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On MMSE Properties of Codes for the

Gaussian Broadcast and Wiretap Channels
Ronit Bustin, Rafael F. Schaefer, H. Vincent Poor and Shlomo Shamai (Shitz)

Abstract

This work concerns the behavior of “good” (capacity achieving) codes in several multi-user settings

in the Gaussian regime, in terms of their minimum mean-square error (MMSE) behavior. The settings

investigated in this context include the Gaussian wiretap channel, the Gaussian broadcast channel (BC)

and the Gaussian BC with confidential messages (BCC). In particular this work addresses the effects of

transmitting such codes on unintended receivers, that is, receivers that neither require reliable decoding

of the transmitted messages nor are they eavesdroppers that must be kept ignorant, to some extent, of

the transmitted message. This work also examines the effect on the capacity region that occurs when we

limit the allowed disturbance in terms of MMSE on some unintended receiver. This trade-off between

the capacity region and the disturbance constraint is given explicitly for the Gaussian BC and the secrecy

capacity region of the Gaussian BCC.

I. INTRODUCTION

In this work we consider the scalar Gaussian channel with various requirements on transmission. The

scalar Gaussian channel is a degraded channel, meaning that a receiver at a higher signal-to-noise ratio

(SNR) is a stronger receiver and can obtain all the information that a weaker receiver (i.e., a receiver

at a lower SNR) can. The basic requirement is that of reliable communication. This requirement defines

the Gaussian point-to-point channel, the capacity of which has been derived by Shannon in his seminal

paper [1]. In [2] and [3] the behavior of the input-output mutual information, at every SNR, assuming

the input is a codeword from a “good” codebook sequence (a capacity achieving code sequence), has

been investigated. It was shown that in the limit, as blocklength n goes to infinity, this quantity follows
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the behavior of an independent and identically distributed (i.i.d.) Gaussian input to the channel, up to

the SNR at which reliable decoding is possible. This property is also related to [4] where it was shown

that the output statistics of a “good” code sequence approaches the output distribution produced by the

i.i.d. capacity achieving input distribution. It follows that the behavior of the minimum mean-square

error (MMSE) when estimating a codeword from a “good” codebook sequence from the channel output

at different SNRs follows the MMSE of an i.i.d. Gaussian input to the channel [2], [3]. As such the

effect of a “good” code on receivers at lower SNRs in terms of the MMSE is well defined. More recently

the effect of “bad” code sequences has been investigated [5], that is, reliable codes of lower rates than

the capacity. More specifically, the exact minimal MMSE that can be obtained by a code of rate R was

derived, and was shown to be that obtained by a superposition code sequence. This gives some engineering

intuition into the efficiency of the Han-Kobayashi achievable region to the two-user Gaussian interference

channel [6].

When considering potential receivers of the transmission at lower SNRs, an immediate requirement

is confidentiality. This is exactly the degraded Gaussian wiretap channel, where we have one legitimate

receiver, which requires reliable communication, and one eavesdropper, which must be kept as ignorant as

possible with respect to the transmitted message. The degraded wiretap channel was presented by Wyner

[7], who showed that secrecy can be obtained simply by taking advantage of the physical layer - the

channel to the legitimate receiver as compared to the channel of the eavesdropper. Since this initial work

many have investigated the model and important results have been obtained: specifying the results for

the Gaussian model [8], extending to the general non-degraded channel [9], extensions to the Gaussian

multiple-input/multiple-output (MIMO) channel, independently in [10], [11] and in [12] (for a more

detailed review of the topic see [13] and [14] and references therein). Recently, more attention has been

given to the design of “good” codes for the wiretap channel. This was first done for the discrete, degraded,

wiretap channel [15], [16], [17]. Tyagi and Vardi have shown a construction for the scalar Gaussian

wiretap channel [18]. The approach in both cases was to use existing capacity approaching codes for

the point-to-point channel to construct from them codes that comply with the secrecy constraint. More

recently, Chou and Bloch considered the discrete broadcast channel (BC) with confidential messages and

developed a low-complexity polar code scheme [19].

In this work we continue to examine the scalar Gaussian wiretap channel and specifically the properties

of the MMSE function of specific families of codes for this setting. This analysis proves known “rules

of thumb” in the design of such codes, and extends upon them to provide a good understanding to what

is expected from a “good” code for this channel. Moreover, similar to the analysis of optimal point-to-
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point codes done in [2] and [3], such an understanding allows us to determine the effect/disturbance of

these codes on other possible unintended receivers that are neither eavesdroppers nor require the reliable

decoding of the message.

A different requirement to consider is reliable communication to an additional, weaker, receiver on top

of the reliable communication to the stronger receiver. This defines the degraded Gaussian BC. The BC

was originally presented by Cover [20], who also defined the degraded BC, and conjectured its capacity

region. The achievability proof of the degraded BC was presented by Bergmans [21], while the converse

proof was derived by Gallager [22]. A converse proof for the Gaussian BC was derived in parallel by

Bergmans [23] using the entropy power inequality (EPI). An alternative proof based on the single-letter

expression and using the I-MMSE relationship was presented in [24]. A comprehensive survey of the

BC can be found in [25] or [26].

In [3] the behavior of the MMSE function of a typical code sequence from a hierarchical code ensemble,

designed to achieve capacity of the Gaussian BC, has been derived, via statistical physics methods. In

this work we extend upon the above results and show that any “good” code sequence for the degraded

Gaussian BC exhibits the same behavior for the mutual information and MMSE functions. This behavior

is that of a capacity achieving superposition code sequence, but holds for any “good” code sequence, that

is, also code sequences designed using the “Dirty Paper Coding” (DPC) approach [27], [28]. As such,

the full effect of “good” code sequences in term of the mutual information and MMSE functions is well

defined. Moreover, we provide necessary and sufficient conditions for reliable decoding in general and

for “good” code sequences for the degraded scalar Gaussian BC, specifically. These conditions are given

in the form of properties on the MMSE and conditional MMSE functions.

The two requirements mentioned above, that is, confidentiality and an additional weaker receiver, can

be combined into a degraded Gaussian BC with confidential messages (BCC). This problem has been

considered already in the work of Csiszár and Körner [9], as the reliable rate to the weaker receiver can

be considered as a rate of a common message (due to the degraded nature of the channel). Csiszár and

Körner [9] provide a full single-letter solution for the rate equivocation region of this problem.

In this work we explore the case of maximum level of equivocation (secrecy) for the message sent to

the stronger receiver in the BCC. We distinguish between the cases of maximum possible rate for this

message and the case of complete secrecy. We show that in both cases the MMSE when estimating the

codeword from the output follows that of the Gaussian BC, and the difference in the capacity region is

due to the different behavior of the other relevant MMSE functions.

So far we have mentioned two types of requirements: reliable communication and confidentiality
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(equivocation). Another requirement concerns unintended receivers that are not interested in the trans-

mission (i.e., do not require reliable communication) and are also not potential eavesdroppers (i.e., so

no confidentiality is required). As shown in [5] an MMSE constraint at such receivers provides useful

insights into the disturbance that the transmission imposes on these types of receivers. With respect to this

we examine two problems: the capacity region of the degraded Gaussian BC given an MMSE constraint

and the secrecy capacity region of the degraded Gaussian BCC given an MMSE constraint. In both

problems we need to distinguish between two cases depending on the SNR of the unintended receiver.

We show that the capacity achieving scheme in both is based on superposition, whereas in the Gaussian

BCC, depending on the SNR of this receiver, we can obtain capacity by using either a superposition

code sequence for the wiretap code sequence to the stronger receiver, or a superposition code sequence

to the weaker receiver.

As this work concerns the MMSE performance of code sequences, we use the fundamental relationship

between information theory and estimation theory, namely the so called I-MMSE relationship [29]. As we

discuss “good” code sequences, we consider the behavior of the MMSE function in the limit as n→∞.

This limit might not always exist; however if we restrict ourselves to information stable distributions

(for which the information rate is defined), we can discuss the lim sup of the MMSE function. We show

that the relevant properties used in the context of the limit can also be considered with regard to the

lim sup. Specifically, this holds for the “single crossing point” property, originally derived in [24], which

examines the difference between the MMSE function assuming a Gaussian input distribution and the

MMSE function of any arbitrary input distribution. This property shows that this difference has at most a

single crossing of the horizontal axis, meaning that if for some SNR the two MMSE functions are equal,

for any higher SNR the MMSE function of the Gaussian input will attain a higher value (assuming the

two are not equal for all SNR, which occurs only when both have the same Gaussian input distribution).

In this paper we extend the simplest vector version of this property, derived in [30], to a conditioned

version.

Notation: We denote a random variable using uppercase letter, such as X . Its realizations are denoted

using a lower case letter (e.g., x). We denote a length n random vector with bold uppercase letter and

the subscript n (e.g., Xn). Specific realization of the random vector are denoted using the equivalent

lower case (e.g., xn). When we consider quantities after taking the dimension to infinity, n → ∞, we

remove all subscripts n. The trace operator is denoted by Tr and the transpose operator is denoted by

(·)T. The standard vector norm is denoted by ‖ · ‖. The expectation operator is denoted by E and the

derivative of some function with respect to one of its parameter, for example γ, is denoted by Dγ .
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The paper is structured as follows: we begin with some preliminary results and definitions in Section

II. The Gaussian wiretap problem is discussed in Section III. The Gaussian BC problem is discussed in

Section IV. The Gaussian BCC is discussed in Section V, and the disturbance constraints are considered

in Section VI. We then conclude and summarize the paper.

II. PRELIMINARY DEFINITIONS

In this section we provide the central definitions and results that will be used throughout the paper.

A. The Code Sequences

In this work we split the definition of a code sequence and distinguish between the set of codewords and

the mapping of messages to these codewords. We define a codebook sequence C = {Cn}∞n=1 where Cn

is a set of length-n codewords denoted as the random vector Xn with realizations denoted as xn. These

codewords must comply with a power constraint. With no loss of generality we assume the following:

1

n
‖ xn ‖2≤ 1, ∀xn ∈ Cn. (1)

We further define a mapping sequence f = {fn}∞n=1 where fn is a mapping from a message W to a

codeword of length-n, i.e.,

fn(W ) = xn. (2)

The standard definition of a code sequence is a pair (C, f). Such a pair is said to have rate R if the message

W is one of {1, 2, . . . , 2nR} (assumed uniformly distributed over the set) and is mapped to a codeword

xn ∈ Cn. Note that these mappings are not necessarily deterministic, specifically if confidentiality is

required then stochastic encoding is necessary [14, Section 3.4.1], in which case, for each message Wi

there is a subset Si ⊂ Cn such that fn(Wi) ∈ Si. These subsets are disjoint in order to allow reliable

communication over the channel.

The code sequence pairs (C, f) considered in this paper are assumed to be information stable, meaning

all mutual information rates are assumed to converge as n→∞.

B. The I-MMSE Approach

The main approach used here is the I-MMSE approach, that is to say that we make use of the

fundamental relationship between the mutual information and the MMSE in the Gaussian channel and its

generalizations [29], [31], [32], [33]. Even though we are examining scalar settings, the n-dimensional
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version of this relationship is required since we are looking at the transmission of length-n codewords

through the channel. In our setting the relationship is as follows:

1

n
I
(
Xn;
√
snrXn + Nn

)
=

1

2

∫ snr

0
MMSE(Cn,fn)(γ)dγ (3)

where Nn is standard additive Gaussian noise, Xn is the input signal of any arbitrary distribution (as

long as the above mutual information is finite [34]), MMSE(Cn,fn)(γ) = 1
nTr(EXn

(γ)) and EXn
(γ) is

the MMSE matrix defined as follows:

EXn
(γ) = E

{
(Xn − E {Xn |

√
γXn + Nn})(Xn − E {Xn |

√
γXn + Nn})T

}
. (4)

Note that in our setting the distribution of Xn is defined by the mapping fn and the assumption of

uniformly distributed messages, W .

