
Syntax-Guided Synthesis for Lemma Generation

in Hardware Model Checking

Hongce Zhang, Aarti Gupta, and Sharad Malik

Princeton University, Princeton NJ 08544, USA
{hongcez,aartig,sharad}@princeton.edu

Abstract. In this work we propose to use Syntax-Guided Synthesis (Sy-
GuS) for lemma generation in a word-level IC3/PDR framework for bit-
vector problems. Hardware model checking is moving from bit-level to
word-level problems, and it is expected that model checkers can benefit
when such high-level information is available. However, for bit-vectors, it
is challenging to find a good word-level interpolation strategy for lemma
generation, which hinders the use of word-level IC3/PDR algorithms.
Our SyGuS-based procedure, SyGuS-APDR, is tightly integrated with an
existing word-level IC3/PDR framework APDR. It includes a predefined
grammar template and term production rules for generating candidate
lemmas, and does not rely on any extra human inputs. Our experiments
on benchmarks from the hardware model checking competition show that
SyGuS-APDR can outperform state-of-the-art Constrained Horn Clause
(CHC) solvers, including those that implement bit-level IC3/PDR. We
also show that SyGuS-APDR and these CHC solvers can solve many
instances faster than other leading word-level hardware model checkers
that are not CHC-based. As a by-product of our work, we provide a
translator Btor2CHC that enables the use of CHC solvers for general
hardware model checking problems, and contribute representative bit-
vector benchmarks to the CHC-solver community.

Keywords: hardware model checking · Syntax-Guided Synthesis (Sy-
GuS) · bit-vector theory · lemma generation · CHC solver.

1 Introduction

Hardware bugs are circuit design errors that can cause malfunction or security
breaches, which could further lead to system failures or economic losses. Com-
pared to software bugs, hardware bugs tend to be more costly to fix due to the
need for a physical replacement and high non-recurring expenses for respins.
Therefore, it is very important to ensure the correctness of hardware designs be-
fore manufacturing. Model checking [18], which formally checks whether certain
correctness properties hold in a state transition system, has been successfully
applied in finding hardware bugs or proving there are no property violations.

In hardware model checking, descriptions of the circuit and properties to be
checked are given as inputs to an automated tool. The design description, until

recently, was typically provided using a bit-level format called AIGER [7], which
uses the and-inverter graph (AIG) representation. The AIGER format is com-
pact and close to a post-logic-synthesis hardware implementation. However, it
lacks word-level information which could be helpful in improving scalability of
hardware model checking. Recently, in 2019, the hardware model checking com-
petition (HWMCC) started to advocate use of a word-level description called
Btor2 [49]. It follows similar principles as the bit-level AIGER format, but in-
stead uses SMT-LIB2 [6] logics for bit-vectors and arrays. This format preserves
the word-level information in the circuit description. For example, a 32-bit adder
in Btor2 can be represented succinctly using a single “add” operator (namely
the modular addition function bvadd in SMT-LIB2), whereas in AIGER format,
it is bit-blasted into single-bit half and full adders represented using 378 AIG
nodes. The Btor2 format allows model checkers to potentially take advantage of
the high-level circuit structure.

Along with the Btor2 word-level format, there has been interest in using Con-
strained Horn Clauses (CHCs) to describe digital circuits and properties at the
word-level, and CHC solvers have been used or developed to synthesize environ-
ment invariants [59]. Although CHC solvers have largely been used in software
verification [13,24,30,35,39,48], the associated techniques to find invariants may
also be helpful in hardware verification. Many CHC solvers can successfully find
invariants in linear integer/real arithmetic (LIA/LRA) and array theories. For
example, Spacer [39] extends the IC3/PDR algorithm [11, 21] to APDR [8, 32]
(and also other variants) for LIA/LRA, where Craig interpolants are used to
generate lemmas that are conjoined to construct an invariant. However, when
it comes to supporting bit-vectors, the lack of a native word-level interpolation
strategy hinders the use of APDR and similar techniques. Indeed, our experi-
ments on bit-vector problems show that directly using word-level interpolants
from an SMT solver for lemma generation in APDR can actually incur a perfor-
mance loss.

In this paper, we propose our solution to address this problem. We propose to
use Syntax-Guided Synthesis (SyGuS) [2] for generating lemmas for invariants,
in a new method called SyGuS-APDR. It is tightly integrated with an IC3/PDR
framework, where models from deductive reasoning in IC3/PDR are used to
guide the generation of lemmas. In particular, it uses a general grammar tem-
plate with predicate and term production rules without any need of extra human
input, and where the search space of predicates and terms is pruned based on the
deduced models. It also tightens previous frames in IC3/PDR to allow a larger
set of lemma candidates to be considered. In addition to this tight integration,
our method includes other known techniques [21, 37] specialized here to sup-
port word-level reasoning for bit-vectors—generalization of lemma candidates
by extracting minimal UNSAT subset (MUS), and partial model generation in
predecessor generalization. These features are summarized in Figure 1.

We have implemented our proposed SyGuS-APDR algorithm using SMT-
Switch [44], which provides an interface to various SMT (Satisfiability Modulo
Theory) solvers in the backend. We describe an extensive evaluation of SyGuS-

2

IC3/PDR
SyGuS

① Guide candidate gen.Bad state
② General grammar
template + term
production rulesLemma: ④ picked by MUS

③ Tightening frames
⑤ Partial model
generation

IC3/PDR SyGuSBad state(s) guide lemma terms

• Lemma generation
• General grammar template + term

production rules
• MUS-based lemma generalization

Lemma for blocking bad state(s)

Tightening frames• Partial model generation
for bit-vector theory

Fig. 1: Integration of IC3/PDR with SyGuS-based lemma generation

APDR against state-of-the-art CHC solvers and hardware model checkers on
benchmarks from the bit-vector track of HWMCC’19. Our experiments show
that SyGuS-APDR outperforms state-of-the-art CHC solvers with more solved
instances. Furthermore, we show that CHC solvers can deliver better perfor-
mance on a notable portion of the benchmarks, in comparison to other hardware
model checkers that are not CHC-based. Finally, as part of this evaluation, we
have developed a translator that can convert Btor2 to the standard CHC for-
mat. This enables other CHC solvers to be used on word-level hardware model
checking problems.
Summary of contributions :

– We present a novel algorithm SyGuS-APDR that uses SyGuS-based lemma
generation for word-level bit-vector reasoning in an IC3/PDR framework.
It is distinctive in using a tight integration between the two, where: (1) the
space of lemma candidates is guided both by a general grammar template and
models provided by IC3/PDR, (2) existing functionality in IC3/PDR is used
to tighten previous frames, which allows a larger set of lemma candidates to
be considered.

– We have implemented SyGuS-APDR and provide an extensive empirical eval-
uation against other tools on the HWMCC’19 benchmarks.

– We enable application of CHC solvers on hardware model checking problems
via a translation tool Btor2CHC developed as part of this work. We have made
the translated HWMCC’19 benchmarks publicly available [58].

The paper is organized as follows. We start with some background in the next
section, and describe a motivating example (Section 3). In Section 4, we present
the SyGuS-APDR algorithm. Section 5 describes the experimental evaluation and
results, followed by related work and conclusions.

2 Background and Notation

2.1 Constrained Horn Clauses (CHCs)

A Constrained Horn Clause is a first order logic (FOL) formula over some back-
ground theory A in the following form:

8v1, v2, ..., vn,� (V) ^

^

k

pk (Vk)

!
! h (Vh) (1)

3

Here v1, v2, v3, ..., vn form the set of variables V from theory A. � is an
interpreted constraint over the functions and variables in A, and pk and h are
uninterpreted predicate symbols over sets of variables Vk and Vh, respectively.
Vk and Vh are subsets of V , and can be empty. A CHC is satisfiable if there
exists an interpretation I for the predicate symbols pk and h that makes the
formula valid. A set of CHCs is satisfiable if there exists an interpretation I for
all the predicate symbols that make all CHC formulas valid.

