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ABSTRACT 20 

 21 

        The Cretaceous-Paleogene boundary (KPB) mass extinction (~66.02 Ma) and the 22 

Paleocene-Eocene Thermal Maximum (PETM) (~55.8 Ma) are two remarkable climatic 23 
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and faunal events in Earth's history that have implications for the current Anthropocene 24 

global warming and rapid diversity loss. Here we evaluate these two events at the 25 

stratotype localities in Tunisia and Egypt based on climate warming and environmental 26 

responses recorded in faunal and geochemical proxies. The KPB mass extinction is 27 

commonly attributed to the Chicxulub impact, but Deccan volcanism appears as a major 28 

culprit. New mercury analysis reveals that major Deccan eruptions accelerated during the 29 

last 10 ky and reached the tipping point leading up to the mass extinction. During the 30 

PETM, climate warmed rapidly by ~5 ºC, which is mainly attributed to methane 31 

degassing from seafloor sediments during global warming linked to the North Atlantic 32 

Igneous Province (NAIP). Biological effects were transient, marked by temporary 33 

absence of most planktic foraminifera due to ocean acidification followed by the return of 34 

the pre-PETM fauna and diversification. In contrast, the current rapid rise in atmospheric 35 

CO2 and climate warming are magnitudes faster than at the KPB or PETM events leading 36 

to predictions of a PETM-like response as best case scenario and rapidly approaching 37 

sixth mass extinction as worst-case scenario.  38 

 39 

1. INTRODUCTION 40 

 41 

 One of the greatest challenges to our planet is the looming Anthropocene mass 42 

extinction commonly attributed to human activity as the dominant influence on rapid 43 

climate warming and changing environments as a result of fossil fuel burning (IPCC 5th 44 

Assessment Report, 2013). This climate warming is commonly compared with the rapid 45 

short-term ~5 ºC warming known as the Paleocene-Eocene Thermal Maximum (PETM) 46 
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~55.8 Ma. However, the PETM led to opposite results: major diversification in marine 47 

and terrestrial life and significant species extinctions only in deep-water benthic 48 

foraminifera. A better understanding of the impending Anthropocene catastrophe can be 49 

gained from the rapid warming and mass extinction culminating at the Cretaceous-50 

Paleogene boundary (KPB also known as KPgB or KTB). In this study we examine both 51 

the PETM and KPB events to gain insights into potential Anthropocene scenarios.  52 

 The PETM event (55.8 ± 0.2 Ma) lasted ~170 ky and is commonly attributed to 53 

North Atlantic Igneous Province (NAIP) volcanism and methane degassing of seafloor 54 

sediments (e.g., Dickens et al., 1995; Dickens, 2000; Westerhold et al., 2009; Charles et 55 

al., 2011; Wieczorek et al., 2013; Gutjahr et al., 2017). The resulting global negative δ
13

C 56 

excursion of 2-6 ‰ and rapid warming of 4.5-5 °C from tropical to high latitudes was 57 

accompanied by ocean acidification and shoaling of the carbonate compensation depth 58 

(CCD) by ~2000 m (e.g., Kennett and Stott, 1991; Sluijs et al., 2006; Zachos et al., 2003, 59 

2005, 2006; Weijers et al., 2007; McInnery and Wing, 2011; Coccioni et al., 2012; 60 

Gutjahr et al., 2017). In the marine realm planktic foraminifera and calcareous 61 

nannoplankton, which form the essential food chain in the oceans, temporarily 62 

disappeared but returned and diversified after the PETM (Lu and Keller, 1993, 1995a, b; 63 

Kelly et al., 1996, 1998; Luciani et al., 2007, 2016). Only benthic foraminifera suffered 64 

significant extinctions and these were restricted to bathyal depths where an estimated 37 65 

% species went extinct (Alegret and Ortiz, 2006). No other groups in marine or terrestrial 66 

realms suffered significant extinctions. On land tropical and subtropical forests spread 67 

into higher latitudes during the PETM (Sluijs et al., 2006) and most animals reduced in 68 
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size and abundance (Smith et al., 2009). Shortly after the PETM mammals migrated, 69 

thrived and diversified (Smith et al., 2009).  70 

The KPB mass extinction (66.02 Ma) was marked by a negative 2-3 ‰ δ
13

C shift 71 

in surface but not deep waters, leading to an inverse surface-to-deep δ
13

C gradient 72 

generally attributed to reduced primary productivity and weakening of the marine 73 

biological carbon pump (e.g., Zachos et al., 1989; Kump, 1991, 2003). Rapid climate 74 

warming during the last 250 ky of the Maastrichtian, prior to the KPB, and cooling 75 

during the first 500 ky of the early Paleocene are linked to Deccan volcanic eruptions 76 

(review Punekar et al., 2014) About 50-75 % of all terrestrial and marine taxa went 77 

extinct. In the oceans, extinctions affected the base of the food chain most severely 78 

causing major extinctions in calcareous nannoplankton and near total extinction (99 %) of 79 

marine planktic foraminifera (e.g., Keller, 1988a, 2001; MacLeod et al., 1997; Molina et 80 

al., 1998; Keller et al., 2002; Luciani, 2002), but no significant extinctions in benthic 81 

foraminifera (review in Culver, 2003). The extinction of non-avian dinosaurs is the most 82 

famous example of the KPB mass extinction on land while many mammals survived 83 

undergoing an explosive radiation during the Paleogene (review in Feduccia, 2014; 84 

Wilson, 2014). Macrofloral diversity also decreased during the late Maastrichtian 85 

warming and across the mass extinction horizon (e.g., Wilf et al., 2003; Wilf and 86 

Johnson, 2004).  87 

         Both PETM and KPB events thus recorded extreme and rapid climate changes but 88 

with nearly opposite effects on marine and terrestrial life – rapid evolutionary 89 

diversification following the PETM event with extinctions restricted to deep water 90 

benthic foraminifera but near total mass extinction in planktic foraminifera at the KPB. 91 
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Understanding when rapid climate change furthers evolutionary diversification and when 92 

it leads to extinctions is critical to assessing the risk of current climate warming for 93 

marine and terrestrial populations including humans in the coming decades. This study 94 

explores the potential reasons for the differing biotic responses associated with rapid 95 

climate warming during the PETM and KPB events and compares these with the current 96 

rapid climate warming and biotic response of the Anthropocene. We hypothesize that the 97 

biotic response mainly depends on the rate and tempo of greenhouse gas emissions into 98 

the atmosphere and that extinctions are inevitable once the tipping point or critical 99 

threshold is reached, which marks the onset of irreversible climate change from which 100 

even small perturbations can result in runaway effects. 101 

        For this study we chose the globally recognized most complete sections for the 102 