The I-MMSE relationship has also been extended to conditional cases [24]. Consider a joint distri-

bution over (Xn, U) independent of the additive Gaussian noise. Denote the random vector Xn,u with

distribution PX|U=u. Applying the I-MMSE relationship we have

1

n
I
(
Xn,u;

√
snrXn,u + Nn

)
=

1

2

∫ snr

0
MMSE(Cn,fn)(γ|U = u)dγ (5)

where MMSE(Cn,fn)(γ|U = u) = 1
nTr(EXn

(γ, u)) and

EXn
(γ, u) = E

{
(Xn,u − E {Xn,u |

√
γXn,u + Nn})(Xn,u − E {Xn,u |

√
γXn,u + Nn})T

}
. (6)

Since (Xn, U) is independent of the noise we have that

EXn
(γ, u) = E

{
(Xn − E {Xn |

√
γXn + Nn, U = u})

(Xn − E {Xn |
√
γXn + Nn, U = u})T|U = u

}
. (7)

Taking the expectation over U results with

E {EXn
(γ, U)} = E

{
(Xn − E {Xn |

√
γXn + Nn, U})(Xn − E {Xn |

√
γXn + Nn, U})T

}
(8)

and MMSE(Cn,fn)(γ|U) = E
{

1
nTr(EXn

(γ, U))
}

. Moreover, this independence also allows us to write

(5) as

1

n
I
(
Xn;
√
snrXn + Nn|U = u

)
=

1

2

∫ snr

0
MMSE(Cn,fn)(γ|U = u)dγ. (9)
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Taking the expectation on both sides of (9) with respect to U we obtain the following conditioned version

of the I-MMSE relationship:

1

n
I
(
Xn;
√
snrXn + Nn|U

)
=

1

2

∫ snr

0
MMSE(Cn,fn)(γ|U)dγ. (10)

We now take the limit as n→∞ on both sides of the I-MMSE relationship (3). In order to simplify

notation the quantities at the limit, as n → ∞ are simply denoted by removing the subscript n. For

code sequences for which the relevant MMSE quantities converge as n→∞, the exchange of limit and

integration is according to Lebesgue’s dominated convergence theorem [35], since the MMSE quantities

are always bounded. Thus, we have

I
(
X;
√
snrX + N

)
≡ lim

n→∞

1

n
I
(
Xn;
√
snrXn + Nn

)
= lim

n→∞

1

2

∫ snr

0
MMSE(Cn,fn)(γ)dγ

=
1

2

∫ snr

0
MMSE(C,f)(γ)dγ. (11)

When this is not the case (i.e., the MMSE does not converge) we can apply the reverse Fatou’s Lemma

[35] and conclude that

lim
n→∞

∫ snr

0
MMSE(Cn,fn)(γ)dγ =

∫ snr

0
MMSE(C,f)(γ)supdγ (12)

where

MMSE(C,f)(γ)sup = lim sup
n→∞

MMSE(Cn,fn)(γ) (13)

due to the stability of the information rates. We show this precisely in Appendix A. In this case the

MMSE quantities throughout the paper are the lim sup of the MMSE sequences, which always exist and,

since the MMSE function is bounded, are also finite.

Another property used in the proof is a simple extension of the n-dimensional “single crossing point”

property derived in [30] to the conditioned case considered here. For an arbitrary random vector Xn we

consider the following function

q(Xn|U, σ2, γ) =
σ2

1 + σ2γ
− E

{
1

n
Tr (EXn

(γ, U))

}
(14)

=
σ2

1 + σ2γ
−MMSE(Cn,fn)(γ|U). (15)
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Note that σ2

1+σ2γ is the MMSE function assuming the input distribution is i.i.d. Gaussian with variance

σ2. Thus, the above function is the difference between the MMSE function of an i.i.d. Gaussian input and

the averaged MMSE function assuming an arbitrary joint distribution over (Xn, U), that is independent

of the Gaussian noise. The following theorem is proved in Appendix B:

Theorem 1. The function γ 7→ q(Xn|U, σ2, γ), defined in (15), has no nonnegative-to-negative zero

crossings and, at most, a single negative-to-nonnegative zero crossing in the range γ ∈ [0,∞). Moreover,

let snr0 ∈ [0,∞) be that negative-to-nonnegative crossing point. Then,

1) q(Xn|U, σ2, 0) ≤ 0.

2) q(Xn|U, σ2, γ) is a strictly increasing function in the range γ ∈ [0, snr0).

3) q(Xn|U, σ2, γ) ≥ 0 for all γ ∈ [snr0,∞).

4) limγ→∞ q(Xn|U, σ2, γ) = 0.

The above properties are valid for all natural n. As explained above, if the limit of MMSE(Cn,fn)(γ|U)

exists then we may simply take the limit of the function q(Xn|U, σ2, γ). Alternatively, we show in Ap-

pendix C that the “single crossing point” property holds also between σ2

1+σ2γ and lim supMMSE(Cn,fn)(γ|U).

Finally, in this section we denoted the MMSE function using MMSE(Cn,fn)(γ) (and its conditional

version as MMSE(Cn,fn)(γ|U)) so as to emphasize the dependence on the code sequence. In the sequel

we will simplify the notation and use the following:

MMSE(Xn; γ) = MMSE(Cn,fn)(γ) (16)

and MMSE(Xn; γ|U) for the conditioned version.

III. THE GAUSSIAN WIRETAP CHANNEL

A. Model and Definitions

The Gaussian wiretap channel [7], over which length-n codewords are being transmitted, is denoted

here as follows:

Y n =
√
snryXn + N1n

Zn =
√
snrzXn + N2n (17)

where Xn is the length-n transmitted codeword. N1n and N2n are standard additive Gaussian noise

vectors that can be assumed independent of each other, and snry and snrz are the SNRs at the two receivers.
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We assume that snry > snrz . Y represents the legitimate receiver, and Z represents the eavesdropper. A

message Wy is transmitted to Y and needs to be reliably decoded. The message must be kept secret, to

some extent, from the eavesdropper.

An (R, d) code sequence for this channel must reliably transmit the message, Wy, of cardinality 2nR,

to the legitimate receiver, and also guarantee an equivocation rate of d. These requirements can be written

as follows:

lim
n→∞

1

n
I (Wy;Y n) = R

lim
n→∞

1

n
H(Wy|Zn) = d. (18)

The basic requirement from the pair (R, d) is that R ≥ d. As stated in [9] these conditions do not

specify the joint conditional distribution of the outputs given the channel inputs, but only the marginals

of this joint conditional distribution have an effect. As such, we may assume, without loss of generality,

N1n = N2n = Nn. The rate-equivocation region (R, d) for this model was obtained by Wyner [7] and

is as follows:

C =



(R, d) :

0 ≤ R ≤ I (X;Y )

0 ≤ d ≤ R

d ≤ [I (X;Y )− I (X;Z)]

. (19)

In the Gaussian setting considered here the capacity region is well-known [8], and is obtained by the

standard Gaussian input in the above expression. We wish to distinguish between three rate-equivocation

phenomena, which we define next.

Definition 1. A code sequence obtains complete secrecy when R = d1.

Definition 2. A code sequence is optimally secure when

d = dopt = lim
n→∞

1

n
[I (Xn;Y n)− I (Xn;Zn)] . (20)

Definition 3. A code sequence (R, d) is at its maximum possible rate if

R = Rmax = lim
n→∞

1

n
I (Xn;Y n) . (21)

1Complete secrecy is sometimes referred to in the literature as full secrecy [14] or perfect secrecy.
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We further define two quantities. The maximum level of equivocation,

dmax =
1

2
log(1 + snry)−

1

2
log(1 + snrz); (22)

and the capacity of the point-to-point channel, which is also the maximum possible rate for the Gaussian

wiretap channel, for any possible d,

C =
1

2
log(1 + snry). (23)

B. Main Results

In this subsection we provide our main results and observations on code sequences for the scalar

Gaussian wiretap channel. The proofs of these results are given in the next subsection.

Theorem 2. Any code sequence for the Gaussian wiretap channel attains (R, dopt), that is, optimal

security, if and only if

MMSE(X; γ|Wy) = 0, γ ≥ snrz (24)

and

MMSE(X; γ) = 0, γ ≥ snry (25)

regardless of the rate of the code (R ≥ dopt).

Note that optimally secure codes do not necessarily contain any confidential information; for example,

any “good” point-to-point code sequence to Z will also be optimally secure with d = dopt = 0 (as

I (X;Y ) = I (X;Z)). Nonetheless, the importance of the above result is in emphasizing two properties

of the family of code sequences that are optimally secure. First, at snry we can fully decode the transmitted

codeword and not only the message sent. Second, given the message, full decoding of the codeword will

be possible at and above snrz . This observation supports the capacity achieving schemes in which the

knowledge of the message leads to full decoding of the codeword by the eavesdropper. Note that the

above is valid for any point (R, dopt) regardless of R (R ≥ dopt).

The above behavior can be further specified for the particular case of dopt = dmax as follows:

Corollary 1. Any code sequence for the Gaussian wiretap channel attains (R, dmax), that is, the maximum
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level of equivocation, if and only if

MMSE (X; γ|Wy) = 0, γ ≥ snrz (26)

and

MMSE (X; γ) =

 1
1+γ , γ ∈ [0, snry)

0, γ ≥ snry
(27)

regardless of the rate of the code (R ≥ dmax).

Note that the behavior in (27) is the behavior of any “good” point-to-point code sequence, C, to Y

[2], [3]; however, only a one-to-one mapping over this codebook sequence leads to a maximum point-

to-point rate. (27) also suggests that there are approximately 2n
1

2
log(1+snry) codewords in any codebook

in the sequence of maximum equivocation codebooks. Note that this property defines a large family

of code sequences which contains those for the Gaussian wiretap channel with (R, dmax). The idea is

that the maximum level of equivocation determines MMSE(X; γ) for every γ regardless of the rate. In

other words, in order to obtain a maximum level of equivocation the codewords must resemble the i.i.d.

Gaussian distribution over the channel (in terms of MMSE) up to an SNR of snry.

The additional condition given in (26) (or alternatively, in (24)) is required in order to fully define the

sub-group of code sequences that are (R, dmax) (or alternatively, (R, dopt)) codes for the Gaussian wiretap

channel. Still, these conditions do not fully specify the rate of the code sequence, as the group contains

codes of different rates R as long as R ≥ dmax (or alternatively, R ≥ dopt). The immediate question that

arises is: Can we find MMSE properties that will distinguish code sequences of different rates? The next

theorem provides some insight into two families of code sequences, the complete secrecy, R = d, family

and the maximum rate, R = Rmax, family.

Theorem 3. A code sequence for the Gaussian wiretap channel is an (R,R) code, that is, it attains

complete secrecy (R = d), if and only if it has the following behavior:

MMSE(X; γ|Wy) = MMSE(X; γ), ∀γ ∈ [0, snrz) (28)

and

R =
1

2

∫ snry

snrz

MMSE(X; γ)−MMSE(X; γ|Wy)dγ. (29)
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A code sequence for the Gaussian wiretap channel attains Rmax if and only if it has the following

behavior:

MMSE (X; γ|Wy) = 0, ∀γ ≥ 0, (30)

meaning a one-to-one mapping of the messages to codewords.

Specifically, if R = dmax we also have the properties of Corollary 1.

From Corollary 1 and Theorem 3 (see equation (52) in the proof of Theorem 3) we can conclude that

when d = dmax the rate of the code is determined solely by the behavior of MMSE (X; γ|Wy) in the

region of γ ∈ [0, snrz) (and is either equal to or above the secrecy capacity rate). Note that this is not

the case when d < dmax since MMSE(X; γ|Wy) does not necessarily fall to zero at snrz (if d < dopt

), and the behavior of MMSE(X; γ) is not predetermined. As shown in Theorem 3, when we require

only complete secrecy, the expression for the rate is given by (29), a function of both MMSE(X; γ|Wy)

and MMSE(X; γ) in the region of [snrz, snry). These observations are also depicted in Figures 1 and

2 where we depict the behavior assuming a dmax code sequence. In Figure 1 we consider a completely

secure code sequence, and in Figure 2 we consider the behavior once we increase the rate beyond the

secrecy capacity.

