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Theoretical physics is the search for simple and universal mathematical descriptions of the natural
world. In contrast, much of modern biology is an exploration of the complexity and diversity of
life. For many, this contrast is prima facie evidence that theory, in the sense that physicists use
the word, is impossible in a biological context. For others, this contrast serves to highlight a grand

challenge.

I'm an optimist, and believe (along with many colleagues) that the time is ripe for

the emergence of a more unified theoretical physics of biological systems, building on successes in
thinking about particular phenomena. In this essay I try to explain the reasons for my optimism,
through a combination of historical and modern examples.

I. INTRODUCTION

At present, most questions about how things work in
biological systems are answered by experimental explo-
ration. The situation in physics is very different, where
theory and experiment are more equal partners. Almost
from the moment that biology and physics became sepa-
rate sciences, physicists have hoped that we could reach
an understanding of life that parallels our understand-
ing of the inanimate world. Although there have been
several waves of enthusiasm, each with its own successes,
such hopes often have seemed quite fanciful. Today, as
more of the living world becomes susceptible to quanti-
tative experiments, old dreams are being rekindled.

The increasing body of quantitative data calls out for
analysis, sometimes quite desperately, and creates op-
portunities to make mathematical models for particular
biological systems. Indeed, the notion of “modeling” as
part of a modern, quantitative biology is becoming con-
ventional. But theoretical physics is not a collection of
disparate models for particular systems, or a catalogue
of special cases. There is a growing community of the-
orists who want, as it were, more out of life. We want
a theoretical physics of biological systems that reaches
the level of predictive power that has become the stan-
dard in other areas of physics. We want to reconcile the
physicists’ desire for concise, unifying theoretical princi-
ples with the obvious complexity and diversity of life. We
want theories that engage meaningfully with the myriad
experimental details of particular systems, yet still are
derivable from principles that transcend these details.

The existence of a community of optimists does not im-
ply that our optimism is justified. The goal of this essay
is to explain why at least one theorist (me) is optimistic.
I hope to convince you that theory has had important
successes, shaping how we think about life today, and
that this is true despite a widespread impression to the
contrary. Turning from the past to the present and fu-
ture, I will argue this is an auspicious time: theory is
having a real impact on experiment, related theoretical
ideas are emerging in very different biological contexts,

and we can see hints of ideas that have the power to
unify and deepen our understanding of diverse phenom-
ena. What is emerging from our community goes beyond
the “application” of physics to the problems of biology.
We are asking physicists’ questions about the phenomena
of life, looking for the kinds of compelling answers that
we expect in the traditional core of physics.

Any effort to justify optimism must be addressed not
just to the agnostic, or to the converted, but to the ac-
tively skeptical. Many biologists believe that we just
“don’t know enough” to theorize about the particular
systems that they study, and have a hard time pointing
to examples where approaches grounded in mathematical
thinking have illuminated the workings of these systems.
For many physicists, the phenomena of life still look too
messy to be accessible, and they doubt if there is any-
thing very fundamental to be said, or if digging into the
phenomena of life just means sifting through a mass of
detail. My goal in this essay is to respond to these con-
cerns directly. I hope to convince you that the pessimistic
biologists are wrong about the history, and that the pes-
simistic physicists are wrong about the current state of
the field.

In general, it seems best to let the work of the com-
munity speak for itself, and provide its own justification
for our optimism, rather than making pronouncements
about what anyone else should be doing or thinking.
But, in 2014, the Simons Foundation convened the first
of what is now an annual series of workshops on Theory
in Biology,' and I was given the task of providing some
perspectives. This led me to think more explicitly about
the grounds for my own optimism, and about the history
of theory in our field; this essay grew out of that short
lecture. It came at the end of a long day and so, perhaps
ironically, it was more descriptive than mathematical.?

1 As of this writing, most of the workshop proceedings are available
online, at www.simonsfoundation.org.

2 In addition to the specific references cited, several topics are
discussed more fully (and more mathematically) in Ref [I].



II. A CLASSICAL EXAMPLE (~ 1900)

In the late nineteenth century, continuing through the
early 1900s, many of the great figures of classical physics
routinely crossed the boundaries between subjects that
we now distinguish as physics, chemistry, biology, and
even psychology. In particular, Lord Rayleigh had an
interest in hearing, which he viewed as an extension of
his interests in the theory of sound. In a paper from
1907 entitled “On our perception of sound direction,”
Rayleigh developed ideas that are probably familiar even
if you don’t know their origin [2].

For sounds at high frequencies, the wavelength is
shorter than the width of your head and thus your head
casts the acoustic equivalent of a shadow. So if sound is
coming from your right, it is more intense in your right
ear than in your left, and there are plenty of direct exper-
iments to show that this is indeed how you localize high
frequency sounds—you pick up on the intensity difference
between your two ears. What Rayleigh understood was
that if you go to low frequencies this doesn’t work: the
wavelength becomes longer than the size of your head,
and hence your head no longer casts a shadow.? The
only remaining clue to the location of the sound source
is then the timing or phase difference between your ears.

Of course there’s another possibility, which is that you
can’t actually localize low frequency sounds, so Rayleigh
had to check this, and he went on to devise experiments
that tested directly whether you could hear the phase or
time differences.* At this point in history, there was a
predominant assumption that we are phase deaf—that
we can hear the intensities of the component notes of
a sound, but not their phases. But the physics of the
situation tells us that if we’re going to localize sound at
low frequencies then we must hear phase differences, so
there’s an immediate qualitative prediction, and this was
confirmed.

Rayleigh phrased his conclusions poetically but accu-
rately: “It seems no longer possible to hold that the vi-
bratory character of sound terminates at the outer ends
of the nerves along which the communication with the
brain is established. On the contrary, the processes in
the nerve must themselves be vibratory, not of course in
the gross mechanical sense, but with preservation of the
period and retaining the characteristic of phase—a view
advocated by Rutherford, in opposition to Helmholtz, as
long ago as 1886.” In modern language, action poten-
tials in primary auditory neurons must “phase lock” to

3 Although he was responsible for many of the crucial theoretical
developments, Rayleigh didn’t simply trust the theory, and ac-
tually checked that intensity differences between the two ears of
a subject were tiny at low frequencies, despite the fact that we
could localize the source of these tones.

4 The description of Lady Rayleigh, steadying herself by leaning
on a table, with pipes emerging from her ears, is particularly
charming.

the temporal fine structure of the acoustic waveform.

If we push beyond these qualitative arguments, we find
a surprising quantitative conclusion. The smallest differ-
ence in source direction that we can discriminate, using
low frequency tones, corresponds to a difference in time
between our two ears of only a few microseconds—and
if you were a barn owl it would only be one microsec-
ond. This is even more startling since the characteristic
time for everything to happen in the nervous system is
a millisecond, not a microsecond. It was more than 50
years before anyone recorded from a neuron that actu-
ally implemented these timing comparisons, and it took
even longer to demonstrate that precision really is in the
microsecond range.

While one example doesn’t make a rule, we can try
to identify a strategy at work in this example. Rayleigh
started with a few facts about biology, and added a few
basic physical principles. Thinking hard about how these
connect (or conflict), he arrived at a theory. This theory
made qualitative predictions, and provided a new frame-
work for quantitative discussion. This framework in turn
yielded startling results, and set in motion a sequence of
experiments that played out over many decades.

III. A MORE FAMOUS EXAMPLE (~ 1950)

Figure[l| shows another example, one perhaps more fa-
miliar to most of you [3H5]. None of the papers cited
here have original data, and so, by that criterion, these
certainly are theoretical papers. I think it’s deeper than
that. These papers follow the pattern that I just sug-
gested to you based on Rayleigh’s work: start with a
small number of biological facts, add some basic physical
principles, and mix carefully.

As you know, Watson and Crick were trying to build
models for the molecular structure of DNA, and in such
an effort it is crucial that there are rules of chemical
bonding, not suggestions about chemical bonding. So
there are real things, quantitative principles from physics
and chemistry, on which one can rely. And, in trying to
fit all these things together, there appear not to be that
many solutions. You know what happened next.