2.2 Hardware Model Checking using CHCs

Here we focus on safety properties in hardware model checking. A digital circuit
can be viewed as a state transition system: hV , Init ,T i, where V is a set of state
variables (along with the primed version of variables V 0 that denote next states),
Init is a predicate representing initial states, and T is a transition relation. Note
that for hardware model checking, the transition relation T is functional, i.e.,
T (V ,V 0) := V 0 = Next(V). For a given safety property P , we would like to
check if the transition system will ever reach a state (the bad state) where P

does not hold. If all bad states are unreachable, we would like to get a proof
showing P is valid. One such proof is an inductive invariant (Inv):

Init(V)! Inv(V) (2)

Inv(V) ^ T (V ,V 0)! Inv(V 0) (3)

Inv(V)! P(V) (4)

In other words, Inv should hold in the initial states (2), it should be inductive
(3), and it should imply safety (4). These three constraints are in the form of
CHCs (with an implicit universal quantification over all variables), where Inv is
an uninterpreted predicate. If these CHCs are satisfiable, then the interpretation
of Inv is the inductive invariant that forms the proof of safety.

2.3 IC3/PDR and APDR

The IC3/PDR algorithm [11,21] constructs inductive invariants to check safety.
It maintains a sequence of forward reachable sets of states (FRS): Fi, which are
over-approximations of all reachable states in i steps. They satisfy the following
properties.

F0(V) = Init(V) (5)

Fi(V) ^ T (V ,V 0)! Fi+1(V
0) (6)

Fi(V)! Fi+1(V) (7)

Fi(V)! P(V) (8)

The algorithm converges if at any point Fi+1(V)! Fi(V). As Fi is in the form
of a conjunction of clauses (for bit-level PDR) or lemmas (for word-level PDR),
when it is clear from the context, we interchangeably use Fi to refer to either
the conjunction or the set of clauses/lemmas.

4

The procedure for constructing FRS can be viewed as iteratively blocking
bad states or their predecessors (states that can reach bad states following the
transitions) by applying the following rules in an indefinite order. (We refer the
readers to [32] for details.)

– Unreachable. If 9i, Fi+1 ! Fi, the system is safe (P holds) and the algorithm
converges.

– Unfold. For the last FRS: FN in the series, if FN ^ T ! P
0, then extend the

series with FN+1 P and N N + 1 .
– Candidate. For the last FRS: FN in the series, if 9m,m |= FN ^ T ^ ¬P 0,

then we need to add hm,Ni as a proof obligation (meaning that we would
like to try blocking m at step N as it can lead to the failure of P).

– Predecessor. For a proof obligation hm, i + 1i, according to the transition
relation T , if there is a predecessor mi of it at step i, then we will also add
hmi, ii to the proof obligation.

– NewLemma. For a proof obligation hm, i+1i, if we found no predecessor of it at
step i, then try to find a lemma l showing m is infeasible at i+1, and update
all Fj , j  i+1 with l to remember this (explained in details in Section 4.1).

– Push. For a lemma l in Fi, see if it also holds at step i+ 1.
– ReQueue. For a proof obligation hm, ii, if we found it has no predecessor at

i� 1, then also add m to the proof obligation at step i+ 1.
– Reachable. If we get a proof obligation at step 0, then the system is unsafe.

The algorithm stops.

For CHCs in di↵erent theories, the theory-dependent techniques used in the
above procedures may vary. In particular, APDR [8] (in Spacer [39]) imple-
ments the two procedures—Predecessor and NewLemma—using model-based pro-
jection [39] and Craig interpolation [46], respectively, to adapt IC3/PDR for
LIA/LRA theories.

2.4 CHC Solving Techniques for bit-vectors

As the hardware model checking problems require bit-vectors, here we focus our
discussion on solving CHCs in bit-vector theory.

Bit-Blasting. The original IC3/PDR algorithm [11, 21] is applicable if the
BV problems are bit-blasted, i.e., transformed into propositional logic with one
Boolean variable for each bit in each bit-vector variable. This is the general ap-
proach implemented in Spacer [39] for bit-vectors. For the special case where
a problem contains only arithmetic operators in the BV theory, Spacer can
attempt the translation method described below.

Translation and Abstraction. Another approach for solving bit-vector prob-
lems is to translate them into another theory (e.g., LIA or LRA), derive a safe
inductive invariant, and then port it back soundly to the bit-vector theory. This
approach is discussed in related work [33] and implemented in the PDR engine
in Spacer.

5

Table 1: A simple transition system: hV , Init ,T i
V {a, b, c, e, i}, a, b, c, i: (BitVec 16), e : Bool
Init a = 0 ^ b = 0 ^ c = 0
T a0 = ite (e, i, a+ 1) ^ b0 = ite (e, i, b) ^ c0 = ite (e, 0, c+ 1)

Another CHC solver, Eldarica [35], handles bit-vector theory through ab-
straction, as well as translation. It applies lazy Cartesian predicate abstrac-
tion [5,29], in combination with a variant of counterexample-guided abstraction
refinement (CEGAR) [4, 17]. Bit-vectors are lazily mapped to quantifier-free
Presburger constraints, and then solved and interpolated by an SMT solver.
Using the abstractions, it constructs an abstract reachability graph (ARG). To
eliminate spurious counterexamples in the abstract reachability relation, it ob-
tains additional predicates from Craig interpolation.

Learning-based Methods. There have also been other e↵orts that use learning-
based or guess-and-check approaches for CHC solving, e.g., SynthHorn [61], Fre-
qHorn [23–25], HoICE [13], Code2Inv [54]. However, to the best of our knowledge,
these tools currently do not o↵er support for bit-vector theory.

3 A Motivating Example

We use an example to illustrate why word-level reasoning is beneficial and also
how word-level interpolants for bit-vectors can fail to converge. Table 1 shows
a simple transition system. This is a case simplified from a verification problem
of a domain-specific accelerator design we encountered in our previous hardware
verification work [59].

For simplicity of presentation, we use “+” to represent bit-vector addition:
bvadd, which will wrap-around in the case of overflow and we use ite as the
short form for “if-then-else”. Variables a, b, and c correspond to three registers
in the circuit, and e and i are primary inputs. All variables except e are 16-bit
wide. a and c will count up if e = ? (false), while a and b will be loaded with
input i and c will be cleared if e = > (true). A simple property to check can be,
for example, if state (a, b, c) = (6, 4, 1) is reachable. For a human looking at this
transition system, it is not hard to find that a = b+ c is an inductive invariant.
Initially a, b, c are all 0. Subsequently, if e = >, then a = b and c = 0, and the
relation holds; if e = ?, then a and c both increase by 1 (and may cause both
sides of the equality to wrap-around) so the equality relation still holds. This
relation is easy to find for a human analyzer, however, it turns out to be hard
for a bit-level model checker because the bit-blasting breaks the word addition
into bit-level operations and the invariant becomes much more complex.

On the other hand, when we directly use a word-level bit-vector interpola-
tor [31] out-of-the-box, to generate lemmas for blocking (a, b, c) = (6, 4, 1) or
other models that lead to it, we actually get these lemmas: l1 : a = b _ b 6= 4,

6

l2 : a = b + 2 _ a = b + 1 _ a = b _ b = 4, l3 : (b, c) 6= (4, 65535). There are
several issues with these lemmas: (1) They only hold for the frames explored so
far. This is true for all three lemmas shown here. (2) Although some may look
similar to an inductive invariant, they are not general enough (e.g., l2). (3) Some
are overly generalized, like l3, which drops a and will become invalid after 65536
steps. In general, interpolation in BV theory is hard, because unlike LIA/LRA,
there is no counterpart to the Farkas’s lemma [22] in BV theory that can directly
provide a word-level interpolant.

