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Abstract—Non-orthogonal multiple access (NOMA) represents
a paradigm shift from conventional orthogonal multiple access
(MA) concepts, and has been recognized as one of the key
enabling technologies for 5G systems. In this paper, the impact
of user pairing on the performance of two NOMA systems,
NOMA with fixed power allocation (F-NOMA) and cognitive
radio inspired NOMA (CR-NOMA), is characterized. For F-
NOMA, both analytical and numerical results are provided to
demonstrate that F-NOMA can offer a larger sum rate than
orthogonal MA, and the performance gain of F-NOMA over
conventional MA can be further enlarged by selecting users
whose channel conditions are more distinctive. For CR-NOMA,
the quality of service (QoS) for users with the poorer channel
condition can be guaranteed since the transmit power allocated to
other users is constrained following the concept of cognitive radio
networks. Because of this constraint, CR-NOMA has different
behavior compared to F-NOMA. For example, for the user with
the best channel condition, CR-NOMA prefers to pair it with the
user with the second best channel condition, whereas the user
with the worst channel condition is preferred by F-NOMA.

I. I NTRODUCTION

Multiple access in 5G mobile networks is an emerging
research topic, since it is key for the next generation network
to keep pace with the exponential growth of mobile data and
multimedia traffic [1] and [2]. Non-orthogonal multiple access
(NOMA) has recently received considerable attention as a
promising candidate for 5G multiple access [3]–[6]. Partic-
ularly, NOMA uses the power domain for multiple access,
where different users are served at different power levels.The
users with better channel conditions employ successive inter-
ference cancellation (SIC) to remove the messages intendedfor
other users before decoding their own [7]. The benefit of using
NOMA can be illustrated by the following example. Consider
that there is a user close to the edge of its cell, denoted by
A, whose channel condition is very poor. For conventional
MA, an orthogonal bandwidth channel, e.g., a time slot, will
be allocated to this user, and the other users cannot use this
time slot. The key idea of NOMA is to squeeze another user
with better channel condition, denoted byB, into this time
slot. SinceA’s channel condition is very poor, the interference
fromB will not cause much performance degradation toA, but
the overall system throughput can be significantly improved
since additional information can be delivered between the
base station (BS) andB. The design of NOMA for uplink
transmissions has been proposed in [4], and the performance
of NOMA with randomly deployed mobile stations has been
characterized in [5]. The combination of cooperative diversity
with NOMA has been considered in [8].
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Since multiple users are admitted at the same time, fre-
quency and spreading code, co-channel interference will be
strong in NOMA systems, i.e., a NOMA system is interference
limited. As a result, it may not be realistic to ask all the
users in the system to perform NOMA jointly. A promising
alternative is to build a hybrid MA system, in which NOMA
is combined with conventional MA. In particular, the users in
the system can be divided into multiple groups, where NOMA
is implemented within each group and different groups are
allocated with orthogonal bandwidth resources. Obviouslythe
performance of this hybrid MA scheme is very dependent on
which users are grouped together, and the aim of this paper
is to investigate the effect of this grouping. Particularly, tn
this paper, we focus on a downlink communication scenario
with one BS and multiple users, where the users are ordered
according to their connections to the BS, i.e., them-th user has
them-th worst connection to the BS. Consider that two users,
the m-th user and then-th user, are selected for performing
NOMA jointly, wherem < n. The impact of user pairing on
the performance of NOMA will be characterized in this paper,
where two types of NOMA will be considered. One is based
on fixed power allocation, termed F-NOMA, and the other is
cognitive radio inspired NOMA, termed CR-NOMA.

For the F-NOMA scheme, the probability that F-NOMA can
achieve a larger sum rate than conventional MA is first studied,
where an exact expression for this probability as well as its
high signal-to-noise ratio (SNR) approximation are obtained.
These developed analytical results demonstrate that it is almost
certain for F-NOMA to outperform conventional MA, and the
channel quality of then-th user is critical to this probability.
In addition, the gap between the sum rates achieved by F-
NOMA and conventional MA is also studied, and it is shown
that this gap is determined by how different the two users’
channel conditions are, as initially reported in [8]. For example,
if n = M , it is preferable to choosem = 1, i.e., pairing the
user with the best channel condition with the user with the
worst channel condition. The reason for this phenomenon can
be explained as follows. Whenm is small, them-th user’s
channel condition is poor, and the data rate supported by this
user’s channel is also small. Therefore the spectral efficiency of
conventional MA is low, since the bandwidth allocated to this
user cannot be accessed by other users. The use of F-NOMA
ensures that then-th user will have access to the resource
allocated to them-th user. If(n−m) is small, then-th user’s
channel quality is similar to them-th user’s, and the benefit to
use NOMA is limited. But ifn >> m, then-th user can use
the bandwidth resource much more efficiently than them-th
user, i.e., a larger(n−m) will result in a larger performance
gap between F-NOMA and conventional MA.

The key idea of CR-NOMA is to opportunistically serve
the n-th user on the condition that them-th user’s quality of
service (QoS) is guaranteed. Particularly the transmit power
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allocated to then-th user is constrained by them-th user’s
signal-to-interference-noise ratio (SINR), whereas F-NOMA
uses a fixed set of power allocation coefficients. Since the
m-th user’s QoS can be guaranteed, we mainly focus on
the performance of then-th user offered by CR-NOMA. An
exact expression for the outage probability achieved by CR-
NOMA is obtained first, and then used for the study of the
diversity order. In particular, we show that the diversity order
experienced by then-th user ism, which means that the
m-th user’s channel quality is critical to the performance of
CR-NOMA. This is mainly because of the imposed SINR
constraint, where then-th user can be admitted into the
bandwidth channel occupied by them-th user, only if them-
th user’s SINR is guaranteed. As a result, with a fixedm,
increasingn does not bring much improvement to then-th
user’s outage probability, which is different from F-NOMA.If
the ergodic rate is used as the criterion, a similar difference
between F-NOMA and CR-NOMA can be observed. Again
take the scenario described in the last paragraph as an example.
If n = M , in order to yield a large gain over conventional MA,
F-NOMA prefers the choice ofm = 1, but CR-NOMA prefers
the choice ofm = M − 1 , i.e., pairing the user with the best
channel condition with the user with the second best channel
condition.