The first paper by Watson and Crick ends with the
cryptic remark about how it has not escaped their atten-
tion that the structure they propose has implications [3],
and in the second paper those implications are worked
out []. The intellectual shockwaves which propagated
outward from Refs [3, 4] are so well known that they
don’t require a review here, but it’s important to look
back at what really got said and done in these papers.®

5 The American philosopher LP (Yogi) Berra is reported to have
quipped “that restaurant is so crowded nobody goes there any-
more.” Perhaps some papers are so famous that nobody reads
them anymore.
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General principles
My own thinking (and that of many of my colleagues) is based on two
general principles, which I shall call the Sequence Hypothesis and the
Central Dogma. The direct evidence for both of them is negligible, but
1 have found them to be of great help in getting to grips with these very
complex problems. I present them here in the hope that others can make
_ similar use of them. Their speculative nature is emphasized by their
names. It is an instructive exercise to attempt to build a useful theory
without using them. One generally ends in the wilderness.

GENETICAL IMPLICATIONS OF
THE STRUCTURE OF
DEOXYRIBONUCLEIC ACID

By ). D, WATSON and F, H, C, CRICK

Modical Research Countll Unix for the Study of the
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The adaptor hypothesis .

Granted that the RNA of the microsomal particles, regularly arranged,
is the template, how does it direct the amino acids into the correct order?
One's first naive idea is that the RNA will take up-a configuration capable
of forming twenty different ‘cavities’, one for the side-chain of each of the -
twenty amino acids. If this were so one might expect to be able to play the
problem backwards—that is, to find the configuration of RNA by trying
to form such cavities. All attempts to do this have failed, and on physical-
chemical grounds the idea does not seem in the least plausible (Crick,
1957a). Apart from the phosphate-sugat backbone, which we have assuined
to be regular and perhaps linked to the structural protein of the particles,
RNA presents mainly a sequence of sites where hydrogen bonding could
occur. One would expect, therefore, that whatever went on to the tem-
plate in a specific way did so by forming hydrogen bonds. It is therefore
a natural hypothesis that the amino acid is carried to the template by an
‘adaptor’ molecule, and that the adaptor is the part which actually fits on
to the RNA. In its simplest form one would require twenty adaptors, one
for each amino acid.

FIG. 1: Some classic papers from Watson and Crick (above) [3 4], and from Crick alone (below) [5]. I have highlighted passages
that emphasize the theoretical character of this work, as explained in the text.

“

Let me note, in particular, the passage “... any sequence
of the pairs of bases can fit into the structure. It follows
that in a long molecule many different permutations are
possible, and it therefore seems likely that the precise se-
quence of the bases is the code which carries the genetical
information. ... one chain is, as it were, the complement
of the other, and it is this feature which suggests how the
deoxyribonucleic acid might duplicate itself.” [4].

It is crucial to appreciate that these theoretical pre-
dictions are mot consequences of experimental observa-
tions. As is well known, parallel to the model building
efforts of Watson and Crick in Cambridge, X-ray diffrac-
tion experiments on DNA were being done by Franklin,
Wilkins, and colleagues in London [0 [10].° Franklin’s
famous photograph fifty—one, which appears in Ref [9],
provided qualitative evidence for a helical structure, and

6 The events leading to the initial trio of papers [3,9,10] are among
the most thoroughly studied episodes in the history and sociology
of science; for examples see Refs [6H8]. I still suspect that the
essentially theoretical nature of the early work by Watson and
Crick has, nonetheless, received less attention than it should.

made it possible to read off the basic dimensions of the
helix; these results were quickly clarified in a sequence of
papers from Franklin and Gosling [ITHI3]. But, nearly
a decade later, X-ray diffraction data still were not of
high enough resolution to “see” the pattern of comple-
mentary base pairing without relying on models to help
interpret the data [14}[I5]. Langridge et al provide a very
clear discussion of how the data in 1960 were sufficient
to test a proposed structure, but not sufficient to deter-
mine the structure directly [I5]. So, in 1953, base pairing
was a theory. And no amount of structural information
alone would be sufficient to conclude that “the sequence
of bases is the code which carries genetical information.”
That was a theory too.

The idea that the sequence of bases forms a code de-
fines the problem of deciphering this code, and this at-
tracted attention from many theorists; a highlight from
this period is Crick’s 1958 paper [5], with excerpts in Fig
This is, I think, the paper in which the ideas and
phrasing that I have emphasized in the figure appear for
the first time. We still use the words “central dogma,”
but by now the “sequence hypothesis” is so fully inter-
nalized that we don’t even give it a name. But, as the



text states quite explicitly, there was no direct evidence
for either proposal. And I invite you to note some of the
language that Crick uses, again to emphasize the theo-
retical character of what was going on: I tried to build
explanations that didn’t use these ideas and I couldn’t.

In the decade or so between the proposal of the dou-
ble helix and the working out of the genetic code, many
theorists proposed coding schemes that were quite in-
teresting mathematically, but we now know that none
of these proposals was the one chosen by Nature. Fur-
ther, by the time the experiments which mapped the code
were coming to fruition, nobody doubted that there is a
genetic code—that is, the “sequence hypothesis” had be-
come obvious, and the problem was to work out what the
sequences meant. The combination of these two facts ob-
scures the essentially theoretical foundations of the sub-
ject. As far as I know, all of the experiments that discov-
ered the key features of the genetic code were designed
with the theoretical ideas of Ref [5] in mind.

IV. LESSONS AND PROBLEMS

There still are people who ask whether theory will
someday, in the distant future, make a contribution to bi-
ology. Thus it is essential to point out that theory already
has made contributions, and big ones at that. Many of
the foundational papers in what we now call molecular
biology were unambiguously theoretical papers, and the
example of Rayleigh points to a theoretical tradition that
reaches much farther back into the history of interactions
between physics and biology. But these examples also
have problems.

First, in the case of Watson and Crick, it appears that
all the theorizing was in words and not in equations, and
so what’s written in these papers doesn’t look like the-
ory in the sense that we use the term in physics. I'm
not sure that’s really fair, because when they went to
build a molecular model, the bonds come in particular
lengths, neighboring bonds adopt particular angles, and
these numbers actually matter. Thus, there were equa-
tions, but they were embedded in this structural knowl-
edge.” Still, you might worry.

Second, this was theorizing in which the relevant prin-
ciples were at the level of molecular structure. This
is a level at which, I think, nobody would doubt that
physical principles are relevant for biology. But it isn’t
clear how you would ever get from that level up to
the level that concerns many of us today, the level of
“systems,” whether we mean systems inside one cell, in
a developing embryo, in a network of neurons in the
brain, or in a group of organisms behaving coopera-

7 One does need equations to compare the predicted structure
with X-ray diffraction data, and these were derived by Cochran,
Crick, and Vand [16].

tively. At the opposite extreme, the physical principles
to which Rayleigh appealed were completely outside the
organism—too macroscopic to help us with most of what
we’re trying to do today, while what Watson and Crick
were doing was too microscopic. Thus, while these exam-
ples tell us that theorizing in this spirit can be incredibly
powerful, the kind of theories that these guys were build-
ing doesn’t match what we’d like to do today.®

Finally, there is a question about the connection be-
tween theory and experiment. By the time of Rayleigh’s
work, there was a well established tradition of trying to
make quantitative connections between our perceptions
and the properties of the physical signals at the input to
our sense organs; this subject of “psychophysics” would
grow and deepen throughout the twentieth century. The
fundamental prediction made by Watson and Crick was
about the structure of a molecule, and the decades follow-
ing their work would see the emergence of X-ray diffrac-
tion experiments with atomic resolution, even in large
biological structures. Thus, in both our examples, the
theory pointed toward experiments that could be done
quantitatively, indeed with methods that are not so far
from the traditional core of experimental physics. Is this
the norm, or an exception?