In this work, we address these issues by using SyGuS in a tight integration
with an IC3/PDR framework, as described in detail in the next section.

4 Integrating SyGuS with IC3/PDR

A SyGuS-based guess-and-check approach is flexible, but it can be quite ex-
pensive when the search space of candidate lemmas is large, and enumerating
through the candidates is expensive. We address these issues by using SyGuS in
a tight integration with an IC3/PDR framework where the distinctive features
are: (1) We use the models from IC3/PDR to guide and prune the search space
of predicates in lemma candidates. (2) We provide a general grammar template
and production rules to generate new terms in lemma candidates. These rules
use hardware-specific insights as heuristics to prioritize the search and term gen-
eration. (3) We use procedures in IC3/PDR to tighten previous frames to allow
using lemmas that are otherwise not considered. In addition, we use UNSAT
core minimization to create a more general lemma from a set of predicates, and
use partial model generation for predecessor generalization to support bit-vector
theory in IC3/PDR on the word-level.

4.1 Lemma Formulation

In IC3/PDR, a lemma is needed when some previously generated bad state(s)
m in Fi+1 should be blocked because it has no predecessor in Fi, i.e., when the
following implication is valid:

(Fi(V) ^ T (V ,V 0)) _ Init(V 0)! Q(V 0) (9)

Here, Fi is a set of lemmas learned at step i, and Q(V 0) := ¬
V

k(V
0
k = ck),

where ck is the assignment to variable Vk in the bad state m. This is illustrated
in Figure 2(a). To learn this fact for future use, we would like to add it (i.e.,
conjoin it) with Fi+1. Although formula Q can itself be conjoined with Fi+1

(as well as all Fj , j  i, thanks to the monotonicity of the series of F), typical
IC3/PDR procedures will try to find a stronger lemma l such that l ! Q,
and conjoin l with Fi+1 instead. It is hoped that l can potentially block more
unreachable states.

For LIA/LRA, the APDR algorithm uses Craig interpolants to derive lemma
l. For bit-vectors, although there are existing word-level interpolation meth-
ods [3, 31] using techniques like equality and uninterpreted function (EUF) lay-
ering, equality substitution, linear integer encoding and lazy bit-blasting etc.,

7

Fi-1
𝑙

¬𝑄

Fi-1 𝑙

Find 𝑙 while assuming
𝐹௜ିଵ is all reachable

Find 𝑙 while also
tightening 𝐹௜ିଵ

¬𝑄

𝐼𝑛𝑖𝑡 𝐼𝑛𝑖𝑡

(a) (b)

Fi
𝑙

Fi 𝑙𝐼𝑛𝑖𝑡 𝐼𝑛𝑖𝑡

(b) (c)

Fi

𝑚

𝐼𝑛𝑖𝑡

(a)

𝑚 𝑚

Fig. 2: (a) A bad state(s) m can be blocked when it has no predecessor in Fi.
(b) Using constraint (10) for lemma generation and (c) using constraint (12) for
lemma generation

our experiments in Section 5 show that using these interpolants actually incurs
a performance loss and makes the word-level IC3/PDR slower than bit-blasting.

When viewing interpolation as constraint-based synthesis, the interpolator
can be seen as trying to find a candidate l that satisfies the following two con-
straints (there is an implicit universal quantification over all variables):

(Fi(V) ^ T (V ,V 0)) _ Init(V 0)! l(V 0) (10)

l(V 0)! Q(V 0) (11)

These requirements are su�cient but not necessary conditions for a lemma l.
In fact, (10) can be relaxed to the following form (similar to what is used for
inductive generalization in IC3 [11]):

(l(V) ^ Fi(V) ^ T (V ,V 0)) _ Init(V 0)! l(V 0) (12)

The di↵erence between (10) and (12) is that the latter applies l on the previous
frame also. Any candidate l that satisfies (10) will also satisfy (12), but the
reverse is not true. In fact, using constraint (12) allows finding a lemma l that
can also tighten Fi at the same time, whereas (10) finds lemmas that contain all
states in Fi and also all states that are one-step reachable from Fi. Therefore,
using (12) is helpful if the previously generated lemmas in Fi are too weak.
The di↵erence between using (10) or (12) for lemma generation is illustrated in
Figure 2(b) and (c).

As an example, if the over-approximation introduced by Fi is already too
coarse, even if we can somehow “magically” guess a safe inductive invariant Inv
correctly, Inv may not even hold for (10). On the other hand, choosing (12)
instead of (10) will shift the cost to lemma generation. Note that while 12) is
similar to prior work [11, 12], we target lemmas with bit-vectors rather than
Boolean clauses. Our solution to this problem is to have a tightening procedure
that will also generate lemmas in Fi while still using (10) as the constraint. This
will be explained in Section 4.5. As we choose (10), our method can be viewed as
SyGuS-based interpolation, combined with an additional tightening procedure
(usually available) in the IC3/PDR framework.

8

hCandi ::=¬hConji
hConji ::= hPredi | hPredi ^ hConji
hPredi ::= hTermi ComparatorBV hTermi
hTermi ::= hConstanti | hVariablei | hTermi OperatorBV hTermi

Fig. 3: The grammar template for lemmas, where operators and terms are dy-
namically generated.

4.2 SyGuS-based Interpolation

The grammar template that we use for learning an interpolant, i.e., the lemma
l, is shown in Figure 3. The top-level lemma candidate (hCandi) is a negated
conjunction of predicates over BV theory. The predicates and terms used in the
predicates are dynamically generated and pruned due to a tight integration of
SyGuS with IC3/PDR. We would like to first give an overview of our SyGuS-
based approach, and leave the discussion of operators and terms to Section 4.4.

At a high-level, our SyGus-based lemma generation procedure is shown in
Algorithm 1). For given bad state(s) m, our method first checks if we have
encountered m before (due to the ReQueue rule in APDR, it may have been
blocked at some previous frame j, j  i). If so, the previously generated predicate
set is reused (Line 2) to save the work of predicate generation. Otherwise, it will
invoke the predicate generation procedure to get an initial set of predicates based
on m (Line 4). For a set of predicates L, it will check if L is su�cient to generate
a lemma (Line 5). If the current set is insu�cient, it will try to tighten the
previous frame first (Line 7). If after tightening, the current predicate set is still
insu�cient, it will then incrementally construct more predicates, while factoring

Algorithm 1: NewLemma(Init , Fi,T ,m): Generating lemma when m

has no predecessor in Fi

Input: Init : initial states, Fi: set of lemmas at step i, T : transition relation,
m: the bad state to block at step i+ 1

Output: the lemma that blocks m
1 if m has been blockable on/before step i then
2 L GetPreviouslyGeneratedPredSet (m) ;
3 else

4 L GenInitialPredSet (m) ;
5 while ¬ PredSufficient (Fi,T , L) do

6 (n, n0) Model (((Fi ^ T) _ Init
0) ^ ¬lL) ;

7 if ¬ RecBlock (n, i,MAY) then
8 L L [MorePred (m,n, n0) ;

9 base (Fi ^ T) _ Init
0 ;

10 L MUS (L [{base}) ;
11 return ¬

V
p2L p ;

9

in both m and the model (n, n0) demonstrating L is insu�cient (Line 8). After
L finally becomes su�cient, it will invoke the MUS procedure (Line 10) to get
a minimal set of predicates using UNSAT cores.

In Algorithm 1, GetPreviouslyGeneratedPredSet is simply to retrieve
the cached predicates for the same model. GenInitialPredSet and PredSuf-

ficient will be described in Section 4.3. Our approach to generate new terms to
make new predicates in MorePred is presented in Section 4.4. MUS is briefly
discussed in Section 4.6, and RecBlock is the recursive blocking function pro-
vided by an IC3/PDR framework.