II. NOMA W ITH FIXED POWER ALLOCATION

Consider a downlink communication scenario with one BS
andM mobile users. Without loss of generality, assume that
the users’ channels have been ordered as|h1|2 ≤ · · · ≤ |hM |2,
wherehm denotes the Rayleigh fading channel gain between
the BS and the orderedm-th user. Consider that them-th user
and then-th user,m < n, are paired to perform NOMA.

In this section, we focus on F-NOMA, where the BS
allocates a fixed amount of transmit power to each user.
In particular, denoteam and an as the power allocation
coefficients for the two users, where these coefficients are fixed
and a2m + a2n = 1. According to the principle of NOMA,
am ≥ an since |hm|2 ≤ |hn|2. The rates achievable to the
two users are given by

Rm = log

(

1 +
|hm|2a2m

|hm|2a2n + 1
ρ

)

, (1)

and

Rn = log
(
1 + ρa2n|hn|2

)
, (2)

respectively, whereρ denotes the transmit SNR. Note that the
n-th user can decode the message intended for them-th user
successfully andRn is always achievable at then-th user, since
Rm ≤ log

(

1 +
|hn|

2a2
m

|hn|2a2
n+

1
ρ

)

.
On the other hand, an orthogonal MA scheme, such as time-

division multiple-access (TDMA), can support the following
data rate:

R̄i =
1

2
log
(
1 + ρ|hi|2

)
, (3)

where i ∈ {m,n}. In the following subsections, the impact
of user pairing on the sum rate and the individual user rates
achieved by F-NOMA is investigated.

A. Impact of user pairing on the sum rate

In this subsection, we focus on how user pairing affects
the probability that NOMA achieves a lower sum rate than
conventional MA schemes, which is given by

P(Rm +Rn < R̄m + R̄n). (4)

The following theorem provides an exact expression for the
above probability as well as its high SNR approximation.

Theorem 1. Suppose that them-th and n-th ordered users
are paired to perform NOMA. The probability that F-NOMA
achieves a lower sum rate than conventional MA is given by

P(Rm +Rn < R̄m + R̄n) = (5)

1−
n−1−m∑

i=0

(
n− 1−m

i

)
(−1)i̟1

m+ i

∫ ̟2

̟4

f(y)(F (y))n−1−m−i

× (1− F (y))M−n

(

[F (y)]m+i −
[

F

(
̟2 − y

1 + y

)]m+i
)

dy

− ̟3

ρ

n−1∑

j=0

(
n− 1

j

)

(−1)j
ρ

M − n+ j + 1
e−

(M−n+j+1)̟2
ρ ,

where f(x) = 1
ρ
e−

x
ρ , F (x) = 1 − e−

x
ρ , ̟1 =

M !
(m−1)!(n−1−m)!(M−n)! , ̟2 =

1−2a2
n

a4
n

, ̟3 = M !
(n−1)!(M−n)!

and ̟4 =
√
1 +̟2 − 1. At high SNR, this probability can

be approximated as follows:

P(Rm +Rn < R̄m + R̄n) ≈
1

ρn

(
̟3̟

n
2

n
−̟1̟

)

, (6)

where ̟ =
∑n−1−m

i=0

(
n−1−m

i

) (−1)i

m+i

∫ ̟2

̟4
yn−1−m−i

×
(

ym+i −
[
̟2−y
(1+y)

]m+i
)

dy, i.e., ̟ is a constant and

not a function ofρ.

Proof: See the appendix.
Theorem 1 demonstrates that it is almost certain for F-

NOMA to outperform conventional MA, particularly at high
SNR. Furthermore, the decay rate of the probabilityP(Rm +
Rn < R̄m+R̄n) is approximately1

ρn , i.e., the quality of then-
th user’s channel determines the decay rate of this probability.

B. Asymptotic studies of the sum rate achieved by NOMA

In addition to the probabilityP(Rm +Rn < R̄m + R̄n), it
is also of interest to study how large of a performance gain
F-NOMA offers over conventional MA, i.e.,

P(Rm +Rn − R̄m − R̄n < R),

where R is a targeted performance gain. The probability
studied in the previous subsection can be viewed as a special
case by settingR = 0. An interesting observation for the
cases withR > 0 is that there will be an error floor for
P(Rm+Rn−R̄m−R̄n < R), regardless of how large the SNR
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is. This can be shown by studying the following asymptotic
expression of the sum rate gap:

Rm +Rn − R̄m − R̄n (7)

→
ρ→∞

log

(
1

a2n

)

+ log
(
ρa2n|hn|2

)
− log (ρ|hm||hn|)

= log |hn| − log |hm|,

which is not a function of SNR. Hence the probability can be
expressed asymptotically as follows:

P
(
Rm +Rn − R̄m − R̄n < R

)
(8)

→
ρ→∞

P (log |hn| − log |hm| < R) .

WhenR = 0, P
(
Rm +Rn − R̄m − R̄n < R

)
→ 0, which is

consistent with Theorem 1, since

P
(
Rm +Rn < R̄m + R̄n

)
∼ 1

ρn
→

ρ→∞
0.

When R 6= 0, (8) implies that the probability
P
(
Rm +Rn − R̄m − R̄n < R

)
can be expressed asymptot-

ically as follows:

P (log |hn| − log |hm| < R) → P

( |hn|2
|hm|2 < 22R

)

. (9)

Directly applying the joint probability density function (pdf)
of the users’ channels shown in (31), the probability can be
rewritten as follows:

P (log |hn| − log |hm| < R) (10)

=

∫ ∞

0

∫ y

2−2Ry

̟1f(x)f(y)[F (x)]m−1

× (F (y)− F (x))
n−1−m

(1− F (y))
M−n

dxdy,

which is quite complicated to evaluate. In [9], a simpler pdffor
the ratio of two order statistics has been provided as follows:

f |hm|2

|hn|2

(z) =
M !

(m− 1)!(n−m− 1)!(M − n)!

m−1∑

j1=0

n−m−1∑

j2=0

(−1)j1+j2

(
m− 1

j1

)(
n−m− 1

j2

)

(τ2 + τ1z)
−2,

whereτ1 = j1 − j2 + n −m and τ2 = M − n + 1 + j2. By
using this pdf, the addressed probability can be calculatedas
follows:

P (log |hn| − log |hm| < R) (11)

→ M !

(m− 1)!(n−m− 1)!(M − n)!

m−1∑

j1=0

n−m−1∑

j2=0

(−1)j1+j2

τ1

(
m− 1

j1

)(
n−m− 1

j2

)(
1

τ2 + 2−2Rτ1
− 1

τ2 + τ1

)

.