In seminars one often hears words to the effect that
“the agreement between theory and experiment isn’t per-
fect, but, well, you know, it’s biology.” As an excuse for a
little scatter around predictions this might be acceptable,
although I find it a bit annoying.® But in these excuses
I sometimes detect an implicit claim that there’s more
going on, that there is something fundamental about bi-
ology that prevents us from having the kind of tdetailed,
quantitative comparison between theory and experiment
that we are used to in the physical sciences. This is not
about describing things at the second decimal place;!°
the worry is rather that there might be some irreducible
sloppiness that we’ll never get our arms around, and that

8 All the talks at the symposium where these ideas were first pre-
sented concerned such system level problems (see note 1). T’ll
take it as obvious that we will not get from the level of molecu-
lar structure up to the level of system organization by detailed
simulation, although this itself is a deep issue [17].

9 It is a great triumph that, in most areas of physics, such ex-

cuses are now unacceptable. But in many subfields of physics,

the expectation of quantitative agreement between theory and
experiment is a relatively recent development. There is much to
say about all this, but let me just note that if you don’t hope
for quantitative agreement, you won’t push for it, and as far as

I know it never happens by accident.

The community of physicists interested in the phenomena of life

is not particularly enriched for the kinds of theorists who enjoy

making predictions to the second decimal place, or beyond. But
when our colleagues who are interested in the second decimal
place go after it, they get it right, and this success is part of
the reason that we have license to proceed in the ambitious style
that we do. So there’s a relationship between physics being very
precise and being conceptually grand. Were precision impossible,
I suspect that some of the grandeur would be lost.

10



this could spell doom for the physicist’s dreams.

I am surprised by how many physicists simply accept
the claim that biology is a messy business. As explained
at (perhaps too much) length in Ref [I], one’s views on
these matters depend on how you are introduced to bi-
ology. If your first exposure is to very complex systems
where it is difficult both to maintain control and to make
quantitative measurements, then the search for precision
can seem hopeless. But if you start, instead, by study-
ing the ability of the visual system to count single pho-
tons, and realize that in the receptor cells of the retina
there are ~ 1% changes in the concentration of internal
messengers which are biologically meaningful, you have
a different view.

To summarize, the classical examples are inspiring, but
the challenge for theory in our time is (at least) three fold.
First, we have to identify principles that organize our
thinking at a systems level. Second, we have to express
these principles in mathematical terms. Third, if we ex-
pect our mathematical theories to make quantitative pre-
dictions, we have to push our experimentalist friends to
expand the range of life’s phenomena that are accessible
to correspondingly quantitative measurements.

V. HODGKIN AND HUXLEY, AND BEYOND

As a first step in addressing the three problems I have
just raised, let me try another classic example, which
then moves toward the problems that we want to do to-
day; the classical piece is the work of Hodgkin and Hux-
ley [1§]. They showed that the electrical dynamics of a
neuron—that is, the voltage across the membrane, as a
function of space and time—are determined by the dy-
namics of what we now call ion channel molecules in the
cell membrane. These are proteins, and Hodgkin and
Huxley described the kinetics with which these proteins
switch among different states. This switching depends
on the voltage across the membrane, some of the states
are open and allow ionic current to flow, others are closed
and do not; when you put all of this together, you end up
with a coupled system of nonlinear equations for both the
states of the channels and for the voltage itself. These
are the Hodgkin-Huxley equations.

Hodgkin and Huxley studied the squid giant axon,
which really is giant, the size of a small drinking straw.
In particular you can pass a wire down the middle of
it and short—circuit things so that the voltage all across
the membrane is uniform, isolating the dynamics of ions
flowing across the membrane. Once you characterize the
dynamics of this “space clamped” axon, you can add
back the flow of current along the axon, because this just
involves the conductivity of the ionic solution, nothing
fancy about the membrane. The resulting equations pre-
dict that signals converge onto stereotyped pulses that
propagate with a definite velocity. These pulses are the
action potentials or “spikes” that are the nearly univer-
sal mechanism of communication among neurons in the

brain [I9]. The Hodgkin—Huxley equations predict, cor-
rectly, the shape of the voltage spikes and their propaga-
tion velocity.

Hodgkin and Huxley had the good fortune that the dy-
namics of the squid giant axon is dominated by two kinds
of ion channels: one sodium channel and one potassium
channel. In contrast, our genome encodes roughly one
hundred ion channels—more, if you count splicing vari-
ants. And the typical neuron in your head might express
ten different channels. There was a period which was very
productive, during which many groups showed that the
vision of Hodgkin and Huxley was correct, even if most
neurons are more complicated than the squid axon: if
you take your favorite neuron, you can reduce its electri-
cal dynamics to a description in terms of several different
kinds of channels. In favorable cases you can even mea-
sure, independently, the current flowing through single
ion channels, watching the channels open and close, and
showing that the kinetics of these transitions is consistent
with the form of the equations that Hodgkin and Huxley
wrote down.

The industry of building (generalized) Hodgkin—
Huxley models for neurons hummed along for decades,
resting on a foundation of detailed, quantitative exper-
iments. There is, however, a problem, first emphasized
by Larry Abbott and his colleagues [20H22]: if we are
going to use many different kinds of ion channels to de-
scribe the dynamics of a single neuron, how many of each
kind should we use? While it is possible to measure the
kinetics of the individual channels, it’s much harder to
count directly how many of channels of each type are
present in the membrane of a single cell. So, you typi-
cally have to extract these numbers by fitting to data on
the electrical dynamics itself. Somebody gives you the
ingredients and then you have to dial the knobs to repro-
duce the behavior of the neuron, and the more realistic
the description, with more different kinds of channels,
the harder this problem becomes. The key insight was
to step away from the problem of describing a particular
neuron and ask: in the space of all the possible neurons
I could build with this many kinds of ion channels, what
can I get?

An example of the range of possibilities that a cell
could access by changing the numbers of just two ion
channels is shown in Fig[2] This example is drawn from
a detailed model for a particular neuron in the stom-
atogastric ganglion of the crab, which has been studied
extensively and thus provides a good test case, but there
is no reason to think that what we are seeing is spe-
cific to this neuron. By varying the copy numbers of
just two types of channel, we can produce cells that are
silent, cells that fire single, isolated action spikes like the
ticks of a clock, cells that generate bursts with two or
three spikes per burst, and more. Along one direction we
can see transitions through three qualitatively distinct
behaviors when the number of copies of one channel is
changed by just 10-20%. It doesn’t take much imagina-
tion to think that these quantitative changes in tempo
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FIG. 2: Simulations of a detailed model, with seven types of
channel, for a single neuron in the stomatogastric ganglion
of the crab. Changes in the pattern of activity are shown
as a function of the numbers of two different kinds of chan-
nel, where channel number is expressed as the maximal con-
ductance when all channels are open. As explained in the
text, relatively small changes in these parameters can gener-
ate qualitative changes in the pattern of electrical activity,
running the full range from silence to single spike firing to
bursting. After Ref [I], redrawn from LeMasson et al [20].

of activity matter to the organism. This means that our
problem in fitting models can be identified with the cell’s
problem in controlling it’s own behavior: how does a cell
manage to sit in the middle of one functional region, and
not wander off into other regions?

What Abbott and colleagues proposed was that cells
set the number of channels by monitoring what they are
doing. So, for example, a cell could monitor it’s inter-
nal calcium concentration. When the voltage across the
membrane changes, as during an action potential, cal-
cium channels open and close, calcium flows in, and this
provides a monitor of electrical activity. The calcium
concentration is known to feed into many biochemical
pathways inside the cell, and we can imagine that some
of these could regulate either the expression of the chan-
nels or their insertion into the membrane. Mechanisms of
this type allow cells to stabilize the very different behav-
iors seen in Fig[2] essentially because the map of calcium
concentration vs channel copy numbers neatly overlays
the map of spiking rhythms. One can do even more sub-
tle things by having multiple calcium sensors with differ-
ent timescales [23], and much of what we are saying here
about the nature of the mapping between channel copy
numbers and functional dynamics in single neurons can
be generalized to thinking about small networks [24].