Another important thing to observe is that as the condition (30) is a necessary and sufficient condition

it supports the necessity of a stochastic encoder for any code sequence for the Gaussian wiretap channel

with R < Rmax (as shown in [14, Section 3.4.1] for a completely secure code for the discrete memoryless

wiretap channel). This is due to the fact that

H (X|Wy) ≥ I
(
X;
√
snrX + N |Wy

)
(31)

and

I
(
X;
√
snrX + N |Wy

)
=

1

2

∫ snr

0
MMSE(X; γ|Wy)dγ. (32)

Thus, condition (30) guarantees H (X|Wy) > 0 for any such code sequence.

Note that a central conclusion from Corollary 1 is that any maximum equivocation code sequence has

a “good” point-to-point codebook sequence. In such a case even when the rate is below capacity we

can artificially complete the mapping of messages to codewords to a one-to-one mapping. This leads

us to investigate the “good” point-to-point sequences. The following result basically restates the known

property that such sequences are also (C, dmax) achieving for the Gaussian wiretap channel.
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Fig. 1. The above figure depicts the behavior of MMSE(X; γ) as a function of γ assuming dmax (in blue), the behavior of
MMSE(X; γ|W s

y ) assuming complete secrecy (in red) and the behavior of MMSE(X; γ|W c
y ) assuming a “good” point-to-point

code (in black). Finally, we mark twice the secrecy capacity rate as the region between MMSE(X; γ) and MMSE(X; γ|W s
y )

(in magenta).

Lemma 1. For any snr′z ∈ [0, snry) define

d′max =
1

2
log(1 + snry)−

1

2
log(1 + snr′z). (33)

Any “good” codebook sequence for the Gaussian point-to-point channel to Y , meaning R = C, attains

maximum equivocation for any snr′z , and is thus also a (C, d′max) codebook sequence for the Gaussian

wiretap channel (snry, snr
′
z).

It is well known that (C, d′max) is an achievable rate-equivocation pair for the Gaussian wiretap channel

[7], [8], meaning that full point-to-point rate (capacity rate) does not need to be compromised for the sake

of maximum confidentiality. This pair is attainable by keeping completely secure only part of the message,

as shown in [9, Ex. a, pp. 408]. The above observation applies to any “good” codebook sequence. It is, on

the one hand, a straightforward result, but, on the other hand, very vague, since the secured information

is not defined. Note that we are only considering the codebook sequence without having any specific

mapping over it. This observation is motivated by the equivalence between the rate-equivocation region

and the secret-private region (in which one of the messages is completely secure and the additional rate is
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Fig. 2. The above figure we depicts the behavior of MMSE(X; γ) as a function of γ assuming dmax (in blue), the behavior
MMSE(X; γ|W s

y ) assuming complete secrecy (in red) and the behavior of MMSE(X; γ|Wy) for some arbitrary code of rate
above secrecy capacity and below point-to-point capacity (in black). We mark twice the rate as the area between MMSE(X; γ)
and MMSE(X; γ|Wy) (in magenta).

for a private message) which has been shown in [9, Ex. c, pp. 413]. In our setting we consider any “good”

point-to-point codebook sequence (with a one-to-one mapping), and do not claim only the existence of

a “good” point-to-point sequence that is also (C, d′max). However, we do not show the existence of a

specific mapping to conclude the definition of the code sequence (C, d′max). Such a mapping is equivalent

to finding a mapping from every original message to a product of a completely secure message and a

private message. We consider this in the next result.

Theorem 4. For any “good” sequence for the Gaussian point-to-point channel to Y , meaning R = C,

assume a partition of the codewords into 2nd
′
max bins (of approximately equal size), denoted by Ws. The

next two claims are equivalent:

1) Ws is completely secure in the equivocation sense (Definition 1).

2) Each bin, with messages denoted by Wp, is a “good” sequence for a receiver at snr′z .

According to the above result, given a “good” sequence, which is also a (C, d′max) code for the

Gaussian wiretap channel (Lemma 1), finding a mapping from Wy to (Ws,Wp) (independent) such that
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Ws is completely secure is equivalent to splitting the codewords into sub-codes that are optimal for the

eavesdropper. This approach is exactly the one in Wyner’s original work [7], and also emphasized by

Massey in [36], wherein the achievability proof the construction of the code sequence is such that the bins

of each secure message are “good” code sequences to the eavesdropper (saturating the eavesdropper).

The above claim extends this observation by claiming that any mapping of messages to codewords

(alternatively, any binning of the codewords) that attains complete secrecy must saturate the eavesdropper,

thus supporting the known achievability scheme of Wyner. The open question posed by the above is the

existence of such a partition for any “good” point-to-point code sequence. Seemingly, that would be

shown in the direct part of the proof of the equivalence between the rate-equivocation region and the

secure-private region shown in [9, Ex. c, pp. 413]; however the proof does not take any code sequence of

a given rate-equivocation and shows that there exists a mapping to the corresponding secure-private pair

code sequence. Alternatively, the proof relies on the achivability proof of the rate-equivocation region

[9, Ex. a, pp. 408] which actually proves the achivability of a secure-private pair. This proof suffices as

the goal is to show equivalence between the regions, which is weaker than claiming the existence of a

mapping from one code sequence to the other. Moreover, note that the achivability proof relies on the

Coding Stuffing Lemma [9, Lemma 3.18, pp. 334] which claims that for any set of codewords there exists

a subset that is a disjoint union of sets. This disjoint union of sets is the partition of the codebook into

bins denoting the secure message. However, the lemma claims the existence of such a subset and not that

any subset is comprised of a disjoint union of subsets (and of course is limited to discrete memoryless

channels (DMCs) and relies on properties of the image set size [9, Lemma 3.2, pp. 305]). To conclude

this discussion, the question regarding the existence of such a partition is still an open one, and what

we claim is only that given any partition that defines a completely secure message it must saturate the

eavesdropper as done in Wyner’s achievability proof [7].

The above result can be extended. Looking at the proof of Theorem 4 one can observe that the

fact that the code sequence achieves capacity has no significance in the proof of the equivalence. The

important properties are that the code sequence attains maximum equivocation dmax and that we have

either complete secrecy for the message Ws or a “good” code sequence in each bin. Let us assume a

secure-private message pair (Ws,Wp) over an (R(α), dmax) code sequence, where

R(α) = dmax +
1

2
log(1 + αsnrz) (34)

for some α ∈ [0, 1]. For such a code sequence we can state the following simple corollary (which relies



16

on Corollary 1, Theorem 3 and Theorem 4).

Corollary 2. An (R(α), dmax) code sequence transmitting the message pair (Ws,Wp) (independent) has

the following behavior:

MMSE(X; γ|Ws) =

 1
1+γ , γ ∈ [0, snrz)

0, γ ≥ snrz
. (35)

Thus, the equivalence of Theorem 4 holds also here - Ws is completely secure if and only if the codewords

in each bin construct a “good” point-to-point code sequence to the eavesdropper (note that for α < 1

the mapping of Wp is not a one-to-one mapping over the “good” point-to-point code sequences).

To conclude, we see that any dmax code sequence is built on a “good” point-to-point codebook sequence,

and that a partition of this codebook sequence to bins defines a completely secure message if and only if

the bins themselves are codebook sequences that achieve capacity to the eavesdropper. This is regardless

of the rate of the code sequence.

C. Proofs for the Gaussian Wiretap Channel

Proof of Theorem 2: The single-letter expression for the rate-equivocation region of a degraded

channel (19) was given in [7] and extended to the more general case in [9]. Since we are examining the

properties of length-n codebooks of the scalar Gaussian wiretap channel, which is always degraded, we

use the limiting version of (19) (see the converse proof in [7] for details).

Using the chain rule of mutual information we have

I (Xn,Wy;Y n) = I (Wy;Y n) + I (Xn;Y n|Wy)

= I (Xn;Y n) + I (Wy;Y n|Xn)

= I (Xn;Y n) (36)

where the last transition is due to the Markov chain relationship Wy −Xn − Y n. Thus, we have

I (Xn;Y n|Wy) = I (Xn;Y n)− I (Wy;Y n) . (37)

Similarly and due to the Markov chain condition Wy −Xn −Zn we also have

I (Xn;Zn|Wy) = I (Xn;Zn)− I (Wy;Zn) . (38)
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Subtracting these two equations we obtain the following:

I (Xn;Y n|Wy)− I (Xn;Zn|Wy) = I (Xn;Y n)− I (Xn;Zn)− I (Wy;Y n) + I (Wy;Zn) . (39)

Normalizing by n and taking n→∞ we have due to the assumption of an (R, dopt) codebook (111)

I (X;Y |Wy)− I (X;Z|Wy)

= I (X;Y )− I (X;Z)− R + R− dopt

= I (X;Y )− I (X;Z)− dopt = 0. (40)

Using the I-MMSE relationship [29] we can conclude that for any (R, dopt) codebook for the Gaussian

wiretap channel ∫ snry

snrz

MMSE(X; γ|Wy)dγ = 0

MMSE(X; γ|Wy) = 0, ∀γ ≥ snrz. (41)

This proves (24). It remains to prove (25). This is a simple consequence of the above since we assume

that reliable decoding of Wy is possible at SNR at or above snry; thus ∀γ ≥ snry

MMSE(X; γ) = MMSE(X; γ|Wy)

MMSE(X; γ) = 0. (42)

This concludes the proof of the direct part.

For the converse part we now assume that (25) and (24) both hold for a codebook where messages

Wy ∈ {1, 2, . . . , 2nR} are mapped (not necessarily deterministically) to codewords Xn. From (25) we

can conclude reliable decoding of the messages at snry since the MMSE when estimating the codeword

Xn is zero implies that the message can be reliably decoded. Thus, we can use (111) to define d (d ≤ R).

The Markov chain relationship Wy −Xn − Y n − Zn still holds and we begin from (39). Using (111)

we have

I (X;Y |Wy)− I (X;Z|Wy) = I (X;Y )− I (X;Z)− d (43)

and we need to show that (25) and (24) guarantee d = dopt.
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Using the I-MMSE relationship on the left-hand-side of the above equation we have that

1

2

∫ snry

snrz

MMSE(X; γ|Wy)dγ = I (X;Y )− I (X;Z)− d. (44)

From (24) we can conclude that the left-hand-side is zero and

d = I (X;Y )− I (X;Z) = dopt. (45)

This concludes our proof.

Proof of Corollary 1: In order to prove this corollary we need only to show that the maximum

level of equivocation, dmax, is a specific case of dopt which also determines the exact behavior of

MMSE(X|√γX + N).

Note that

d ≤ lim
n→∞

1

n
[I (Xn;Y n)− I (Xn;Zn)]

d ≤ 1

2

∫ snry

snrz

MMSE(X; γ)dγ ≤ 1

2
log (1 + snry)−

1

2
log (1 + snrz) = dmax (46)

where the last inequality is due to the fact that the MMSE function is upper bounded by the linear MMSE

for any SNR. This leads to the following conclusion: if d = dmax then we must have equality in the

above equation, meaning d = dopt. Thus, the properties of Theorem 2 define these codes “if and only

if”. Moreover, since

1

2

∫ snry

snrz

MMSE(X; γ)dγ =
1

2
log (1 + snry)−

1

2
log (1 + snrz) (47)

we can conclude that

MMSE(X; γ) =
1

1 + γ
, ∀γ ∈ [0, snry) (48)

concluding the direct part of the Corollary. As for the reverse direction, recall that the properties in

Theorem 2 lead to (45), that is

d = I (X;Y )− I (X;Z) =
1

2

∫ snry

snrz

MMSE(X; γ)dγ; (49)

adding the additional property in this corollary leads to

d =
1

2
log (1 + snry)−

1

2
log (1 + snrz) = dmax. (50)
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This concludes our proof.