C. Impact of user pairing on individual user rates

Careful user pairing not only improves the sum rate, but
also has the potential to improve the individual user rates,as
shown in this section. We first focus on the probability that
F-NOMA can achieve a larger rate than orthogonal MA for
them-th user which is given by

P(Rm > R̄m) (12)

=P





(

1 +
|hm|2a2m

|hm|2a2n + 1
ρ

)2

> (1 + ρ|hm|2)



 .

After some algebraic manipulations, the above probabilitycan
be further rewritten as follows:

P(Rm > R̄m) = P

(

|hm|2 <
1− 2a2n
ρa4n

)

(13)

=

∫ 1−2a2
n

ρa4
n

0

̟5

ρ
e−

(M−m+1)y
ρ

(

1− e−
y
ρ

)m−1

dy

=

m−1∑

i=0

(
m− 1

i

)
(−1)i̟5

M −m+ i+ 1

(

1− e
−

(1−2a2
n)(M−m+i+1)

ρa4
n

)

,

where̟5 = M !
(m−1)!(M−m)! .

By applying a series expansion, the above probability can
be rewritten as follows:

P(Rm > R̄m) =

m−1∑

i=0

(
m− 1

i

)

(−1)i+1̟5 (14)

×
∞∑

k=1

(−1)k
(1− 2a2n)

k(M −m+ i+ 1)k−1

k!ρka4kn
.

Again applying the results in (41) and (42), the above equation
can be approximated as follows:

P(Rm > R̄m) ≈ ̟5
(1− 2a2n)

m

mρma4mn
, (15)

which means thatP(Rm > R̄m) decays at a rate of1
ρm .

On the other hand, the probability that then-th user can
experience better performance in a NOMA system than in
orthogonal MA systems is given by

P(Rn > R̄n) = P

(

log
(
1 + ρa2n|hn|2

)
>

1

2
log(1 + ρ|hn|2

)

.

Following similar steps as previously, we obtain the following:

P(Rn > R̄n) = P

(

|hn|2 >
1− 2a2n
ρa4n

)

. (16)

InterestinglyP(Rn > R̄n) in (16) is very much similar to
P(Rm > R̄m) in (13), which yields the following:

P(Rn > R̄n) = 1−
n−1∑

i=0

(
n− 1

i

)
(−1)i̟3

M − n+ i+ 1
(17)

×
(

1− e
−

(1−2a2
n)(M−n+i+1)

ρa4
n

)

,
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and its high SNR approximation is given by

P(Rn > R̄n) ≈ 1−̟3
(1− 2a2n)

n

nρna4nn
. (18)

As can be seen from (15) and (18), the two users will have
totally different experience in NOMA systems. Particularly, a
user with a better channel condition is more willing to perform
NOMA sinceP(Rn > R̄n) → 1, which is not true for a user
with a poor channel condition. Furthermore, it is preferable
to pair two users whose channel conditions are significantly
distinct, since (15) and (18) implies thatm should be as small
as possible andn should be as large as possible.

III. C OGNITIVE RADIO INSPIREDNOMA

NOMA can be also viewed as a special case of cognitive
radio systems [10] and [11], in which a user with a strong
channel condition, viewed as a secondary user, is squeezed
into the spectrum occupied by a user with a poor channel
condition, viewed as a primary user. Following the concept
of cognitive radio networks, a variation of NOMA, termed as
CR-NOMA, can be designed as follows. Suppose that the BS
needs to serve them-th user, i.e., a user a with poor channel
condition, due to either the high priority of this user’s messages
or user fairness, e.g., this user has not been served for a long
time. This user can be viewed as a primary user in a cognitive
radio system. Then-th user can be admitted into this channel
on the condition that then-th user will not cause too much
performance degradation to them-th user.

Consider that the targeted SINR at them-th user isI, which
means that the choices of the power allocation coefficients,am
andan, need to satisfy the following constraint:

|hm|2a2m
|hm|2a2n + 1

ρ

≥ I. (20)

This means that the maximal transmit power that can be
allocated to then-th user is given by

a2n = max

{

0,
|hm|2 − I

ρ

|hm|2(1 + I)

}

, (21)

which means thatan = 0 if |hm|2 < I
ρ
. Note that the choice of

an in (21) is a function of the channel coefficienthm, unlike
the constant choice ofan used by F-NOMA in the previous
section.

Since them-th user’s QoS can be guaranteed due to (20),
we only need to study the performance experienced by then-
th user. Particularly the outage performance of then-th user
is defined as follows:

Pn
o , P

(
log(1 + a2nρ|hn|2) < R

)
, (22)

and the following theorem provides an exact expression for
the above outage probability as well as its approximation.

Theorem 2. Suppose that the transmit power allocated to the
n-th user can satisfy the predetermined SINR threshold,I, as
shown in (21). The n-th user’s outage probability achieved
by CR-NOMA is given by(19), whereg(y) = e−y, G(y) =

1 − e−y, ǫ1 = 2R−1
ρ

, b = I
ρ
, a = 1 + I and b ≤ aǫ1. The

diversity order achieved by CR-NOMA is given by

lim
ρ→∞

− logPn
o

log ρ
= m.

Proof: See the appendix.
Theorem 2 demonstrates an interesting phenomenon that, in

CR-NOMA, the diversity order experienced by then-th user
is determined by how good them-th user’s channel quality is.
This is because then-th user can be admitted to the channel
occupied by them-th user only if them-th user’s QoS is
met. For example, if them-th user’s channel is poor and its
targeted SINR is high, it is very likely that the BS allocates
all the power to them-th user, and then-th user might not
even get served.

Recall from the previous section that F-NOMA can achieve
a diversity gain ofn for the n-th user, and therefore the
diversity order achieved by CR-NOMA could be much smaller
than that achieved by F-NOMA, particularly ifn >> m. This
performance difference is again due to the imposed power
constraint shown in (21).

It is important to point out that CR-NOMA can strictly guar-
antee them-th user’s QoS, and therefore achieve better fairness
compared to F-NOMA. In particular, the use of CR-NOMA
can ensure that a diversity order ofm is achievable to then-th
user, and admitting then-th user into the same channel as the
m-th user will not cause too much performance degradation to
them-th user. Particularly the SINR experienced by them-th
user is strictly maintained at the predetermined levelI.