KPB and PETM events. For the KPB these are the Global Stratotype Section and Point 103 

(GSSP) at El Kef and the auxiliary stratotype at Elles (Molina et al., 2009) 56 km 104 

southeast of the city of El Kef, Tunisia, and for the PETM, the global GSSP at the 105 

Dababiya quarry in Egypt (Figs. 1, 2). We focus on four topics: 1) planktic and benthic 106 

species population changes in foraminifera, the groups most strongly affected by both 107 

events; 2) evidence linking mass extinctions and faunal turnovers to climate change and 108 

ocean acidification; 3) evidence linking these faunal events directly to volcanism; and 4) 109 

comparison of KPB and PETM with the Anthropocene and potential sixth mass 110 

extinction. Analyses are based on benthic and planktic foraminifera, carbon and oxygen 111 

stable isotopes, mineralogy, and mercury (Hg) anomalies. (A description of methods, 112 

materials and locations and of the environmental proxies is given in Supplementary 113 

Materials S1; data tables are given in Supplementary Materials S2.) 114 
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 115 

2. KPB MASS EXTINCTON: EL KEF AND ELLES  116 

 117 

2.1. KPB-Defining Criteria  118 

The KPB is one of the easiest period boundaries to identify, whether based on 119 

lithological changes in the field (Fig. 3), geochemical analysis in the laboratory, or fossil 120 

content. The El Kef section was officially designated in 1989 as the Global Stratotype 121 

Section and Point (GSSP) and Elles (discovered in the late 1990s) designated as auxiliary 122 

stratotype (Molina et al., 2009). The five KPB defining and marker criteria are: (1) mass 123 

extinction in planktic foraminifera, (2) evolution of first Danian species, (3) KPB clay 124 

and red layer, (4) iridium (Ir) anomaly and (5) δ
13

C negative shift. These KPB criteria 125 

have proven globally applicable and independently verifiable in over 300 KPB sequences 126 

worldwide (Cowie et al., 1989; Keller et al., 1995; Remane et al., 1999). Since planktic 127 

foraminifera are the only marine microfossil group that suffered near total extinction, 128 

they have remained the most reliable KPB-defining criteria. All other KPB markers, such 129 

as the clay and red layers, Ir anomaly and δ
13

C shift, are not unique signals in the 130 

geological record and therefore cannot define the KPB in the absence of unique 131 

biomarkers (review in Keller, 2011).  132 

However, proponents of the Chicxulub impact as sole cause for the mass 133 

extinction eliminated the five KPB identifying criteria in favor of just the "Ir anomaly 134 

associated with a major extinction horizon" (Gradstein et al., 2004, ICS website on 135 

GSSPs). Based on these two criteria and the assumption that the Ir anomaly is the result 136 

of the Chicxulub impact, Molina et al. (2006, p. 263) concluded that "in this way the KPB 137 
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is marked exactly by the moment of the meteorite impact" and that "This definition solves 138 

problems of correlation in the Yucatan peninsula (Mexico) and its surroundings." Far 139 

from solving "problems of correlation", this new definition has only introduced circular 140 

reasoning to support the hypothesis that the Chicxulub impact is precisely KPB in age, 141 

thus ignoring contrary evidence (Keller, 2011, Supplementary Materials S3). Fortunately, 142 

the El Kef and Elles KPB sections remain identified by the original five criteria that are 143 

the most reliable KPB markers. 144 

 145 

2.2. Biostratigraphy: Planktic Foraminifera 146 

Zone definitions are based on Keller et al. (1995, 2002) and include:  zone CF2 147 

(last appearance (LA) of Gansserina gansseri near the base of magnetochron C29r to first 148 

appearance (FA) of Plummerita hantkeninoides), zone CF1 (range of Plummerita 149 

hantkeninoides, extinct at the KPB), zone P0 (from the KPB to FA of 150 

Parvularugoglobigerina eugubina), zone P1a(1) (FA of P. eugubina to FAs of 151 

Parasubbotina pseudobulloides and/or Subbotina triloculinoides), and zone P1a(2) (LAs 152 

of P. eugubina and P. longiapertura) correlative with the top of magnetochron C29r (Fig. 153 

4). Thus, zones CF2 through P1a(2) correlate with magnetochron C29r (Li and Keller, 154 

1998; Pardo et al., 1996). The time interval presented in this study for El Kef spans from 155 

the latest Maastrichtian zone CF1 through the early Danian zones P0, P1a(1), P1a(2) and 156 

lower part of P1b and for Elles from the upper part of zone CF1 to zone P1a(1).. 157 

Recent U-Pb zircon dating of Deccan Traps yielded a duration of ~750 ky for 158 

C29r (Schoene et al., 2015) with 200 ky equivalent to zone CF1 below the KPB and 500 159 

ky equivalent to P0, P1a(1) and P1a(2) above the KPB. The late Maastrichtian intervals 160 
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used in this study at El Kef and Elles span the last ~68 ky and 70 ky below the KPB and 161 

first ~500 ky and ~150 ky of the early Danian, respectively, plus an unknown age interval 162 

of zone P1b in C29n (Fig. 4).  163 

 164 

2.3. Extinctions and Survivals   165 

The mass extinction at El Kef is shown in Figure 4 based on species ranges and 166 

morphologies of the different planktic foraminiferal groups. The largest most specialized 167 

and highly ornamented taxa, known as K-strategists (Fig. 4 #1-10), generally lived below 168 

the surface in tropical and subtropical waters, utilized specialized food sources, had few 169 

offspring and lived longer (Begon et al., 1996, 1998). They suffered reduced population 170 

abundances and species dwarfing during the late Maastrichtian climate warming linked to 171 

Deccan volcanism in C29r, zones CF1-CF2 (Li and Keller, 1998; Olsson et al., 2001; 172 

Abramovich et al., 2003, 2010; Keller and Abramovich, 2009; Punekar et al., 2014; 173 

Thibault et al., 2016; Thibault and Husson, 2016). 174 

Quantitative species abundances at El Kef show that during this global warming 175 

complex larger specialized species decreased in abundance and diversity (Fig. 5)  as also 176 

observed at Elles and worldwide (Abramovich and Keller, 2002; Punekar et al., 2014; 177 