Proof of Theorem 3: Note that due to the Markov chain condition Wy −Xn −
√
snrXn +Nn we

have that for any snr

I
(
Wy;
√
snrX + N

)
= I

(
X;
√
snrX + N

)
− I

(
X;
√
snrX + N |Wy

)
(51)

and using the I-MMSE relationship

I
(
Wy;
√
snrX + N

)
=

1

2

∫ snr

0
[MMSE (X; γ)−MMSE (X; γ|Wy)] dγ. (52)

Notice that for any γ

MMSE (X; γ) ≥ MMSE (X; γ|Wy) . (53)

This is due to the concavity of the MMSE function in the input distribution [34, Corollary 1] (note that

the result extends to the limit when n → ∞ simply by taking the limit in [34, Equation (10)]). The

distribution of X can be written as
∑

i Pwi
PX|wi

and the right-hand-side is the expectation over

MMSE (Xwi
; γ|Wy = wi) = MMSE(Xwi

|√γXwi
+ N ,Wy = wi). (54)

As such the integrand in (52) is non-negative for all γ.

If we require complete secrecy, we have that

I (Wy;
√
snrzX + N) = 0

1

2

∫ snrz

0
[MMSE (X; γ)−MMSE (X; γ|Wy)] dγ = 0. (55)

Thus, we can conclude that

MMSE (X; γ) = MMSE (X; γ|Wy) , ∀γ ∈ [0, snrz). (56)

From the reliable decoding at Y and the above equality we can conclude that (29) holds.

In the reverse direction, setting the above equality leads exactly to reliable communication at rate R with

complete secrecy.

If we require Rmax, then

I
(
Wy;
√
snryX + N

)
= I (X;Y )
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1

2

∫ snry

0
[MMSE (X; γ)−MMSE (X; γ|Wy)] dγ =

1

2

∫ snry

0
MMSE(X; γ)dγ (57)

from which we can conclude that

MMSE (X; γ|Wy) = 0, ∀γ ≥ 0 (58)

as expected in a one-to-one mapping of message to codeword. This again holds in the reverse direction.

Finally, if we further specify that d = dmax the exact behavior is determined from Corollary 1. This

concludes our proof.

Proof of Lemma 1: We first prove that any “good” point-to-point sequence is a (C, d′max) sequence

for the Gaussian wiretap channel. This is simply observed from (43) where the left-hand-side is zero due

to the one-to-one mapping of the message to a codeword, and we remain with

d = I (X;Y )− I
(
X;Z ′

)
(59)

which equals d′max since this is a “good” sequence and thus (27) holds [2], [3]. This concludes the proof.

Proof of Theorem 4: Assume that the first claim holds and we have a partition to 2nd
′
max bins that

is completely secure, meaning I (Ws;Z
′) = 0. Thus

I
(
X;Z ′|Ws

)
= I

(
X;Z ′

)
− I

(
Ws;Z

′)
=

1

2
log(1 + snr′z). (60)

Due to the following upper bound

I
(
X;Z ′|Ws = w

)
≤ 1

2
log(1 + snr′z) (61)

we can conclude that for any Ws = w, meaning, for any bin

I
(
X;Z ′|Ws = w

)
=

1

2
log(1 + snr′z). (62)

Finally, using the result of Corollary 1 we have that

MMSE(X; γ|Ws) = 0, ∀γ ≥ snr′z (63)

implying that given the bin, reliable decoding is possible at Z ′. This concludes the first direction. The
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other direction is even simpler since a “good” sequence in every bin means

I
(
X;Z ′|Ws = w

)
=

1

2
log(1 + snr′z). (64)

Thus, we can immediately conclude that I (Ws;Z
′) = 0 via (60). This concludes the proof.

IV. THE GAUSSIAN BROADCAST CHANNEL

A. Model and Definitions

Assume a scalar Gaussian BC, over which we transmit length-n codewords

Y n =
√
snryXn + N1n

Zn =
√
snrzXn + N2n (65)

where Xn is the length-n transmitted codeword. N1n and N2n are standard additive Gaussian noise

vectors. Without loss of generality we assume that snry > snrz , making Y the stronger receiver, which

can decode both messages. As the capacity region of the above channel depends only on the marginals

of the joint conditional distribution of the outputs given the input [26], we may assume, without loss of

generality, N1n = N2n = Nn.

An (Ry,Rz) code sequence, (C, f), for this channel must reliably transmit the message, Wy, of

cardinality 2nRy , to Y and reliably transmit the message, Wz , of cardinality 2nRz , to Z. That is, there

exists a sequence of encoding functions such that Xn = fn(Wy,Wz), where Wy ∈ {1, 2, . . . , 2nRy}

and Wz ∈ {1, 2, . . . , 2nRz} such that the error probability when decoding Wz from Zn and the error

probability when decoding Wy from Y n, go to zero as n → ∞. These requirements can be written as

follows:

lim
n→∞

1

n
I (Wy;Y n) = Ry

lim
n→∞

1

n
I (Wz;Zn) = Rz. (66)

The capacity region of the channel is well known [26]:

C =


(Ry,Rz) :

0 ≤ Ry ≤ I (X;Y |U)

0 ≤ Rz ≤ I (U ;Z)

. (67)

where U is an auxiliary random variable such that U − X − Y − Z forms a Markov chain. In the
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Gaussian setting considered here the capacity region is well-known [23], and can is obtained by choosing

X = U + V where V and U are independent Gaussian random variables with variances that sum to

one (Bergmans [23] has provided a converse proof that does not rely on the single-letter expression [22]

using the entropy power inequality (EPI). A simpler proof based on the single-letter expression using the

EPI was shown in [37], and a proof using the I-MMSE relationship was given in [24]).

Given these requirements and due to the data-processing lemma we have the following inequality

lim
n→∞

1

n
I (Xn;Y n) ≥ Ry + Rz = I (Wy,Wz;Y n) . (68)

Equality holds when we have a deterministic encoder.

B. Main Results

We first wish to understand what are the implications of reliable decoding in terms of the MMSE

behavior. We consider any code sequence designed for reliable communication of the pair (Wy,Wz) to

the two receivers. The sequences can be either “good”, capacity achieving, sequences or “bad” sequences,

that do not necessarily achieve capacity.

Theorem 5. Consider a code sequence, transmitting a message pair (Wy,Wz), at rates (Ry,Rz), over

the Gaussian BC. Wz can be reliably decoded from Z if and only if

MMSE(X; γ|Wz) = MMSE(X; γ), ∀γ ≥ snrz. (69)

The above theorem formally states a very obvious observation which is that once Wz can be decoded, it

provides no additional information to the estimation of the transmitted codeword, beyond the information

in the output. We strengthen this insight by proving that this property is sufficient for reliable decoding.

In [34, Theorem 1] it was shown that the MMSE function is a concave function in the input distribution.

Moreover, for the additive Gaussian channel is was shown [34, Theorem 2] that this is actually a strict

concavity. However, these results were shown for finite dimension, and although the concavity result

transfers quite simply to the limit, the condition for strict concavity does not. As such the above does

not contradict these results.

Our main result is an extension of the result given in [3], where it was shown that a typical code

from the hierarchical code ensemble (which achieves capacity) designed for a given Gaussian BC has a

specific MMSE behavior. We extend this result to any “good” code sequence as follows:
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Theorem 6. Any “good” code sequence for the Gaussian BC, with a rate pair that can be depicted as

follows:

(Ry,Rz) =

(
1

2
log (1 + βsnry) ,

1

2
log

(
1 + snrz

1 + βsnrz

))
(70)

for some β ∈ [0, 1], has the MMSE behavior of a Gaussian superposition codebook as n→∞, that is

MMSE(X; snr) =


1

1+snr , snr ∈ [0, snrz)

β
1+βsnr , snr ∈ [snrz, snry)

0, snr ≥ snry

. (71)

Note that the above behavior holds for any “good” code sequence for the Gaussian BC. This includes

also codes designed for decoding schemes such as “dirty paper coding”, in which case the decoding at Y

does not require the reliable decoding of the known “interference” (the part of the codeword that carries

the information of Wz), but simply encodes the desired messages against that “interference”. As such,

one does not expect such a scheme to have the same MMSE behavior as a superposition code scheme,

where the decoding is in layers: first the “interference” and only after its removal, the reliable decoding

of the desired message.

The above theorem considers only the codebook sequence, and not the mapping of messages to

codewords. Moreover, from the proof one can see that (as known) a deterministic mapping is required

for any “good” code sequence.

Theorem 7. Any code sequence complying with (69) and (71) is a reliable code sequence for the Gaussian

BC depicted in (65) and will have the following property:

MMSE(X; γ|Wz) ≥
β

1 + βγ
, ∀γ ∈ [0, snrz]. (72)

Moreover, such a code sequence is “good” if and only if on top of (69) and (71) it has a deterministic

mapping from (Wy,Wz) to the transmitted codeword and

MMSE(X; γ|Wz) =
β

1 + βγ
, ∀γ ∈ [0, snrz]. (73)

I.e., (72) is satisfied with equality.

Figure 3 depicts the result of Theorem 7 for “good” code sequences.
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Fig. 3. In the above figure we consider the behavior of MMSE(X; γ) (in blue) and MMSE(X; γ|Wz) (in red) required from
a “good” code sequence for the Gaussian BC. Twice Rz is marked as the area between these two function (in magenta).

C. Proofs for the Gaussian BC

Proof of Theorem 5: First notice that due to the data-processing lemma we have that

I (Wz;
√
snrzXn + Nn) ≤ I

(
Wz;
√
snrXn + Nn

)
for any snr ≥ snrz . Since we have reliable decoding of Wz at Z and using Fano’s inequality we have

that as n→∞

I (Wz;
√
snrzX + N) = Rz (74)

and

I
(
Wz;
√
snrX + N

)
= I (Wz;

√
snrzX + N) (75)

for all snr ≥ snrz .

Now, consider the chain rule of mutual information,

I
(
Xn,Wz;

√
snrXn + Nn

)
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= I
(
Wz;
√
snrXn + Nn

)
+ I

(
Xn;
√
snrXn + Nn|Wz

)
= I

(
Xn;
√
snrXn + Nn

)
+ I

(
Wz;
√
snrXn + Nn|Xn

)
= I

(
Xn;
√
snrXn + Nn

)
(76)

where the first and second transitions both result from applying the chain rule of mutual information

on I
(
Xn,Wz;

√
snrXn + Nn

)
. The last equality is due to the Markov chain relationship (Wz,Wy)−

Xn −
√
snrXn + Nn. Thus, we have

I
(
Wz;
√
snrXn + Nn

)
= I

(
Xn;
√
snrXn + Nn

)
− I

(
Xn;
√
snrXn + Nn|Wz

)
. (77)

The above holds for all n. Taking into account the equality in (75), which holds when n→∞, we have

that for any snr ≥ snrz

I
(
X;
√
snrX + N

)
− I (X;

√
snrzX + N) = I

(
X;
√
snrX + N |Wz

)
− I (X;

√
snrzX + N |Wz)

(78)

which in terms of the I-MMSE relationship [29] gives us the following:∫ snr

snrz

MMSE(X; γ)dγ =

∫ snr

snrz

MMSE(X; γ|Wz)dγ. (79)

Due to the concavity of the MMSE in the input distribution [34] (which holds also in the lim or the

lim sup) we have that

MMSE(X; γ) ≥ MMSE(X; γ|Wz), ∀γ ≥ 0 (80)

and we can conclude that

MMSE(X; γ) = MMSE(X; γ|Wz), ∀γ ≥ snrz. (81)

This concludes the direct part of the proof.

For the converse, we assume that (69) holds. Applying the I-MMSE relationship on (77) we have that

I
(
Wz;
√
snrX + N

)
=

1

2

∫ snr

0
MMSE(X; γ)−MMSE(X; γ|Wz)dγ. (82)

Due to (69) we have that for every snr ≥ snrz

I
(
Wz;
√
snrX + N

)
= I (Wz;

√
snrzX + N) . (83)
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For snr→∞ we have that

lim
snr→∞

I
(
Wz;
√
snrX + N

)
= I (Wz;X) = H(Wz) = Rz.