Sum rate achieved by CR-NOMA

Without sharing the spectrum with then-th user, i.e, all the
bandwidth resource is allocated to them-th user, the following
rate is achievable:

R̃m = log
(
1 + ρ|hm|2

)
. (23)

It is easy to show that the use of CR-NOMA always achieves
a larger sum rate since

Rm +Rn − R̃m (24)

= log

(

1 +
|hm|2a2m

|hm|2a2n + 1
ρ

)

+ log
(
1 + ρa2n|hn|2

)

− log
(
1 + ρ|hm|2

)

= log
1 + ρa2n|hn|2
1 + ρa2n|hm|2 ≥ 0.

This superior performance gain is not surprising, since thekey
idea of CR-NOMA is to serve a user with a strong channel
condition, without causing too much performance degradation
to the user with a poor channel condition.

In addition, it is of interest to study how much the averaged
rate gain CR-NOMA can yield, i.e.,E {Rn}. This averaged
rate gain can be calculated as follows:

E {Rn} =

∫ ∞

b

∫ ∞

x

log

(

1 +
x− b

xa
ρy

)

(25)

× f|hm|2,|hn|2(x, y)dydx.
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Po
n = ̟5

M−n∑

i=0

(
M − n

i

)

(−1)i
[G(b)]m+i

m+ i
+

n−1−m∑

i=0

(
n− 1−m

i

)

(−1)i
∫ aǫ1

b

g(y) (1−G(y))
M−n

G(y)n−1−m−i̟1 (19)

×
(
G(y)m+i −G(b)m+i

)

m+ i
dy +

n−1−m∑

i=0

(
n− 1−m

i

)

(−1)i
∫ b+aǫ1

aǫ1

(1−G(y))M−n
G(y)n−1−m−i

(
G(y)m+i −G(b)m+i

)

m+ i

×̟1g(y)dy +

n−1−m∑

i=0

(
n− 1−m

i

)

(−1)i
∫ ∞

b+aǫ1

g(y) (1−G(y))
M−n

G(y)n−1−m−i̟1

(

G

(

b
1−

aǫ1
|hn|2

)m+i

−G(b)m+i

)

m+ i
dy.

In general, the evaluation of the above equation is difficult, and
in the following we provide a case study whenn − m = 1.
Particularly, the joint pdf of the channels for this specialcase
can be simplified and the averaged rate gain can calculated as
follows:

E {Rn} = ̟1

∫ ∞

b

f(x)[F (x)]m−1

∫ ∞

x

log

(

1 +
x− b

xa
ρy

)

× f(y) (1− F (y))
M−n

dydx (26)

=
−̟1

M − n+ 1

∫ ∞

b

f(x)[F (x)]m−1

×
∫ ∞

x

log

(

1 +
x− b

xa
ρy

)

d (1− F (y))M−n+1
dx.

After some algebraic manipulations, the above equation can
be rewritten as follows:

E {Rn} =
̟1

M − n+ 1

∫ ∞

b

f(x)[F (x)]m−1

×
(

log

(

1 +
x− b

a
ρ

)

(1− F (x))
M−n+1

+
1

ln 2

∫ ∞

x

(1− F (y))
M−n+1

x−b
xa

ρ

1 + x−b
xa

ρy
dy

)

dx.

Now applying Eq. (3.352.2) in [12], the average rate gain can
be expressed as follows:

E {Rn} =
̟1

M − n+ 1

∫ ∞

b

f(x)[F (x)]m−1 (27)

×



log

(

1 +
x− b

a
ρ

)

(1− F (x))M−n+1 − e
x2a

ρ(x−b)

ln 2

×Ei

(

−(M − n+ 1)x− (M − n+ 1)xa

ρ(x − b)

))

dx,

where Ei(·) denotes the exponential integral.

IV. N UMERICAL STUDIES

In this section, computer simulations are used to evaluate the
performance of two NOMA schemes as well as the accuracy
of the developed analytical results.
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Fig. 1. The probability that F-NOMA realizes a lower sum ratethan
conventional MA.M = 5. The analytical results are based on Theorem 1.
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A. NOMA with fixed power allocation

In Fig. 1, the probability that F-NOMA realizes a lower
sum rate than conventional MA, i.e.,P(Rm + Rn < R̄m +
R̄n), is shown as a function of SNR.a2m = 4

5 and a2n = 1
5 .

As can be seen from both figures, F-NOMA almost always
outperforms conventional MA, particularly at high SNR. The
simulation results in Fig. 1 also demonstrate the accuracy of
the analytical results provided in Theorem 1. For example,
the exact expression ofP(Rm + Rn < R̄m + R̄n) shown
in Theorem 1 matches perfectly with the simulation results,
whereas the developed approximation results become accurate
at high SNR.

Another important observation from Fig. 1 is that increasing
n, i.e., scheduling a user with a better channel condition, will
make the probability decrease at a faster rate. This observation
is consistent to the high SNR approximation results provided
in Theorem 1 which show that the slope of the curve for the
probabilityP(Rm+Rn < R̄m+R̄n) is a function ofn. In Fig.
2, the probabilityP(Rm+Rn− R̄m− R̄n < R) is shown with
different choices ofR. Comparing Fig. 1 to Fig. 2, one can
observe thatP(Rm +Rn − R̄m − R̄n < R) never approaches
zero, regardless of how large the SNR is. This observation
confirms the analytical results developed in (11) which show
that the probabilityP(Rm + Rn − R̄m − R̄n < R) is no
longer a function of SNR, whenρ → 0. It is interesting to
observe that the choice of a smallerm is preferable to reduce
P(Rm + Rn − R̄m − R̄n < R), a phenomenon previously
reported in [8].

5 10 15 20 25 30 35 40
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10
−2

10
−1

10
0

SNR in dB

P
(R

m
+
R

n
−

R̄
m
−

R̄
n
<

R
)

 

 
Simulation results, m=1
Asymptotic results, m=1
Simulation results, m=2
Asymptotic results, m=2

−Solid lines for the case with R=0.5 BPCU

−Dashed lines for the case with R=0.1 BPCU

Fig. 2. The probability that the sum rate gap between F-NOMA and
conventional MA is larger thanR. M = 5 and n = M . The analytical
results are based on (11).

