — 1)Et[21527i]
< By (-1, + Eifze4]) + %(I);/(Stfl,i —1)/pi-

Letw;; = % (Py(sp—1,i — 1) — P¢(s¢—1,; + 1)). Further pluggingp;; < w;; and summing over
all 7, we arrive at

N
.Z]Et [Di(s1,4)] <

-

(I) St 11_
[} 15 +E i i
(¢ (st—1,i + Byl i]) + —F——— ST E W,)

N
(cpt (se-1. + Eelzea]) + 200 Y wm) (by the defintion ofy,)

i=1

=1

-

=1

I
] =

(D (s4—1, + Eiz4]) + 2Nawy 4) -
1

.
Il

SinceE;[p: - z¢] > 0 impliest.V:1 wy i Ei[z,5] > 0, we thus have

N N
ZEt [D:(s:,4)] < Z (D (st—1,i + Ei[2.4]) + wiiBi[2e5] + 2N apwy ;)

i=1

N
Z (max (P (si—1,i + 2) + wiiz) + 2Natwt7i>
P z€[—1,+1]

14

Z < max (D (s¢—1, + 2) + wei2) + 2No¢twt7i>
—y ze{—1,+1}

~

(by the convexity ofb,(s))

I
WE

((% + No‘t) i1, — 1) + (% - Nat) Dy(sp—1, + 1))
1

.
I

Dy 1(St—14)- (by assumption)

-

N
Il
-

The theorem follows by taking expectation on both sides végipect to the past (i.e. the randomness
0fZ1,...,Zt,1). O
Theorem 5. For AIgorithm[Z, if R and e are such thatb(0) < e and®r(s) > 1{s < —R} for

all s € R, thenE[Zt by, — Z 1 4i.] < R for any non-oblivious adversary. Moreover, using
Or(s) = exp(—n(s + R)) (and Iet Eq (IE) hold with equality) gives exactly the EXP3 algorithm

with regretO(y/T' N In(1/¢)).

Proof of Theorerhl5We first show that Algorithri]4 converts the multi-armed bapdoblem to a
valid instance of DGv2. It suffices to prove that; = 1{i = i;} - {4, /pi,i, — {1i, Satisfies all
conditions defined in DGv2, as shown below (> —1 is trivial):

Eilzei] = Cei —pe - £ < 1,

ly s 2 1
E, [2,521] = Pt,i (— Uy 1) + Zpt,jgf,j < P (> + Zpt j=——-1<—,
Dt,i Dt,i i t,1 Dt,i

J#

E, [Pt Zt [étzf Zpt,jétzf] =

Therefore, we can apply Theoréin 4 directly, arriving at:

1 N 1 N
~ ;E[%(sm)] << ZE[@O(SOJ)] — By(0) < e.

On the other hand, by applying Jensen’ inequality, we have

E[®r(s7,i)] = @7 (ElsT:]) > 1{E[s1;:] < —R}.

Note thatE[sr ;] is equal toE [Zle (b — £m—t)}. We thus know

%il{ [ZT: (€ = Le.i,) 1 S—R}<e

=1

which implieskE [Zle briy — Zthl ﬁt,ié] < R for any non-oblivious adversary for the exact same
argument used in the proof of TheorEin 2.

Finally, we show how to recover EXP3 using Algorithin 4 witlpinn®1(s) = exp(—n(s+ R)). To
computed, (s) for t < T', we simply use Eq[{6) with equality. One can verify usinguiation that

e + e+ Nep?) Tt

(5) = exp (s + 1) (S

1 a n?®y(s —1) e'n?
Q¢ = = max =
! Di(s—1)—Dy(s+1) 2(en—em)’

O (s) = =0 ®y(s) < 0.

