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Nitrogen vacancy (NV) centers in diamond are atom-scale defects with long spin coherence times
that can be used to sense magnetic fields with high sensitivity and spatial resolution. Typically, the
magnetic field projection at a single point is measured by averaging many sequential measurements
with a single NV center, or the magnetic field distribution is reconstructed by taking a spatial av-
erage over an ensemble of many NV centers. In averaging over many single-NV center experiments,
both techniques discard information. Here we propose and implement a new sensing modality,
whereby two or more NV centers are measured simultaneously, and we extract temporal and spa-
tial correlations in their signals that would otherwise be inaccessible. We analytically derive the
measurable two-point correlator in the presence of environmental noise, quantum projection noise,
and readout noise. We show that optimizing the readout noise is critical for measuring correlations,
and we experimentally demonstrate measurements of correlated applied noise using spin-to-charge
readout of two NV centers. We also implement a spectral reconstruction protocol for disentangling
local and nonlocal noise sources, and demonstrate that independent control of two NV centers can
be used to measure the temporal structure of correlations. Our covariance magnetometry scheme
has numerous applications in studying spatiotemporal structure factors and dynamics, and opens a
new frontier in nanoscale sensing.

INTRODUCTION

Correlated phenomena play a central role in condensed
matter physics, and have been studied in many con-
texts including phase transitions [1, 2], many-body in-
teractions and entanglement [3–7], and magnetic order-
ing [8, 9], as well as in the context of fluctuating elec-
tromagnetic fields, where two-point correlators are cen-
tral to characterizing field statistics [10–13]. Recent ef-
forts towards improving quantum devices have also ex-
plored correlated noise in SQUIDS [14–16] and qubits
[17–22]. Nitrogen vacancy (NV) centers in diamond are
a promising sensing platform for detecting correlations,
as they are robust, noninvasive, and capable of measur-
ing weak signals with nanoscale resolution [23]. These
advantages have made them a useful tool for studying
many condensed matter systems including magnetic sys-
tems like 2D van der Waals materials [24, 25], magnons
[26], and skyrmions [27–29]; and transport phenomena
like Johnson noise [30], hydrodynamic flow [31–33], and
electron-phonon interactions in graphene [34]. These ap-
plications are powerful but have so far been limited to
signals that are averaged over space or time — more
information is potentially available by studying spatial
and temporal correlations in the system. Significant ad-
vances in nanoscale spectroscopy have already been made
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by studying correlations from a single NV center at dif-
ferent points in time [35–37]; measuring correlated dy-
namics between two different NV centers would provide
simultaneous information at length scales ranging from
the diffraction limit to the full field of view (∼0.1–100
micron length scales). Furthermore, measuring two NV
centers allows for measurements of correlations at two
different sensing times limited only by the experimental
clock cycle (∼1 ns resolution). Measurements of spa-
tiotemporal correlations at these length and time scales
would provide useful information about the dynamics of
the target system, including the electron mean free path,
signatures of hydrodynamic flow [38], or the microscopic
nature of local NV center noise sources like surface spins
[39–41].

In this paper we develop a new technique to mea-
sure classical correlations between two noninteracting NV
centers, which gives access to nonlocal information that
would normally be discarded with single NV center mea-
surements. Measuring such two-point correlators with
NV centers is challenging because conventional optical
spin readout provides very little information per shot.
Here we derive the sensitivity requirements for detecting
correlations, and experimentally implement a covariance
magnetometry protocol using spin-to-charge readout of
two spatially separated NV centers to achieve low read-
out noise. We demonstrate correlation measurements of
random-phase classical magnetic fields measured at two
points separated in space and time, and implement a
spectral decomposition method for extracting and dis-
tinguishing between correlated and uncorrelated spectral
components.

We consider two NV centers that do not directly in-
teract with each other but experience a shared classical
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FIG. 1. Covariance noise sensing. (A) Diagram of a diamond with two near-surface NV centers experiencing uncorrelated
local fields and a correlated common field. (B) Bloch sphere representations of each qubit state during sensing, with the states
prepared along x followed by a phase accumulation which will be different in each experiment, resulting in a distribution of
phases. At the end of each experiment a final π/2 pulse maps these phases to populations. (C-D) Pulse sequence diagrams
showing the sensing (XY8) and measurement (SCC) sequence for each NV center. The measurement is repeated many times,
retaining the photon counts from each measurement without signal averaging; we instead measure the correlation between the
resulting lists Si. (E) Using conventional detection of single NV centers (top row), the coherence decay gives access to the noise
spectral density S(f) but provides no spatial information. Covariance magnetometry measuring two NV centers (bottom row)
provides information about which spectral features are correlated and which are uncorrelated.

magnetic field, whose amplitude is correlated at the lo-
cations of the two NV centers (Fig. 1A). Each NV center
also sees a unique local magnetic field that is uncorrelated
between the two locations. These fields are detected us-
ing a Ramsey-type experiment addressing the ms = 0
and ms = +1 (or −1) spin sublevels of the NV center
(referred to as states 0 and 1 respectively), as illustrated
in Fig. 1B-D. Upon many repeated measurements, we
accumulate a list of signals S1 = {s1,i} and S2 = {s2,i},
where i = 1...N indexes the N total experiments.

Though similar to a typical Ramsey-type variance de-
tection sequence [42], we emphasize two significant modi-
fications for covariance detection. First, despite detecting
zero-mean noise, we choose a final pulse that is 90 degrees
out of phase with the initial pulse, such that for high-
frequency noise detection the final spin state is equally
likely to be 0 or 1 (Fig. 1B,C), maximizing our sensitivity
to correlations. This is not done in conventional noise
detection using variance magnetometry, since straight-

forward signal averaging would then produce the same
result 〈msi〉 = 0.5 always. Second, we do not compute
the average value of this signal, but rather compute the
shot-to-shot cross-correlation between the raw signals S1

and S2 (Fig. 1D).