In Fig. 3, two different but related probabilities are shown
together. One isP(Rm > R̄m), i.e., the probability that
it is beneficial for the user with a poor channel condition
to perform F-NOMA, and the other isP(Rn < R̄n), i.e.,
the probability that the user with a strong channel condition
prefers conventional MA. In Section II.C, analytical results

have been developed to show that bothP(Rm > R̄m) and
P(Rn < R̄n) are decreasing with increasing SNR, which is
confirmed by the simulation results in Fig. 3. The reason that
P(Rm > R̄m) is reduced at a higher SNR is that them-
th user’s rate in an F-NOMA system becomes a constant,
i.e., log

(

1 +
|hm|2a2

m

|hm|2a2
n+

1
ρ

)

→
ρ→∞

log
(

1 +
a2
m

a2
n

)

, which is much

smaller thanR̄m, at high SNR. On the other hand, it is more
likely for Rn to be larger than̄Rn since there is a factor of12
outside of the logarithm of̄Rn.

5 10 15 20 25 30
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10
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10
−2

10
−1

10
0

SNR in dB

 

 

Simulation results, m= 2, n = 3, P(Rm > R̄m)

Simulation results, m= 2, n = 3, P(Rn < R̄n)

Analytical results, m= 2, n = 3, P(Rm > R̄m)

Analytical results, m= 2, n = 3, P(Rn < R̄n)

Simulation results, m= 1, n =M , P(Rm > R̄m)

Simulation results, m= 1, n =M , P(Rn < R̄n)

Analytical results, m= 1, n = M , P(Rm > R̄m)

Analytical results, m= 1, n = M , P(Rn < R̄n)

Fig. 3. The behavior of individual data rates achieved by F-NOMA, P(Rn <

R̄n) andP(Rm > R̄m). M = 5. The analytical results are based on (14)
and (17).

B. Cognitive radio inspired NOMA

In Fig. 4 the n-th user’s outage probability achieved by
CR-NOMA is shown as a function of SNR. As can be seen
from the figure, the exact expression for the outage probability
Po
n , P(Rn < R) developed in Theorem 2 matches the

simulation results perfectly. Recall from Theorem 2 that the
diversity order achievable for then-th user ism. Or in other
words, the slope of the outage probability is determined by
the channel quality of them-th user, which is also confirmed
by Fig. 4. For example, when increasingm from 1 to 2, the
outage probability is significantly reduced, and its slope is also
increased. To clearly demonstrate the diversity order, we have
provided an auxiliary curve in the figure which is proportional
to 1

ρm . As can be observed in the figure, this auxiliary curve
is parallel to the one forP(Rn < R), which confirms that the
diversity order achieved by CR-NOMA ism.

Since Theorem 2 states that the diversity order ofP(Rn <
R) is not a function ofn, an interesting question is whether
a different choice ofn matters. Fig. 5 is provided to answer
this question. While the use of a largern does bring some
reduction ofP(Rn < R), the performance gain of increasing
n is negligible, particularly at high SNR. This is because the
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Simulation results
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An auxiliary line with 1
ρm
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Fig. 4. The outage probability for then-th user achieved by CR-NOMA,
whenn = M . M = 5, R = 1 bit per channel use (BPCU) andI = 5. The
analytical results are Theorem 2.
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Fig. 5. The outage probability for then-th user achieved by CR-NOMA.
m = 1, M = 5, andR = 1 BPCU.

channel quality of them-th user becomes a bottleneck for
admitting then-th user into the same channel.

In Fig. 6 the performance of CR-NOMA is evaluated by
using the ergodic data rate as the criterion. Due to the use
of (21), them-th user’s QoS can be satisfied, and therefore
we only focus on then-th user’s data rate, which is the
performance gain of CR-NOMA over conventional MA. Fig.
6 demonstrates that, by fixing(n − m), it is beneficial to
select two users with better channel conditions. While Fig.
5 shows that changingn with a fixedm does not affect the
outage probability, Fig. 6 demonstrates that user pairing has
a significant impact on the ergodic rate. Specifically, when
fixing the choice ofm, pairing it with a user with a better
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0

1

2

3

4

5

6

7

8

9

SNR in dB

E
(R

n
)

 

 
Simulation results, m=1, n=m+1
Analytical results, m=1, n=m+1
Simulation results, m=2, n=m+1
Analytical results, m=2, n=m+1
Simulation results, m=3, n=m+1
Analytical results, m=3, n=m+1
Simulation results, m=4, n=m+1
Analytical results, m=4, n=m+1

(a) n = m+ 1
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m=1, n=M
m=1, n=M−2
m=2, n=M
m=2, n=M−2
m=M−1, n=M

(b) General Cases

Fig. 6. The ergodic data rate for then-th user achieved by CR-NOMA.
M = 5 andI = 5. Analytical results are based on (27).

channel condition can yield a gain of more than1 bit per
channel use (BPCU) at30dB. Another interesting observation
from Fig. 6 is that with a fixedn, increasingm will improve
the performance of CR-NOMA, which is different from F-
NOMA. For example, whenn = M , Fig. 2 shows that the
user with the worst channel condition,m = 1, is the best
partner, whereas Fig. 6 shows that the user with the second
best channel condition, i.e.,m = M − 1, is the best choice.

V. CONCLUSIONS

In this paper the impact of user pairing on the performance
of two NOMA systems, NOMA with fixed power allocation
(F-NOMA) and cognitive radio inspired NOMA (CR-NOMA),
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has been studied. For F-NOMA, both analytical and numerical
results have been provided to demonstrate that F-NOMA
can offer a larger sum rate than orthogonal MA, and the
performance gain of F-NOMA over conventional MA can be
further enlarged by selecting users whose channel conditions
are more distinctive. For CR-NOMA, the channel quality of the
user with a poor channel condition is critical, since the transmit
power allocated to the other user is constrained following the
concept of cognitive radio networks. One promising future
direction of this paper is that the analytical results can beused
as criteria designing distributed approaches for dynamic user
pairing/grouping.
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APPENDIX

Proof for Theorem 1:Observe that the sum rate achieved by
NOMA can be expressed as follows:

Rm +Rn = log

(
1 + ρ|hm|2

ρ|hm|2a2n + 1

)
(
1 + ρa2n|hn|2

)
.

On the other hand the sum rate achieved by conventional MA
is given by

R̄m + R̄n = log
(
1 + ρ|hm|2

) 1
2
(
1 + ρ|hn|2

) 1
2 . (28)

Now the addressed probability can be written as follows:

P(Rm +Rn > R̄m + R̄n) (29)

= P

((
1 + ρ|hm|2

ρ|hm|2a2n + 1

)
(
1 + ρa2n|hn|2

)
>
(
1 + ρ|hm|2

) 1
2

×
(
1 + ρ|hn|2

) 1
2

)

= P

(

1 + ρ|hm|2
(1 + ρa2n|hm|2)2 >

1 + ρ|hn|2

(1 + ρa2n|hn|2)2

)

.