Note that our SyGuS-based method is tightly integrated with the IC3/PDR
framework and uses the results from deductive solving to guide the generation of
predicates (Line 4 and 8), and uses procedures in IC3/PDR to tighten previous
frames to allow using lemmas that are otherwise not considered (Line 7). It
checks the su�ciency of a set of predicates using a single SMT query to expedite
candidate validation (Line 5) and uses UNSAT core minimization (Line 10) to
construct a more general lemma.

Theorem 1. For bit-vector problems, IC3/PDR converges when using Algo-
rithm 1 for lemma generation.

This is because the lemmas generated by Algorithm 1 will block the given bad
states, and the rest follows from correctness of the original IC3/PDR algorithm.

4.3 Lemma Generation and Validation

Pruning based on bad state. The lemma generation procedure is invoked if
formula (9) is found to be valid, and we need to find a candidate l that satisfies
(10) and (11). Our SyGuS method starts with handling constraint (11) first.
Note that l is in the form of ¬ (p1 ^ p2 ^ ... ^ pn) according to the grammar
in Figure 3 and the equivalent contrapositive of (11) is ¬Q ! ¬l. Therefore,
¬Q should imply every predicate p1, p2, ... pn in l. For a given Q, our SyGuS
approach will only construct predicates from the grammar that can be implied
from ¬Q, i.e., model m. This is shown as pruning on the initial predicate set
based on model m (Line 4, GetInitialPredSet in Algorithm 1).
Candidate Validation. After generating predicates that satisfy (11), we con-
sider the constraint (10). Our method starts with a candidate set of simple
syntactic structures and incrementally adds more complex predicates if the cur-
rent set is not su�cient. To test if a set of predicates L is su�cient, we conjoin
all predicates in L to form lL = ¬(

V
p2L p), and check if lL makes (10) valid.

This is the PredSufficient procedure in Algorithm 1. In other words, if the
following is UNSAT, it is adequate to construct a lemma:

((Fi(V) ^ T (V ,V 0)) _ Init(V 0)) ^ ¬lL(V 0) (13)

Pruning due to inadequate batch. If the batch is inadequate (i.e., formula
(13) is satisfiable), we construct a formula c :=

V
i (V

0
i = ai), where ai is the

assignment to V
0
i in the model of (13). Since c is constructed from the model,

10

8p 2 L, c! p. If there is a good set of predicates L0 � L, then within L
0, there

must be a predicate pc such that c! ¬pc. Therefore, we can use the extracted
formula c to guide the generation of new predicates. This constitutes additional
pruning of the search space (Line 8 in Algorithm 1).

4.4 Generating Terms in the Grammar

As shown in Algorithm 1, our SyGuS method starts from an initial set of predi-
cates (constructed from the initial set of terms) and incrementally generates new
terms to create more predicates.

The Initial Set of Terms and Comparators. We extract the terms and
predicates in the original problem from the syntax tree of the initial state pred-
icate Init , the transition relation T , and the given property P), and select a
subset to form the set of initial predicates. For a given Q (recall that Q encodes
the model to block), all predicates containing only the variables in Q are added
to the initial predicate set. While for the terms, only those that (a) contain
only the variables in Q and (b) whose bit-width is less than a threshold Hp

are added to the initial term set. We also expand the term set with additional
constants when bit-widths are less than a threshold Hc. The rationale behind
this strategy is that we want to find lemmas in the “control space” first, which
is often beneficial as shown in previous work [42, 59]. Instead of relying on user
input (as in [59]), we di↵erentiate between the terms that are likely control- or
data-related. Specifically, we use a heuristic that terms with a larger bit-width
are more likely to be data-related, and a specific constant for data-related terms
would not be useful in the inductive invariants. In our experiments, we empiri-
cally set thresholds Hc = 4 and Hp = 8, to balance between the expressiveness
and the cost of extra predicates. For the bit-vector comparators in the predicates,
initially we begin with only Equal and NotEqual.

Adding More Existing Terms and Comparators. If the predicates con-
structed from the initial terms and operators are not able to generate a lemma,
in the next call to MorePred, we will add back all the existing terms that
contain no variables outside Q. Comparators like bvult (“unsigned less than”)
and bvule (“unsigned less than or equal”) will be added also if they exist in the
original problem.

Generating New Terms. The above procedure adds terms and comparators
that are already present in the original problem formulation. However, this set
of terms is often insu�cient. Therefore, we use a procedure for generating new
terms based on the following three rules – Construct, Replace, and Bit-Blast.
Construct Rule. Assume that we already have a set of terms {t} and operators
{op}. For each operator op and vector of terms ht0, t1, ...i, we will construct a
new term (op t0 t1 ...) if it is well-formed. In the examples we have seen in

11

the HWMCC benchmarks, the set of operators is usually not very large, which
are mainly logic operators like and, arithmetic operators like add, some bit-field
manipulations, and ite. As a heuristic, we prioritize using bit-field extraction
and arithmetic operators for wide terms, and will use only logical operators on
the narrow ones (separated also by the bit-width threshold Hp). Furthermore, we
avoid having multiple terms that can be simplified to the same form, by using the
rewriting capability of the underlying SMT solver implicitly. Some solvers, e.g.,
Boolector [49], simplify and rewrite the terms upon their creation. We create the
terms in the solver, then retrieve the simplified form and compute a syntactic
hash to detect duplicate terms. The construction process of this rule can be
applied iteratively, where we use the newly generated terms to create more new
terms. However, in our implementation, we restrict it to a single iteration per
invocation, to avoid overwhelming the algorithm with too many predicates.

Replace Rule. This rule replaces a sub-term with another. Suppose there is
an existing term t with the following form: (op t0 t1 ...). For each of the sub-
terms (e.g., t0), we will try to see if there is another term with the same sort
that can replace it in t and result in a new term. Instead of trying all potential
replacements, we look for replacement pairs using information from the transition
relation as follows.

As stated in Algorithm 1, we invoke the MorePred procedure for new
term production at times when the check (13) had returned SAT and we need
more terms to form more predicates. At this point, we can evaluate the existing
terms using the model of (13) and check which pairs of them have the same
value. This is similar to running simulation to identify potential correlations of
signals in a circuit. Terms are evaluated twice, once on the assignment to current
state variables and once on the primed ones. In addition to finding correlation
in the primed evaluation (where predicates become insu�cient), we also detect
correlation between the current state and the next state. For example, suppose
that a term t1(V) evaluates to c1 under M and another term t2(V 0) evaluates
to c2 under M . If c1 = c2, we will also identify t1 and t2 as a replacement pair.
Here, the term t1 being replaced is evaluated based on current state variables
V and the term t2 is evaluated as if it is on the next state variables V 0. This
di↵erence on the current and next state variable set allows us to find temporal
correlations that are potential causes and e↵ects.

Bit-Blast Rule. For hardware model checking problems, it is also possible that
no good word-level invariant exists or the desired word-level invariant cannot be
generated from existing terms and operators. Therefore we keep this rule as a
fallback option. When applied, it creates terms using the extract operator to
extract every single bit of a state variable. We prioritize using it first on the state
variables which have been used in other terms with an extract operator. The
rationale for this heuristic is that if the original problem contains bit-fields that
are extracted from signals derived from such a state variable, the state variable
is likely to be more “bit-level” rather than “word-level.” If we continuously apply
this rule, eventually all bits from all state variables will be added to the term set.

12

At this point, the set is guaranteed to be su�cient, and the algorithm degenerates
to finding bit-level invariants in the worst case.