Whereas conventional variance measurements provide
spectral densities with no spatial information (Fig. 1E,
top row), the addition of covariance information al-
lows us to identify which spectral components are com-
mon between two NV centers and which are unique to
each (Fig. 1E, bottom row). Throughout this work,
we focus on the measured Pearson correlation r =
Cov(S1, S2)/(σ1σ2), where Cov is the covariance and σ1,2

is the standard deviation of S1,2.
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FIG. 2. Detecting correlations and anticorrelations. (A) Pulse sequence and final Bloch sphere mapping for correlation (top
left) or anticorrelation (top right) measurements using global microwave control. For anticorrelations, an extra π pulse and
spatially selective NV polarization optical pulse (“reset”) are added during initialization (bottom, gray box). (B) Correlation
detected from a 2 MHz AC signal whose phase is randomized with 1 MHz bandwidth Gaussian noise. The measured correlations
are positive when the NV centers are initialized parallel to one another (blue circles) and negative when they are initialized
antiparallel (red squares). Lines indicate the predicted correlation shape [43]. Raw photon count statistics (bottom) taken from
the marked data points in the top panel show no correlation (i), positive correlation (ii), or negative correlation (iii), where

the color indicates the joint detection probability P̃ab ≡ P (s1=a, s2=b) − P (s1=a)P (s2=b). (C) Comparison of shot-to-shot
photon counts during averaging for conventional readout (top left) and spin-to-charge conversion readout (top right). (bottom)
Minimum magnetic field amplitude to detect correlations with SNR = 1 for Gaussian noise. Here we have assumed T2 = 100
µs and the phase integration time t = T2/2 = 50 µs, as well as a readout time of 300 ns for conventional readout and 1 ms for
SCC and optimal readout. Initialization time was ignored.

DETECTING CORRELATIONS

To demonstrate our protocol, we use an external ra-
diofrequency (RF) coil or stripline to apply a global,
random phase AC signal to two shallow NV centers ap-
proximately 10 nm from the diamond surface. Here the
two NV centers share the same magnetic resonance fre-
quency, so all microwave pulses address both. They are
spatially resolved, allowing for separate excitation and
readout using two independent optical paths [43]. To
boost the sensitivity of our readout, we use a simulta-
neous spin-to-charge conversion (SCC) protocol [44, 45]
on each NV center separately. We use an XY8 sensing
protocol for each NV center to maximize sensitivity to
the applied AC signal [46] (Fig. 2A). As expected, we
observe correlations that are maximized when the inter-
pulse spacing matches the frequency of the global signal
(Fig. 2B, blue circles). The correlations are apparent in
the photon count statistics (Fig. 2B, bottom panel ii);
when one or more photons are detected from NV1, we
observe a higher likelihood of also detecting a photon
from NV2. To confirm that we are in fact detecting cor-
relations in the spin state of the NV centers rather than
spurious technical correlations [43], we can also initialize

the two NV centers on opposite sides of the Bloch sphere
prior to applying the XY8 sequence (Fig. 2A). The phase
accumulation step then results in a final state that is an-
ticorrelated between the two NV centers (Fig. 2B, red
squares).

The sensitivity of a covariance measurement differs
from that of a traditional magnetometry measurement
because it requires simultaneous signals from two NV
centers. Assuming that the detected phases are statis-
tically even, as for a noisy or random-phase signal, we
find [43] the Pearson correlation

r =
e−[χ̃1(t1)+χ̃2(t2)]

σR1
σR2

〈sin[φC1
(t1)] sin[φC2

(t2)]〉 , (1)

where the subscripts 1, 2 denote NV1 and NV2 respec-
tively, the decoherence function χ̃1,2(t) describes the
‘typical’ coherence decay of the NV centers due to the
local fields [47], φC1,2

are the phases accumulated by the
NV centers due to the correlated field, and the readout
noise σR1,2

=
√

1 + 2(α0 + α1)/(α0 − α1)2 characterizes
the fidelity of a photon-counting experiment with mean
detected photon number α0, α1 for spin states 0, 1 respec-
tively [48]. For thresholding, the readout noise instead
depends on the fidelity of the spin state assignment [43].
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FIG. 3. Disentangling correlated and uncorrelated signals. (A) Single-NV noise spectra derived from conventional XY8 variance
magnetometry (top) of two NV centers (orange open markers and gray filled markers, arbitrarily offset). Each NV center detects
signals at two common frequencies, but it is impossible to directly determine whether the sources are local or nonlocal. Spectral
decomposition (bottom) using covariance magnetometry (Eq. (3)) reveals that the higher frequency peak is caused by a shared
noise source. Here, the shared noise feature is engineered using an applied global 1.75 MHz AC signal, while the local feature
is caused by the 15N nuclear spin intrinsic to each NV center. (B) In a broadband correlated noise environment, the two NV
centers rapidly decohere (orange open markers and gray filled markers). (C) Covariance magnetometry for evolution times
indicated by the gray rectangle in (B) reveals a dip in the Pearson correlation around τ = 1800 ns arising from the uncorrelated
15N nuclear spins intrinsic to each NV center. The broadband noise is correlated, allowing for the observation of spectral
features from local signals even at evolution times beyond the coherence time of both NV centers.

Note that the detectable correlation depends quadrat-
ically on the readout noise, making readout fidelity espe-
cially important for detecting correlations; this key fact
is implicit in prior calculations of single-NV center two-
point correlators derived in the context of repeated weak
measurements [37]. This may be intuitively understood
from Fig. 2C, which shows the raw photon counts for
conventional versus SCC readout methods. Using con-
ventional readout, only approximately 0.01 photons are
detected per measurement, such that detecting simulta-
neous counts from both NV centers is extremely unlikely.
Using SCC readout dramatically increases our ability to
detect coincident events, and has a greater effect on co-
variance measurements than on conventional single-NV
center measurements. From the independently measured
values for each term on the r.h.s. of Eq. (1) [43], we ex-
pect the detectable correlation in our experiment to be
approximately bounded by r ≈ 0.01, in good agreement
with the maximum correlation r ≈ 0.008 we detect here
(Fig. 2B). The remaining discrepancy is likely due to im-
perfect charge state initialization and SCC ionization.