These ideas were quickly confirmed [25]. Perhaps the
most dramatic experiment involves taking a neuron, rip-
ping it out of the network and putting it in a dish in

which the external ionic concentrations are completely
bizarre. As a result, when one channel opens the current
might flow in the wrong direction, and of course the cell
goes completely wild. But if you come back a day later,
the cell is back doing its normal thing. It knows what it’s
trying to do, if one can speak anthropomorphically. This
is a beautiful subject, still under rapid development.

This example points to a very important transition,
which we might think of as a transition between models
and theories. Hodgkin and Huxley proposed a model,
and for 30+ years, the goal was to fit that model to the
behavior of particular neurons. It was only in the early
90s that Abbott and company suggested that we look be-
yond the particular, and take the generalized Hodgkin—
Huxley equations seriously as a theory of what neurons
might do. These equations allow the construction of cells
that belong to a large class, and within that class there
are cells that don’t exist in nature. Thus, it’s not a model
of anything in particular, it’s a theory for a class of things
that can happen, and within that theory there are ques-
tions such as how one should set the (many) parameter
values. Stated this way, the question is internal to the
theory, but then we can jump to suggest that this is a
problem that neurons themselves actually need to solve.
Happily, following this path leads to immediate, and suc-
cessful, predictions for new experiments.

VI. PROBLEMS WITH PARAMETERS

When we make models for the dynamics of a biolog-
ical system, there are many parameters. In some cases
these parameters are encoded in the genome, and change
only on evolutionary time scales, while in other cases
the parameters are subject to control on physiological
time scales, as with ion channel copy numbers. The
more realistic our models, the more parameters we have,
and considerable mathematical ingenuity has been de-
ployed in estimating these parameters from experimental
data. But this whole picture is unsettling for a theoreti-
cal physicist.

Our most complete theories of the natural world cer-
tainly have parameters [26], but there is a sense that if we
are focused too much on these parameters then we are do-
ing something wrong. If parameters proliferate, we take
this as a sign that we are missing some additional level
of unification that could relate these many parameters to
one another; if our qualitative explanation of phenomena
hinges on precise quantitative adjustment of parameters,
then we search for the hidden dynamics that could make
this apparent fine tuning happen more naturally. Some
of the greatest triumphs of modern theoretical physics
are nearly free from parameters—the BCS theory of su-
perconductivity [27], the renormalization group theory
of critical phenomena [28], the theory of the fractional
quantum Hall effect [29], and more. Importantly, these
examples refer not a rarefied world of interactions among
small numbers of elementary particles, but rather to the



properties of real, macroscopic materials, with all their
chemical complexities.!!

How can we reconcile the parameter aversion of theo-
retical physicists with the explosion of parameters that
arise in a realistic approach to biological systems? Much
of what our community is doing, I think, can be under-
stood as a reaction to this problem. There are several
approaches.'? First, it might be that the parameters are
just a distraction, and that the meaningful functional
behaviors of biological systems emerge as generic or “ro-
bust” properties of our models, independent of precise
parameter settings. A second, approximately opposite
view is that the forces of evolution have been strong
enough to select non—generic parameter values, allowing
for phenomena that emerge only through fine tuning; if
we can identify the selection principle, we then have a
theory for at least an idealization of the real biological
systems, again without reference to parameters. Finally,
we might hope that parameter independence emerges in
biological systems much as it does for inanimate materi-
als, with something like the renormalization group telling
us that macroscopic behaviors which matter for the or-
ganism can be independent of (highly parameterized) mi-
croscopic details. In these three sections (§, i
look at these three ideas in turn.

The problem discussed in the previous section is ex-
actly the problem of balancing robustness against fine
tuning; interestingly, the picture proposed by Abbott and
colleagues essentially splits the difference between these
very different ideas. Within a description of ion channel
dynamics alone, what we see in real neurons is manifestly
the result of fine tuning: you have to get combinations of
ion channel copy numbers right, as shown in Fig[2] But
the mechanism by which cells achieve this tuning is to
promote the finely tuned parameters to being dynamical
variables,'® and then this larger dynamical system can
be attracted to a functional fixed point, generically. It
also is important that the mapping from parameters to
function is complex, and many—to—one.

In the conventional language of neuroscience, the pa-
rameters generalized Hodgkin-Huxley models are mea-
sured as “maximal conductances” for each type of chan-
nel, that is the conductance if all the channels of a par-

11 There are examples in the same spirit from elementary parti-
cle physics, notably the connection of deep inelastic scattering
experiments to the asymptotic freedom of QCD [30].

One possibility, surely, is that the multitude of parameters is a
fact of life, and somehow irreducible, in which case we need to
give up on our search for a physicist’s understanding. I’ll discard
this as too pessimistic.

Promoting a finely tuned parameter to a dynamical variable is
natural in the biological context, where there are many layers
of regulation. It seems worth noting that the same strategy was
suggested in the context of particle physics for solving the ‘strong
CP problem,” and in that case the new dynamical variables are
associated with a new (still hypothetical) elementary particle,
the axion [31].
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ticular type are in their open state. This is the product
of a single channel conductance and the number of chan-
nels, so I have referred to this as a problem of ion channel
copy numbers; since ion channels are proteins, this prob-
lem is about how the functional dynamics of a network
of interacting proteins depends on the number of copies
of each protein. This problem re-emerged some years
later in thinking about biochemical and genetic networks
[32, 33], where it grew into a separate literature.4

In biochemical and genetic networks, there has been
considerable emphasis on the need for “robustness”
against protein copy number variations. This idea res-
onated in the community in part because of a shared,
if implicit, hypothesis that precise control over protein
copy numbers is not possible. While some systems might
indeed be robust, I think we now now that precise control
of protein copy number is, in fact, possible when needed.
The ion channel example shows that copy number fluctu-
ations can be large, but the functionally important com-
binations of copy numbers can be tuned through feed-
back. In contrast, the example of maternal morphogens
in the fruit fly embryo shows that cells can generate re-
producible copy numbers even without feedback, so that
absolute concentrations can carry biologically meaning-
ful signals [34] B5]. In bacterial chemotaxis, which pro-
vided some of the motivation for the robustness idea [32],
more recent experiments show that the operon structure
of gene regulation in bacteria serves to reduce relative
fluctuations in the copy numbers of crucial proteins, and
that if this structure is removed then cells that exhibit
larger relative fluctuations are at a competitive disad-
vantage [36] [37]. It thus seems likely that, in all these
systems, we are seeing tuning or selection of parameters
to achieve functional outputs, and that the search for
networks which can achieve functionality with random
parameter choices may be missing something essential.

From the level of interacting networks of proteins we
can drop down to ask about genericity vs. fine tuning
in single protein molecules. We recall that proteins are
polymers of amino acids, with lengths from a few tens
to many hundreds of residues, and with twenty types of
amino acids the number of possible proteins is (beyond)

14 Tt really does need to be emphasized that the Hodgkin—Huxley
model and its descendants are models for networks of interact-
ing proteins (the channels), where the interactions are mediated
through membrane voltage. Perhaps the most important con-
trast to most other such networks is that, for ion channels, we
actually know the equations that describe the relevant dynamics.
In the non—neuronal examples, one can write schematic equations
based, for example, on Michaelis—Menten enzyme kinetics, but
often many qualitative features of the dynamics are unknown.
These differences in mathematical description are tied to differ-
ences in experiments, since in neurons it has long been possible
to make high precision, real time measurements of the electri-
cal signals that form the functional output of the ion channel
network in single cells, while similarly precise measurements on
biochemical and genetic networks remain challenging.



astronomical. The sequence of amino acids in most cases
determines the structure, and hence the function, of the
protein. On the one hand, we know that these molecules
are not finely tuned: not every single detail of the amino
acid sequence matters. On the other hand, a random se-
quence typically doesn’t even fold into a unique compact
structure—random heteropolymers are glassy—Ilet alone
carry out interesting functions. So where along the con-
tinuum between every detail being important to being
completely generic do real proteins sit? We will return
to this problem below.