Keller et al., 2016). Among this group, the robust globotruncanids (16 species) are 178 

generally rare with combined abundance of 6-13 %, which demonstrates the severe toll 179 

climate warming and related stresses (e.g., ocean acidification, high nutrient influx from 180 

Deccan volcanism and terrestrial runoff due to increased humidity) exerted on marine 181 

plankton leaving them prone to extinction. 182 
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 A small group of species (about 1/3 of planktic foraminiferal assemblages) 183 

survived relatively well during the pre-KPB C29r climate warming (zone CF1, Figs. 4, 184 

5). These were relatively small species with simple biserial and trochospiral 185 

morphologies, with little shell ornamentation. They were ecologically more tolerant, r-186 

strategists that thrived in varied environments from low to high latitudes, utilized diverse 187 

food sources, had short life spans and reproduced rapidly with many offspring (review in 188 

Keller and Abramovich, 2009). This group had high survival potential but just one 189 

species survived long-term – the disaster opportunist Guembelitria cretacea. 190 

There is general agreement that between 8-16 smaller species survived for about 191 

50-150 ky into the early Danian (Figs. 4, 5) but survivorship is difficult to ascertain for 192 

most species because reworked Cretaceous species are common above the KPB. This is 193 

mainly due to the early Danian global cooling, lower sea level and erosion that frequently 194 

resulted in hiatuses eroding the underlying KPB interval and latest Maastrichtian 195 

particularly in shallow water environments (Keller et al., 2013, 2016; Mateo et al., 2017). 196 

Clues to survivorship include consistent presence in Danian sediments, good 197 

preservation, generally dwarfed specimens and Danian isotope values. Only Heterohelix 198 

globulosa, H. planata, Paraspiroplecta navarroensis, Pseudoguembelina costulata, 199 

Guembelitria cretacea, Hedbergella monmouthensis, H. holmdelensis, Globigerinelloides 200 

asper and G. yaucoensis are proven mass extinction survivors to date (e.g., Barrera and 201 

Keller, 1990; Pardo and Keller, 2008; Ashckenazi-Polivoda et al., 2011). Other species 202 

are also consistently present well into the early Danian but have yet to be conclusively 203 

determined as survivors (e.g., Pseudoguembelina costellifera, P. kempensis, 204 

Globigerinelloides subcarinatus; Figs. 4-6). 205 
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Among the survivors, four biserial species (P. costulata, H. globulosa, H. planata, 206 

P. navarroensis), at least three trochospiral species (Hedbergella monmouthensis, H. 207 

holmdelensis, Globigerinelloides yaucoensis), and one triserial species (G. cretacea), are 208 

known to tolerate low oxygen conditions. These dominate late Maastrichtian assemblages 209 

and range well into the early Danian with reduced to sporadic presence (Figs. 4-6) (Pardo 210 

and Keller, 2008; Ashckenazi-Polivoda et al., 2011). But they also suffered beginning in 211 

the latest Maastrichtian (upper zone CF1) and into the early Danian as evident by species 212 

dwarfing, deformed chambers and reduced population abundances (Fig. 6) (review in 213 

Keller and Abramovich, 2009). 214 

The KPB mass extinction has just one long-term survivor, G. cretacea, which is 215 

known as a disaster opportunist. This species thrived during maximum stress conditions 216 

and dominated faunal assemblages of the latest Maastrichtian and early Danian (>90 %) 217 

at El Kef and Elles (Figs. 5, 6) (Pardo and Keller, 2008; Punekar et al., 2014). 218 

Guembelitria cretacea was the smallest planktic foraminifer (63-100 μm) and responded 219 

to high-stress conditions by dwarfing (size reduction to 38-63 μm), irregular deformed 220 

chambers (Coccioni and Luciani, 2006), and less frequently gigantism (Keller, 2014). 221 

During optimal environmental conditions, this disaster opportunist disappeared from 222 

open marine assemblages but survived in high-stress near-shore refugia. 223 

   224 

2.4. Species Dwarfing       225 

Species dwarfing, also known as the Lilliput effect, marks morphologic and 226 

intraspecies size reductions in response to environmental stresses commonly associated 227 

with, but not restricted to, the aftermath of mass extinctions (Keller and Abramovich, 228 
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2009). In addition to planktic foraminifera across the KPB mass extinction, the Lilliput 229 

effect has been observed in many groups, including ostracods, mollusks and bivalves, of 230 

the Permo-Triassic mass extinction (Payne, 2005; Twitchett, 2007; Chu et al., 2015), 231 

shelly faunas and microbial carbonates preceding the end-Devonian mass extinction 232 

(Whalen et al., 2002; Bosetti et al., 2010), crinoids of the end-Ordovician mass extinction 233 

(Borths and Ausich, 2011) and graptolites of the upper Silurian (Urbanek, 1993). This 234 

suggests a universal biotic response to environmental stress, regardless of cause, timing 235 

or nature of organisms.  236 

High-stress environments are associated with rapid climate change, mesotrophic 237 

or restricted basins, shallow marginal settings and volcanically active regions. For 238 

example, Large Igneous Province (LIP) volcanism is currently associated with four of the 239 

five Phanerozoic mass extinctions, whereas Hg anomalies, a proxy for volcanism, are 240 

reported from all five (da Silva et al., 2008; Grasby et al., 2013; Percival et al., 2015; 241 

Thibodeau et al., 2016; Font et al., 2016; Gong et al., 2017). Second order volcanic 242 

events (e.g., Ninetyeast Ridge and Andean volcanism) are at least in part related to the 243 

early late Maastrichtian faunal turnover (Keller, 2003; Keller et al., 2007; Mateo et al., 244 

2017).  245 

Among planktic foraminifera the sequence of responses to increasingly high 246 

environmental stress developed in 5 stages that form a stress continuum from optimum 247 

open marine conditions to increasingly stressful environments associated with rapid 248 

climate warming and volcanic activity leading to catastrophe (Fig. 7). The five stages of 249 

this stress continuum include: (1) elimination of large specialized species (K-strategists), 250 

(2) intraspecies dwarfing, (3) dominance of low oxygen tolerant small heterohelicids (r-251 
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strategists), (4) decline of heterohelicids and (5) dominance of disaster opportunist 252 

Guembelitria species (Keller and Abramovich, 2009). 253 

This sequence of stress-induced biotic events is demonstrated at El Kef and Elles, 254 

as well as in all continuous KPB sequences worldwide (Pardo and Keller, 2008; Keller 255 

and Abramovich, 2009). Stages 1-2 are evident by the dramatic reduction in large K-256 

strategist species populations and dwarfing of survivors, which was first linked to global 257 

warming caused by Deccan volcanism in magnetochron C29r at South Atlantic DSDP 258 