Because readout noise plays an amplified role in co-
variance detection, covariance measurements can be-

come prohibitively long without optimizing sensitivity,
for which we require a detailed understanding of the sig-
nal to noise ratio (SNR). The sensitivity (minimum noise
amplitude σB,min with SNR = 1) of an experiment de-
tecting Gaussian noise is given by [43]

σ2
B,min =

−π ·Hz

4γ2
e t

ln

(
1− 2σ2

Re2t/T2√
T/(t+ tR)

)
, (2)

where γe is the electron gyromagnetic ratio, t is the
phase integration time, T2 is the coherence time, tR
is the readout time, and T ≈ (t + tR)N is the total
experiment time ignoring initialization. This is shown
in Fig. 2C (bottom) for three different readout meth-
ods: conventional (σR = 35), spin-to-charge conversion
(σR = 4), and single-shot readout with perfect fidelity
(σR = 1), which is ultimately limited by quantum projec-
tion noise. Achieving SNR = 1 for these three scenarios
when σB = 1 nT requires of order 300 hours, 3 hours,
and 10 seconds respectively. While detecting correlations
is extremely inefficient using conventional readout, en-
hanced readout protocols like spin-to-charge conversion
[44, 45, 49–51] allow for drastically lower readout noise,
making covariance magnetometry possible to implement
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FIG. 4. Temporal structure in correlations using independent control. (A) Confocal image showing the two NV centers used
for these experiments (left). Optically detected magnetic resonance spectrum (middle) showing optical contrast as a function
of microwave drive frequency displays two distinct sets of transitions corresponding to NV1 and NV2, with assignments (right).
The NV centers are driven independently on either the (0,−1) transitions for both NVs, labeled {−,−}, or the (0,−1) and
(0,+1) transitions for NV1 and NV2 respectively, labeled {−,+}. (B) Diagram of the pulse sequence used to probe temporal
correlations. After initialization, the start of the XY8 pulse sequence applied to NV2 is delayed by time tdelay from the start
of the pulses on NV1. A f0 = 3.125 MHz global AC signal is applied, making the resonant XY8 interpulse spacing τ = 160 ns.
(C) Correlations for the case where the NV centers are addressed on the same transitions ({−,−}, blue circles) oscillate as
a function of tdelay at the AC signal frequency 3.125 MHz. The correlations invert (red squares) when the two NV centers
are addressed on different transitions ({−,+}), as they now accumulate opposite phases for the same signal. (D) With added
phase noise, the time-domain dephasing of the AC signal is resolvable, despite having a short coherence time (less than 2µs)
compared to the XY8 sequence time.

in practice.

DISENTANGLING CORRELATED AND
UNCORRELATED NOISE SOURCES

Detecting cross-correlations in pure noise reveals pre-
viously hidden information about the spatial structure of
the noise, which we now demonstrate using two NV cen-
ters sensing both local and nonlocal magnetic fields. We
first measure the spectral density S(f) using a conven-
tional variance magnetometry measurement of two dif-
ferent NV centers (Fig. 3A). These individual spectra
reveal that there are two frequencies where signals are
seen by both NV centers, but cannot provide simultane-
ous nonlocal spatial information about that signal. Using
covariance magnetometry over the same frequency range
(Fig. 3B) shows only the higher-frequency feature, which
clearly reveals that the higher-frequency feature is caused
by a noise signal common to each NV center, while the
lower-frequency feature is instead caused by local noise
sources unique to each NV center.

This ability to distinguish correlated and uncorrelated
features enables spatially-resolved spectral decomposi-
tion, allowing us to distinguish spectral components that
are shared from those that are local. For phases that are

Gaussian-distributed or small (φ � π) we can find [43]
the correlated noise spectrum SC(f) if we have access to
both the two-NV correlation r as well as each NV center’s
coherence decay Ci(t) = e−χ(t) (note that Ci(t) includes
both the correlated and uncorrelated noise sources):

SC(f) =
π

2t
sinh−1

(
σ2
Rr

C1(t)C2(t)

)
, (3)

where t = n/(2f) and n is the total number of applied
XY8 pulses. This equation is used to obtain the corre-
lated spectrum from the measured correlation and single-
NV center coherence decays, as shown in Fig. 3A. The
local spectrum for each NV center SL1,2(f) may also be
found from each individual NV center’s total spectrum
SL1,2(f) = S1,2(f)− SC(f).

So far we have analyzed the case where shared and
local features are spectrally resolved, but an interesting
scenario arises when a shared signal decoheres each NV
center at frequencies coincident with local noise sources.
In order to probe this case, we apply a global broadband
Gaussian noise signal, decohering both NV centers while
inducing broadband correlations in their phases (Fig. 3B-
C). Beyond the coherence time of each NV center, con-
ventional variance detection cannot reveal any informa-
tion (Fig. 3B, gray region). However, covariance magne-
tometry (Fig. 3C) measures the broadband correlation in
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the random phases of the decohered NV centers — this
correlation will dip if either NV center interacts with a lo-
cal noise source in its vicinity, as the local signal induces
a phase that is unique to that NV center. The covariance
magnetometry spectrum therefore reveals a feature that
is hidden in the single-NV spectra.

TEMPORAL STRUCTURE OF CORRELATIONS

Covariance magnetometry also enables measurements
of the temporal structure of the two-point correlator
〈B(r1, t1)B(r2, t2)〉 separated in time as well as space for
short timescales where t2 − t1 < t + tR, which is not
possible with single NV center correlation measurements
[35–37]. To perform this measurement, independent con-
trol of each NV center is required. We accomplish this
by choosing two NV centers with different orientations at
low magnetic fields (Fig. 4A), such that the 0→ −1 tran-
sition of the NV center that is aligned with the magnetic
field is detuned by 70 MHz from that of the misaligned
NV center. We then offset the beginning of the XY8 se-
quence applied to NV2 by time tdelay (Fig. 4B), and mea-
sure an applied AC field at frequency f0 = 3.125 MHz.
As we sweep tdelay, the correlations oscillate at frequency
f0 (Fig. 4C), as expected for a random-phase AC signal
[35, 42]. Independent control also allows us to simul-
taneously address opposite spin transitions for each NV
center (Fig. 4A, right). Since the two NV centers then
accumulate opposite phases from the AC field, we ob-
serve anti-correlations with the same frequency (Fig. 4C,
red squares).

Because the two NV centers are manipulated inde-

pendently, there are no fundamental constraints on the
length of tdelay. This allows us to directly measure time-
domain structure on the nanosecond time scale at two
points in space, despite using π pulses with 60 ns dura-
tion. When we measure the correlations between two
NV centers experiencing a shared AC signal with added
phase noise (Fig. 4D), we can directly resolve the tempo-
ral structure of the AC signal despite its short coherence
time of less than 2µs, without making use of spectral
deconvolution.