After some algebraic manipulations, this probability can be
rewritten as follows:

P(Rm +Rn > R̄m + R̄n) (30)

= P

(

ρ(|hm|2 + |hn|2) + ρ2|hm|2|hn|2 >
1− 2a2n

a4n

)

.

The right-hand side of the above inequality is non-negative
since then-th user will get less power than them-th user, i.e.,
a2n ≤ 1

2 . Note that the joint pdf ofρ|hm|2 andρ|hn|2 is given
by [13]

f|hm|2,|hn|2(x, y) = ̟1f(x)f(y)[F (x)]m−1 (1− F (y))
M−n

× (F (y)− F (x))n−1−m
. (31)

In addition, the marginal pdf of|hn|2 is given by

f|hn|2(y) = ̟3f(y) (F (y))
n−1

(1− F (y))
M−n

. (32)

By applying the above density functions, the addressed
probability can be expressed as follows:

P(Rm +Rn > R̄m + R̄n) =

∫ ∞

̟2

f|hn|2(y)dy

︸ ︷︷ ︸

Q2

(33)

+

∫ ∫

(x+y)+xy>̟2,x<y<̟2

f|hm|2,|hn|2(x, y)dxdy

︸ ︷︷ ︸

Q1

.

Note that the integral range forx in Q1 is ̟2−y
1+y

< x <

y, and this range implies that̟2−y
1+y

< y, which causes an
additional constraint ony, i.e.,y >

√
1 +̟2−1. By applying
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the binomial expansion, the joint pdf can be further writtenas
follows:

f|hm|2,|hn|2(x, y) = ̟1

n−1−m∑

i=0

(
n− 1−m

i

)

(−1)if(x)

× f(y)[F (x)]m−1+i (1− F (y))
M−n

(F (y))n−1−m−i.

Therefore the probabilityQ1 can now be evaluated as follows:

Q1 = ̟1

n−1−m
∑

i=0

(

n− 1−m

i

)

(−1)i

m+ i

∫ ̟2

̟4

f(y)(F (y))n−1−m−i

× (1− F (y))M−n

(

[F (y)]m+i −

[

F

(

̟2 − y

1 + y

)]m+i
)

dy.

(34)

On the other hand,Q2 can be calculated as follows:

Q2 =

∫ ∞

̟2

̟3f(y) (F (y))n−1 (1− F (y))M−n
dy (35)

=

∫ ∞

̟2

̟3
1

ρ
e−

(M−n+1)y
ρ

(

1− e−
y
ρ

)n−1

dy.

By applying the binomial expansion,Q2 can be written as
follows:

Q2 =
̟3

ρ

n−1∑

j=0

(
n− 1

j

)

(−1)j
∫ ∞

̟2

e−
(M−n+j+1)y

ρ dy (36)

=
̟3

ρ

n−1∑

j=0

(
n− 1

j

)

(−1)j
ρ

M − n+ j + 1
e−

(M−n+j+1)̟2
ρ .

Combining (34) with (36), the first part of the theorem is
proved.

To find high SNR approximations forQ1 and Q2, first
observe that the integral in (34) is calculated for the range
of 0 ≤ y < ̟2. At high SNR, the two functionsf(y) and
F (y) can be approximated as follows:f(y) = 1

ρ
e−

y
ρ ≈ 1

ρ
and

F (y) = 1− e−
y
ρ ≈ y

ρ
, since0 ≤ y ≤ ̟2 andρ → ∞.

Defineu(y) = ̟2−y
1+y

. It is straightforward to show

0 ≤ u(y) ≤ ̟2,

for 0 ≤ y ≤ ̟2 , since dg(y)
dy

< 0. Therefore at high SNR, we
can have the following approximation:

F

(
̟2 − y

1 + y

)

= 1− e
−

̟2−y

ρ(1+y) ≈ ̟2 − y

ρ(1 + y)
.

Now the probabilityQ1 can be approximated as follows:

Q1 ≈ ̟1

n−1−m∑

i=0

(
n− 1−m

i

)
(−1)i

m+ i

∫ ̟2

̟4

1

ρ

(
y

ρ

)n−1−m−i

×
([

y

ρ

]m+i

−
[
̟2 − y

ρ(1 + y)

]m+i
)

dy

≈ ̟1

ρn

n−1−m∑

i=0

(
n− 1−m

i

)
(−1)i

m+ i

∫ ̟2

̟4

yn−1−m−i

×
(

ym+i −
[
̟2 − y

(1 + y)

]m+i
)

dy. (37)

The high SNR approximation forQ2 is more complicated.
After applying the series expansion of the exponential func-
tions in (36), we have

Q2 =

∞∑

i=0

̟3

ρ

n−1∑

j=0

(
n− 1

j

)
(−1)i+j (M−n+j+1)i−1̟i

2

ρi−1

i!
(38)

=

∞∑

i=0

(−1)i̟3̟
i
2

i!ρi

n−1∑

j=0

(
n− 1

j

)

(−1)j(M − n+ j + 1)i−1.

ConsiderQ2 as a function of̟ 2, andQ2 = 1 is true for
̟2 = 0, as can be seen from the definition ofQ2 in (33).
On the other hand by letting̟ 2 = 0 in (36), we obtain the
following equality:

̟3

n−1∑

j=0

(
n− 1

j

)

(−1)j
1

M − n+ j + 1
= 1. (39)

ConsequentlyQ2 can be rewritten as follows:

Q2 = 1 +

∞∑

i=1

(−1)i̟3̟
i
2

i!ρi

n−1∑

j=0

(
n− 1

j

)

(−1)j (40)

×
i−1∑

l=0

(
i− 1

l

)

(M − n+ 1)i−1−ljl.