Site 525A (Abramovich and Keller, 2003). Stage 3 marks the rising dominance of r-259 

strategists, followed by dwarfing in stage 4 and declining populations. Stage 5 marks 260 

maximum stress resulting in decreased populations of r-strategists and dominance of the 261 

disaster opportunist Guembelitria. 262 

Figure 6 shows the effects of species dwarfing across the KPB transition based on 263 

>63 μm and 38-63 μm size fractions at Elles. In the >63 μm size fraction below the KPB, 264 

the same four biserial taxa dominate the assemblage as at El Kef and Guembelitria 265 

cretacea is rare (Fig. 6A). After the mass extinction, G. cretacea dominates (>95 %) but 266 

the interval between 7 cm to 80 cm above the KPB is barren in the >63 μm size fraction 267 

with species abruptly reappearing above (Fig. 6A).  268 

Analysis of the smaller size fraction (38-63 μm) reveals the missing fauna as 269 

dwarfed due to increased stress (Fig. 6B). The most notable difference is the dominance 270 

of dwarfed disaster opportunist G. cretacea and low oxygen tolerant P. navarroensis and 271 

H. planata. Dwarfed Guembelitria populations up to 90 % of the total foraminiferal 272 

assemblages are frequently observed below the KPB in shallow shelf to open marine and 273 

in volcanically stressed environments (review in Pardo and Keller, 2008). Similar 274 
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Guembelitria blooms dominated (~90 %) after the KPB mass extinction, although they 275 

are generally not dwarfed. This suggests that environmental stress was higher before the 276 

mass extinction than in its aftermath.  277 

 278 

2.5. Evolution and Delayed Recovery 279 

Evolution of new species began in zone P0 immediately after the mass extinction 280 

(Fig. 8). The first new species were very small (38-63 μm), unornamented, with simple 281 

globular chamber arrangements in biserial, triserial and trochospiral morphologies (Figs. 282 

4-6). Low diversity assemblages of 10 to 15 species with slightly larger (63-100 μm) 283 

morphologies persisted for the first 500 ky (zones P1a(1)-P1a(2)) after the mass 284 

extinction, marking a long crisis interval. Cretaceous survivor species gradually 285 

disappeared in zone P1a(1) (Fig. 8). Dwarfing, slow evolution, simple small species 286 

morphology and gradual disappearance of dwarfed survivor species during the early 287 

Danian mark continued high-stress environments dominated by the disaster opportunist 288 

Guembelitria and the new crisis opportunists Parvularugoglobigerina eugubina and P. 289 

longiapertura (Figs. 5, 6). 290 

A clue to the nature of this crisis interval is seen in the negative 2-3 ‰ δ
13

C 291 

excursion at the KPB that represents a sudden drop in primary marine productivity at the 292 

mass extinction horizon (Fig. 5). During the early Danian, planktic δ
13

C values at El Kef 293 

and Elles remained 1-2 ‰ below benthic values for the first ~500 ky correlative with the 294 

delayed recovery in marine plankton (Keller and Lindinger, 1989; Stüben et al., 2003). 295 

This interval is followed by the rapid positive 2 ‰ δ
13

C excursion at the P1a(2)/P1b zone 296 

boundary (C29r/C29n) that signals the onset of recovery coincident with the end of the 297 
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main phase of Deccan volcanism (Fig. 5). Thus the delayed recovery appears to be due to 298 

continued volcanic eruptions. For marine plankton, the δ
13

C recovery lead to a major re-299 

organization, including the near disappearance of the disaster opportunist Guembelitria 300 

(Fig. 5), extinction of the dominant crisis interval taxa (P. eugubina, P. longiapertura, P. 301 

extensa), dominance of Praemurica taurica and small biserial low oxygen tolerant 302 

species (Chiloguembelina morsei, Woodringina hornerstownensis, W. claytonensis), 303 

increased diversity and gradual appearance of larger morphotypes particularly in zone 304 

P1c (Fig. 8). 305 

         306 

2.6. Benthic Foraminifera 307 

        There is no mass extinction in benthic foraminifera across the KPB globally but 308 

they suffered a severe and prolonged faunal turnover (Fig. 9). At El Kef, 42 % (21 309 

species) of 50 calcareous benthic species identified disappeared at the KPB and remained 310 

absent through the early Danian zone P1a-P1b interval analyzed (>500 ky) (Keller 311 

1988b). During the early Danian P0-P1a high-stress interval, 16 % (8 species) 312 

temporarily disappeared, 30 % (15 species) ranged through with Anomalinoides acutus 313 

dominant in the high-stress P1a interval and 12 % (6 species) appeared in the early 314 

Danian. Correlative with this faunal turnover is the drop in CaCO3 from ~50 % (pre-315 

KPB) to <10 % (post-KPB) in the sediments, high terrestrial organic influx (due to 316 

enhanced weathering) and low oxygen in the water column and seafloor sediments 317 

(Keller and Lindinger, 1989). These high nutrient conditions favored epifaunal 318 

assemblages dominated by A. acutus scavenging food on the seafloor. Infaunal 319 

assemblages largely disappeared returning with increased oxygen in sediments in zone 320 
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P1b (Fig. 9). Speijer and Van der Zwaan (1996) also analyzed El Kef benthic 321 

foraminifera. Their faunal turnover results slightly differ from Keller (1988b) with the 322 

main difference being the larger number of disappearing and temporarily absent species, 323 

which is largely due to their inclusion of agglutinated and non-specified genera 324 

groupings.  325 

        How representative is the El Kef benthic faunal turnover pattern on a global 326 

basis? Culver (2003, p. 214) reviewed published reports across latitudes and palaeodepths 327 

and concluded: "if the percentage data are taken at face value and averaged for shallow, 328 

intermediate and deep water, the results come out as follows: shallow, 40 % disappear; 329 

intermediate, 35 % maximum, 29 % minimum disappear; deep, 29 % maximum, 19 % 330 

minimum disappear." Note that “disappear” means that most or all of these taxa returned 331 

after the stress event in the aftermath of the KPB mass extinction. Although these data are 332 

incomplete and percentage values may have large errors, a major environmental change 333 

is evident on the seafloor across latitudes and palaeodepths but no mass extinction is 334 

recorded. 335 

 336 

3. ENVIRONMENTAL PROXIES: KPB 337 

 338 

 During the late Maastrichtian, rapid and extreme climate warming, interrupted by 339 

short cool events, began in the lower half of zone CF2, coincident with the onset of major 340 