CONCLUSIONS AND OUTLOOK

Here we have demonstrated simultaneous control and
readout of two spatially resolved NV centers, and have
shown that enhanced readout enables nanoscale mag-
netometry of two-point spatiotemporal field correlators
that would normally be discarded using conventional NV
center magnetometry. This new measurement technique
has many potential applications; specifically, measure-
ments of these two-point correlators can reveal the un-
derlying length and time scales of fluctuating electromag-
netic fields near surfaces [10–13], providing information
about nonequilibrium transport dynamics [52] and con-
densed matter phenomena like magnetic ordering in low-
dimensional systems [8, 9, 24]. Future extensions of the
current demonstration include using photonic structures
to improve photon collection efficiency [45, 49], apply-
ing different pulse sequences to each NV center to probe
the correlations between signals at different frequencies
[53] or phases [47], and using detector arrays to perform
simultaneous readout of many pairs of NV centers.
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nal of Physics 21, 043034 (2019).

https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/nature10748
https://doi.org/10.1103/PhysRevA.95.033423
https://doi.org/10.1103/PhysRevA.70.013603
https://doi.org/10.1103/PhysRevA.70.013603
https://doi.org/10.1103/PhysRevA.72.063407
https://doi.org/10.1103/PhysRevA.72.063407
https://doi.org/10.1073/pnas.2006103117
https://doi.org/10.1073/pnas.2006103117
https://doi.org/10.1038/nature09994
https://doi.org/10.1038/nature22362
https://doi.org/https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1088/2058-9565/aa8e15
https://doi.org/10.1088/2058-9565/aa8e15
https://doi.org/10.1103/PhysRevB.95.155107
https://doi.org/10.1103/PhysRevB.95.155107
https://doi.org/10.1103/PhysRevLett.103.117001
https://doi.org/10.1103/PhysRevB.81.132502
https://doi.org/10.1103/PhysRevB.81.132502
https://doi.org/10.1103/PhysRevB.84.014525
https://doi.org/10.1103/PhysRevB.84.014525
https://doi.org/10.1103/PhysRevA.94.012109
https://doi.org/10.1103/PhysRevA.94.012109
https://doi.org/10.1103/PhysRevA.95.022121
https://doi.org/10.1103/PhysRevA.95.022121
https://doi.org/10.1088/1367-2630/ab0ce7
https://doi.org/10.1088/1367-2630/ab0ce7


7
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Supplementary Information

I. METHODS

The diamond sample was implanted with a nitrogen ion energy of 3 keV, resulting in shallow NV centers roughly
10 nm from the surface. NV center measurements are performed in a home-built dual-path confocal microscope setup.
The green illumination on both paths is provided by a 532 nm optically pumped solid-state laser (Coherent Sapphire
LP 532-300), split with a 50:50 beamsplitter (Thorlabs CCM5-BS016). Each path is then optically modulated by
a dedicated acousto-optic modulator (AOM) (Isomet 1205C-1). The readout light around 590 nm is provided by
different lasers for each path. The path 1 readout is provided by an NKT SuperK laser (repetition rate 78 MHz,
pulse width 5 ps) with two bandpass filters with transmission wavelength around 590 nm (Thorlabs FB590-10 and
Semrock FF01-589/18-25). The path 2 readout is provided by a 594 nm helium-neon laser (REO 39582). Both paths
are optically modulated with dedicated AOMs (Isomet 1205C-1). The ionization light is provided by two 638 nm
lasers (Hubner Cobolt 06-MLD) for each path, internally modulated.

For each optical path, the three excitation wavelengths are combined by a 3-channel fiber RGB combiner (Thorlabs
RGB26HF), and each excitation path is scanned by dedicated X-Y galvo mirrors (Thorlabs GVS012). The two optical
paths are combined with a 2 inch beamsplitter cube (Thorlabs BS031). Each path is equipped with a 650 nm longpass
dichroic mirror (Thorlabs DMLP650) to separate the excitation and collection pathways, and the photoluminescence
(PL) for each path is measured by a dedicated fiber-coupled avalanche photodiode (Excelitas SPCM-AQRH-16-FC).
A Nikon Plan Fluor 100x, NA = 1.30, oil immersion objective is used for focusing the excitation lasers and collecting
the PL. The laser powers used (as measured before the objective) were approximately 3 to 7 µW for orange readout,
100 to 130 µW for green initialization, and 10 to 30 mW for the red ionization (this ionization power was extrapolated
from lower-power measurements, and assumes perfect laser linearity). In practice, we found that the use of a green
shelving pulse before ionization was unnecessary to achieve low readout noise, so a shelving pulse was not used.

Microwave pulses are generated using a Rohde and Schwarz signal generator (SMATE200A) and amplified with
a high power amplifier (Mini-Circuits ZHL-16W-43S+) before being sent to a homemade microwave stripline. Low
frequency test signals are generated with an arbitrary waveform generator (Keysight 33622A) and amplified with a
high power amplifier (Mini-Circuits LZY-22+). For the data shown in Fig. 2, we apply a random-phase AC signal
at f0 = 2 MHz, phase-randomized with 1 MHz bandwidth Gaussian noise, which we detect using an XY8 dynamical
decoupling sequence repeated 4 times (32 total pulses). For the data shown in Fig. 3A, we apply a f0 = 1.75 MHz AC
signal phase-randomized with 50 kHz bandwidth Gaussian noise, detected with an XY8 sequence repeated 5 times
(40 total pulses). For Fig. 3B we apply spectrally flat Gaussian noise with 2 MHz bandwidth and repeat an XY8
sequence twice (16 total pulses). For the data shown in Fig. 4, the XY8 sequence is repeated twice (16 total pulses),
and we measure an externally applied AC field at frequency f0 = 3.125 MHz using pulses separated by τ = 160 ns.
The AC signal is either phase-coherent (Fig. 4C) or phase-randomized with 1 MHz bandwidth white noise (Fig. 4D).

The correlation data were obtained by performing typically 1 to 2 million individual experiments for each data
point shown, then correlating the resulting individual photon counts between the two paths. To filter out spurious
correlations from slow PL variations due to sample drift, we subtract the mean photon number calculated for each
1000 data points sequentially, effectively high-pass filtering the raw counts. While this can help reduce spurious
correlations from any significant background drifts in principle, the resulting change was minor in our data.