Instead of moving down to the level of single protein
molecules, we can look for examples of this same ques-
tion by moving “up” to the level of neural networks. In
particular, let’s think about the problem of building a
short—term memory for a continuous variable. If I want
a network that generates the pattern of activity needed
to hold my arm fixed at each of several different heights,
then I need a dynamical system that has a fixed point
at each of these locally stable positions. But if I want
to hold stable at a continuous range of positions, I need
a line of fixed points, and that’s completely non—generic.
One fixed point is okay, and multiple isolated fixed points
are fine, as in the Hopfield model [38], but a whole con-
tinuum of fixed points—that’s not generic, you have to
tune parameters.

Better than the problem of holding your arm at a fixed
height (which involves feedback from mechanical sensors)
is the problem of holding your eyes still. With your eyes
open you have visual feedback, but even if you close your
eyes and turn your head you still counter-rotate your
eyes to compensate for the movement. The signal com-
ing from your ears (more precisely, from the semicircular
canals) is a motion signal, but in order to keep your eyes
counter—rotated you need a position signal. So you in-
tegrate and hold onto the result after the inputs have
disappeared. We can do this for times on the order of a
minute, whereas individual neurons usually forget their
inputs over perhaps tens of milliseconds. So you have a
gap to span, across several orders of magnitude in time.

Notice that there are two theoretical ideas here [39].
First, we should think about something as (seemingly)
simple as holding our eyes still in terms of networks with
a line of fixed points. Second, in the space of possible
networks of neurons, such behavior is not generic, so one
needs an explanation of how it can occur.

A natural answer to the problem of stabilizing non—
generic behavior is that since this is a brain, it can learn.
In fact, the brain has constant access to a feedback sig-
nal: if you fail to get things right, then the world keeps
slipping on your retina. So the brain should be able to
exploit this signal and tune the relevant network, some-
how, to achieve this very non—generic dynamics. If this
picture of tuning via feedback is correct, and we disrupt
the feedback, we should be able to “un—tune” the sys-
tem. There’s a beautiful experiment by David Tank and
colleagues showing that this is true [40} [41].

The essence of the experiment, as schematized in Fig

is to build a planetarium for goldfish, a seemingly low
tech experiment that gets right at the central question.
This setup monitors the motion of the eyes of the gold-
fish and rotates the world in proportion, thus changing
the coupling between the eyes’ rotation and the world’s
rotation. And so if the brain is tuning the networks that
stabilize eye movements using visual motion signals, plac-
ing the fish in this apparatus will cause the system to
mistune. After learning in this unusual environment, the
network won’t hold a constant eye position, but will be
either unstable, with the eye being driven off to eccentric
positions, or leaky, with eye positions relaxing back to
the middle. This is exactly what is seen experimentally
(Fig[d] [40]), and one can even trace these changes in sta-
bility down to the dynamics of individual neurons in the
network [4I]. This shows that you actually have active
tuning mechanisms which stabilize this very non—generic
behavior of the underlying dynamical system.

VII. SIGNALS, NOISE, AND INFORMATION

The mechanisms of life can achieve extraordinary pre-
cision [I]: our visual system can count single photons,
we can hear sounds that cause our eardrum to vibrate by
the diameter of an atom, bacteria swim along the gra-
dients of attractive chemicals with a reliability so high
that they must be counting every molecule that arrives
at their surfaces. 1 have been interested for some time
in whether these are isolated examples, or whether bi-
ological systems more generally operate near the limits
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of what is allowed by the laws of physics.!> If (near)
optimality is the rule, then we can promote this to a
principle from which essential aspects of the underlying
mechanisms can be derived, quantitatively. In some cases
the resulting theoretical structure is naturally phrased in
terms of optimizing the reliability of decisions, or the ac-
curacy of estimates, while in other cases it seems more
compelling to use the slightly more abstract framework
of information theory. In either case, I think it’s crucial
that we not adopt sweeping hypotheses of optimality for
aesthetic reasons, but try to focus on examples where the
approach to optimality can be tested, directly, through
quantitative experiments.

Like us, flies use their visual systems to help guide their
movements. But, flying at meters per second, they are
under pressure to make very quick decisions, and look-

15 Given the task of providing some perspective on the problem
of theorizing about biological systems, I cannot resist discussing
problems that my colleagues and I have been thinking about.
There are two themes, which we have tried to follow across many
different systems, as described in this Section and the next. Ev-
idently the opinions I state here have much less claim to objec-
tivity than in my description of other people’s work.

ing out through the tiny lenses of the compound eye, the
raw data they have to work with has rather low resolu-
tion; this combination of physical constraints means that
even optimal visual estimates of how they are moving
through the environment may not be so reliable. Esti-
mates of motion, in particular, are encoded by sequences
of action potentials from a relatively small number of
neurons deep in the fly’s brain; wide—field, or rigid body
motions are the responsibility of some rather large neu-
rons, and even thirty years ago it was possible to make
very long, stable recordings from these cells [42]. At the
same time, one can calibrate the signal and noise proper-
ties of the photoreceptors, showing that these are nearly
ideal photon counters, albeit with finite time resolution,
up to counting rates of ~ 105 /s [43, 44]. Rob de Ruyter
van Steveninck and I worked together to show that the
motion—sensitive neurons encode estimates of visual mo-
tion with a precision within a factor of two of the limits
set by receptor cell noise and diffraction blur [45] 46].

The observation that the fly can make motion esti-
mates with a precision close to the physical limits sug-
gests that a theory of optimal estimation might be a the-
ory of the computations actually done by the fly’s brain.
We have developed this theory [57], and found signatures
of the predicted behavior in the responses of the motion—
sensitive neurons [58) [59], but it must be admitted that
the jury is still out. We have used similar arguments to
derive the filtering characteristics of the first synapse in
the retina, optimizing the detectability of single—photon
signals [60] [61]; this may have been the first example
of using optimization arguments to generate successful
parameter—free predictions of neural responses. Subse-
quent work has explored the role of nonlinearities in sep-
arating single—photon signals from noise at this synapse
[62], and there have been efforts to use optimization ar-
guments to understand aspects of visual motion percep-
tion in humans [63, 64].1 The case of visual motion
estimation in flies is receiving renewed attention [65H67],
in part because of opportunities to combine genetic and
structural tools to dissect the layers of circuitry that lead
from the receptor cells to the larger motion sensitive neu-
rons [68, [69].

Organisms must respond to changing concentrations of
molecules in their environment, and many internal sig-
nals are encoded by such concentration changes. As first
emphasized by Berg and Purcell in the context of bacte-
rial chemotaxis, there is a physical limit to the precision
of such signaling because the relevant molecules arrive

16 Human perception is a rich source of quantitative data, as noted
above in connection with Rayleigh’s classic work. But, in con-
trast to the example of fly vision, it can be difficult to calibrate
the noise levels at the input to the human visual system, except
in the limit where we are counting single photons. Thus, while
it has become popular to use optimality arguments in relation to
human perception, I think there have been fewer direct tests of
optimality than one might like.



randomly at their targets, creating a form of shot noise
[47]. My colleagues and I have tried to make the intu-
itive arguments of Berg and Purcell more rigorous, with
the goal of defining limits to signaling in a broader range
of biological processes [48H50], and this problem has now
been addressed in several different ways [51H55]. We have
worked with our experimental colleagues to show that the
limits are reached, or at least approached, in the early
events of embryonic development in the fruit fly, as the
network of gap genes responds to spatially varying con-
centrations of the primary maternal morphogens [34} [56].

A more abstract notion of optimal performance con-
cerns the efficiency of information transmission and rep-
resentation, an idea that reaches back to discussions of
neural coding, perception, and learning by Barlow and
Attneave in the 1950s [70H72]. The ability of neurons
to convey information is limited by the statistical prop-
erties of the action potential sequences that they gen-
erate, and by the time resolution with which the brain
can meaningfully ‘read’ these sequences [73]. We have
worked with experimental collaborators to show that real
neurons transmit information about dynamic sensory in-
puts at rates within a factor of two of the physical limit
set by the entropy of the spike sequences, down to time
resolutions on the order of milliseconds [74H76], and that
this efficiency is even higher for inputs that capture some
of the statistical features of the relevant natural signals
[(7H80]. As first emphasized by Laughlin, such efficiency
requires a matching of neural coding strategies to the
statistical structure of sensory inputs [81].