Deccan volcanic eruptions near the base of C29r about 350 ky prior to the mass 341 

extinction (Li and Keller, 1998; Punekar et al., 2014; Thibault et al., 2016). Figure 10 342 

shows climate changes (δ
18

O) and Hg anomalies (proxy for Deccan volcanism) during 343 
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the last 70 ky of the Maastrichtian leading up to the mass extinction at Elles. No 344 

temperatures have been calculated from this δ
18

O data because diagenetic alteration of 345 

foraminiferal shell calcite shifts values negative though temperature trends are preserved 346 

(see Supplementary Materials S4). Hg in sediments is a byproduct of explosive 347 

volcanism and has a residence time of 1-2 years in the atmosphere during which it is 348 

distributed by winds worldwide before fallout and accumulation in sediments (Grasby et 349 

al., 2013; Thibodeau and Bergquist, 2017). Since Hg is commonly concentrated in 350 

organic carbon, it is typically normalized and shown as the ratio of Hg to total organic 351 

carbon (Hg/TOC).   352 

 The Elles δ
18

O record indicates a relatively cool climate from 70-40 ky pre-KPB 353 

during a volcanically quiet period (Fig. 10). About 40 ky pre-KPB, surface water rapidly 354 

warmed coincident with major Deccan eruptions but warming in bottom waters is 355 

delayed by several thousand years. During the last 10 ky pre-KPB, climate remained 356 

warm and Hg/TOC ratios remained high. Through this interval Hg/TOC ratios mark peak 357 

volcanic activity with accelerating eruptions reaching maximum values at the KPB mass 358 

extinction (2498 ppb/wt%; 1291 ppb/wt% at El Kef).  359 

 We interpret the Hg/TOC ratios at Elles as recording Deccan eruptions with the 360 

high ratios indicating larger or more explosive eruptions. Maximum climate warming and 361 

accelerating massive Deccan eruptions during the last 10 ky may mark the tipping point 362 

for planktic foraminifera. From this point on, extinctions are rapid culminating at the 363 

KPB. Faunal assemblages during this interval are dominated by stress-tolerant and 364 

generally dwarfed survivor taxa with the disaster opportunist G. cretacea being the most 365 

abundant (Figs. 5, 6A,B). At El Kef, faunal proxies indicate diversity loss, decreasing 366 
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P/B ratio, increasing fragmentation in planktic foraminifera due to dissolution and high 367 

abundance of dwarfed Guembelitria populations (Fig. 11). Similar faunal extinctions, 368 

disaster opportunists and dissolution coincident with high Hg/TOC ratios have been 369 

recorded during the last 30-50 ky pre-KPB in France, Austria and Spain and interpreted 370 

as ocean acidification (Font et al., 2016; Punekar et al., 2016).  371 

Ocean acidification linked to Large Igneous Province (LIP) volcanism has been 372 

identified for the PETM and mass extinctions at the KPB, end-Triassic and end-Permian 373 

(Hönisch et al., 2012). CO2 emissions into the atmosphere from LIP volcanism can 374 

severely perturb the carbon cycle. If the rate of atmospheric pCO2 increase overtakes the 375 

buffering time/capacity of the ocean (~1000 yrs; Zeebe, 2012), seawater carbonate 376 

chemistry can be seriously altered resulting in the lowering of carbonate ion 377 

concentration ([CO3
2–

]) and the surface ocean pH (Kump et al., 2009). Ocean 378 

acidification leads to calcification crises in shelly organisms, such as nannofossils, 379 

foraminifera, bivalves, gastropods and pteropods, and has increasingly been identified as 380 

an important mechanism linking major volcanic episodes, including the PETM and KPB, 381 

with faunal turnovers and mass extinction events (Hönisch et al., 2012; Font et al., 2016; 382 

Punekar et al., 2016; Bond and Wignall, 2016). 383 

 The most characteristic KPB signals, apart from the Ir anomaly and mass 384 

extinction, are the drop in CaCO3 to near 0 %, the Hg anomalies and high Hg/TOC ratios, 385 

and the 2-3 ‰ drop in δ
13

C, which is attributed to the mass extinction, loss of primary 386 

productivity and collapse of the biological carbon pump (Fig. 11). All faunal proxies 387 

indicate continued high-stress conditions through the early Danian C29r (~500 ky). The 388 

inverse surface-to-deep δ
13

C gradient persisted for ~1 Myr into C29n and CaCO3 389 
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remained low (<10 %). During these stress conditions the disaster opportunist 390 

Guembelitria dominated but alternated with the evolving short-ranging opportunist P. 391 

longiapertura (Fig. 5). The onset of recovery resulted in the extinction of the latter, near 392 

disappearance of the former, increased abundance of earlier taxa and evolution of new 393 

species. The recovery is led by a gradual return to higher productivity (δ
13

C) and 394 

increased CaCO3 (>30 %) (Fig. 11). The cause for this delayed recovery has long 395 

remained an enigma. The answer appears to be continued Deccan volcanism after the 396 

mass extinction as indicated by Hg/TOC anomalies. 397 

 398 

4. PALEOCENE-EOCENE THERMAL MAXIMUM (PETM): DABABIYA (GSSP) 399 

 400 

        The Dababiya GSSP is located on the eastern side of the upper Nile Valley and 35 401 

km southeast of Luxor at 25º30’N, 32º31’E (Fig. 2). Sediment deposition occurred at 402 

outer shelf depth between 150-200 m (Alegret et al., 2005) in a submarine channel (Fig. 403 

12A-C). The outcrop is fragile because it forms a precarious point jutting out at the 404 

turning point between eastern and northwestern parts of the channel and a vertical 405 

fracture runs through it. The section was sampled at 50 m to the northwest and 25 m to 406 

the east of the turning point, which partially collapsed in the spring of 2016 along the 407 

vertical fracture (Fig. 12C). 408 

        Khozyem et al. (2014, 2015) published geochemical and stratigraphic studies of 409 

the two sampled sequences. Earlier publications reported on mineralogy and 410 

geochemistry (Dupuis et al., 2003; Soliman et al., 2006; Schulte et al., 2011), and 411 

planktic and benthic foraminifera (Speijer et al., 1995; Speijer and Schmitz, 1998; Speijer 412 
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and Wagner, 2002; Berggren and Ouda, 2003; Alegret et al., 2005; Alegret and Ortiz, 413 