As such we have that

I (Wz;
√
snrzX + N) = H(Wz) = Rz (84)

meaning reliable decoding of Wz from Z. This concludes the proof.

Proof of Theorem 6: Using (77) we have

I (Xn;Zn|Wz) = I (Xn;Zn)− I (Wz;Zn)

= I (Xn;Zn)− [H (Wz)− H (Wz|Zn)]

= I (Xn;Zn)− nRz + H (Wz|Zn) . (85)

Using Fano’s inequality and the trivial upper bound on the mutual information we have

I (Xn;Zn|Wz) = I (Xn;Zn)− nRz + H (Wz|Zn)

≤ n

2
log (1 + snrz) + H2 (Pn(e)) + Pn(e)log

(
2nRz − 1

)
− nRz

where H2 (·) denotes the binary entropy. Dividing the above by n and denoting

δn =
1

n

[
H2 (Pn(e)) + Pn(e)log

(
2nRz − 1

)]
(86)

we have

1

n
I (Xn;Zn|Wz) ≤

1

2
log (1 + snrz)− Rz + δn

where δn → 0 as n→∞. Since we assume (70), that is,

Rz =
1

2
log

(
1 + snrz

1 + βsnrz

)
, (87)

we have

1

n
I (Xn;Zn|Wz) ≤

1

2
log (1 + βsnrz) + δn. (88)
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Recall the conditional I-MMSE relationship:

1

n
I (Xn;Zn|Wz) =

1

2

∫ snrz

0
MMSE(Xn; γ|Wz)dγ. (89)

Using this in (88) and taking the limit as n→∞ we obtain

1

2

∫ snrz

0
MMSE(X; γ|Wz)dγ ≤

1

2
log (1 + βsnrz) . (90)

Due to the “single crossing point” property, given in Theorem 1, we can conclude that the crossing point,

if it exists, occurred within [0, snrz), and thus, at snrz we have the following upper bound:

MMSE(X; snrz|Wz) ≤
β

1 + βsnrz
. (91)

According to Theorem 5

MMSE(X; snrz|Wz) = MMSE(X; snrz) (92)

since Wz can be reliably decoded from
√
snrzX + N . In [5, Theorem 3] the following optimization

problem has been investigated

max I
(
X;
√
snryX + N

)
(93)

s.t. MMSE(X; snrz) ≤
β

1 + βsnrz
. (94)

It was shown that the solution is

max I
(
X;
√
snryX + N

)
=

1

2
log (1 + βsnry) +

1

2
log

(
1 + snrz

1 + βsnrz

)
. (95)

Recall that we have a “good” code sequence for the Gaussian BC, meaning that

Ry + Rz =
1

2
log (1 + βsnry) +

1

2
log

(
1 + snrz

1 + βsnrz

)
. (96)

Given the above and the data-processing inequality we can conclude that in order to obtain the sum-

capacity the mapping must be deterministic and we must obtain the maximum for I
(
X;
√
snryX + N

)
.

Thus, the capacity point of the Gaussian BC will have the following two properties:

I
(
X;
√
snryX + N

)
=

1

2
log (1 + βsnry) +

1

2
log

(
1 + snrz

1 + βsnrz

)
(97)

MMSE(X; snrz) =
β

1 + βsnrz
(98)
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and according to [5, Theorem 6] the MMSE and mutual information behavior of this code is fully defined

(for every SNR) and is that of the Gaussian two-layered superposition codebook (optimally designed for

the Gaussian BC with a rate splitting coefficient β). Finally, note that we have shown that the mutual

information I
(
X;
√
snryX + N

)
cannot exceed the sum-rate. This means that the encoder must be

deterministic in order to obtain capacity. This concludes our proof.

Proof of Theorem 7: From the assumptions we first conclude that the code sequence is a reliable

code sequence for the Gaussian BC. This is due to Theorem 5 that ensures the reliable decoding of

Wz from Z and the fact that MMSE(X; γ) is zero at snry meaning the entire codeword can be reliably

decoded from Y . Moreover, from Theorem 5 and the “single crossing point” property given in Theorem

1 we can conclude that, since

MMSE(X; snrz|Wz) =
β

1 + βsnrz
(99)

we must have that

MMSE(X; γ|Wz) ≥
β

1 + βγ
, ∀γ ∈ [0, snrz). (100)

It remains to show that the code sequence is “good”, if and only if, on top of (69) and (71) the code

sequence has a deterministic mapping and we have equality in (100) for all γ ∈ [0, snrz).

If the code sequence is “good” then the rate pair is of the form shown in (70) and the behavior of

MMSE(X; γ) is as proved in Theorem 6 (and the mapping must be deterministic). According to Theorem

5 we also have (69). Due to the chain rule of mutual information (77) we have

Rz = I (Wz;Z)

= I (X;
√
snrzX + N)− I (X;

√
snrzX + N |Wz)

=
1

2

∫ snrz

0
MMSE(X; γ)−MMSE(X; γ|Wz)dγ (101)

and thus

1

2

∫ snrz

0
MMSE(X; γ|Wz)dγ =

1

2
log(1 + βsnrz). (102)

Due to (100) this holds only if we have equality for all γ ∈ [0, snrz). This proves the direct part.

As claimed above, conditions (69) and (71) suffice for the code sequence to be a reliable code sequence
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for the Gaussian BC. Similarly to the approach used to obtain (101) we can obtain an expression for Ry:

Ry =
1

2

∫ snry

0
MMSE(X; γ)−MMSE(X; γ|Wy)dγ. (103)

Due to (71) we have

Rz =
1

2
log(1 + snrz)−

1

2

∫ snrz

0
MMSE(X; γ|Wz)dγ (104)

and

Ry =
1

2
log

(
(1 + snrz)(1 + βsnry)

1 + βsnrz

)
− 1

2

∫ snry

0
MMSE(X; γ|Wy)dγ

=
1

2
log

(
(1 + snrz)(1 + βsnry)

1 + βsnrz

)
− 1

2

∫ snrz

0
MMSE(X; γ|Wy)dγ (105)

where the second equality in (105) is due deterministic mapping of messages to codewords. In such a

case, since Wz is reliably decoded at Z, the knowledge of Wy is sufficient to obtain the exact transmitted

codeword, meaning the MMSE function will go to zero.

Using the chain rule of mutual information we also have

I (Wz,Wy;Z) = I (Wy;Z) + I (Wz;Z|Wy)

= I (Wy;Z,Wz) + I (Wz;Z|Wy)

= I (Wy;Z|Wz) + I (Wz;Z|Wy) (106)

where the second transition is due to the reliable decoding of Wz from Z and the final transition is due

to the independence of the two transmitted messages. Using the assumption of a deterministic mapping

of messages to codewords the above reduces to

I (X;Z) = I (X;Z|Wz) + I (X;Z|Wy) . (107)

Applying the I-MMSE relationship we obtain the following relation:

1

2

∫ snrz

0
MMSE(X; γ)dγ =

1

2

∫ snrz

0
MMSE(X; γ|Wz)dγ +

1

2

∫ snrz

0
MMSE(X; γ|Wy)dγ.

Note that this relationship holds only for the integration up to snrz due to the reliable decoding of Wz at

that point, and does not imply any such equality between the integrands (the MMSE quantities). Given
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(71) and (73) we have that

1

2

∫ snrz

0
MMSE(X; γ|Wy)dγ =

1

2

∫ snrz

0
MMSE(X; γ)dγ − 1

2

∫ snrz

0
MMSE(X; γ|Wz)dγ

=
1

2
log(1 + snrz)−

1

2
log(1 + βsnrz). (108)

Substituting the above in (105) we obtain

Ry =
1

2
log(1 + βsnry) (109)

thus concluding the proof.

V. GAUSSIAN BC WITH CONFIDENTIAL MESSAGES

A. Model and Definitions

Combining the Gaussian wiretap channel and the Gaussian BC we obtain the degraded Gaussian BC

with confidential messages (BCC). In this section we put together some of the observations regarding the

Gaussian wiretap channel and the Gaussian BC given in the previous sections so as to conclude regarding

the behavior of the relevant MMSE quantities of the Gaussian BCC.

Consider a scalar additive Gaussian channel, over which length-n codewords are being transmitted.

This is depicted as follows:

Y n =
√
snryXn + N1n

Zn =
√
snrzXn + N2n (110)

where snrz < snry. N1n and N2n are standard additive Gaussian noise vectors. As in the Gaussian

wiretap channel, considered in Section III, and in the Gaussian BC, considered in Section IV, also in

this model we may assume that N1n = N1n = Nn without loss of generality [9].

An (Ry,Rz, d) code sequence for this channel must reliably transmit the message, Wy, of cardinality

2nRy , to Y while guaranteeing an equivocation rate of d and also reliably transmit the message, Wz , of

cardinality 2nRz , to Z. These requirements can be written as follows:

lim
n→∞

1

n
I (Wy;Y n) = Ry

lim
n→∞

1

n
H(Wy|Zn) = d
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lim
n→∞

1

n
I (Wz;Zn) = Rz. (111)

The basic requirement from (Ry,Rz, d) is that Ry ≥ d.

The capacity region of the channel is well known [9, Theorem 1]:

C =



(Ry,Rz, d) :

0 ≤ Ry + Rz ≤ I (X;Y |U) + I (U ;Z)

0 ≤ d ≤ Ry

d ≤ [I (X;Y |U)− I (X;Z|U)]

0 ≤ Rz ≤ I (U ;Z)

. (112)

where U is an auxiliary random variable such that U −X − Y −Z forms a Markov chain. The capacity

region of the Gaussian setting was considered in [38].

Finally, note that an optimally secure code sequence follows the same definition as given in Definition

2; however since reliable decoding of Wz is possible at Z this is equivalent also to

dopt = I (X;Y |Wz)− I (X;Z|Wz) . (113)

B. Main Results

Putting together Theorem 3 and Theorem 5 we have the following result:

Corollary 3. A code sequence transmitting (Wy,Wz) at rates (Ry,Rz) such that Wy is reliably decoded

by Y and completely secure from Z, and Wz is reliably decoded by Z if and only if

MMSE(X; γ) =

 MMSE(X; γ|Wy), γ ∈ [0, snrz)

MMSE(X; γ|Wz), γ ∈ [snrz, snry)
and (114)

MMSE(X; γ) = MMSE(X; γ|Wy) = MMSE(X; γ|Wz), ∀γ ≥ snry. (115)

When d < Ry (no longer complete secrecy) MMSE(X; γ) will no longer be equal to MMSE(X; γ|Wy)

in the region of [0, snrz).

Note that we can also apply the result of Theorem 2 to the above setting, meaning that if we require

optimal security we have that

MMSE(X; γ|Wy) = 0, ∀γ ≥ snrz

The above corollary considers any code sequence with complete secrecy. Theorem 2 for the Gaussian
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wiretap channel considers any code sequence with optimal security, and the combination of the two gives

us the set of MMSE properties of code sequences that are both completely secure and optimally secure.

Considering a more specific depiction of the MMSE quantities of “good” sequences we distinguish

between two families: secrecy capacity sequences (which achieve both complete secrecy and optimal

security), and optimally secure “good” sequences. In both cases we aim at the highest level of equivocation

and try to maximize the rate pair; however in the first family we further restrict the rate Ry to complete

secrecy (Ry = d). Next we will show that both families have the same MMSE(X; γ) behavior, and that

the second family is a subset of the family of “good” code sequences for the Gaussian BC.