Laughlin considered the response of large monopolar
cells (LMCs) in the fly retina to changing image inten-
sity or contrast. These cells give a graded voltage output,
and in the limit that voltage noise is small and indepen-
dent of the mean, the optimal input/output relation is
one that generates a uniform distribution of outputs; this
means that the normalized input/output relation is the
cumulative distribution of inputs. Laughlin built a pho-
todetector with optics matched to that of the fly’s eye and
sampled this distribution in the natural environment. He
then compared the predictions with the voltage responses
of the LMCs, as in Fig[5JA. These results inspired explo-
rations of this “matching” principle in different contexts.

Since natural signals are intermittent, optimizing infor-
mation transmission requires that sensory neurons adjust
their input/output relations in real time as the dynamic
range of inputs varies [82]. These effects were demon-
strated in the vertebrate retina [83] and in the motion
sensitive neurons of the fly visual system [84]. In partic-
ular, if we consider a family of input distributions that
differ only in the overall dynamic range of inputs (e.g.,
Gaussian signals with different variances), then when the
noise is small the only parameter that can set the scale
of inputs is the dynamic range itself. Hence optimal
input/output relations in these different environments
should be rescaled versions of one another, as seen in Fig
5B [84]; one can even show that the proportionality con-
stant between the gain of the input/output relation and
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the dynamic range of input is the one that maximizes in-
formation transmission. Related adaptation effects have
now been seen in a wide range of systems, at levels from
the sensory periphery to deep in the cortex [85H92], and
there are even hints that the speed of adaptation itself
approaches the limits set by the need to collect reliable
statistics on the input distribution [93], [94].

Limits to information transmission are set by a com-
bination of the available dynamic range and the noise
levels in the signaling pathway. These limits are espe-
cially clear when the signals are carried by changes in
the concentration of signaling molecules; an important
example is transcriptional regulation, which we can think
of as the transmission of information from the concen-
tration of transcription factors to the expression levels
of the target gene(s) [95]. In the limit that noise levels
are small, but state-dependent, optimizing information
transmission leads to a distribution of outputs inversely
proportional to the standard deviation of the noise; more
generally, if we have a characterization of the noise level
along the input/output relation, we can find the optimal
distribution of outputs numerically. In the Drosophila
embryo, the expression level of Hunchback responds to
the spatially varying concentration of the primary ma-
ternal morphogen Bicoid, and from the measured noise
levels [34] we can compute the optimal distribution of ex-
pression levels, which is in surprisingly good agreement
with experiment [96] (Fig[5IC). Hunchback is one of sev-
eral gap genes, and together the expression levels of these
genes are thought to provide information about the po-
sition of cells (0 < z < L) along the anterior-posterior
axis of the embryo. Because the distribution of positions
is uniform, matching requires that the errors in estimat-
ing position (o) also be uniform. If we look at just one
gene, this is far from the case, but as we add in the con-
tributions from all the gap genes, with their complicated
spatial patterns of mean expression and (co)variance, we
see the emergence of a nearly uniform positional error,
as shown in Fig [97]. Importantly, the scale of this
positional error (o, ~ 0.01L) is essentially equal to the
precision of subsequent decisions about the body plan.

Before leaving Fig[5] let me emphasize that in each case
we are using the same theoretical principle: maximize
information transmission by matching the distribution
of inputs to the input/output relation and noise levels.
There are differences of detail, but these arise because
the noise levels in the different systems are different. Cru-
cially, this theoretical approach generates parameter—free
predictions; thus, none of the results in Fig 5| involve fit-
ting. Further, in each case we can not only test predic-
tions based on optimizing information transmission, we
can also estimate the amount of information being trans-
mitted and show that it is very close to the optimum.'”

7 For cases (B-D) in Fig this point is made in the cited papers.
For the case of the LMCs, see Ref [44] and §3.1 of Ref [19].
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distributions on a logarithmic scale. (D) Precision of positional estimates (o,) based on the expression of all four gap genes

(Hb, Kr, Gt, Kni) in the Drosophila embryo [97].

Beyond matching, we have been searching for the ar-
chitecture and parameters of genetic networks that op-
timize information transmission, and we have been able
to formulate this optimization problem in a way such
that the solutions depend only on the number of available
molecules. As a function of this resource constraint, we
find transitions from architectures that are highly redun-
dant, with multiple target genes responding identically
to transcription factor inputs, to architectures where
the multiple targets are activated or repressed at stag-
gered thresholds, tiling the dynamic range of inputs [98].
Redundancy can be reduced, and efficiency increased,
by mutual repression among target genes [99], feedback
loops can generate long integration times to help average
out noise [I00], and in spatially extended systems such as
a developing embryo the proper amount of spatial aver-
aging can play a similar noise-reducing role [I01]; finally,

the cell can enhance information transmission at the low-
est transcription factor concentrations by having these
molecules act also as translational regulators of consti-
tutively expressed mRNAs [102]. All of these theoretical
results have qualitative correlates in the properties of real
genetic control networks, notably the gap gene network
in the developing fly embryo, although it remains a chal-
lenge to put these different results together into a fully
quantitative theory of real networks.

In all the examples above, successful application of in-
formation theoretic ideas depends on identifying what
information is relevant to the system we are studying.
One can imagine a nightmare scenario in which the very
principled notion of optimizing information transmission
is submerged under long arguments about natural his-
tory, and our hopes for theory in the physics sense are
dashed. Can we do something more general? We have



argued that, in many cases, information is relevant to the
extent that it has predictive power [103], [104]; predictive
information captures our intuition about the complexity
or richness of time series [103], and the efficient represen-
tation of predictive information unifies the description
of signal processing and learning [104]. In collaboration
with MJ Berry II and his colleagues, we have now mea-
sured the predictive information carried by neurons in
the vertebrate retina [I05]. Every ganglion cell partic-
ipates in a small group for which the encoded predic-
tive information is close to the limit set by the statistical
structure of the inputs themselves. Groups of cells carry
information about the future state of their own activity,
and this information can be extracted by downstream
neurons that exhibit familiar forms of visual feature se-
lectivity. The efficient representation of predictive infor-
mation is a new candidate principle that can be applied
at every stage of neural computation.

VIII. COLLECTIVE BEHAVIOR

From the spectacular aerial displays of flocking birds
down to the beautiful choreography of cell movements in
a developing embryo, many of life’s most striking phe-
nomena emerge from interactions among hundreds if not
thousands or even millions of components. The enormous
success of statistical physics in describing emergent phe-
nomena in equilibrium systems has led many people to
hope that it could provide a useful language for describ-
ing emergence in biological systems as well. In the past
decade or so, my colleagues and I have been excited by
the use of maximum entropy methods to build statistical
physics models for variety of biological systems that are
grounded in real data.!'®

In a small window of time, a single neuron either gen-
erates an action potential or remains silent, and thus the
states of a network of neurons are described naturally
by binary vectors. We have tried to approximate the
probability distribution of these binary vectors by max-
imum entropy distributions that are consistent with the
mean spike probability for each cell, and with the ma-
trix of pairwise correlations among cells. These models
are Ising models, and since correlations have both signs,
the interactions among “spins” in the model have both
signs—they are a sort of spin glass, not unlike the model

18 The Boltzmann distribution is the maximum entropy distribu-
tion consistent with knowing the mean energy, and this some-
times leads to confusion about maximum entropy methods as
being equivalent to some sort of equilibrium assumption (which
would be obviously wrong). But we can build maximum entropy
models that hold many different expectation values fixed, and
it is only when we fix the expectation value of the Hamiltonian
that we are describing thermal equilibrium. What is useful is
that maximum entropy models are equivalent to the Boltzmann
distribution for some hypothetical system, and often this is a
source of both intuition and calculational tools.
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that Hopfield wrote down in 1982 [38]. With MJ Berry
IT and his colleagues, who have developed methods for
recording simultaneously from almost all the neurons in a
small patch of the vertebrate retina as it responds to nat-
uralistic visual inputs [I06, 107], we found that models
based on pairwise correlations provided strikingly precise
descriptions of the entire distribution of neural activity
in groups of ten to fifteen cells [I08]. By now we can
write very accurate probability distributions for the joint
activity of 160 cells in the vertebrate retina [I09]. Al-
though there are many details, the overall structure of
these models is consistent with extrapolations from the
analysis of smaller groups of cells [T10, [IT1], and aspects
of this structure can be seen in much simpler models
[112]. We have preliminary evidence that the same max-
imum entropy strategy can describe activity in popula-
tions of ~ 100 neurons in the hippocampus [113].