In our implementation, we apply these rules in the following order. First,
we continuously apply Replace until it generates no more new terms or the
predicate set becomes su�cient. Then we try Construct, where we prioritize
di↵erent operators for wide and narrow terms and terminate if the prioritized
terms are already su�cient. This is followed by another round of Replace, and
finally Bit-Blast with the prioritization on variables that are more “bit-level.”
For any rule, if the prioritized terms are already su�cient, the procedure returns.
Similar to the sharing of predicates among lemmas blocking the same model, the
term set is also shared when two models in the proof-obligation have the same
set of variables.
Example. Consider an illustration for creation of new terms according to these
three rules. For the example transition system in Section 3, suppose at some
point, there is a proof obligation: block model (a, b, c) = (6, 4, 1) at F2. The
initial term set is listed in Figure 4. For F1 there are already lemmas added
using the these terms on variables a, b, c, however, they cannot generate su�cient
predicates to block the model (predicates after initial pruning are shown in the
figure). A model for (13) can be extracted: (a, b, c, e, a0, b0, c0) = (3, 3, 0,?, 4, 3, 1).
Readers can check the assignments to the primed variables in the model make
all initial predicates evaluate to true. When applying the Replace rule, existing
terms will be evaluated on variable sets (a, b, c) = (3, 3, 0) and (a0, b0, c0) =
(4, 3, 1) to identify potential correlations between pairs. In this example, we find
7 possible replacement pairs, which result in 4 new terms, shown in the bottom-
left table in Figure 4, where replacement is based on the correlated value in the
first column and the replacement pair ht1, t2i means t1 is replaced by t2. If these
were not su�cient, we could further apply the Construct rule, and more new
terms would be generated using operator bvadd on the existing terms. Finally if
these were still not su�cient, we would fall back to Bit-Blast.

For the specific proof obligation here, the above term generation process will
actually stop after the Replace rule, where the predicates with term b+ c will
be su�cient, and the invariant a = b + c will be discovered. (For this proof
obligation, the term b + 1 also works, which can produce predicate a = b + 1,
but it is not as general, and will be dropped by the MUS procedure.) Note that
the discovery of a = b + c in this example is not simply by chance. The two
replacements needed – a to b, and 1 to c – are found by our method that looks
for correlation between terms, which leads to finding this invariant. Interestingly,
these correspond to the two cases in the induction step in our human reasoning
process in Section 3.

4.5 Tightening Previous Frames in IC3/PDR

As we discussed in Section 4.1, using constraint (12) instead of (10) allows a
larger space of lemmas. But on the other hand, having l on both sides of the
implication breaks the monotonicity of predicate minimization. For (10), after
a predicate is removed, (10) could stay UNSAT or become SAT. But once it

13

0 1 𝑎 𝑏 𝑐 𝑎 + 1 𝑐 + 1

𝑉 0 1 3 3 0 4 1

𝑉′ 0 1 4 3 1 5 2

Replace: Term Substitution

Replacement Pairs New Terms

0 𝑐, 0

1 𝑐 + 1,1 , 1, 𝑐 ,
𝑐 + 1, 𝑐 , 𝑐, 1 𝑎 + 𝑐, 𝑐 + 𝑐

3 𝑎, 𝑏 𝑏 + 1, 𝑏 + 𝑐

4 𝑎 + 1, 𝑎

Construct: Making New Terms

0,1, 𝑎, 𝑏, 𝑐, 𝑎 + 1, 𝑐 + 1, 𝑎 + 𝑐,…
Existing terms

Existing operators: +

𝑎 + 2, 𝑐 + 2, 𝑎 + 𝑐 + 1, 𝑎 + 𝑏,…
New terms:

Bit-Blast: Extract Bit-fields

𝑉 New Terms

𝑎 𝑎 0 , 𝑎 1 ,… , 𝑎 15

𝑏 𝑏 0 , 𝑏 1 ,… , 𝑏 15

𝑐 𝑐 0 , 𝑐 1 ,… , 𝑐 15

𝐹ଵ ¬ 𝑐 ≠ 0 ∧ 𝑐 ≠ 1 ∧ ¬ 𝑎 ≠ 𝑏 ∧ 𝑐 = 0 ∧ ¬ 𝑏 ≠ 0 ∧ 𝑐 ≠ 0 ∧ ¬ 𝑎 ≠ 1 ∧ 𝑐 ≠ 0

Terms on 𝑎, 𝑏, 𝑐 : 0,1, 𝑎, 𝑏, 𝑐, 𝑎 + 1, 𝑐 + 1
Initial predicates on 𝑎, 𝑏, 𝑐 = 6,4,1 :

𝑎 ≠ 0, 𝑎 ≠ 1, 𝑏 ≠ 0, 𝑏 ≠ 1, 𝑐 ≠ 0, 𝑐 = 1,
𝑎 ≠ 𝑏, 𝑏 ≠ 𝑐, 𝑎 ≠ 𝑐, 𝑏 ≠ 𝑎 + 1, 𝑐 ≠ 𝑎 + 1, 𝑏 ≠ 𝑐 + 1

Fig. 4: An illustration of the three term generation rules.

becomes SAT, removing more predicates will not make (10) UNSAT. The same
does not hold for (12), as removing predicates also shrinks the pre-image. This
makes minimizing the set of predicates in (12) much harder. As a trade-o↵
between allowing a larger space of lemmas and ease of minimizing the set of
su�cient predicates, we choose the latter and decide to stick with constraint
(10). To mitigate the associated problem—potentially missing a good lemma
due to coarse frames, we add a procedure to tighten the previous frames, as
described below.

We design a lazy approach to tighten previous frames (Line 7 in Algorithm 1).
When the check (13) indicates that L is insu�cient (i.e., we get a SAT result for
(13)), instead of immediately generating more terms to construct more candidate
predicates, we first check whether the current state variable assignment from the
satisfiable model in (13) is blockable. This blocking operation will introduce new
lemmas in the previous frame Fi and could potentially turn (10) into (12) by
introducing the same lemma. This may then allow the predicates in L to be
used. On the other hand, if the model cannot be blocked, it means no lemmas
can be generated from the current predicate set, even using (12) instead of (10).
So we will indeed need to construct more terms to enrich the set of predicates.

Instead of requiring any big change, the blocking operation suggested above
can use an existing recursive blocking function utility available in an IC3/PDR
framework (denoted as RecBlock in Algorithm 1). However, this blocking is
di↵erent from blocking of models generated from (9), whichmust be blocked, oth-
erwise P will fail. Thus, we need to distinguish between a “may-proof-obligation”

14

Algorithm 2: MUS(U): Minimizing the set U of UNSAT constraints

Input: U : {base} [L, a set of constraints
Output: U 0: a minimal UNSAT subset of U

1 while true do

2 U 0 UnsatCore(U) ;
3 if |U 0| = |U | then
4 break;
5 U U 0 ;

6 Sort(U 0 � {base}) , by syntax complexity ;
7 for u 2 (U 0 � {base}) do
8 if U 0 � {u} is UNSAT then

9 U 0 UnsatCore(U 0 � {u}) ;
10 return U 0;

and a “must-proof-obligation” for blocking a model. Note also that this distinc-
tion is not a special requirement of SyGuS-APDR. For example, in the existing
IC3/PDR framework Quip [36], a “may-proof-obligation” arises due to failures
of lemma pushing. Here, we simply reuse this facility to design our lazy frame
tightening procedure.

4.6 Generalizing the Lemma by using UNSAT Cores

When constructing lemmas from a set of predicates, we would like to get a more
general lemma using fewer predicates. This is done through minimal unsatisfiable
subset (MUS) extraction from the unsatisfiable formula (13), where we treat each
predicate pi 2 L as an individual constraint, and the rest of the formula (base)
as one constraint.

Our MUS procedure (shown in Algorithm 2) follows standard approaches, as
it first computes a small UNSAT core by iteratively using UNSAT core extraction
of the SMT solver until reaching a fixed-point of the core size [60] (Line 1-5).
Then it further reduces the core size by trying to drop constraints. Here, we
use a new heuristic based on the syntax-complexity, defined as the number of
nodes in the syntax tree plus the occurrence of constants as an extra penalty.
Our contraint-dropping is done iteratively in descending order of the syntax-
complexity of constraints (Line 6-9). This allows us to get an MUS where the
predicates have simpler syntactic structure and also fewer constants, which may
generalize better in the overall algorithm.