II. TEMPORAL CORRELATIONS BETWEEN SUBSEQUENT MEASUREMENTS

Covariance magnetometry with multiple NV centers enables correlation sensing with high temporal resolution,
but we are further able to access the temporal correlation function between subsequent measurements r(s) =
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Cov [S1(i)S2(i+ s)] /(σ1σ2), where s defines a relative offset and where the covariance is taken over the index i.
For coherent AC signals like the ones measured in Fig. 4B, we expect to see a temporal structure which depends
on the pulse sequence duration and the signal frequency if the signal is stable for long periods of time (Fig. S1A).
Although we did not set out to synchronize subsequent experiments with a stable clock, we are still able to observe
this temporal structure in our data (Fig. S1B). The only free parameter in Fig. S1A is an overall offset in the ex-
periment duration, which we set to 60 ns – this is possibly caused by clock instabilities during the long charge state
readout, which lasts a few milliseconds. For white noise signals like the ones measured in Fig. 3C, we instead expect
the shot-to-shot correlations to be zero for s > 0, which we also observe (Fig. S1C).

These long term time dynamics can also be useful for diagnosing experimental noise sources, which can cause
significant problems in detecting true shot-to-shot correlations of the NV centers’ spin states. As an example, Fig. S1D
shows correlations which mimic a real spin signal but are in fact caused by mechanical vibrations due to a lateral
contact point in one of the optical table legs. This vibration creates a global fluctuation in fluorescence collection on
both optical paths and thus appears in the correlated signal. Removing such systematic noise sources is crucial for
mitigating spurious correlations.

A

B

C

D

FIG. S1. Temporal correlations between subsequent measurements. (A) Expected and (B) measured correlation in the signals
from a 3.125 MHz source detected by 2 NV centers using XY8 sequences separated by tdelay. Because the experiment duration
is milliseconds, the pattern is strongly aliased. (C) Measured correlation between signals from a white noise source, which
drops into the noise for s > 0. (D) Spurious correlation induced by roughly 20 Hz mechanical vibrations of the optical table.

III. DETECTABLE CORRELATIONS

Consider two NV centers, which are not directly interacting with each other but which experience a shared classical
magnetic field in their vicinity, as illustrated in Fig. 1A. This field is referred to as the correlated field. Each NV also
sees proximal magnetic fields (for instance from fluctuating local nuclear spins), which are unique to each NV center.
This will be called the uncorrelated or local field.

We isolate an effective spin-1/2 system for each NV by considering only the ms = 0 and ms = +1 (or −1) sublevels,
which we refer to as states 0 and 1 respectively. We assume each NV is initialized in the transverse plane, then in the
course of some detection protocol each NV acquires some net transverse phase φ due to interactions with the magnetic
field. At the end of the sensing protocol a final π/2 pulse maps the azimuthal angle φ to a polar angle θ = φ+ π/2.
Due to quantum projection the conditional probability for each NV center to be found in a given quantum state upon
measurement is

P (ms = 0|θ) = cos2(θ/2) (S1)

P (ms = 1|θ) = sin2(θ/2) (S2)

The measured signals s1 and s2 will depend on the measurement type; for single shot thresholded (th) measurement
they will be the inferred spin states 0 or 1, while for photon counting (pc) they will be the counted photon numbers
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k, resulting in the measurement probabilities conditioned on the spin state:

P pc(s=k|ms) = Pois(k, αms
) (S3)

P th(s=ms|ms) = F (S4)

where Pois(k, αms
) is a Poisson process with mean αms

determined by the spin state, and 0.5 ≤ F ≤ 1 is the readout
fidelity. Below we will start by treating the thresholded readout more generally, allowing the error probabilities
P (s = 0|ms = 1) and P (s = 1|ms = 0) to differ.

We repeat the experiment many times such that for each NV center we have a list of phases φi and corresponding
measurements si

Φ1 = {φ1,i} S1 = {s1,i} (S5)

Φ2 = {φ2,i} S2 = {s2,i} (S6)

where i = 1...N indexes the N total experiments. The values of the si will depend on whether we use photon counting
or thresholded measurement as described above.

We are interested in what we can learn from the correlation between the two data sets S1 and S2 given certain
assumptions about the distributions Φ1 and Φ2. We will focus on the measured Pearson correlation r, which will
differ from the true statistical correlation due to quantum projection, finite sampling size, and readout error. In the
following, we will use a Bayesian statistical model to derive the measured correlation between two such data sets, and
find the sensitivity of such a measurement in different contexts.

A. Ideal measured correlation

We will not make any assumptions about the precise distributions from the correlated and local signals, except to
assume that they are evenly distributed. We further assume that the phases acquired by the two NVs are

φ1 = φC1 + φL1 (S7)

φ2 = φC2
+ φL2 (S8)

where φC1
, φC2

are the common phases acquired due to the shared correlated field, and φL1, φL2 are the phases
acquired due to the local field. We assume that φC1 ∝ φC2 , and assume that φL1 and φL2 are independent. Such
a decomposition into correlated and uncorrelated components is always possible for two lists, and here we take the
correlated component φC1 , φC2 to be caused by the global (shared) signal and the uncorrelated component φL1, φL2

to be caused by the local (unshared) signal.
The quantity we seek to derive is the Pearson correlation, defined by:

r =
Cov(S1, S2)

σS1
σS2

=
〈S1S2〉 − 〈S1〉 〈S2〉

σS1
σS2

. (S9)

We start by assuming perfect readout so that the signals are the NV spin states {S1, S2} = {ms1 ,ms2}. We let
pφ(φ1, φ2) denote the joint probability density to acquire phase {φ1, φ2} with NV 1 and 2 respectively, and ps(s1, s2) =∫
p(s1|φ1)p(s2|φ2)pφ(φ1, φ2)dφ1dφ2 denote the probability to detect signal {s1, s2}, where p(si|φi) is the probability

to detect signal si given accumulated phase φi. Since we acquire phase in the transverse plane and read out after a
final π/2 pulse (see Fig. 1) we have θ = φ+ π/2, and

〈ms1ms2〉 = 1 · 1 · ps(1, 1) + 1 · 0 · ps(1, 0) + 0 · 1 · ps(0, 1) + 0 · 0 · ps(0, 0)

= ps(1, 1) (S10)

=

∫
φ1,φ2

sin2

(
φ1

2
+
π

4

)
sin2

(
φ2

2
+
π

4

)
pφ(φ1, φ2)dφ1dφ2 (S11)