Around the time we were getting our first results on
maximum entropy models for neurons, I heard Rama
Ranganathan talk about his group’s efforts to explore the
space of amino acid sequences. In outline, they looked
at a family of proteins that were known to have simi-
lar structures and functions, and developed an algorithm
to generate a new ensemble of sequences that were con-
sistent with the observed pairwise correlations among
amino acid substitutions at different sites along the chain.
They then synthesized some of the molecules in this arti-
ficial family, and found that a substantial fraction of these
molecules were functional; in contrast, proteins synthe-
sized by choosing amino acids independently at each site
were not functional [114, [115]. We were able to show that
what Ranganathan and colleagues were doing was, in a
certain limit, equivalent to the pairwise maximum en-
tropy construction that we were doing for neurons [116].

In the maximum entropy construction, correlations be-
tween substitutions at different sites are generated by
effective interactions, and from other statistical mechan-
ics problems we expect that the spatial range of correla-
tions will be larger than the spatial extent of interactions
[1T°7,118]. Indeed, one can find correlations among amino
acid substitutions that are widely separated, not only
along the polymer chain but also in three dimensional
space, but our intuition is that interactions should be lo-
cal. If this is borne out, then the statistics of pairwise
correlations among amino acids substitutions encodes in-
formation about which sites along the one—dimensional
sequence are neighbors in three—dimensional space, and
we would be able to predict protein structures from se-
quence data alone [I19]. There is tantalizing evidence
from Weigt, Colwell, and others that this actually works
[120H122]. These models also provide an explicit answer
to the question raised in §VI about the location of amino
acid sequences along the continuum from fine tuning to
randomness.

Perhaps the prototypical example of emergent, collec-
tive behavior in a biological system is a flock of birds.
There were important early theoretical efforts to develop
a statistical mechanics of flocking and swarming [123}-
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FIG. 6: Statistical mechanics for a natural flock of birds, from Refs [131} [132]. For each bird, we decompose the vector velocity
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are from the model and blue points from the data, as indicated. The model matches the mean and variance of the speed, as
well as the average correlation of a bird’s velocity with that of its near neighbors; the dashed lines in (A) and (B) indicate the
size of this neighborhood; everything beyond this distance is a parameter—free prediction.

125], and these ideas developed into a whole field of “ac-
tive matter” [126], but I think it is fair to say that, well
past the year 2000, most of the experimental observations
were qualitative. The situation changed dramatically
with the work of Cavagna, Giardina, and their colleagues
in Rome, who developed methods to track the trajecto-
ries of every bird in groups of more than one thousand
starlings as they engaged in aerial displays [T27HI30]. We
have worked together to build maximum entropy models
for the joint distribution of velocities for all the birds in
the flock, matching the average correlation of birds with
their near neighbors, as well as mean and variance of the
speeds [131], [132]. Again, these extremely simple models
are strikingly accurate, as shown in Fig[6] correctly pre-
dicting the pattern of correlations throughout the entire
flock, including the small but significant four—bird cor-
relations, as well as the long-ranged correlations in the

fluctuations of both flight direction and flight speed [133].
Again, Fig[0]is not a collection of fits; the model is de-
termined by matching three local expectation values, one
of which simply sets the units of speed, and everything
else that we calculate is a parameter—free prediction. In
particular, we are not free to make adjustments in an
attempt to capture the long—ranged correlations; either
these are predicted correctly, or they are not.

These models are mathematically equivalent to equi-
librium statistical mechanics models with local interac-
tions, and in such systems long-ranged correlations can
arise only by two mechanisms: Goldstone’s theorem, and
tuning to a critical point. Indeed, the flock sponta-
neously breaks a continuous symmetry by choosing an
overall flight direction, and the long-ranged correlations
in the directional fluctuations are mediated by the re-
sulting Goldstone modes. But there is no correspond-



ing argument for the speed fluctuations, and in this case
long-ranged correlations must be a signature of critical-
ity, as one can verify by detailed analysis of the model in
Ref [132].1° The Rome group has gone on to analyze the
trajectories of swarming midges, and here too they see
long-ranged correlations of velocity fluctuations, now in
the absence of symmetry breaking, and argue that this
again is a sign of criticality [137, [138].

For neurons, the notion of locality of interactions is not
so useful, because neurons are extended objects and can
reach many, many neighbors. As a result, long-ranged
correlations are not a useful diagnostic of criticality. As
an alternative we have tried to develop a thermodynam-
ics for neural networks, essentially counting the number
of states (combinations of spiking and silence across the
population) that have a particular value of log proba-
bility; this is equivalent to measuring entropy vs energy
[139, T40]. Strikingly, for the activity of neurons in the
retina, the entropy is essentially a linear function of the
energy, with unit slope [I41], which corresponds to an
unusual kind of critical point.

There is an independent literature that tries to con-
nect the dynamical patterns of activity in neural systems
with the scale-invariant “avalanches” predicted by self-
organized criticality [142H144]. Another dynamical no-
tion of criticality is to ask about the number of Lyapunov
exponents near zero, and there is an elegantly simple
model that shows how a network could learn to be criti-
cal in this sense [145]. Subsequent work from Magnasco
and colleagues has looked at the data emerging from hu-
man electro—corticography; they estimate the spectra of
Lyapunov exponents for models that describe these dy-
namical signals, show that there is a concentration of
exponents near zero, and even that this critical behav-
ior is lost as the patient slips out of consciousness under
anesthesia [140], [147]. The relationship between statisti-
cal and dynamical notions of criticality is not at all clear,
and this is a physics problem not a biology problem; for
a first try at connecting the different ideas in the context
of neural data, see Ref [14§].

Returning to the families of proteins, we again see hints
of critical behavior. The hope is that the distribution
of sequences can be described by models in which the
different choices of amino acid interact only when the
residues are in contact, but we also know that measured
correlations extend over long distances, which is why the

19 Because the flock is an active system, even if the real interac-
tions among birds are local, the joint distribution of velocities at
one moment in time might not be well approximated by a local
model. Thus it is important that, within the maximum entropy
framework, one can test for the (un)importance of longer ranged
interactions [I34]. One can go further, and build maximum en-
tropy models that describe the dynamics of the flock, and for real
flocks of starlings much of our equilibrium intuition is valid be-
cause the time scales for rearrangement of the birds in the flock
is much longer than the time scale for equilibration of birds with
their neighbors [135] [136].
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attempt to infer contacts from correlations is hard. If
this picture really is correct, we have the coexistence of
local interactions and long-ranged correlations, which is
a signature of criticality. But the situation is far from
clear, since the data are still sparse,2 and correlations
derived from functionality are mixed with correlations
derived from shared evolutionary history. We have tried
a test case—the diversity of antibodies in the zebrafish
immune system—that involves much shorter sequences,
where the relevant protein family can be exhaustively
sampled [I61], and hence where the maximum entropy
construction can be carried, convincingly, to completion.
Even in this more limited problem, we see signs that the
distribution of sequences is poised near a critical point in
parameter space [162].