4.7 Partial model generation for word-level reasoning in bit-vectors

We also propose to use partial model generation in the Predecessor procedure
for word-level bit-vector reasoning in IC3/PDR. Our method can handle hard-
ware model checking problems where the transition relation is functional. (We
leave the general case of adapting it in model-based projection for bit-vectors to
future work.)

15

Our implementation of partial model generation mimics the ternary simula-
tion method used in the original PDR implementation [21], but at the word-level.
For some bit-vector operators like bvand and ite, there is a masking e↵ect. For ex-
ample, consider a satisfiable SMT formula that contains a fragment (bvand a b),
if we know that variable a is assigned to all 0s in the model extracted from the
query, then the assignment to b does not a↵ect the evaluation of the fragment.
If b does not appear elsewhere in the formula, we can remove the assignment
to b and get a partial model while the formula still evaluates to true under the
reduced set of assignments. Using partial model generation, we can derive a re-
duced set of variable assignments representing multiple bad states. This benefits
the SyGuS-based interpolation because when we later generate lemma candi-
dates to block it, we can limit the search space to candidates containing only
those variables in the partial model.

5 Experimental Evaluations

We implemented the SyGuS-APDR methods on top of an APDR framework that
we developed according to the algorithm presented in previous work [32]. We used
the solver-agnostic interfacing library SMT-Switch [44], and used Boolector [49]
for SMT queries and UNSAT core extraction.

5.1 Experiment Setup

Environment of the Experiments. The experiments were conducted on a
cluster of machines with Xeon Gold 6142 CPUs running Springdale Linux 7.8,
and each tool is allocated 8 cores and 64GB of memory. Similar to the HWMCC
setting, we set the time-out limit to be one hour wall-clock time.

Benchmark Examples. We use the benchmarks from the bit-vector track of
2019’s HWMCC. It has 317 test cases in the Btor2 format. We use our conversion
tool Btor2CHC to convert them into CHCs.

Table 2: Number of Solved Instances

Solver # Solved Safe Unsafe

Our work SyGuS-APDR 126 112 14

CHC Solvers
BvItp 22 22 0
Z3/Spacer 90 87 3
Eldarica 4 4 0

HW Model
Checkers

AVR 157 111 46

CoSA2 (Pono) 137 96 41
BtorMC 108 67 41
CoNPS-btormc-THP 40 0 40

16

Tools for Comparison. We test our SyGuS-APDR tool against state-of-the-
art CHC solvers on the HWMCC’19 benchmarks. For comparison, we also re-
port the performance of word-level hardware model checkers that participated in
HWMCC’19 (and were run with the same configuration). The tools we compared
with are listed as follows.

– SyGuS-APDR is our tool that uses the syntax-guided lemma generation pro-
cedure described in Section 4.

– BvItp is a tool we constructed that uses the word-level interpolants [31]
from MathSAT [16] out-of-the-box to generate lemmas in APDR.

– Spacer [32,40] is a state-of-the-art CHC solver and part of Z3 [19]. We test
the newest release version 4.8.9, but it actually solves fewer instances (83 vs.
90) compared to an older version 4.8.7. We did not further investigate the
reason of the performance degradation, but will report the results from 4.8.7.

– Eldarica is a CHC solver that makes use of counter-example-guided ab-
straction refinement (CEGAR) method. As Eldarica can use di↵erent in-
terpolation abstraction templates, we start 4 parallel running engines each
with a di↵erent template configuration and report the best result, using the
latest release version 2.0.4.

– AVR (abstractly verifying reachability) is a collection of 11 parallel running
engines including 3 variants of BMC and 8 variants of IC3 integrated with
multiple abstraction techniques [27]. We use the binary release available from
the Github tagged with hwmcc19 for the experiment.

– CoSA2 (successor of CoSA [45], now named Pono) is a model checker based
on the solver-agnostic framework SMT-Switch [44]. It runs four parallel
engines: BMC, BMC simple-path, k-induction and the interpolation-based
method [47]. We were unable to compile using the source code tagged with
hwmcc19. Instead we use a development version with a commit hash 6d72613.
Our experiment results show it actually solves more instances than reported
in HWMCC’19.

– BtorMC (version 3.2.0) is a tool based on the SMT solver Boolector [49],
equipped with two engines: BMC and k-induction. In our experiment, we
run two instances in parallel and record the shorter time.

– CoNPS-btormc-THP is from Norbert Manthey. It is a specially configured
BtorMC using huge pages for mapping memory and is linked against a mod-
ified GlibC library. We obtained the tool from the author.

5.2 The Overall Result

We plot the wall-clock time vs. the number of solved instances in Figure 5. A
table summarizing the number of solved instances is shown in Table 2. Our
results on the hardware model checkers are mostly consistent with the results
from the HWMCC’19 report [52], with minor di↵erence which is probably due
to di↵erence in the machine configurations or the version of tools that we use.

Among the tools, AVR solves the most instances. Our SyGuS-APDR solves
about the same number of safe instances as AVR, but fewer unsafe instances.

17

Fig. 5: Wall clock time vs. number of solved instances.

This is because in the unsafe case, even though a bad model leading to the
violation of the property will become reachable at some point, in the first several
frames, it is still blockable, and SyGuS-APDR will still try to construct lemmas
to block it. We can make up for this disadvantage by having a BMC engine run
in parallel with it, similar to what typical model checkers do. However, our focus
is on lemma generation for proofs, so we leave this for future work.

5.3 E↵ectiveness of SyGuS-APDR in Improving Lemmas

We plot the comparison between SyGuS-APDR and BvItp in Figure 6(a)—
SyGuS-APDR shows a clear improvement over BvItp. In our experiments, we

(a) (b)

Fig. 6: Comparison of wall-clock time between SyGuS-APDR and (a) BvItp or
(b) the faster time from Z3/Spacer or Eldarica.

18

(a) (b)

Fig. 7: Comparison of wall-clock time between word-level hardware model check-
ers and CHC solvers (a) without, or (b) with SyGuS-APDR.

found that the word-level bit-vector interpolants from MathSAT often contain
conjunctions of a large number of equality relations in the form of v = c, where
v is a state variable and c is a constant. This makes the interpolants very spe-
cific to the models, and they often trap the algorithm in the first few frames
with hundreds or even thousands of lemmas. This explains why BvItp per-
forms badly. And on the unsafe systems, it must reach a minimum bound to
discover the shortest counterexample, therefore it is not able to find any un-
safe instances. Removing some equalities in such an interpolant in BvItp, as we
have attempted, often makes it no longer an interpolant. SyGuS-APDR, on the
other hand, uses syntax-based guidance to steer the interpolants and can select
simpler, and hopefully more general, predicates to mitigate such issues.

Figure 6(b) shows the comparison of SyGuS-APDR and the faster of either
Z3/Spacer or Eldarica. Eldarica solves only 4 instances, two of which con-
tain complex arithmetic operations in the transition relation and are solved by
neither Z3/Spacer nor SyGuS-APDR. SyGuS-APDR solves 56 instances that are
not solved by Z3/Spacer or Eldarica, and within the 70 instances that both
categories solve, SyGuS-APDR runs faster on 36.

5.4 CHC Solvers vs. Hardware Model Checkers

We also compare the results from the two existing CHC solvers (referred to as
the CHC group in the following text) with the collection of word-level model
checkers that participated in HWMCC’19 (referred to as the HMC group). A
comparison of solving time is shown in Figure 7. Although the CHC group solves
fewer instances (92 vs. 196), there are 22 instances solved exclusively by CHC
group. Among the 70 instances solved by both groups, the CHC group is faster
on 16. This indicates that the CHC group has some complementary strengths
that are worth further investigation.