15

The player’s strategy is thys, ; o exp(—n '} £,4) (recallfy; = 1{i = i} - 14, /pr, is the
estimated loss), which is exactly the same as EXP3 (in faatpli§ied version of the original EXP3,
see for example [30]). Moreover, the regret can be computesgtiing®,(0) = ¢, leading to

1 1 T n -no1
R=-In({-]+—In i—i——Ne"n2
n € n 2 2

< N (l) + T (e"2/2 + %Ne’%f) (by Hoeffding’s Lemma)
n € n
2
< T (l) + L (n + Ne”—* 2) (In(l +z) < z)
no \e€ n\2
If n < 1 so thate" 7/ < /e, then we haveR < %n(!)+Tn(Nf) which is

V2T (1 + N/e)In(1/e) after optimally choosing; (n < 1 will be satisfied wherl" is large
enough). O

E A General OCO Algorithm and Regret Bounds

Input : A convex, nonincreasing, nonnegative functip(s)
for t =T downto1do
Find a convex functio®;_; (s) s.t. Vs, ®4(s — 1) + $y(s + 1) < 20,4 (s).
Set:so(xz) = 0.
for t=1toT do
Predictx; = Ex~p, [x] Wherep, is such thap,(x) oc ®;(s;—1(x) — 1) — ¢(sp—1(x) + 1).
Receive loss functiorf, from the adversary.
Set: z; (X) = ft(X) — ft (Xt).
Set:si(x) = s¢-1(x) + 2¢(x).

Algorithm 5: A General OCO Algorithm

Definition of e-regretin the OCO setting: Let S. C S be such that the ratio of its volume and the
one ofS ise and alsoth:1 fi(x) < Zthl fi(x) forall x’ € S, andx € S\ S (itis clear that such
set exists). Ther-regret is defined aB. (x1.7, fi.r) = Yo, fi(x¢) — infxeg\s. oy fo(X).
Theorem 6. For Algorithm[8, if R is such thatbr(s) > 1{s < —R} and®((0) < ¢, then we have
RS (x1.7, fi.r) < RandRe(x1.1, fi.1r) < R+ Te/?. Specifically, ifR = O(,/TIn(1/e)), then
settinge = T~ givesRy (x1.7, f1.7) = O(VdT InT).

Proof of Theoreril6Letw;(x) = 1 (®¢(s;—1(x) — 1) — ®4(s;—1(x) + 1)). Similarly to the Hedge
setting, the “sum” of potentials never increases:

/xes Dy (s(x))dx < /xes (Di(st—1(x) + 2¢(x)) + we(x)2:(x)) dx < / Dy q(8:-1(x))dx.

xeS

Here, the first inequality is due x..,, [z:(x)] > 0, and the second inequality holds for the exact
same reason as in the case for Hedge. Therefore, we have

/xes 1{sr(x) < —R}dx < /xes Or(sp(x))dx <--- < /xes Dy (0)dx < €V,

whereV is the volume ofS. Recall the construction df.. There must exist a point’ € S, such
thatsp(x’) > —R, otherwise[1{sr(x) < —R}dx would be at leastV. Unfolding s (x’), we

arrive aty -, fi(x¢) — >, ft(x’) < R. Using the fact), fi(x) < infyeeq\s. >, fi(x) gives the
bound fore-regret.

Next consider a shrunk version of: S/ = {(1 — ea)x* + eix : x € S} wherex* €
argminy y_, f;(x). Then[_,1{sr(x) < —R}dx s at least

/xesg 1{sr(x) < —R}dx = 6~/XES 1 {ST ((1 — eﬁ)x* + e%x) < —R} dx,

16

which, by the convexity and the boundednesg.¢k), is at least

T
E/xesl {Z (1= D) + el fix) = fulx)) < —R} dx

t=1
T

> E/xesl {z; (fe(x") = fe(x¢)) < —R —Te }dx

T

= EV -1 {Z (ft(X*) — ft(xt)) S —R —Te } .
t=1

Following the previous discussion, the expression in tiseé liae above is strictly less thasl/ -,

which means that the value of the indicator function has t0,beamelyRr(x1.1, f1.r) < R+

Tel/d, |

=

&

=

F NH-Boost.DT, NH-Boost and Proof of Theoreni B

Input : Training examplesx;, y;) € R? x {~1,+1},i=1,..., N.

Input : A weak learning algorithm.

Input : Number of roundq’.

Output: A HypothesisH (x) : R? — {—1,+1}.

Set:sy = 0.

for t=1toT do
Setip;; x exp ([st_l,i — 1]3/31%) — exp ([st_l,i + 1]%/3t) , V1.
Invoke the weak learning algorithm to getwith edgey, = % > Peiyihe(x5).
Set: St = St-1,4 t+ %yzht(xz) — V¢, Vi.