2006). Here we present new quantitative data on the planktic foraminiferal response to 414 

the PETM event at the section 25 m east from the GSSP cliff compared with benthic 415 

foraminifera and previously published stable isotope records (Alegret and Ortiz, 2006; 416 

Dupuis et al, 2003) (Fig. 12B, C). 417 

 418 

4.1. PEB-Defining Criteria 419 

        The PEB is defined based on: (1) global δ
13

Corg and δ
13

Ccarb isotope excursions 420 

(CIE), (2) disappearance of the deep water benthic foraminifer Stensioina beccariiformis, 421 

(3) transient occurrence of planktic foraminifera (Acarinina africana, A. sibaiyaensis, 422 

Morozovella allisonensis) during the δ
13

C excursions, (4) transient occurrence of the 423 

nannofossil Rhomboaster spp. – Discoaster araneus assemblage and (5) acme of the 424 

dinoflagellate Apectodinium (Aubry et al., 2007). At our Dababiya section 25 m east of 425 

the GSSP cliff, these PEB defining characteristics are identified. Lithology and 426 

geochemistry are discussed in Khozyem et al. (2014, 2015). 427 

 428 

4.2. Biostratigraphy: Planktic Foraminifera 429 

        Biostratigraphy for the Dababiya section is based on high-resolution planktic 430 

foraminifera and the standard biozonation scheme by Olsson et al. (1999) and Pearson et 431 

al. (2006) (Fig. 13A). The sampled interval spans zones P4c, P5, E1 and E2 covering an 432 

estimated time span of 2 Myr (54.5-56.5 Ma). Zone P4c marks the base of the section as 433 

indicated by the last appearance (LA) of the index species Globanomalina 434 

pseudomenardii and an assemblage dominated by Igorina tadjjikistanensis, Acarinina 435 
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soldadoensis, Subbotina hornibrooki, Morozovella acuta and M. aequa. The interval 436 

from the extinction of Gl. pseudomenardii to the first appearance (FA) of Acarinina 437 

sibaiyaensis defines zone P5 and the top of the Paleocene. At Dababiya, zone P5 marks 438 

the onset of the PETM with a 40 % increase in species diversity (from 21 to 35 species) 439 

and decreased abundance of the dominant zone P5 species correlative with a gradual 440 

decrease in δ
13

Corg and δ
13

Ccarb values culminating at the PEB (Fig. 13A). 441 

        Above the PEB, zone E1 spans 1 m with the basal 42 cm a barren clay devoid of 442 

CaCO3 marking dissolution/ocean acidification (Fig. 13A). Between 42-47 cm is a 5 cm 443 

thick radiolarian-rich interval with the transient PETM fauna dominated by A. 444 

sibaiyaensis and A. africana and FA of A. africana and Morozovella allisonensis. The 50 445 

cm above mark the onset of recovery with increasing δ
13

C values and rare foraminifera in 446 

the upper 20 cm. The E1/E2 boundary is placed at the first continuous occurrence of 447 

Pseudohastingerina wilcoxensis 1 m above the PEB coincident with the reappearance of 448 

diverse assemblages that existed already during the latest Paleocene. Just four species 449 

disappeared as they morphed into new species - a phenomenon known as 450 

pseudoextinction. Returning species have generally larger shell sizes than before their 451 

temporary disappearance, show morphological diversification and speciation (Lu and 452 

Keller, 1993, 1995a, b; Lu et al., 1998; Kaiho et al., 2006; Kelly et al., 1996, 1998; Pardo 453 

et al., 1999; Berggren and Ouda, 2003; Luciani et al., 2007, 2016; Khozyem et al., 2014). 454 

Thus, despite major climate warming, decreased productivity and ocean acidification, the 455 

PETM caused no significant species extinctions, likely due to migration into higher 456 

latitudes during warming, and fostered major diversification in its aftermath.  457 

     458 
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4.3. Benthic Extinction and Faunal Turnover Event 459 

        Alegret et al. (2005, Alegret and Ortiz, 2006) reported a major benthic faunal 460 

turnover at the Dababiya section (Fig. 13B) but only 7 species (18 %) went extinct, 82 % 461 

were survivors that reappeared after the PETM acidification event, and 26 % new species 462 

evolved during environmental recovery. Similar observations are reported from marginal 463 

and epicontinental seas (Speijer and Schmitz, 1998; Speijer and Wagner, 2002). But in 464 

lower bathyal to abyssal environments (e.g., Alamedilla, Spain) species extinctions 465 

reached ~37 % (Alegret et al., 2009), which is in the lower estimate of the previously 466 

reported extinction ranging between 30-50 % (Thomas, 1998). Thus, significant benthic 467 

extinctions were restricted to deep-water environments and generally concentrated at the 468 

onset of the PETM event. This can be explained by the observed shoaling of the CCD by 469 

2000 m during the PETM (Zachos et al., 2008). 470 

         471 

5. ENVIRONMENTAL PROXIES: PEB        472 

 473 

 The PETM is marked by a global temperature increase of 5-9 °C over an interval 474 

variously estimated ~10 ky or ~30 ky and estimated loading of 2,000 Gt of isotopically 475 

light carbon to the atmosphere and oceans (Zachos et al., 2003, 2005, 2006; Sluijs et al., 476 

2006; Weijers et al., 2007). A low correlation coefficient of CaCO3 vs. δ
13

Ccarb (R
2
 = 477 

0.025) indicates limited diagenetic overprinting on the δ
13

Ccarb values but δ
18

O data are 478 

strongly affected by diagenesis (see Supplementary Materials S4, Fig. S11). 479 

 Faunal, geochemical and volcanic proxies illustrate the high-stress conditions 480 

across the PETM (Fig. 14). At the base of the section (zone P4C), a short dissolution 481 
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event is marked by near-absence of planktic species, decreased CaCO3 from 50 % to 40 482 

% and maximum Hg/TOC ratios. In contrast, benthic species are well preserved. This 483 

suggests surface ocean acidification as a result of peak volcanic emissions (NAIP). 484 

Above this interval planktic and benthic species show dissolution effects with just 1/3 485 

well-preserved ‘good’ planktic and between 20-60 % ‘good’ benthic foraminifera. 486 

Hg/TOC ratios as well as δ
13

Ccarb and δ
13

Corg values gradually decreased reaching 487 

minimum values 20 cm below the PEB and at the PEB, respectively (Fig. 14).  488 

A similar gradual δ
13

Corg decrease has been reported from Alamedilla, Spain, (Lu 489 

et al., 1996) and Spitsbergen, Norway, with the latter linked to North Atlantic Igneous 490 