IX. TOWARD CONCLUSIONS

I hope to have convinced you that our modern under-
standing of the phenomena of life has already been in-
fluenced, dramatically, by theory, and that the prospects
for the future are bright. This is, perhaps, a moment
to emphasize that the examples I have chosen are far
from exhaustive. In the same spirit, I could have dis-
cussed many other beautiful developments: the idea that
reliable transmission of information through the synthe-
sis of new molecules—as in the replication, transcription,
and translation of sequence information coded in DNA—
depends on building Maxwell demons (kinetic proofread-
ing) that can push past the limits to precision set by
thermodynamics [I63HI65]; the idea that amino acid se-
quences of real proteins are selected to avoid the frustra-
tion that leads to the glassiness of random heteropoly-
mers [I66HI68]; the idea that the pace of evolutionary
change is determined not by the typical organism, but
by those rare organisms in the tail of the fitness distri-
bution, as well as broader connections of evolutionary
dynamics to statistical physics [I69HI73]; the idea that
the active mechanics of the inner ear are tuned near a
critical point (Hopf bifurcation), maximizing sensitivity
and frequency selectivity while providing a natural and

20 For related reasons, I have not discussed the problem of genetic
networks, although it does seem appropriate to give some point-
ers. There is early work connecting biochemical and genetic net-
works to Boolean networks [149], and this led to substantial the-
oretical developments [I50} [I51]. A second wave used ideas bor-
rowed from Hopfield’s approach to neural networks [I52], while
more recent work has focused on incorporating what we know of
the molecular details [I53] [154]. Picking up old threads, Kauff-
man and colleagues made efforts to identify signatures of criti-
cality in genetic networks [I55HI57|, while my colleagues and I
have argued that one can see such signatures in the the statis-
tical and dynamical behavior of the gap gene network [I5§]. I
think all will be clearer when we finally have tools that allow us
to measure simultaneously the expression levels of many genes,
in single cells, with a resolution significantly better than the in-
trinsic noise levels, and these are just emerging [159] [160].



nearly parameter—free explanation for the essential non-
linearities of auditory perception [I74HI76]; and more.?!

Despite these many examples, there is a persistent no-
tion that biology has developed without significant the-
oretical input. This is reinforced by what amounts to
revisionist history in the teaching of biology. If biology is
presented to undergraduate students as the science they
can do even if they don’t like math, then when it comes
time to teach them about the foundations of molecular
and cellular neuroscience, one simply cannot write down
the Hodgkin—-Huxley equations and expect the students
to understand what is going on. Similarly, now that we
can sequence DNA it is conventional to suppress the fact
that the linear arrangement of genes along chromosomes
was established by mathematical analysis, long before we
even knew the identity of DNA as the molecule that car-
ries genetic information [I79]. Even when it comes to ex-
perimental methods, few modern biology curricula teach
the theory of X-ray diffraction from a helix [I6], and
thus students do not learn the mathematics behind the
interpretation of Rosalind Franklin’s famous observations
on DNA [9]. The message, I think, is that mathemati-
cal analysis—mnot to speak of theory—is merely techni-
cal. Even with the proliferation of graduate programs in
quantitative biology, so long as this anti-mathematical
approach constitutes the mainstream of biology teach-
ing, we cannot expect that the biology community it-
self will create a genuinely receptive audience for theory.
If the community insists that what is “biologically rel-
evant” must always be translated into words, then the
search for mathematical description can never be central
to the practice of biology. In a dissent from cheerful in-
terdisciplinarity, I believe it is essential that the physics
community provide a home for the theoretical physics of
biological systems.

Discussions of the relation between physics and biol-
ogy, and especially of the relation between theoretical
physics and biology, often include various warnings about
theorists isolating themselves from experiment, running
off to do things which are irrelevant. I believe that these
concerns are wildly overstated. My colleagues and I, who
are trying to do theory at the interface of physics and
biology, spend quite a lot of our time interacting with
experiments, and with experimentalists. Indeed, one of
the traditional roles of theory in physics is to highlight
things that would be interesting to measure, and this
happens as we try to theorize about biological systems
as well. Although it often is claimed that biology is awash
in data, in fact the attempt to build theories often points

21 Beyond these theoretical ideas, there are examples of striking
phenomenology that still haven’t been given the full theoretical
treatment that they deserve. At the top of this list, for me, is
the observation of quantum coherence in the early events of pho-
tosynthesis [177} [I78], which should provide a stimulus to exam-
ine, more generally, our understanding of the quantum/classical
boundary in the dynamics of biological molecules.
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to numbers that we don’t know, numbers that can deter-
mine which of several theoretical directions is most pro-
ductive. Sometimes measuring these quantities that are
most relevant for theory drives the development of new
experimental methods, or new data analysis strategies,
and these have implications well beyond the original the-
oretical ideas.?? This means, in particular, that theories
can be enormously productive even if they are wrong, or
not faithful to all the details of the real systems we are
thinking about.

If you are worried about a disconnect between theory
and experiment, I think that there is a much greater dan-
ger of people doing experiments and collecting data that
will never fit into any mathematical framework. This
seems especially likely at a moment when you can collect
exponentially more data than you could before. I would
remind you that in other data intensive, phenomenolog-
ical areas—astrophysics and cosmology, for example—
when you go off to spend ~$100 million to collect data,
there are theorists on the team for the design of the
instruments and observations. You think about what
you're looking for and what framework you're planning
on analyzing it with before you collect the data, not after.

The attentiveness of theorists to experiment also raises
the worry that we will lose sight of our more grand ambi-
tions. It certainly is true that we live in an era where data
is expanding exponentially, and this is a good thing. And
we as theorists are the richer for it. But theory is more
than data mining. The point here is that miners know
gold when they see it. What you do when you are data
mining is to look for certain kinds of structure; within
the set of possible structures you identify the one which
is best supported by the data, and then pin down the
parameters within this best structure. But the possible
structures are, in a very real sense, your theories about
what might be going on. If your list of structures is not
rich enough and deep enough, if your list of possible the-
ories doesn’t include the right one, you're not going to
understand what’s going on, and no amount of data is
going to solve this problem.

Finally, I believe that the deepest theoretical questions
transcend the boundaries between the subfields of biol-
ogy. I hope that this is clear from the examples that I
have given. I am excited to see the same theoretical ques-
tions being formulated in different biological contexts, in
some cases really using the same mathematics to describe

22 An example is the idea that one can decode complex, dynamic
sensory signals from sequences of action potentials [I9]. This
“stimulus reconstruction” grew out our interest in measuring the
reliability and precision of neural computation under conditions
closer to those found in nature ( The theoretical work in-
volved both understanding the physical limits to reliability (see
above) and developing conditions under which decoding could be
simple even when encoding was complicated. While I still think
the results on the precision of computation are very important,
the idea of decoding itself had a much larger impact, and even
had implications for practical matters such as neural prostheses.



these very different systems. One of the ways in which
this has happened is by focusing on problems that the or-
ganism itself has to solve, from digging weak signals out
of a noisy background to setting the parameters of its
own networks. Even if the answers are different, it is at-
tractive to think of mechanisms in different systems, even
at different levels of organization, as being chosen by Na-
ture to solve the same physics problems that the organism
faces in different contexts. Similarly, in the discussion of
collective behavior, we have seen the same conceptual
principles organizing our thinking about problems rang-
ing from the evolution of protein families to the dynam-
ics of flocks and swarms, not just at an abstract level
but also engaging with details of the data. Importantly,
we see all these commonalities only through theory, and
thus theory has the chance of redrawing the intellectual
landscape of the field.

X. CODA

In looking more carefully through the references, I re-
alized that the spirit of what I want to convey here was
expressed long ago, albeit in a different context [5]:

“What are one’s overall impressions of the present
state of the subject? Two things strike me particularly.
First, the existence of general ideas covering wide aspects
of the problem. It is remarkable that one can formulate
principles ... which explain many striking facts and yet
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for which proof is completely lacking. This gap between
theory and experiment is a great stimulus to the imagi-
nation. Second, the extremely active state of the subject
experimentally ... new and significant results are being
reported every few months, and there seems to be no
sign of work coming to a standstill because experimental
techniques are inadequate.”

What Crick was saying about the interplay between
theory and experiment in the exploration of the genetic
code, now nearly sixty years ago, is something that ap-
plies today to our exploration of life much more broadly.
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