Theorem 8. Consider a code sequence transmitting (Wy,Wz) at rates (Ry,Rz) such that Wy is reliably

decoded by Y and completely secure from Z, and Wz is reliably decoded by Z. Any “good” sequence

has the following rate pair:

(Ry,Rz) =

(
1

2
log

(
1 + βsnry
1 + βsnrz

)
,
1

2
log

(
1 + snrz

1 + βsnrz

))
(116)

for some β ∈ [0, 1], and has the following behavior:

MMSE(X; γ) =


1

1+γ , γ ∈ [0, snrz)

β
1+βγ , γ ∈ [snrz, snry)

0, γ ≥ snry

, (117)

MMSE(X; γ|Wz) =


β

1+βγ , γ ∈ [0, snry)

0, γ ≥ snry
(118)

and

MMSE(X; γ|Wy) =

 1
1+γ , γ ∈ [0, snrz)

0 γ ≥ snrz
. (119)

The above is attained by a superpositions code sequence, X = V +U , where V is an optimal Gaussian

code of power 1−β and rate Rz (attained by considering U as additional Gaussian noise). U , independent

of V , has power β, and is a completely secure Gaussian codebook to Y with eavesdropper Z, and thus

attain Ry.

Theorem 9. Consider a code sequence transmitting (Wy,Wz) at rates (Ry,Rz) such that Wy is reliably

decoded by Y and optimally secure from Z, and Wz is reliably decoded by Z. Any “good” sequence
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has the following rate pair:

(Ry,Rz) =

(
1

2
log (1 + βsnry) ,

1

2
log

(
1 + snrz

1 + βsnrz

))
(120)

for some β ∈ [0, 1], and has the following behavior:

MMSE(X; γ) =


1

1+γ , γ ∈ [0, snrz)

β
1+βγ , γ ∈ [snrz, snry)

0, γ ≥ snry

(121)

and differs from the relations in Corollary 3 only in the fact that

MMSE(X; γ|Wy) ≤ MMSE(X; γ), γ ∈ [0, snrz) (122)

and

1

2
log

(
1 + snrz

1 + βsnrz

)
=

1

2

∫ snrz

0
MMSE(X; γ|Wy)dγ. (123)

The above is attained by superposition, X = V +U , where V is an optimal Gaussian code power 1−β

and rate Rz . U , independent of V , is a Gaussian optimally secure (maximum level of equivocation) code

sequence for the wiretap channel to Y with eavesdropper Z.

C. Proofs for the Gaussian BCC

Proof of Theorem 8: We consider complete secrecy, Ry = d and wish to examine a capacity rate

pair. The rates can be written as follows:

Ry = I (Wy;Y ) = I (X;Y )− I (X;Y |Wy)

=
1

2

∫ snry

0
[MMSE(X; γ)−MMSE(X; γ|Wy)] dγ

=
1

2

∫ snry

snrz

[MMSE(X; γ|Wz)−MMSE(X; γ|Wy)] dγ (124)

where in the last transition we have taken into account the fact that this is a complete secrecy code

sequence (by taking MMSE(X; γ) = MMSE(X; γ|Wy) for all γ ∈ [0, snrz)) and reliable decoding of

Wz at snrz (by taking MMSE(X|γ) = MMSE(X; γ|Wz) for all γ ≥ snrz) as given in Corollary 3). For

the weaker receiver we have the following rate expression:

Rz = I (Wz;Z) = I (X;Z)− I (X;Z|Wz)
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=
1

2

∫ snrz

0
[MMSE(X; γ)−MMSE(X; γ|Wz)] dγ

=
1

2

∫ snrz

0
[MMSE(X; γ|Wy)−MMSE(X; γ|Wz)] dγ. (125)

In order to maximize both rates, we can first take MMSE(X; γ|Wy) = 0 for all γ ≥ snrz which is

exactly the case of optimal security (since we assume reliable decoding of Wy at snry, Theorem 2). We

thus need to maximize the following pair:

Ry =
1

2

∫ snry

snrz

MMSE(X; γ)dγ =
1

2

∫ snry

snrz

MMSE(X; γ|Wz)dγ

Rz =
1

2

∫ snrz

0
[MMSE(X; γ|Wy)−MMSE(X; γ|Wz)] dγ. (126)

Now, given that Ry = 1
2 log

(
1+βsnry
1+βsnrz

)
for some β ∈ [0, 1], we can conclude from the “single crossing

point” property, given in Theorem 1, that

MMSE(X; γ|Wz)
∣∣
γ=snrz

≥ β

1 + βsnrz

and thus,

Rz ≤
1

2
log(1 + snrz)−

1

2
log(1 + βsnrz).

This is a converse proof. We first claim that this is indeed an achievable pair by using superposition.

Consider codewords X = V + U where V has a power constraint of 1 − β and U , independent of

V , has a power constraint of β. V is an optimal Gaussian code sequence to Z, and thus attains Rz by

considering U as additional Gaussian noise. U is a completely secure Gaussian codebook to Y with

eavesdropper Z, and thus attain Ry. Since Y can first reliably decode V this concludes the achivability

proof.

The above converse provides us with a full depiction of the MMSE quantities, since in order to attain

the above rates with equality we need that

MMSE(X; γ) =
1

1 + γ
, γ ∈ [0, snrz), (127)

MMSE(X; γ) = MMSE(X; γ|Wy), γ ∈ [0, snrz) (128)
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and

MMSE(X; γ|Wz) =
β

1 + βγ
, γ ∈ [0, snry) (129)

and, finally, that the code sequence is both completely secure and optimally secure; thus we have the set

of relations given in Corollary 3 and Theorem 2. This concludes the proof.

Proof of Theorem 9: Observe that the rate pair given in the theorem is a capacity rate pair for

the Gaussian BC, and thus according to Theorem 6 we have the exact behavior of MMSE(X; γ) for

all γ ≥ 0. This proves (121). Due to reliable decoding of Wz we have, according to Corollary 3, that

MMSE(X; γ) = MMSE(X; γ|Wz) for all γ ≥ snrz . It remains to show that this is achievable by an

optimally secure code sequence for the Gaussian BCC. Consider a Gaussian codebook of power 1 − β

to be reliably decoded at Z (of rate 1
2 log

(
1+snrz
1+βsnrz

)
) and superimpose on it, with the remaining power

of β, an independent Gaussian optimally secure (maximum level of equivocation) code sequence for the

wiretap channel to Y with eavesdropper Z, meaning an

(Ry, d) =

(
1

2
log(1 + βsnry),

1

2
log

(
1 + βsnry
1 + βsnrz

))
(130)

rate-equivocation pair. Thus, the rate-pair is achievable and is optimally secure:

d = dopt = I (X;Y )− I (X;Z)

= I (X;Y |Wz)− I (X;Z|Wz)

=
1

2
log(1 + βsnry)−

1

2
log(1 + βsnrz). (131)

The only MMSE quantity that is not fully defined is MMSE(X; γ|Wy) in the region of [0, snrz). For

this we can use Ry and claim the following:

Ry = I (X;Y )− I (X;Y |Wy)

=
1

2

∫ snry

0
[MMSE(X; γ)−MMSE(X; γ|Wy)] dγ

=
1

2

∫ snrz

0

1

1 + γ
−MMSE(X; γ|Wy)dγ +

1

2
log

(
1 + βsnry
1 + βsnrz

)
(132)

which leads to the following:

1

2

∫ snrz

0
MMSE(X; γ|Wy)dγ =

1

2
log

(
1 + snrz

1 + βsnrz

)
. (133)

This concludes the proof.
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VI. GAUSSIAN BC AND BCC WITH MMSE CONSTRAINTS

In the previous sections we examined the effect of the transmission on unintended receivers at other

SNRs. We have done so by fully depicting the behavior of the input-output mutual information and

MMSE function for all SNRs. In this section we examine the trade-off between achievable rates and

MMSE constraints. These constraints come to limit the amount of disturbance the transmission has

on unintended receivers at other SNRs. These results are a direct extension of [5] where the trade-off

between the point-to-point rate and MMSE has been investigated. It was shown that the optimal scheme

attaining both the maximal possible point-to-point rate and complying with the MMSE constraint is

superposition, supporting the good performance of the Han and Kobayashi scheme [6] in the two-user

Gaussian interference channel.

We first consider an MMSE constraint limiting the capacity region of the scalar Gaussian BC, depicted

in (65). We then consider the effect of this constraint on the Gaussian BCC. More specifically, we consider

a code sequence transmitting the message pair (Wy,Wz) such that Wy must be reliably decoded by Y

and completely secure from Z, and Wz must be reliably decoded by Z.

On top of these requirements we now consider an additional constraint:

MMSE(X; snru) ≤ α

1 + αsnru
(134)

for some α ∈ [0, 1]. Of course, the effect of this constraints varies whether snru < snrz or snru ∈

(snrz, snry).

A. Main Results

The first theorem considers the effect of the constraint in (134) on the capacity region of the Gaussian

BC.

Theorem 10. Given the MMSE constraint in (134) the set of achievable rate pairs for the degraded

Gaussian BC depicted in (65) is the following:

Assuming that snru ∈ (snrz, snry). The region is given as a union of

(Ry,Rz) =

(
1

2
log(1 + βsnry),

1

2
log

(
1 + snrz

1 + βsnrz

))
(135)

(the expression in (70)) for β ∈ [0, α] and

(Ry,Rz) =

(
1

2
log(1 + αsnry) +

1

2
log

(
1 +

(β − α)snru
1 + αsnru

)
,
1

2
log

(
1 + snrz

1 + βsnrz

))
(136)
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for β ∈ (α, 1]. The second region is achievable using a 3-layer superposition Gaussian code sequence.

The message to be decoded from Z has 1 − β of the power. The second layer can already be reliably

decoded at snru and has power β − α, and the final layer to be decoded from Y has power α.

Assuming that snru ∈ [0, snrz) the capacity is again a union of two regions. The first is

(Ry,Rz) =

(
1

2
log(1 + αsnry) + λ

1

2
log

(
1 + snru

1 + αsnru

)
, (1− λ)

1

2
log

(
1 + snru

1 + αsnru

))
(137)

where λ ∈ [0, 1]. This region is obtained by time sharing. In both schemes we use a two-layer Gaussian

superposition code sequence where the first layer, of power 1− α, can be reliably decoded at snru.

The second region is

(Ry,Rz) =

(
1

2
log(1 + βsnry),

1

2
log

(
1 + snru

1 + αsnru

1 + αsnrz
1 + βsnrz

))
(138)

where β ∈ [0, α). This region can be obtained by a 3-layer Gaussian superposition code sequence. The

first layer, of power 1 − α, can be reliably decoded at snru. The second layer, of power α − β, can be

reliably decoded by Z. The third layer, of power β, is decoded from Y .

An example for the above result is depicted in Figures 4 and 5, where we show the reduction of the

capacity region as compared to the case with no MMSE constraint.

Remark 1. The above regions of rate pairs of reliable communication over the Gaussian BC given an

MMSE constraint at some lower SNR reduce to the result of [5, Theorem 3] where given such a constraint

the goal was to maximize the point-to-point reliable rate. When snru ∈ (snrz, snry) this can be seen by

enforcing Rz = 0 in which case we obtain a two-layer superposition code to Y with a rate-splitting

coefficient of α. When snru ∈ [0, snrz) we can either take λ = 1 in the time sharing argument, or

alternatively take β = α in (138) in which case we maximize the sum-rate, Ry + Rz . In both cases we

again obtain the same expression which can be obtained by a two-layer Gaussian superposition code

with rate splitting coefficient of α.

We now provide our main results on the BCC with an MMSE disturbance constraints. We consider

a code pair sequence transmitting the message pair (Wy,Wz) such that Wy must be reliably decoded

by Y and completely secure from Z, and Wz must be reliably decoded by Z. For these requirements

Corollary 3 defines the properties of the MMSE functions. Moreover, from the proof we see that the

optimal rate-pair is obtained when we further assume optimal security. The MMSE constraint (134) at

snru requires us to distinguish between the two cases of snru ∈ [0, snrz) and snru ∈ (snrz, snry) and
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Fig. 4. In the above figure we compare the capacity region of the Gaussian BC with no MMSE constraint (in blue) with the
capacity region given the MMSE constraint (in red). In this example snru ∈ [0, snrz).

consider them separately in the next two theorems.