Province (NAIP) volcanism (Wieczorek et al., 2013). At Dababiya Hg/TOC ratios 491 

(ppb/wt%) also link this interval to NAIP. At all three sites the isotopic records are 492 

interpreted as gradually increasing ocean temperatures due to atmospheric CO2 loading 493 

linked to NAIP (Speijer and Wagner, 2002; Sluijs et al., 2008; Bowen and Zachos, 2010; 494 

Khozyem et al., 2015). 495 

 At the PEB planktic foraminifera suddenly disappeared and calcite decreased to 496 

near 0 % for 42 cm in the lower part of zone E1 followed by a brief reappearance of 497 

calcite (35 %) and small opportunistic new foraminiferal species and radiolarians (Figs. 498 

13A, 14). Above this interval calcite varies between 10-30 % but planktic foraminifera 499 

are generally rare to absent and reappearing only with calcite content >40 % at the top of 500 

zone E1 (Fig. 14).  501 

The sudden calcite drop at the PEB from 50 % to near 0 % coincides with onset of 502 

high detrital input during the PETM interval that spans zone E1 (Figs. 13, 14).  Khozyem 503 

et al. (2015, p. 127) argued that “detrital input negatively affects the calcite content 504 
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resulting in minimum values that could be due to leaching of carbonate contents under 505 

acid conditions and/or dilution by increased detrital input.” The high terrigenous input at 506 

Dababiya due to climate and sea level changes supports this interpretation (e.g., 507 

Khozyem et al., 2015; Schulte et al., 2011; Speijer and Wagner, 2002). The temporary 508 

absence of benthic and planktic foraminifera and near absence of nannofossils during the 509 

PETM coupled with shoaling of the CCD by 2000 m indicates ocean acidification likely 510 

due to a huge rapid input of CO2 from methane degassing (e.g., Zachos et al., 2008; 511 

Westerhold et al., 2011) and/or from NAIP volcanism (Gutjahr et al., 2017). 512 

         513 

6. DISCUSSION 514 

 515 

6.1. PETM Event 516 

During the Paleocene-Eocene transition two major volcanic events temporally 517 

precede and overlap the PETM (~55.8 ± 0.2 Ma; Westerhold et al., 2009; Charles et al., 518 

2011; Wieczorek et al., 2013) (Fig. 1B): (1) the North Atlantic Igneous Province (NAIP) 519 

formed during the opening of the northern part of the North Atlantic ocean ~61 Ma with 520 

maximum activity between 57 and 54 Ma (Hirschman et al, 1997; Svensen et al., 2004, 521 

2010; Storey et al., 2007); and (2) Central American circum-Caribbean volcanism linked 522 

to enhanced tectonic activity that began ~56-55.5 Ma in the proto Greater Antilles 523 

(Sigurdsson et al., 1997). Thus the nature of NAIP volcanism associated with the PETM 524 

event was fundamentally different from the continental flood basalt Deccan Traps 525 

eruptions.  526 
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Support for NAIP as driver for the PETM comes from a large drop in 
187

Os/
188

Os 527 

and ash deposits dated ~24 ky before the maximum 
13

C excursion in Core BH9/05 528 

(Spitsbergen, Svalbard Archipelago, Norway) (Wieczorek et al., 2013) and from an Earth 529 

system model pairing ocean surface pH data and a carbon isotope record from the 530 

northeast Atlantic Ocean (Gutjahr et al., 2017). Recent discovery of Hg anomalies in 531 

North Atlantic, Spain and Egypt provide further evidence linking NAIP to the PETM 532 

event by initiating the warming that likely led to the release of methane gases from 533 

organic-rich sediments (Svensen et al., 2004, 2010; Maclennan and Jones, 2006; 534 

Wieczorek et al., 2013).  535 

The PETM event was a short-term and isolated event possibly triggered by an 536 

estimated ~2000 Gt of CO2 from volcanic activity (NAIP, Sinton and Duncan, 1998; 537 

Westerhold et al., 2011) and ~1500 Gt of methane carbon from gas hydrates released into 538 

the atmosphere (Dickens et al., 1995; Dickens, 2003). (These CO2 estimates are based on 539 

the 
13

C isotope excursion, which may have large uncertainties.) The resulting rapid 540 

global warming is thought to have occurred over about ~10 ky with the entire event 541 

lasting ~170 ky. This suggests rapid injection of carbon and slow subsequent removal 542 

given that the average residence time of carbon in the ocean is about 100 ky (Zachos et 543 

al., 2005, 2008). Boron-based (δ
11

B and B/Ca) proxies for surface ocean carbonate 544 

chemistry indicate an estimated ~0.3 units drop in the pH of surface and thermocline 545 

seawater sustained over ~70 ky during the PETM (Penman et al., 2014). Model 546 

simulations suggest that this duration is consistent with a scenario of rapid initial pulse of 547 

carbon loading followed by continued slow, gradual release of carbon likely due to 548 

feedbacks (Panchuk et al., 2008; Zeebe et al., 2009; Zeebe, 2012). 549 



 25 

        The PETM coincides with ocean acidification and shoaling of the CCD by 2000 550 

m (Zachos et al., 2005, 2008; Speijer and Wagner, 2002; Sluijs et al., 2008; Gutjahr et al., 551 

2017); the latter may account for benthic foraminifera extinctions in deep waters 552 

(Thomas, 1998; Alegret et al., 2006). Planktic foraminifera and calcareous nannofossils 553 

temporarily disappeared from tropical and subtropical oceans (suggesting warming and 554 

surface ocean acidification) by migrating into higher latitudes. Assemblages returned 555 

after the PETM with no significant extinctions and underwent evolutionary 556 

diversification (Lu and Keller, 1993, 1995a, b; Kelly et al., 1996, 1998; Luciani et al., 557 

2007, 2016; Khozyem et al., 2014). On land extreme climate warming resulted in 558 

decreased abundances and dwarfing ranging from soil dwelling species (e.g., burrowers, 559 

crayfish, mollusks, Smith et al., 2009) to mammals (D’Ambrosia et al., 2017). But the 560 

great mammal migration, diversification and geographic dispersal began shortly after the 561 

PETM (Koch et al., 1992, 1995; Hooker, 1998; Clyde and Gingrich, 1998; Clyde et al., 562 

2003; Tong and Wang, 2006; Smith et al., 2006; Rose et al., 2008; Punekar and 563 