Set: H(x) = sign(>.;_, hi(x)).

Algorithm 6: NH-Boost.DT

Input : Training examplesx;, y;) € R? x {~1,+1},i=1,...,N.
Input : A weak learning algorithm.
Input : Number of round§’.
Output: A HypothesisH (x) : R — {—1,+1}.
Set:sy = 0.
for t=1toT do

if ¢t =1then

Set:p; to be a uniform distribution.

else
Find: ¢ such thatZ:zj.Vzl exp ([s¢—1,:)% /¢) = Ne.
Setip;; o< —[s¢—1,i]— exp ([st,u]Q_/C) , Vi.
Invoke the weak learning algorithm to getwith edgey; = % > peiyihe(%5).
Setisy; = si—1,i + syihe(xi) — 1, Vi.
Set: H(x) = sign(>.,_, ht(x)).

Algorithm 7: NH-Boost

In the boosting setting for binary classification, we areegiva set of training examples
(xi,¥i)i=1,...n Wherex; € R? is an example ang; € {—1,+1} is its label. A boosting algo-
rithm proceeds fofl’ rounds. On each round, a distributipp over the examples is computed and
fed into a weak learning algorithm which returns a “weak” bghesish; : R? — {1, +1} with a
guaranteed small edge, thatis,= %Zipt7iyiht(xi) >~ > 0. At the end, a linear combination
of all h; is computed as the final “strong” hypothesis which is exptdehave low training error
and potentially low generalization error.

The conversion of a Hedge algorithm into a boosting algorith to treat each example as an “ac-
tion” and set/; ; = 1{h.(x;) = y;} so that the booster tends to increase weights for those™hard

17

examples. The final hypothesis is a simple majority vote lokalthat is, H (x) = sign(}_, h+(x))
where sigfiz) is the sign function that outputsif = is positive, and-1 otherwise. Themargin

of examplex; is defined as% ZL yih(x;), that is, the difference between the fractions of cor-
rect hypotheses and incorrect hypotheses on this example bdosting algorithms derived from
NormalHedge.DT and NormalHedge in this way are given in Athan[@ and7.

Proof the Theorerml3Let (X;, 7;)i—1,... ;v be a permutation of the training examples such that their
margins are sorted from smallest to largest;, y1h:(%x1) < --- < >, ynht(Xn), Which also
implies >, 1{h¢(Xx1) = 91} < --- < >, 1{hi(Xn) = yn}. Recall that NormalHedge.DT is
essentially playing a Hedge game using NormalHedge.DT @/, ; = 1{h.(x;) = y;}. There-
fore, thee-regret bound for the Hedge setting together with the assompn the weak learning
algorithm implies¥j € {1,..., N},

1 1 1 & R/
g TI= T DO peil{hu(x) = i} < T D (%)) = G5} + — @)

t=1 i=1 t=1

WhereRj/N = O(3T1n(N/j)) is the j/N-regret bound for NormalHedge.DT. Sojifis such

thaty > RJ/N/T we haver Zt L H{h(%x;) = 95} > 5, whichis saymg that example;, §;)
will eventually be classified correctly bY (x) due to the %act thall (x) is taking a majority vote of
all h;. This is in fact true for all example;, g;) such that > j and thus the training error rate

will be at most(j — 1)/N, which is of Orde@(exp(—%T"yQ)).

For the margin bound, by plugging 7, (x;) = §;} = (g;(X;) + 1)/2, we rewrite Eq.[{(I7) as:

R/ 1

2(~—- =L <=

<7 T) T 4

Therefore, ifj is such that < 2(y — R-Z/N/T), then the fraction of examples with margin at most
6 is again at mos{j — 1)/N, which is of orde@(exp(—%T(e —27)%)). O

—~

ﬂ'ht(ia‘)-

HMH

G Experiments in a Boosting Setting

We conducted experiments to compare the performance of thwesting algorithms for binary
classification: AdaBoost [14], NH-Boost (Algorithimh 7) anddMBoost.DT (Algorithn{®), using a
set of benchmark data available from the UCI repodit@nyd LIBSVM datasefs Some datasets
are preprocessed accordinglto![27]. The number of feattr@sing examples and test examples
can be found in Tablg 2.