Theorem 11. Consider a code pair sequence transmitting over the Gaussian channel the message pair

(Wy,Wz) such that Wy is reliably decoded by Y and completely secure from Z, and Wz is reliably

decoded by Z. In addition we have the MMSE constraint (134) at snru ∈ (snrz, snry). The maximum

rate pair is of the following form:

(Ry,Rz) =

(
1

2
log

(
1 + βsnru
1 + βsnrz

)
+

1

2
log

(
1 + αsnry
1 + αsnru

)
,
1

2
log

(
1 + snrz

1 + βsnrz

))
(139)

for some β ∈ [α, 1]. These rate pairs are obtained by a 3-layer superposition code sequence, where the

first layer is an optimal Gaussian code sequence to Z, of power 1− β, the second is a secrecy capacity

Gaussian code sequence to the unintended receiver at snru with eavesdropper Z, of power β − α, and

the last layer is a secrecy capacity Gaussian code sequence to Y with eavesdropper Z, of power α.
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Fig. 5. In the above figure we compare the capacity region of the Gaussian BC with no MMSE constraint (in blue) with the
capacity region given the MMSE constraint (in red). In this example snru ∈ (snrz, snry).

These rates have the following behavior:

MMSE(X; γ) =



1
1+γ , γ ∈ [0, snrz)

β
1+βγ , γ ∈ [snrz, snru)

α
1+αγ , γ ∈ [snru, snry)

0, γ ≥ snry

(140)

and

MMSE(X; γ|Wz) =


β

1+βγ , γ ∈ [0, snru)

α
1+αγ , γ ∈ [snru, snry)

0, γ ≥ snry

(141)

and MMSE(X; γ|Wy) is as in Theorem 8.

In addition the rate pairs depicted in Theorem 8 for β ∈ [0, α) and their MMSE behavior are also

optimal and trivially comply with the constraint.



40

Theorem 12. Consider a code pair sequence transmitting over the Gaussian channel the message pair

(Wy,Wz) such that Wy is reliably decoded by Y and completely secure from Z, and Wz is reliably

decoded by Z. In addition we have the MMSE constraint (134) at snru ∈ [0, snrz). The maximum rate

pair is of the following form:

(Ry,Rz) =

(
1

2
log

(
1 + βsnry
1 + βsnrz

)
,
1

2
log

(
1 +

(1− α)snru
1 + αsnru

)
+

1

2
log

(
1 +

(α− β)snrz
1 + βsnrz

))
(142)

for some β ∈ [0, α]. These rate pairs are obtained by a 3-layer superposition code sequence. The first

layer, of power 1 − α, is an optimal Gaussian code sequence for the unintended receiver at snru, the

second layer is of power α− β to Z, and the last layer is a secrecy capacity achieving code sequence

of power β designed for receiver Y with eavesdropper Z. These rate pairs have the following MMSE

behavior:

MMSE(X; γ) =



1
1+γ , γ ∈ [0, snru)

α
1+αγ , γ ∈ [snru, snrz)

β
1+βγ , γ ∈ [snrz, snry)

0, γ ≥ snry

(143)

and

MMSE(X; γ|Wy) =


1

1+γ , γ ∈ [0, snru)

α
1+αγ , γ ∈ [snru, snrz)

0, γ ≥ snrz

(144)

and MMSE(X; γ|Wz) is as depicted in Theorem 8.

From the above two theorems we can clearly see the different effects the constraint can have. In

Theorem 11 the constraint has no effect on the rate to the weaker receiver and only the wiretap code

sequence has to be altered in order to comply. In Theorem 12 the situation is reversed. In both cases a

simple superposition scheme maximized the rate under the constraint.

An example for the above results is depicted in Figures 6 and 7, where we show the reduction of the

capacity region as compared to the case with no MMSE constraint.
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Fig. 6. In the above figure we compare the capacity region of the Gaussian BCC with no MMSE constraint (in blue) with the
capacity region given the MMSE constraint (in red). In this example snru ∈ [0, snrz).

B. Proofs for the Gaussian BC and BCC with MMSE Constraints

Proof of Theorem 10: We assume snru ∈ (snrz, snry). We arbitrarily set Rz as follows:

Rz =
1

2
log

(
1 + snrz

1 + βsnrz

)
(145)

for some β ∈ [0, 1]. In the proof of Theorem 6 we have shown that

I (X;Z|Wz) ≤ I (X;Z)− Rz. (146)

From which we concluded (using Theorem 1) that

MMSE(X; snrz|Wz) ≤
β

1 + βsnrz
. (147)

Due to Theorem 5 we can also conclude that

MMSE(X; snrz) ≤
β

1 + βsnrz
. (148)
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Fig. 7. In the above figure we compare the capacity region of the Gaussian BCC with no MMSE constraint (in blue) with the
capacity region given the MMSE constraint (in red). In this example snru ∈ (snrz, snry).

Note that if β ≤ α we comply with the additional MMSE constraint according to Theorem 1 and thus

the region is as in (70). The interesting question is what happens when β ∈ (α, 1]. In this case we have

two MMSE constraints at snru and snrz and thus can use [5, Theorem 5] and conclude that

I (X;Y ) ≤ 1

2
log

(
1 + snrz

1 + βsnrz

1 + βsnru
1 + αsnru

)
+

1

2
log(1 + αsnry). (149)

Due to the data-processing inequality

Rz + Ry ≤ I (X;Y ) (150)

and thus,

Ry ≤
1

2
log

(
1 + βsnru
1 + αsnru

)
+

1

2
log(1 + αsnry)

=
1

2
log(1 + αsnry) +

1

2
log

(
1 +

(β − α)snru
1 + αsnru

)
. (151)
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This rate pair is attainable using a 3-layer Gaussian superposition code sequence. The message to be

decoded from Z has 1 − β of the power, the second layer can already be reliably decoded at snru and

has power of β − α, and the final layer to be decoded from Y has power of α. Each layer can be

reliably decoded by fully decoding and removing previous layers and considering all subsequent layers

as additive Gaussian noise.

The case of snru ≤ snrz is a bit more complex. Consider first the problem of maximizing I (X;Z)

given the MMSE constraint at snru. This follows [5, Theorem 3]:

I (X;Z) ≤ 1

2
log

(
1 + snru

1 + αsnru

)
+

1

2
log(1 + αsnrz). (152)

Thus, we consider the following arbitrary rate of transmission of Wz:

Rz =
1

2
log

(
1 + snru

1 + αsnru

)
+

1

2
log(1 + αsnrz)−

1

2
log(1 + βsnrz). (153)

When β = 0 we obtain the maximum possible rate of Wz . As for the upper bound on β, we note that

the rate must be non-negative, thus

β ≤ (1− α)snru + αsnrz(1 + snru)

snrz(1 + αsnru)
≡ βmax. (154)

Following the approach in the proof of Theorem 6 we can conclude from the above setting that

MMSE(X; snrz|Wz) ≤
β

1 + βsnrz
. (155)

Due to Theorem 5 we can also conclude that

MMSE(X; snrz) ≤
β

1 + snrzβ
. (156)

This constraint is valid only when β < α, otherwise it is redundant (as the constraint at snru already sets

a stronger upper bound at snrz). Thus, we split the analysis to two cases. First β ∈ [α, βmax]. In this case

we use [5, Theorem 3], meaning maximizing the mutual information given a single MMSE constraint at

snru:

Ry + Rz ≤ I (X;Y )

≤ 1

2
log

(
1 + snru

1 + αsnru

)
+

1

2
log(1 + αsnry) (157)
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and thus

Ry ≤
1

2
log

(
1 + αsnry
1 + αsnrz

)
+

1

2
log(1 + βsnrz). (158)

When β = βmax we have the following rate pair:

(Ry,Rz) =

(
1

2
log

(
1 + snru

1 + αsnru

)
+

1

2
log(1 + αsnry), 0

)
(159)

and is clearly achievable using the Gaussian superposition codebook as shown in [5, Theorem 3] (Rz = 0).

If β = α we have

(Ry,Rz) =

(
1

2
log(1 + αsnry),

1

2
log

(
1 + snru

1 + αsnru

))
. (160)

This is again achievable using a Gaussian superposition codebook sequence, where the first layer is of

power 1−α and can be reliably decoded by a user at SNR of snru (and thus also by Z), while considering

the second layer as additive Gaussian noise. The second layer is of power α, and can be reliably decoded

from Y , once the first layer is reliably decoded and removed.

Now, the rate pair we obtained:

(Ry,Rz) =

(
1

2
log(1 + αsnry) +

1

2
log

(
1 + βsnrz
1 + αsnrz

)
,
1

2
log

(
1 + snru

1 + αsnru

)
− 1

2
log

(
1 + βsnrz
1 + αsnrz

))
(161)

which given that β ∈ [α, βmax] is equivalent to

(Ry,Rz) =

(
1

2
log(1 + αsnry) + λ

1

2
log

(
1 + snru

1 + αsnru

)
, (1− λ)

1

2
log

(
1 + snru

1 + αsnru

))
(162)

meaning that every point in this region can be obtained by time-sharing between the above two extreme

cases of β = βmax and β = α.

Second, consider the case of β ∈ [0, α). In this case we use [5, Theorem 5], meaning maximizing the

mutual information given two MMSE constraint at snru and snrz:

Ry + Rz ≤ I (X;Y ) (163)

≤ 1

2
log

(
1 + snru

1 + αsnru

1 + αsnrz
1 + βsnrz

)
+

1

2
log(1 + βsnry)

and thus

Ry ≤
1

2
log(1 + βsnry). (164)
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The rate pair is then given by

(Ry,Rz) =

(
1

2
log(1 + βsnry),

1

2
log

(
1 + snru

1 + αsnru

1 + αsnrz
1 + βsnrz

))
(165)

which can be obtained by a 3-layer Gaussian superposition code sequence: the first layer of power 1−α,

can be reliably decoded at snru while considering all subsequence layers as additive Gaussian noise.

The second layer of power α − β can be reliably decoded by Z after reliably decoding the first layer

and considering the third layer as additive Gaussian noise. The third layer of power β is decoded after

reliably decoding and removing all previous layers.

Proof of Theorem 11: First, for β ∈ [0, α), from Theorem 8 we can see that an optimal rate pair

complies with the constraint. Thus, we can focus only on β ∈ [α, 1]. As we consider complete secrecy,

given the MMSE properties of Corollary 3 we have the following expression for the rate pair:

Ry =
1

2

∫ snry

snrz

[MMSE(X; γ)−MMSE(X; γ|Wy)] dγ

=
1

2

∫ snry

snrz

[MMSE(X; γ|Wz)−MMSE(X; γ|Wy)] dγ

≤ 1

2

∫ snry

snrz

MMSE(X; γ|Wz)dγ

Rz =
1

2

∫ snrz

0
[MMSE(X; γ)−MMSE(X; γ|Wz)] dγ (166)

where the inequality is obtained when MMSE(X; γ|Wy) = 0 for all γ ≥ snrz , that is, an optimally

secure code sequence. Recall that (Corollary 3)

MMSE(X; γ) = MMSE(X; γ|Wz), ∀γ ≥ snrz, (167)

and thus the constraint at snru ∈ (snrz, snry) is also a constraint on MMSE(X; γ|Wz). Consider a function

MMSE(X; γ|Wz) that satisfies the constraint and define β such that

1

2

∫ snrz

0
MMSE(X; γ|Wz)dγ =

1

2
log(1 + βsnrz) (168)

where β ∈ [α, 1]. By applying the “single crossing property”, given in Theorem 1, twice, first on (168)

and second on the constraint MMSE(X; snru|Wz) ≤ α
1+αsnru

we obtain the following upper bounds on

the rates:

Ry ≤
1

2

∫ snry

snrz

MMSE(X; γ|Wz)dγ
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=
1

2

∫ snru

snrz

MMSE(X; γ|Wz)dγ +
1

2

∫ snry

snru

MMSE(X; γ|Wz)dγ

≤ 1

2

∫ snru

snrz

β

1 + βγ
dγ +

1

2

∫ snry

snru

MMSE(X; γ|Wz)dγ

≤ 1

2

∫ snru

snrz

β

1 + βγ
dγ +

1

2

∫ snry

snru

α

1 + αγ
dγ

=
1

2
log(1 + βsnru)− 1

2
log(1 + βsnrz) +

1

2
log(1 + αsnry)−

1

2
log(1 + αsnru). (169)

We also have

Rz =
1

2

∫ snrz

0
[MMSE(X; γ)−MMSE(X; γ|Wz)] dγ

≤ 1

2
log(1 + snrz)−

1

2
log(1 + βsnrz). (170)

The achievability of the above rate pair follows simply by using a superposition code sequence. Consider

X = V +U1 +U2, where V , U1 and U1 are three independent Gaussian codebook sequences. V is an

optimal Gaussian codebook sequence to Z of power 1−β. U1 is a secrecy capacity achieving Gaussian

code sequence designed for reliable decoding at snru with the eavesdropper Z and power β−α. Finally,

U2 is a secrecy capacity achieving code sequence for Y and eavesdropper Z and power α. The decoding

of each layer is possible by fully decoding the previous layers and considering any subsequent layers as

additive Gaussian noise.