Since we assume φC , φL1, φL2 are drawn from independent distributions, we may rewrite the phase probabilities in
terms of separate statistical draws, and we have

〈ms1ms2〉 =∫
sin2

(
1

2
[φC1

+ φL1] +
π

4

)
sin2

(
1

2
[φC2

+ φL2] +
π

4

)
p(φC)p(φL1)p(φL2) dφCdφL1dφL2 (S12)

=
1

4
(1 + 〈sin(φC1

) sin(φC2
)〉 〈cos(φL1)〉 〈cos(φL2)〉) (S13)
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where we have used the fact that 〈sin(φ)〉 = 0 for an even distribution. Then we have for the correlation (using the

Bernoulli statistics 〈S〉 = 〈S2〉 = 1/2 and σ2
S = 〈S2〉 − 〈S〉2 = 1/4)

rideal = 〈sin(φC1
) sin(φC2

)〉 〈cos(φL1)〉 〈cos(φL2)〉 (S14)

Noticing that 〈cos(φL)〉 = 〈eiφL〉 = e−χ̃(t) is the decoherence function for variance detection [S1], we find the
correlation

rideal = e−[χ̃1(t)+χ̃2(t)] 〈sin[φC1(t)] sin[φC2(t)]〉 (S15)

Note that Equation (S15) is similar to the expression for temporal correlation spectroscopy using a single NV center
[S2], in which case there are two subsequent phase acquisition times for the single NV center instead of independent
phase acquisition times for two separate NV centers.

As an example, for identical correlated phases φC1
= φC2

= φC this is

rideal =
1

2
e−[χ̃1(t)+χ̃2(t)] [1− 〈cos(2φC(t))〉] (S16)

which for Gaussian-distributed correlated phases is

rideal =
1

2
e−[χ̃1(t)+χ̃2(t)]

(
1− e−2σ2

ΦC

)
(S17)

where σ2
ΦC

is the variance of the correlated phase distribution. The assumption of Gaussian phases is violated for e.g.
random-phase AC signals detected by a CP-type pulse sequence with pulse spacing τ , in which case the more general
Bessel function forms will result [S1] if the correlated phases are identical:

rideal =
1

2
e−(χ̃1(t)+χ̃2(t))

[
1− J0

(
4γB0Wt

)]
, (S18)

where W = sinc(πfnτ) [1− sec(πfτ)] and n is the total number of applied pulses. Note the extra factor of 2 relative
to the expression for decoherence measured using typical single-NV center variance detection [S1]. While decoherence
is effectively accelerated because of contributions from both NV centers (since there are two factors of χ̃ in Eq. (S15)),
the phase accumulation rate is also effectively doubled (since sin2(φ) ∼ cos(2φ)), such that there is no net penalty to
the sensitivity regarding phase integration time.

B. Measured correlation with readout noise

1. Photon counting: shot noise

We are now interested in accounting explicitly for the number of photons n that are counted from an NV center,
depending on its state. The photon number is drawn from a Poisson distribution whose mean depends on the NV
center spin state, with mean α0 for state ms = 0 and mean α1 for ms = 1.

The list of photon counts for NV 1 is S1 and for NV 2 is S2, with individual photon counts n1 and n2. As before,
we must calculate 〈S1S2〉 =

∑
n1n2P (n1, n2):

〈S1S2〉 =
∑
n1,n2

n1n2

[
P (n1|ms=0)P (n2|ms=0)

∫
φ1,φ2

cos2

(
φ1

2
+
π

4

)
cos2

(
φ2

2
+
π

4

)
p(φ1, φ2)dφ1dφ2+

P (n1|ms=0)P (n2|ms=1)

∫
φ1,φ2

cos2

(
φ1

2
+
π

4

)
sin2

(
φ2

2
+
π

4

)
p(φ1, φ2)dφ1dφ2+

P (n1|ms=1)P (n2|ms=0)

∫
φ1,φ2

sin2

(
φ1

2
+
π

4

)
cos2

(
φ2

2
+
π

4

)
p(φ1, φ2)dφ1dφ2+

P (n1|ms=1)P (n2|ms=1)

∫
φ1,φ2

sin2

(
φ1

2
+
π

4

)
sin2

(
φ2

2
+
π

4

)
p(φ1, φ2)dφ1dφ2

]
, (S19)

or recognizing the angular integral from above, and using by symmetry

p(ms=0) = p(ms=1) =

∫
sin2

(
φi
2

+
π

4

)
p(φi)dφi =

∫
cos2

(
φi
2

+
π

4

)
p(φi)dφi =

1

2
, (S20)
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we have

〈S1S2〉 =
∑
n1,n2

n1n2×[
P (n1|ms=0)P (n2|ms=0) 〈ms1ms2〉+
P (n1|ms=0)P (n2|ms=1)

(
1
2 − 〈ms1ms2〉

)
+

P (n1|ms=1)P (n2|ms=0)
(

1
2 − 〈ms1ms2〉

)
+

P (n1|ms=1)P (n2|ms=1) 〈ms1ms2〉
]

(S21)

where 〈ms1ms2〉 is defined as in Eq. (S13). Because the draws for n1 and n2 are independent at this stage (i.e.
〈n1n2〉 = 〈n1〉 〈n2〉 when drawn from already-given Poisson distributions), and denoting a Poisson distribution with
mean α as Poisα(x), we can use e.g.

∑
n1
n1P (n1|ms=0) =

∑
n1
n1Poisα0(n1) = α0 to find

〈S1S2〉 = 〈ms1ms2〉 (α0 − α1)2 + α0α1. (S22)

Lastly, we note that for a joint Poisson distribution we have mean and variance:

〈S〉 =
1

2
(α0 + α1) (S23)

〈S2〉 − 〈S〉2 =
1

4
(α0 − α1)2 +

1

2
(α0 + α1). (S24)

Combining these elements the detected correlation for photon counting rpc becomes

rpc =
1

1 + 2(α0 + α1)/(α0 − α1)2
rideal

=
1

σ2
R

rideal, (S25)

where σR =
√

1 + 2(α0 + α1)/(α0 − α1)2 is the readout noise [S3, S4]. Notice that the measured correlation depends
quadratically on the readout noise, rather than linearly.