All features are binary. The weak learning algorithm is apdar(exhaustive) decision stump (see
for instancel[29]). On each round, the weak learning algorienumerates all features, and for each
feature computes the weighted error of the correspondingsbn the weighted training examples.
Therefore, if the number of examples with zero weight istieddy large, then the weak learning
algorithm would be faster in computing the weighted errat s faster in finding the best feature.

All boosting algorithms are run for two hundred rounds. Témutts are summarized in Table 3, with
bold entries being the best ones among the three (AB, NB aridiiNand for AdaBoost, NH-Boost
and NH-Boost.DT respectively). As we can see, in terms aifiitng error and test error, all three
algorithms have similar performance. However, our NH-Bd®E algorithm is always the fastest
one. The average fraction of examples with zero weights ta¢Bbost.DT is significantly higher
than the one for NH-Boost (note that AdaBoost does not asgn weight at all). We plot the
change of this fraction over rounds in Figlile 1 (using thraskts). As both algorithms proceed,
they tend to ignore more and more examples on each round HiBdbst.DT consistently ignores
more examples than NH-Boost.

Sinces;, ; is positively correlated to the margin of exam;r)(elL 23:1 yih-(x;)) and larges, ; leads
to zero weight, the above phenomenon in fact implies thadthenples’ margins should be larger for

®http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/ ~¢jlin/libsvmtools/datasets/

18

http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

NH-Boost.DT than for NH-Boost. This is confirmed by Figltenhere we plot the final cumulative

margins on three datasets (i.e. each point representsatti®fr of examples with at most some fixed
margin). One can see that the lines for NH-Boost.DT are béf@wones for NH-Boost (and even
AdaBoost) for most time, meaning that NH-Boost.DT achidaeger margins in general. This could
explain NH-Boost.DT’s better test error on some datasets.

Table 2: Description of datasets

Data | #feature| #training| #test

a%a 123 32,561 | 16,281
census| 131 1,000 1,000
ocr49 403 1,000 1,000
splice 240 500 500

w8a 300 49,749 | 14,951

Table 3: Experiment results

Time (s) Zeros (%) Training Error (%) Test Error (%)
Data | AB NB | NBDT || NB | NBDT || AB | NB | NBDT || AB | NB | NBDT
a%a | 575 | 725 | 46.2 11| 221 | 154 158| 155 | 15.0| 15.6| 15.2
census| 1.7 2.2 1.4 22| 192 | 156|170| 154 | 18.7| 186 18.3
ocr4d9 | 5.1 4.7 3.0 17.1] 420 1.7 | 1.7 24 55| 5.9 5.8
splice | 1.6 15 0.9 22.2| 451 00 | 0.0 0.4 94 | 8.6 8.2
w8a | 237.6| 244.7| 170.7 || 3.0 | 29.3 26 | 22 2.4 27 | 23 2.6
SR
£ . AN Na% ha'd - £
] - ”,‘ \é/ %D) v Y]
%: / @/Q\Mfe’%gfﬁ\fw&f’é gn %/CXM /fﬂ"«\—"/’\/ %n
SV oV
I o Lo) /4\‘ [l
\\‘/
SO A Wiaat R - RS el
(a) census (b) splice (c) w8a

Figure 1: Comparison of fraction of zero weights

Fraction

—AB
——NB

Fraction

—AB
——NB

—AB
——NB

o o
Margin

(a) census

——NBDT
0 03 03

7 om o3
Margin

(b) splice

——NBDT
04 o045 05

Figure 2: Comparison of cumulative margins

19

——NBDT
04 o5 06

	1 Introduction
	2 Reviewing Drifting Games
	3 Online Learning as a Drifting Game
	3.1 Algorithmic Equivalence
	3.2 Relaxations
	3.3 Designing Potentials and Algorithms
	3.4 High Probability Bounds

	4 Generalizations and Applications
	A Summary of Drifting Game Variants
	B Proof of Theorem 1
	C Summary of Hedge Algorithms and Proofs of Lemma 1, Lemma 2 and Corollary 2
	D A General MAB Algorithm and Regret Bounds
	E A General OCO Algorithm and Regret Bounds
	F NH-Boost.DT, NH-Boost and Proof of Theorem 3
	G Experiments in a Boosting Setting