19

For example, there is one test case analog estimation convergence where
Spacer derives a safe inductive invariant in less than one second, whereas AVR
does not converge within one hour. We took a closer look at the invariant pro-
duced by Z3/Spacer. It contains fragments with similar structure as a linear
relation in LIA theory. This is likely an outcome of the translation technique,
and it makes Z3/Spacer the fastest solver on this instance. When we also in-
clude SyGuS-APDR in the CHC group, the group now solves 148 (significant
improvement from 92), where 27 are not solved by the HMC group. Among the
121 instances solved by both groups, CHC group is faster in 33 test cases.

Around the time of preparing the final version of the paper, two new tools
become available: GSpacerbv [28] and a new version of AVR for HWMCC’20
competition (referred to as AVR-20). We conducted further experiments after pa-
per submission, and for completeness, include a summary here. Detailed results
can be found in [57]. GSpacerbv shows an improvement from Spacer thanks
to its global guidance rules in lemma generation [41] and the model-based pro-
jection procedure for bit-vectors, yet it solves fewer instances than SyGuS-APDR
(101 vs. 126). AVR-20 shows a great performance gain compared to its previous
generation (249 vs. 157) as it doubles the portfolio size with more techniques
integrated. Though, AVR-20 solves more safe instances than SyGuS-APDR (205
vs. 112), SyGuS-APDR runs faster on almost half of the instances it solves (50)
and is there supplementary to the portfolio used in AVR-20.

6 Related Work

Enhancing the Interpolants. There are many existing works that aim to
enhance the interpolants used in model checking. For example, Albarghouthi
and McMillan [1] propose to reduce the number of disjuncts of linear inequality
constraints to get simpler interpolants. Blicha et al. [10] propose to decompose
the interpolants to mitigate the divergence problem. GSpacer [41] incorporates
global guidance in the lemma. These works are mostly for interpolation in the
infinite domain (e.g., LIA/LRA) theories.

In the bit-vector theory, there is no native word-level bit-vector interpolation
strategy in the first place. Existing methods rely on EUF layering, translation to
(non)-linear integer arithmetic, application of certain forms of quantifier elimina-
tion etc. [3, 31]. Additionally, compared to LIA/LRA, the bit-vector theory has
a more diverse set of operators allowing bit-field manipulation as well as logical
and arithmetic operations. This often introduces non-linear relations that are
hard to translate to other theories.

In the LIA/LRA domain, the closest approach to ours is [43], which also uses
templates to guide the generation of interpolants. It introduces interpolation
abstractions in the SMT query but leaves the construction of interpolants com-
pletely to the solver, whereas SyGuS-APDR constructs the interpolants outside
the solver, and therefore has more direct control on the generated lemma. Pre-
vious works [9, 14, 20] also construct interpolant outside the SAT/SMT solver,
while SyGuS-APDR incorporates syntax guidance and further integrates it with

20

IC3/PDR framework to make use of models and procedures from deductive rea-
soning in IC3/PDR.

Word-Level IC3/PDR Algorithms for Bit-Vectors. Previous e↵orts on the
word-level BV can be mainly categorized as: (1) adding an abstraction layer so
that the core algorithm remains at the bit-level, (e.g., word-level abstraction [34],
word-level predicate abstraction [38], IC3ia [15], data-path abstraction [42] and
syntax-guided abstraction [26]) (2) using specific types of atomic reasoning units
(ARUs) [55,56], or (3) translating the BV problem to another theory [33]. SyGuS-
APDR di↵ers from the existing works in that: (1) it does not need an explicit
abstraction-refinement loop—the models in the proof obligations and the tran-
sition relation are all kept concrete and the interpretation of the predicates are
always revealed to the solver; (2) the grammar allows lemmas that are in gen-
eral more flexible compared to the ARUs; and (3) while translation is feasible for
arithmetic and some related operations, it does not work for all the operators
available in BV theory, especially bit manipulation operators. In comparison,
SyGuS-APDR is native on the BV theory and supports all BV operators.

Syntax-Guided Inductive Invariant Synthesis. Syntax-guided synthesis
has been applied on the inductive invariant synthesis problem before, e.g., Loop-
InvGen [50,51], cvc4sy [53], FreqHorn [23–25] andGrain [59]. A key feature
of SyGuS-APDR is its tight integration with IC3/PDR framework, which allows
use of both deductive reasoning as well as grammars to guide candidate lemma
generation and prune the search space.

7 Conclusions and Future Work

In this work, we present our technique of using syntax-guided synthesis for lemma
generation for unbounded hardware model checking. This is also an attempt
to attack the challenges of BV interpolation with the help of a tighter inte-
gration with the IC3/PDR framework. Although our motivation for reasoning
about problems in BV theory comes from hardware verification applications, the
techniques we present may also benefit software verification, especially low-level
software (e.g., device driver or firmware) where bit manipulation is essential.

To achieve better performance, our SyGuS-based lemma generation algo-
rithm can be further integrated with other techniques, e.g., an abstraction re-
finement framework, or with other parallel running engines.

Acknowledgements. This work was supported in part by the Applications
Driving Architectures (ADA) Research Center, a JUMP Center co-sponsored by
SRC and DARPA; by the DARPA POSH and DARPA SSITH programs; and
by NSF Grant No. 1628926.

21

References

1. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: International Con-
ference on Computer Aided Verification. pp. 313–329. Springer (2013)

2. Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
FMCAD. pp. 1–8 (2013)

3. Backeman, P., Rummer, P., Zeljic, A.: Bit-vector interpolation and quantifier elim-
ination by lazy reduction. In: 2018 Formal Methods in Computer Aided Design
(FMCAD). pp. 1–10 (2018)

4. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. In: Proceedings of the ACM SIGPLAN 2001 conference
on Programming Language Design and Implementation. pp. 203–213 (2001)

5. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model
checking C programs. In: International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. pp. 268–283. Springer (2001)

6. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. Handbook of Satisfiability pp. 825–885 (2009)

7. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech. Rep. 11/2, In-
stitute for Formal Models and Verification, Johannes Kepler University, Altenberg-
erstr. 69, 4040 Linz, Austria (2011)

8. Bjørner, N., Gurfinkel, A.: Property directed polyhedral abstraction. In: VMCAI.
pp. 263–281 (2015)

9. Bjørner, N., Gurfinkel, A., Korovin, K., Lahav, O.: Instantiations, zippers and epr
interpolation. In: LPAR. pp. 35–41 (2013)

10. Blicha, M., Hyvärinen, A.E., Kofroň, J., Sharygina, N.: Decomposing Farkas inter-
polants. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. pp. 3–20. Springer (2019)

11. Bradley, A.R.: SAT-based model checking without unrolling. In: VMCAI. pp. 70–
87 (2011)

12. Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of counterex-
amples to induction. In: Formal Methods in Computer Aided Design (FMCAD’07).
pp. 173–180. IEEE (2007)

13. Champion, A., Kobayashi, N., Sato, R.: HoIce: An ICE-based non-linear horn
clause solver. In: APLAS (2018)

14. Chockler, H., Ivrii, A., Matsliah, A.: Computing interpolants without proofs. In:
Haifa verification conference. pp. 72–85. Springer (2012)

15. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit
predicate abstraction. In: International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. pp. 46–61. Springer (2014)

16. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S. (eds.) Proceedings of TACAS. LNCS, vol. 7795.
Springer (2013)

17. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. Journal of the ACM (JACM)
50(5), 752–794 (2003)

18. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press (1999)
19. De Moura, L., Bjørner, N.: Z3: An e�cient SMT solver. In: TACAS. pp. 337–340

(2008)

22

20. Drews, S., Albarghouthi, A.: E↵ectively propositional interpolants. In: Interna-
tional Conference on Computer Aided Verification. pp. 210–229. Springer (2016)