If we assume that the two NV centers have different readout noise σR1
and σR2

, a slightly longer but straightforward
calculation yields the more general result:

rpc =
1

σR1
σR2

rideal, (S26)

2. Single shot readout: thresholding

For a thresholded measurement with Pk(i, j) the probability to assign spin state i given spin state j on NV center
k, we can perform a similar calculation to the one above to find:

〈S1S2〉 =P (S1=1, S2=1)

=P1(1|0)P2(1|0) 〈ms1ms2〉+
=P1(1|0)P2(1|1)

(
1
2 − 〈ms1ms2〉

)
+

=P1(1|1)P2(1|0)
(

1
2 − 〈ms1ms2〉

)
+

=P1(1|1)P2(1|1) 〈ms1ms2〉 . (S27)

Then, since 〈S2
i 〉 = 〈Si〉 = 1

2 [Pi(1|0) + Pi(1|1)], we find the detected correlation for thresholding rth

rth =
1

σth
R1
σth
R2

rideal (S28)

where the readout noise for thresholding is [S4]

σth
Ri

=

√
1 + 2

Pi(1|0) [1− Pi(1|0)] + Pi(1|1) [1− Pi(1|1)]

[Pi(1|0)− Pi(1|1)]
2 . (S29)
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In the simplified case that the errors are symmetric with P (1|0) = 1 − P (1|1) we have σth
Ri

= 1/(2F − 1) where

F = 1− 1
2 [P (1|0) + [1− P (1|1)]]→ 1− P (1|0) is the fidelity [S4]. The detectable correlation then becomes:

rth = (2F1 − 1)(2F2 − 1)rideal, (S30)

where the two NV centers may have different readout fidelities F1 and F2 respectively. When fidelity is minimized
(F = 0.5) the measured correlation is 0, and when fidelity is maximized (F = 1) we recover the idealized correlation
rideal in Eq. (S15). Again, note that the measurable correlation depends quadratically on the readout fidelity rather
than linearly.

IV. EXPECTED CORRELATIONS

We estimate the expected detectable correlations in our experiment by measuring each of the key parameters in
Eqs. (S18) and (S26): decoherence, magnetic field strength, frequency range, and readout noise. This characterization
is show in Fig. S2 for each of these variables in turn. Numerically calculating the expected correlation using these
variables we find that our measured correlation is approximately 70 % of the expected value, likely limited by charge
state initialization and SCC ionization efficiency.

Decoherence from local sources reduces the measurable correlation, as shown in Fig. 3A,C. In both cases the local
noise is due to the hyperfine interaction of the NV center with its intrinsic nuclear spin. The filter function frequencies
where this interaction is detected are at [S5] fk = (2γNB0 + 3.05 MHz)/(2k), where γN = −4.3 MHz/T is the 15N
nuclear gyromagnetic ratio, B0 ≈ 31 mT is the strength of the external magnetic field, and k is the filter function
frequency harmonic. In Fig. 3A,C in the main text, the detected harmonics are k = 1 and k = 5 respectively. For the
data shown in Fig. 4, note that the 0 → +1 detuning is only about 60 MHz due to hybridization for the misaligned
NV center [S6].
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FIG. S2. Measuring parameters in estimating expected correlation for Fig. 2. (A) Dynamical decoupling measurements provide
decoherence rates with exp(−t/T2) ≈ 0.94 and 0.71 for the two NV centers near τ = 250 ns. (B) Correlation measurements
versus amplitude provide an estimate of the AC signal magnetic field strength B0 ≈ 0.13 G. (C) XY8 measurements provide an
estimate of the FWHM of the 2 MHz signal with 1 MHz phase noise. In Eq. (S18), we integrate f over the frequency range of
our line-broadened signal to derive the theory curves shown in Fig. 2B. (D) Readout noise σR versus ionization time measured
before (open markers) and after (filled markers) the data acquisition in Fig. 2. Lines are guides to the eye. tion = 200 ns was
used to acquire the data shown in Fig. 2.

V. SPECTRAL DECOMPOSITION AND SENSITIVITY

A. Spectral decomposition

We assume the NV centers accumulate small phase angles (or experience a Gaussian noise source) in the presence
of a Carr-Purcell (CP) [S7] type AC sensing sequence with large pulse numbers, and pulse spacing τ . Approximating
the pulse sequence filter function as a delta function centered at frequency ω = π/τ , the coherence decay C(t) is
generally described by

C(t) = e−χ(t)

χ(t) =
1

2
〈φ2〉 =

1

π

∫ ∞
0

dω
F (ω)

ω2
S(ω) ≈ t

π
S(ω), (S31)
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where F (ω) is the pulse sequence filter function, χ(t) is the decoherence from all noise sources (local and global), and
S(ω) is the spectral density of the magnetic field [S1, S8, S9]:

S(ω) =

∫ ∞
−∞

e−iωtγ2
eG(t)dt (S32)

G(t) = 〈B(t′ + t)B(t′)〉 . (S33)

To perform spectral decomposition we assume that the two NV centers experience identical global fields with noise
spectral densities SC(ω) = SC1

(ω) = SC2
(ω), and that the noise spectrum may be decomposed into correlated and

uncorrelated (local) contributions S(ω) = SC(ω) + SL1,2
(ω). We further assume that the accumulated correlated

phases are Gaussian-distributed or small such that φ � π. Then we have 〈sin(φC1
) sin(φC2

)〉 = e−2χC sinh(2χC),
where χC is the decoherence induced by the correlated noise source, and the correlation becomes

r =
1

σ2
R

C1(t)C2(t) sinh

(
2t

π
SC

(π
τ

))
, (S34)

where C(t) = e−(χ̃+χC)t is the total decoherence from all sources. Inverting this equation we find the correlated
spectral density

SC(ω) =
π

2t
sinh−1

(
σ2
Rr

C1(t)C2(t)

)
. (S35)

which is Eq. (3) in the main text.

B. Sensitivity

To derive the sensitivity of a covariance magnetometry measurement, we start from Eq. (1) in the main text, which
accounts for the signal, readout noise, and decoherence. We now account for the statistical noise ςr which is a measure
of the uncertainty in the Pearson correlation due to the finite number of sampled points N [S10]:

ςr ≈ tanh

(
1√
N − 3

)
≈ 1√

N
, (S36)

where the approximation holds for N � 1. Then the SNR is approximately

SNR =
r

ςr
≈ e−2χ̃(t)

√
N

σ2
R

〈sin[φC1
(t)] sin[φC2

(t)]〉 . (S37)

For simplicity, we have assumed that the NV centers have the same readout noise σR and the same decoherence
function from local noise sources χ̃(t).