Recall the following sums of the binomial coefficients (Eq.
(0.154.3) in [12]):

n−1∑

j=0

(
n− 1

j

)

(−1)jjl = 0, (41)

for n− 2 ≥ l ≥ 1 and

n−1∑

j=0

(
n− 1

j

)

(−1)jjn−1 = (−1)n−1(n− 1)!. (42)

Therefore all the components in (40) containingjl, l < (n−1),
can be removed, since they are equal to zero by using (41).
Furthermore, all the components containingjl, l > (n−1) can
also be ignored, since the one withj = n− 1 is the dominant
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factor. With these steps, the probability can be approximated
as follows:

Q2 ≈ 1 +
(−1)n̟3̟

n
2

n!ρn
(−1)n−1(n− 1)! (43)

= 1− ̟3̟
n
2

nρn
.

Combining (37) and (43), the second part of the theorem is
also proved. �

Proof for Theorem 2:
Recall that the outage performance of then-th user is given

by

P
(
log(1 + a2nρ|hn|2) < R

)
(44)

=P

(

log

(

1 +
|hm|2 − I

ρ

|hm|2(1 + I)
ρ|hn|2

)

< R, |hm|2 >
I

ρ

)

︸ ︷︷ ︸

Q3

+ P

(

|hm|2 <
I

ρ

)

︸ ︷︷ ︸

Q4

.

The first factor in the above equation can be calculated as
follows:

Q3 =P

(

|hm|2 − I
ρ

|hm|2(1 + I)
|hn|2 < ǫ1, |hm|2 >

I

ρ

)

. (45)

Recall that the users’ channels are ordered, i.e.,|hm|2 < |hn|2,
which brings additional constraints to the integral range in the
above equation. The constraints can be written as follows:

b < |hm|2 < min

{

|hn|2,
b

1− aǫ1
|hn|2

}

. (46)

The outage events due to these constraints can be classified as
follows:

1) If |hn|2 < aǫ1, we have the following:

P

(

|hm|2 − I
ρ

|hm|2(1 + I)
|hn|2 < ǫ1

)

(47)

= P
(
|hm|2(|hn|2 − ǫ1a) < b|hn|2

)
= 1.

Therefore the probabilityQ3 can be expressed as fol-
lows: 1

Q3 = P
(
b ≤ |hn|2 < aǫ1, |hn|2 > |hm|2 > b

)
.

2) If |hn|2 > aǫ1, there are two possible events:
a) If |hn|2 > b + aǫ1, we have b

1−
aǫ1

|hn|2
< |hn|2,

andQ3 can be written as follows:

Q3 = P

(

|hn|2 > b+ aǫ1, b < |hm|2 <
b

1− aǫ1
|hn|2

)

.

1It is assumed thatb ≤ aǫ1 here. For the case ofb > aǫ1, the outage
probability can be calculated in a straightforward way, since there will be
fewer events to analyze. Note that the same diversity order will be obtained
regardless of the choice ofb andaǫ1.

b) If |hn|2 < b + aǫ1, we have b
1−

aǫ1
|hn|2

> |hn|2,

andQ3 can be written as follows:

Q3 = P
(
aǫ1 < |hn|2 < b+ aǫ1, b < |hm|2 < |hn|2

)
,

which is again conditioned onb < aǫ1.
Therefore, the probabilityQ3 can be written as follows:

Q3 = P
(
b ≤ |hn|2 < aǫ1, |hn|2 > |hm|2 > b

)
(48)

+ P
(
|hn|2 < b+ aǫ1, b < |hm|2 < |hn|2

)

+ P

(

|hn|2 > b+ aǫ1, b < |hm|2 <
b

1− aǫ1
|hn|2

)

.

The first probability in (48) can be calculated by applying (32)
as follows:

P
(
b ≤ |hn|2 < aǫ1, |hn|2 > |hm|2 > b

)

=

n−1−m∑

i=0

(
n− 1−m

i

)

(−1)i
∫ aǫ1

b

g(y) (1−G(y))
M−n

×G(y)n−1−m−i

∫ y

b

̟1g(x)[G(x)]m−1+idxdy

=
n−1−m∑

i=0

(
n− 1−m

i

)

(−1)i
∫ aǫ1

b

g(y) (1−G(y))M−n

×G(y)n−1−m−i̟1

(
G(y)m+i −G(b)m+i

)

m+ i
dy.

Following similar steps, the second probability in (48) canbe
expressed as

P
(
aǫ1 < |hn|2 < b + aǫ1, b < |hm|2 < |hn|2

)
(49)

=

n−1−m∑

i=0

(
n− 1−m

i

)

(−1)i
∫ b+aǫ1

aǫ1

g(y) (1−G(y))
M−n

×G(y)n−1−m−i̟1

(
G(y)m+i −G(b)m+i

)

m+ i
dy.

The third probability in (48) can be calculated as follows:

P

(

|hn|2 > b+ aǫ1, b < |hm|2 <
b

1− aǫ1
|hn|2

)

(50)

=

n−1−m∑

i=0

(
n− 1−m

i

)

(−1)i
∫ ∞

b+aǫ1

g(y) (1−G(y))
M−n

×G(y)n−1−m−i

∫ b

1−
aǫ1

|hn|2

b

̟1g(x)[G(x)]m−1+idxdy

=

n−1−m∑

i=0

(
n− 1−m

i

)

(−1)i
∫ ∞

b+aǫ1

g(y) (1−G(y))
M−n

×G(y)n−1−m−i̟1

(

G

(

b
1−

aǫ1
|hn|2

)m+i

−G(b)m+i

)

m+ i
dy.

Note thatQ4 can be obtained easily by applying (32) and the
first part of the theorem is proved.
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Recall that the first probability in (48) can be expressed as
follows:

P
(
b ≤ |hn|2 < aǫ1, |hn|2 > |hm|2 > b

)

= ̟1

n−1−m∑

i=0

(
n− 1−m

i

)

(−1)i
∫ aǫ1

b

g(y)

× (1−G(y))
M−n

G(y)n−1−m−i

(
G(y)m+i −G(b)m+i

)

m+ i
dy,

where the integral range is0 ≤ y ≤ (aǫ1). Note that when
ρ → ∞, ǫ1 approaches zero, which meansy → 0, g(y) ≈ 1
and G(y) ≈ 1 − y. Therefore the above probability can be
approximated as follows:

P
(
b ≤ |hn|2 < aǫ1, |hn|2 > |hm|2 > b

)
(51)

≈ ̟1

n−1−m∑

i=0

(
n− 1−m

i

)

(−1)i

×
∫ aǫ1

b

yn−1−m−i

(
ym+i − bm+i

)

m+ i
dy

≈ ̟1

n−1−m∑

i=0

(
n− 1−m

i

)

(−1)i

×

(
(aǫ1)

n−bn

m+i+1 − bm+i
(

(aǫ1)
n−m−i−bn−m−i

n−m−i

))

m+ i
→ ρ−n.