21. Een, N., Mishchenko, A., Brayton, R.: E�cient implementation of property di-
rected reachability. In: FMCAD. pp. 125–134 (2011)

22. Farkas, J.: Theorie der einfachen ungleichungen. Journal für die reine und ange-
wandte Mathematik 1902(124), 1–27 (1902)

23. Fedyukovich, G., Bod́ık, R.: Accelerating syntax-guided invariant synthesis. In:
TACAS. pp. 251–269 (2018)

24. Fedyukovich, G., Kaufman, S., Bod́ık, R.: Sampling invariants from frequency dis-
tributions. In: FMCAD. pp. 100–107 (2017)

25. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Solving constrained horn
clauses using syntax and data. In: FMCAD. pp. 170–178 (2018)

26. Goel, A., Sakallah, K.: Model checking of Verilog RTL using IC3 with syntax-
guided abstraction. In: NASA Formal Methods Symposium. pp. 166–185. Springer
(2019)

27. Goel, A., Sakallah, K.: Avr: Abstractly verifying reachability. In: Biere, A., Parker,
D. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp.
413–422. Springer International Publishing, Cham (2020)

28. Govind, H., Fedyukovich, G., Gurfinkel, A.: Word level property directed reacha-
bility. In: International Conference on Computer Aided Design (2020)

29. Graf, S., Säıdi, H.: Construction of abstract state graphs with pvs. In: International
Conference on Computer Aided Verification. pp. 72–83. Springer (1997)

30. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI. pp. 405–416. ACM (2012)

31. Griggio, A.: E↵ective word-level interpolation for software verification. In: Pro-
ceedings of the International Conference on Formal Methods in Computer-Aided
Design. p. 28–36. FMCAD ’11, FMCAD Inc, Austin, Texas (2011)

32. Gurfinkel, A.: IC3, PDR, and friends. Summer School on Formal Techniques (2015)
33. Gurfinkel, A., Belov, A., Marques-Silva, J.: Synthesizing safe bit-precise invariants.

In: TACAS. LNCS, vol. 8413, pp. 93–108. SV (2014)
34. Ho, Y.S., Mishchenko, A., Brayton, R.: Property directed reachability with word-

level abstraction. In: FMCAD. pp. 132–139 (2017)
35. Hojjat, H., Rümmer, P.: The ELDARICA Horn Solver. In: FMCAD. pp. 158–164.

IEEE (2018)
36. Ivrii, A., Gurfinkel, A.: Pushing to the top. In: 2015 Formal Methods in Computer-

Aided Design (FMCAD). pp. 65–72 (2015)
37. Ivrii, A., Gurfinkel, A., Belov, A.: Small inductive safe invariants. In: 2014 Formal

Methods in Computer-Aided Design (FMCAD). pp. 115–122. IEEE (2014)
38. Jain, H., Kroening, D., Sharygina, N., Clarke, E.: Word level predicate abstrac-

tion and refinement for verifying RTL Verilog. In: Proceedings of the 42nd annual
Design Automation Conference. pp. 445–450 (2005)

39. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. FMSD 48(3), 175–205 (2016)

40. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in
SMT-based unbounded software model checking. In: CAV. pp. 846–862 (2013)

41. Krishnan, H.G.V., Chen, Y., Shoham, S., Gurfinkel, A.: Global guidance for local
generalization in model checking. In: International Conference on Computer Aided
Verification. pp. 101–125. Springer (2020)

42. Lee, S., Sakallah, K.A.: Unbounded scalable verification based on approximate
property-directed reachability and datapath abstraction. In: CAV. pp. 849–865.
Cham (2014)

23

43. Leroux, J., Rümmer, P., Subotić, P.: Guiding Craig interpolation with domain-
specific abstractions. Acta Informatica 53(4), 387–424 (2016)

44. Mann, M., Wilson, A., Tinelli, C., Barrett, C.: SMT-Switch: a solver-agnostic C++
api for smt solving. arXiv preprint arXiv:2007.01374 (2020)

45. Mattarei, C., Mann, M., Barrett, C., Daly, R.G., Hu↵, D., Hanrahan, P.: CoSA:
Integrated verification for agile hardware design. In: 2018 Formal Methods in Com-
puter Aided Design (FMCAD). pp. 1–5. IEEE (2018)

46. McMillan, K.: Applications of Craig interpolation to model checking. In: Interna-
tional Workshop on Computer Science Logic. pp. 22–23. Springer (2004)

47. McMillan, K.L.: Interpolation and SAT-based model checking. In: International
Conference on Computer Aided Verification. pp. 1–13. Springer (2003)

48. McMillan, K.L., Rybalchenko, A.: Solving constrained horn clauses using interpo-
lation (2013)

49. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2 , BtorMC and Boolec-
tor 3.0. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verifica-
tion - 30th International Conference, CAV 2018, Held as Part of the Feder-
ated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 10981, pp. 587–595. Springer
(2018). https://doi.org/10.1007/978-3-319-96145-3 32, https://doi.org/10.1007/
978-3-319-96145-3 32

50. Padhi, S., Millstein, T., Nori, A., Sharma, R.: Overfitting in synthesis: Theory
and practice. In: International Conference on Computer Aided Verification. pp.
315–334. Springer (2019)

51. Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with
learned features. In: PLDI. pp. 42–56. ACM (2016)

52. Preiner, M., Biere, A.: Hardware model checking competition 2019. http://fmv.
jku.at/hwmcc19/, accessed: 2020-09-10

53. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C., Tinelli, C.: cvc4sy: Smart and
fast term enumeration for syntax-guided synthesis. In: CAV. pp. 74–83 (2019)

54. Si, X., Naik, A., Dai, H., Naik, M., Song, L.: Code2inv: A deep learning frame-
work for program verification. In: International Conference on Computer Aided
Verification. pp. 151–164. Springer (2020)

55. Welp, T., Kuehlmann, A.: QF BV model checking with property directed reach-
ability. In: 2013 Design, Automation & Test in Europe Conference & Exhibition
(DATE). pp. 791–796. IEEE (2013)

56. Welp, T., Kuehlmann, A.: Property directed reachability for QF BV with mixed
type atomic reasoning units. In: Asia and South Pacific Design Automation Con-
ference. pp. 738–743. IEEE (2014)

57. Zhang, H.: Figures for additional experiment results. https ://github .com/
zhanghongce/HWMCC19-in-CHC/blob/logs/figs/compare.md, accessed: 2020-11-
14

58. Zhang, H.: HWMCC19 benchmark in constrained horn clauses. https://github.
com/zhanghongce/HWMCC19-in-CHC, accessed: 2020-10-08

59. Zhang, H., Yang, W., Fedyukovich, G., Gupta, A., Malik, S.: Synthesizing environ-
ment invariants for modular hardware verification. In: International Conference on
Verification, Model Checking, and Abstract Interpretation. pp. 202–225. Springer
(2020)

60. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable
Boolean formulas. In: International Conference on Theory and Applications of
Satisfiability Testing (SAT) (2003)

24

https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
http://fmv.jku.at/hwmcc19/
http://fmv.jku.at/hwmcc19/
https://github.com/zhanghongce/HWMCC19-in-CHC/blob/logs/figs/compare.md
https://github.com/zhanghongce/HWMCC19-in-CHC/blob/logs/figs/compare.md
https://github.com/zhanghongce/HWMCC19-in-CHC
https://github.com/zhanghongce/HWMCC19-in-CHC

61. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation. p. 707–721. PLDI 2018, Association for Computing Machinery,
New York, NY, USA (2018). https://doi.org/10.1145/3192366.3192416, https://
doi.org/10.1145/3192366.3192416

25

View publication statsView publication stats

https://doi.org/10.1145/3192366.3192416
https://doi.org/10.1145/3192366.3192416
https://doi.org/10.1145/3192366.3192416
https://www.researchgate.net/publication/348400802