To determine the sensitivity we must consider the time dependence of each term in Eq. (S37). These include the
time it takes to run each of the N experiments, the phase accumulation time, and potentially the time dependence
of the readout noise σR (which for SCC improves for longer readout times). We assume the detected correlations are
from a shared magnetic field source with spectral density SC(ω) (Eq. (S34)), where we again assume that the two
NV centers see the same shared field (rather than e.g. one NV center being further and experiencing an attenuated
version of the shared field), so that SC1

(ω) = SC2
(ω) = SC(ω). Then

SC,min = − π
4t

ln

[
1− 2σ2

ReχL1(t)+χL2(t)

√
N

]
≈ π

2
σ2
Re2t/T2

√
t+ tR
t2T

, (S38)

where t is the phase integration time, tR is the readout time, and T ≈ (t+ tR)N is the total experiment time ignoring
initialization. Assuming the noise has flat spectral density around the detection frequency SC(ω) = γ2

eσ
2
B/Hz we find

the minimum detectable noise amplitude

σ2
B,min =

−π ·Hz

4γ2
e t

ln

(
1− 2σ2

Re2t/T2√
T/(t+ tR)

)
, (S39)

which is Eq. (2) in the main text and is illustrated in Fig. 2C.
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VI. HIGHER ORDER JOINT CUMULANTS

We have focused on 2-body (Pearson) correlations but here we extend this to higher orders. Consider the Nth-order
joint cumulant defined by

κN = κ(m1,m2, ...,mN ) =
∑
π

(|π| − 1)!(−1)|π|−1ΠB∈π 〈Πi∈Bmi〉 (S40)

where π are the different partitions (ways of grouping the individual mi), |π| is the number of parts in a partition,
and B is the blocks in the partitions. For example, for N = 3 we have

κ3 = 〈m1,m2,m3〉 − 〈m1,m2〉 〈m3〉 − 〈m1,m3〉 〈m2〉 − 〈m2,m3〉 〈m1〉+ 2 〈m1,m2,m3〉 , (S41)

where e.g. the partition 〈m1,m2〉 〈m3〉 has two blocks (|π| = 2), which are 〈m1,m2〉 and 〈m3〉. Here we calculate this
joint cumulant for N NV centers where we assume each NV center experiences the same magnetic field for simplicity.

Suppose we arrange our starting NV center orientations from measurement to measurement in such a way that
across many measurements all NV measurement expectation values are independent; for instance with four NV centers
we have 〈m1m2m3〉 = 〈m1〉 〈m2〉 〈m3〉, etc., where for a Bernoulli distribution with NV states mi = 0 or 1 we have
〈mi〉 = 1/2. Then in Eq. (S40) we must calculate 〈m1m2...mN 〉 as well as a series of terms which will only contain
products of individual means 〈mi〉:

κN = 〈m1m2...mN 〉+

(∑
i

xi

)
〈m〉N (S42)

where xi are coefficients to the series of mean-product partition terms in Eq. (S40).
However, the latter term may be quickly deduced by noticing that for any cumulant with independent entries we

must have

κindep
N = 0 = 〈m1m2...mN 〉+

(∑
i

xi

)
〈m1〉 〈m2〉 ... 〈mN 〉

=

(
1 +

∑
i

xi

)
〈m1〉 〈m2〉 ... 〈mN 〉 (S43)

so that
∑
i xi = −1 and the second term in Eq. (S42) must be −〈m〉N = −1/2N .

For the first term we have

〈m1m2...mN 〉 = 1 · p(1, 1, ..., 1) =
1

2N

∫
(1 + sin(φ))Np(φ)dφ

=
1

2N

∫
1 + sinN (φ)p(φ)dφ (S44)

where the last equality holds because we have already assumed the phase distributions are independent for any number
of NVs m < N . Then for the Nth-order cumulant we have

κN =
1

2N

∫
1 + sinN (φ)p(φ)dφ− 1

2N

=
1

2N
〈sinN (φ)〉 (S45)

Lastly, by analogy with the usual expression for the Pearson correlation, we define a normalized Nth-order joint
cumulant κ̃N by

κ̃N =
κN

Πiσi
(S46)

where σi are the standard deviations of the individual distributions; for Bernoulli distributions these are σi = 1/2
yielding

κ̃N = 2NκN = 〈sinN (φ)〉 . (S47)
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The Fourier term in this expression whose rate is Nφ is suppressed by a factor 1/2N , such that the net sensitivity

relative to single-NV variance sensing is
√
N/2N−1 for this term. Thus the boosted phase accumulation rate does not

translate to an overall sensitivity enhancement for large N relative to single-NV sensing of the same signal.
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333001 (2017).
[S9] Y. Romach, C. Müller, T. Unden, L. J. Rogers, T. Isoda, K. M. Itoh, M. Markham, A. Stacey, J. Meijer, S. Pezzagna,

B. Naydenov, L. P. McGuinness, N. Bar-Gill, and F. Jelezko, Phys. Rev. Lett. 114, 017601 (2015).
[S10] R. A. Fisher, Statistical Methods for Research Workers (Oliver & Boyd: Edinburgh, 1925).

https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1038/ncomms2685
https://doi.org/10.1038/nphys1075
https://doi.org/10.3390/mi9090437
https://doi.org/10.1063/1.5011231
https://arxiv.org/abs/https://doi.org/10.1063/1.5011231
https://doi.org/10.1038/nphys141
https://doi.org/10.1103/PhysRev.94.630
https://doi.org/10.1088/1361-648x/aa7648
https://doi.org/10.1088/1361-648x/aa7648
https://doi.org/10.1103/PhysRevLett.114.017601

	Nanoscale covariance magnetometry with diamond quantum sensors
	Abstract
	 Introduction
	 Detecting correlations
	 Disentangling correlated and uncorrelated noise sources
	 Temporal structure of correlations
	 Conclusions and outlook
	 References
	 Acknowledgments
	I Methods
	II Temporal correlations between subsequent measurements
	III Detectable correlations
	A Ideal measured correlation
	B Measured correlation with readout noise
	1 Photon counting: shot noise
	2 Single shot readout: thresholding


	IV Expected correlations
	V Spectral decomposition and sensitivity
	A Spectral decomposition
	B Sensitivity

	VI Higher order joint cumulants
	 References