Following similar steps, the second probability in (48) can
be approximated as follows:

P
(
aǫ1 < |hn|2 < b+ aǫ1, b < |hm|2 < |hn|2

)
→ ρ−n. (52)

The exact diversity order of the third probability in (48) is
difficult to obtain. Particularly the expression in (50) is difficult
to use for asymptotic studies, since the range ofy is not limited
and those manipulations related to high SNR approximations
cannot be applied here. We first rewrite (50) in an alternative
form as follows:

P

(

|hn|2 > b+ aǫ1, b < |hm|2 <
b

1− aǫ1
|hn|2

)

= P

(

b < |hm|2 < b+ aǫ1, b+ aǫ1 < |hn|2 <
|hm|2aǫ1
|hm|2 − b

)

.

Note that b + aǫ1 <
|hm|2aǫ1
|hm|2−b

always holds since|hm|2 <
b

1−
aǫ1

|hn|2
.

Now applying the joint pdf of the two channel coefficients,
we obtain the following expression:

P

(

b < |hm|2 < b+ aǫ1, b+ aǫ1 < |hn|2 <
|hm|2aǫ1
|hm|2 − b

)

=

n−1−m∑

i=0

̟1

(
n− 1−m

i

)

(−1)i
∫ b+aǫ1

b

g(x)[G(x)]m−1+i

×
∫ G(xaǫ1

x−b )

G(b+aǫ1)

[G(y)]n−1−m−i (1−G(y))M−n
dG(y)dx.

Again applying the binomial expansion, the above probability
can be further expanded as follows:

P

(

b < |hm|2 < b+ aǫ1, b+ aǫ1 < |hn|2 <
|hm|2aǫ1
|hm|2 − b

)

=
n−1−m∑

i=0

̟1

(
n− 1−m

i

)

(−1)i
∫ b+aǫ1

b

g(x)[G(x)]m−1+i

×
M−n∑

j=0

(
M − n

j

)

(−1)j
∫ G(xaǫ1

x−b )

G(b+aǫ1)

[G(y)]
n−1−m−i+j

dG(y)dx

=

n−1−m∑

i=0

̟1

(
n− 1−m

i

)

(−1)i
∫ b+aǫ1

b

g(x)[G(x)]m−1+i

×
M−n∑

j=0

(
M − n

j

)
(−1)j

n− 1−m− i+ j
(53)

×
([

G

(
xaǫ1

x− b

)]n−m−i+j

− [G(b+ aǫ1)]
n−m−i+j

)

dx.

Compared to (50), the above equation is more complicated;
however, this expression is more suitable for asymptotic stud-
ies, as explained in the following.

Recall that the integral range in (53) isb < x < b + aǫ1.
When ρ → 0, we haveb → 0 and b + aǫ1 → 0, which
impliesx → 0. Therefore the following approximation can be
obtained:

P

(

b < |hm|2 < b+ aǫ1, b+ aǫ1 < |hn|2 <
|hm|2aǫ1
|hm|2 − b

)

(54)

≈
n−1−m∑

i=0

̟1

(
n− 1−m

i

)

(−1)i

×
M−n∑

j=0

(
M − n

j

)
(−1)j

n− 1−m− i+ j

∫ b+aǫ1

b

xm−1+i

×
([

G

(
xaǫ1

x− b

)]n−m−i+j

− [b+ aǫ1]
n−m−i+j

)

dx.

First focus on the following integral which is from the above
equation:

∫ b+aǫ1

b

xm−1+i

[

G

(
xaǫ1

x− b

)]n−m−i+j

dx (55)

≈
∫ aǫ1

0

(b+ z)m−1+i
[

1− e−
abǫ1

z

]n−m−i+j

dz.

We can find the following bounds for the above integral:
∫ b+aǫ1

b

xm−1+idx (56)

≥
∫ b+aǫ1

b

xm−1+i

[

G

(
xaǫ1

x− b

)]n−m−i+j

dx

≥
∫ aǫ1

0

(b+ z)m−1+i

[

1− 1

1 + abǫ1
z

]n−m−i+j

dz,
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where the lower bound is obtained due to the inequality

e−
abǫ1

z ≤ 1

1 + abǫ1
z

,

when 0 ≤ z ≤ aǫ1. The upper bound in (56) can be
approximated at high SNR as follows:

∫ b+aǫ1

b

xm−1+idx (57)

=
(b + aǫ1)

m+i − bm+i

m+ i
→ 1

ρm+i
.

On the other hand, the lower bound in (56) can be approxi-
mated as follows:
∫ aǫ1

0

(b+ z)m−1+i

[

1− 1

1 + abǫ1
z

]n−m−i+j

dz (58)

= (abǫ1)
n−m−i+j

∫ aǫ1+abǫ1

abǫ1

(w + b− abǫ1)
m−1+i

wn−m−i+j
dz

= (abǫ1)
n−m−i+j

m−1+i∑

k=0

(b− abǫ1)
m−1+i−k

×
∫ aǫ1+abǫ1

abǫ1

wk−(n−m−i+j)dz ,

m−1+i∑

k=0

ξk.

At high SNR, we can show that

ξk →
{

ρ−(n+j) ln ρ, for k + 1 = n−m− i+ j

ρ−(n+j), otherwise
. (59)

Since log log ρ
log ρ

→ 0 for ρ → ∞, the lower bound in (56) can
be approximated as follows:
∫ aǫ1

0

(b+ z)m−1+i

[

abǫ1

z + abǫ1

]n−m−i+j

dz → ρ
−(n+j)

. (60)

Based on the upper and lower bounds in (57) and (60)
and after some algebraic manipulation, we have the following
inequality:

ρ
−n≤̇P

(

|hn|
2
> b+ aǫ1, b < |hm|2 <

b

1− aǫ1
|hn|2

)

≤̇ρ
−m

, (61)

wherea≤̇b denotes
(

− log a
log ρ

)

≤
(

− log b
log ρ

)

whenρ → ∞ [14].
Combining (51), (52) and (61), we can obtain the following

asymptotic bounds:

ρ−n≤̇Q2≤̇ρ−m. (62)

Following similar steps as above, we can also find that
Q3

.
= ρ−m, which is dominant inPn

o , and the proof for the
second part of the theorem is completed. �
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