Proof of Theorem 12: First note that by complying with the constraint we have the following upper

bound:

MMSE(X; γ) ≤ α

1 + αγ
, ∀γ ≥ snru. (171)

Due to the decoding requirement at Z this translates also to an upper bound on MMSE(X; γ|Wz)

MMSE(X; γ) = MMSE(X; γ|Wz) ≤
α

1 + αγ
, ∀γ ≥ snrz. (172)

Denote

MMSE(X; snrz) = MMSE(X; snrz|Wz) =
β

1 + βsnrz
. (173)

If β > α we cannot comply with the constraint at snru, and so we consider β ∈ [0, α]. Due to the “single

crossing point” property this choice will also comply with the upper bound for all γ ≥ snrz . Moreover,
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this provides a lower bound on the following integral:

1

2

∫ snrz

0
MMSE(X; γ|Wz)dγ ≥

1

2

∫ snrz

0

β

1 + βγ
dγ

=
1

2
log(1 + βsnrz). (174)

Moreover, we have a direct upper bound on Ry, namely

Ry =
1

2

∫ snry

snrz

MMSE(X; γ)dγ =
1

2

∫ snry

snrz

MMSE(X; γ|Wz)dγ

≤ 1

2
log

(
1 + βsnry
1 + βsnrz

)
. (175)

It remains to upper bound Rz under the constraint

Rz =
1

2

∫ snrz

0
[MMSE(X; γ)−MMSE(X; γ|Wz)] dγ

≤ 1

2

∫ snrz

0
MMSE(X; γ)dγ − 1

2
log(1 + βsnrz) (176)

which is equivalent to maximizing the mutual information I (X;Z) subject to an MMSE constraint at

some lower SNR. Note that we also need to consider the additional constraint we set at (173); however

we will disregard this constraint and see that due to the choice of β ∈ [0, α] we get this constraint “for

free”. Thus, the remaining problem is exactly the problem investigated in [5] and the solution is

Rz ≤
1

2
log(1 + snru) +

1

2
log

(
1 + αsnrz
1 + αsnru

)
− 1

2
log(1 + βsnrz)

=
1

2
log

(
1 +

(1− α)snru
1 + αsnru

)
+

1

2
log

(
1 +

(α− β)snrz
1 + βsnrz

)
. (177)

The above rate pair can be obtained by a 3-layer superposition code sequence. The first layer, of power

1− α, is an optimal Gaussian code sequence that can be reliably decoded at snru while considering all

subsequent layers as additive Gaussian noise. The second layer is of power α − β and can be reliably

decoded by Z after reliably decoding the first layer and considering the subsequent layer as additive

Gaussian noise. The last layer is a secrecy capacity achieving code sequence of power β designed for

receiver Y with eavesdropper Z.

VII. SUMMARY AND CONCLUSIONS

In this work we have considered several mutli-user scalar Gaussian settings in the unified framework

of the scalar Gaussian channel. Under this framework the Gaussian BC, the Gaussian wiretap channel,
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the Gaussian BCC and the Gaussian BC and Gaussian BCC with MMSE disturbance constraints have

been defined using the requirements at different points on the SNR axis. Using the I-MMSE relationship

we have proved MMSE properties required from any code sequence complying with these requirements.

In some cases these properties completely define the specific family of code sequences.

More specifically, for the Gaussian wiretap channel, where apart from a reliable decoding requirement

we also have a confidentiality requirement, we have shown that some well known “rules of thumb”

used in achievability schemes are both necessary and sufficient for any “good” code sequence. The first

being that, in any dopt code sequence, given the secret message the eavesdropper can fully decode the

transmitted codeword. The second is that any dmax code sequence is built on a point-to-point achieving

codebook sequence and that any partitioning of this codebook sequence to bins defines a completely

secure message if and only if the bins themselves are codebook sequence that achieve capacity to the

eavesdropper, that is, saturating the eavesdropper. It is also worth emphasizing that the rate-equivocation

pair (C, dmax) is an achievable pair for the Gaussian wiretap channel [7], [8], meaning that point-to-point

capacity does not need to be compromised for the sake of maximum confidentiality, as shown in [9, Ex.

c, pp. 413] where the message is split to a completely secure message and an additional private message

to obtain the entire rate-equivocation region.

The Gaussian BC has a unique and well-defined MMSE behavior for any “good” code sequence. This

behavior holds regardless of the implementation, meaning the same behavior for both a superposition

code sequence and a “dirty paper” code sequence. Not surprisingly, “bad” code sequences, that do not

achieve capacity, are less defined, but a necessary and sufficient condition for the reliable decoding of the

message to the weaker receiver requires that the conditioned MMSE (conditioned on that message) equals

the MMSE of the codeword from the SNR of reliable decoding and onwards. This is not a surprising

result but is worth mentioning due to the fact that strict concavity does not hold here, as opposed to

any finite n [34, Theorem 2]. Finally, we derive necessary and sufficient conditions for a “good” code

sequence, in terms of the MMSE and conditional MMSE behavior at all SNRs.

The Gaussian wiretap channel and the Gaussian BC come together to define the Gaussian BCC. In this

setting we have examined two cases: complete secrecy and optimally secure code sequences. We first

observed that “good” code sequences under both requirements have the same codeword MMSE as the

Gaussian BC. The difference between the cases and compared with “good” sequences for the Gaussian

BC is the behavior of the conditional MMSE quantities. For both problems we have provided an I-MMSE

based converse proof to the capacity region.

Finally, we have considered also the effect of additional MMSE constraints at some other SNR. This
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continues the work in [5] where such constraints were originally examined, and provided interesting

insights to the two-user Gaussian interference channel problem. Given the MMSE constraint we have

examined both the Gaussian BC and the Gaussian BCC. In both cases it was necessary to distinguish

between two possible regions for the SNR of the MMSE constraint. We have provided a capacity region

proof for both problems and in the BCC case also a full depiction of the behavior of the different MMSE

quantities. We have observed that as in [5] the capacity achieving approach is superposition, however

here we sometimes require a 3-layer superposition code sequence. Moreover, in the Gaussian BCC,

depending on the SNR of the constraint, the second layer is either an optimal Gaussian code sequence

to the eavesdropper (when the SNR of the constraint is lower than the SNR of the eavesdropper) or a

Gaussian secrecy capacity achieving code sequence designed for a legitimate receiver at the constraint

SNR and the eavesdropper (when the SNR is between the SNR of the eavesdropper and the legitimate

receiver).

APPENDIX

A. Applying Fatou’s Lemma

In this section we formally prove (12). Examine the following sequence:

∣∣MMSE(Cn,fn)(γ)−MMSE(C,f)(γ)sup
∣∣. (178)

Note that by definition of the lim sup (equivalent to (13)) we have that

lim sup
n→∞

∣∣MMSE(Cn,fn)(γ)−MMSE(C,f)(γ)sup
∣∣ = 0. (179)

Using the reverse Fatou’s Lemma [35] (the MMSE function is bounded for all n) we have that

lim sup
n→∞

∫ ∣∣MMSE(Cn,fn)(γ)−MMSE(C,f)(γ)sup
∣∣dγ ≤∫

lim sup
n→∞

∣∣MMSE(Cn,fn)(γ)−MMSE(C,f)(γ)sup
∣∣ = 0. (180)

Thus, due to the non-negativity of the integrand we can conclude that

lim sup
n→∞

∫
MMSE(Cn,fn)(γ)dγ =

∫
MMSE(C,f)(γ)supdγ. (181)

On the other hand we assume that all normalized information quantities are stable (i.e., converge) meaning

lim
n→∞

1

n
I
(
Xn;
√
snrXn + Nn

)
= lim sup

n→∞

1

n
I
(
Xn;
√
snrXn + Nn

)
. (182)
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Due to the I-MMSE relationship [29] we have that

lim
n→∞

∫ snr

0
MMSE(Cn,fn)(γ)dγ = lim sup

n→∞

∫ snr

0
MMSE(Cn,fn)(γ)dγ. (183)

Putting (181) and (183) together we have that

lim
n→∞

∫ snr

0
MMSE(Cn,fn)(γ)dγ =

∫ snr

0
MMSE(C,f)(γ)supdγ. (184)

B. Proof of Theorem 1

Proof: We define

ΦXn,u,γ(yn) = E
{

(Xn,u − E {Xn,u |yn})(Xn,u − E {Xn,u |yn})T|yn
}

(185)

Note that

EXn
(γ, u) = E

{
ΦXn,u,γ(Y n)

}
(186)

where the expectation is over Y n. The following proof is similar in nature to the extension to the

conditioned case discussed in [30]. It follows the proof of [30, Theorem 1]. We only emphasize the

extension required for the conditioned case. In [30, Lemma 3] it was shown that

Dγq(Xn|U = u, σ2, γ) =
1

n
Tr
(
E
{
ΦXn,u,γ(Y n)2

})
− σ4

(1 + γσ2)2
. (187)

Taking the expectation over U and using the linearity of the expectation and the trace function we have

that

Dγq(Xn|U, σ2, γ) =
1

n
Tr
(
E
{
ΦXn,U ,γ(Y n)2

})
− σ4

(1 + γσ2)2
. (188)

We can now follow the derivation done in [30, equations (20)-(24)] and conclude that for all q(Xn|U, σ2, γ) <

0 the derivative with respect to γ is positive. Following the proof of [30, Theorem 1] we conclude the

proof.

C. Theorem 1 as n→∞

In this section we show that the “single crossing point” property given in Theorem 1 holds also for

lim inf
n→∞

q(Xn|U, σ2, γ) = lim
n→∞

(
inf
m≥n

q(Xm|U, σ2, γ)

)
. (189)
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As such we can conclude a “single crossing point” property between the i.i.d. Gaussian input and the

lim supMMSE function, whenever the limit of the MMSE function does not exist (and with the limMMSE

when it does exist). For this purpose we show that, for any natural n, the function

inf
m≥n

q(Xm|U, σ2, γ) (190)

has at most a single crossing point. Since this function is monotonically increasing in n (and bounded,

so that it has a limit), the fact that it has at most a single crossing point suffices to conclude at most a

single crossing point for the limit. Recall that for every natural n q(Xn|U, σ2, γ) has at most a single

crossing point, meaning that if for some γ

inf
m≥n

q(Xn|U, σ2, γ) ≥ 0 (191)

the crossing point has occurred for all q(Xm|U, σ2, γ), m ≥ n, and we can conclude that

inf
m≥n

q(Xn|U, σ2, γ′) ≥ 0, ∀γ′ ≥ γ, (192)

meaning that no transition from a non-negative value to a negative value can occur; hence there is at

most a single crossing point.
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