Saraswati, 2010; Smith, 2012).  564 

 565 

6.2. KPB Event 566 

 The main phase of Deccan volcanism spans magnetochron C29r (Chenet et al., 567 

2008, 2009) dated ~750 ky during which time an estimated >1.1 million km
3
 of basalt 568 

erupted (Schoene et al., 2015). The KPB is at 66.021±0.024 Ma, ~350 ky after the onset 569 

of eruptions at the base of C29r. Hg anomalies and Hg/TOC ratios at Elles indicate that 570 

volcanic eruptions accelerated during the last 40 ky before the mass extinction (Fig. 10). 571 

In the field in India, Deccan eruptions near the end of the Maastrichtian resulted in 3-4 572 
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lava megaflows that flowed over 1000 km across India into the Bay of Bengal (Keller et 573 

al., 2011a; Self et al., 2008) (Fig. 1A). The mass extinction of planktic foraminifera was 574 

documented directly in sediments between these lava megaflows in cores 2500-3500 m 575 

below the surface in the Krishna-Godavari Basin (Keller et al., 2011a, 2012). Danian 576 

(zone P1a) sediments overlie the megaflows and constrain the age of the KPB mass 577 

extinction to peak volcanic activity, as now confirmed by the large Hg/TOC ratios at 578 

Elles (Fig. 10). An estimated cumulative loading of 12,000-28,000 Gt of volcanogenic 579 

CO2 spewed into the end-Cretaceous atmosphere within less than 350 ky and 580 

significantly increased atmospheric pCO2 (Courtillot and Fluteau, 2014; Self et al., 2014). 581 

Volcanic eruptions continued intermittently through the early Danian C29r with the last 582 

phase of eruptions in the lower part of C29n (Fig. 11). Mercury analysis in marine and 583 

terrestrial sediments worldwide mark late Maastrichtian and early Danian Deccan 584 

eruptions linked directly to the KPB mass extinction (Font et al., 2016; this study).  585 

 Rapid climate warming of 3-4 ºC during massive Deccan eruptions resulted in 586 

dwarfed planktic foraminifera and reduced abundances of all but a few stress-resistant 587 

taxa dominated by a single disaster opportunist and sole long-term survivor Guembelitria 588 

cretacea (Keller and Abramovich, 2009). On land, non-avian dinosaurs, mammals, 589 

amphibians, plants and insects (e.g., MacLeod et al., 1997; Labandeira et al., 2002; Wilf 590 

and Johnson, 2004; Wilson et al., 2005, 2014; Nichols and Johnson, 2008; Longrich et 591 

al., 2011, 2012; Wilson, 2014; Vajda and Bercovici, 2014; Donovan et al., 2016) also 592 

recorded a prolonged ecological decline, reduced diversity and turnovers during climate 593 

instability associated with Deccan volcanism preceding the KPB (e.g., Wilf and Johnson, 594 

2004; Wilson, 2005, 2014; Wilson et al., 2014; Archibald, 1996, 2011).  595 
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The similar patterns of long-term stress and decline in marine and terrestrial 596 

faunas and flora during the late Maastrichtian C29r warming parallels massive Deccan 597 

volcanism that accelerated during the last 10 ky leading to further warming and probably 598 

reaching threshold conditions. Maximum volcanic eruptions in rapid succession during 599 

the last few thousand years culminated with the KPB mass extinction (Fig. 10).  The 600 

subsequent delayed recovery in marine plankton and on land can now be shown to 601 

coincide with continued though less frequent Deccan volcanic eruptions keeping stress 602 

conditions high (Fig. 11). Deccan volcanism is thus a major culprit for climate warming, 603 

biotic stresses and the mass extinction.  604 

 The Chicxulub impact is commonly believed to be the sole cause for the KPB 605 

mass extinction based primarily on the Ir anomaly in the KPB clay layer, the im606 
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At present we can confidently evaluate the PETM and KPB catastrophes based on 633 

the response by planktic foraminifera, which are an essential part of the food chain, and 634 

new Hg anomaly data now link these global faunal records to NAIP and Deccan 635 

volcanism. The fundamentally different biotic responses to these catastrophes lie in the 636 

nature of volcanic eruptions. During the PETM, NAIP volcanism due to rifting of the 637 

North Atlantic led to relatively short-term gradual warming that likely triggered the 638 

postulated methane release and rapid warming. Absence of Hg anomalies after the PETM 639 

indicates no significant NAIP eruptions, climate cooled and biotic recovery was rapid. In 640 

contrast, Deccan Traps are continental flood basalt eruptions that began ~350 ky before 641 

the KPB mass extinction causing long-term warming. Accelerating eruptions during the 642 
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last ~10 ky reached the tipping point and mass extinction. Thereafter, intermittent Deccan 643 

eruptions delayed recovery for over 500 ky.  644 

 645 

6.3. Anthropocene: The Sixth Mass Extinction? 646 

        Scientists increasingly recognize the accelerating rate of modern species 647 

extinctions and sounding alarm that humans are now causing the sixth mass extinction 648 

(e.g., Leakey and Lewin, 1992; Dirzo and Raven, 2003; Wake and Vredenburg, 2008; 649 

Barnosky et al., 2011; Glikson, 2014). Evidence of an impending catastrophe is all 650 

around us in the increasing rate of species extinctions and those endangered on the verge 651 

of extinction. Climate warming due to fossil fuel burning is attributed to the increasing 652 

rate of extreme climate events, melting of polar glaciers and rapidly rising sea level. 653 

Despite all this, it is hard to fathom that we are living in the midst of a mass extinction.   654 

        We can glimpse our future from comparison with extreme events in the past, 655 

particularly the hyperthermal warming (PETM) of the Paleocene-Eocene boundary (PEB, 656 

55.8 Ma) and rapid extreme warming leading to the end-Cretaceous mass extinction 657 

(KPB, 66.0 Ma) (Table 1). Both PEB and KPB catastrophes are largely the results of 658 

massive rapid emissions of greenhouse gases leading to the tipping point. At one 659 

extreme, scientists suggest the tipping point may have already been reached at the current 660 

CO2 level (407 ppm) and that just 1 °C additional warming may result in runaway 661 

warming, ocean acidification and the sixth mass extinction (Glikson, 2014). At the other 662 

extreme are those who deny the existence of current climate change.  663 

        Projecting current and/or increasing Anthropocene warming into the future has 664 

the potential to follow the path of the PETM hyper-warming and faunal turnover, as 665 
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frequently suggested by scientists, or it could end in a mass extinction similar to the KPB 666 

as suggested by predictions of the sixth mass extinction. Global climate warming due to 667 

massive input of greenhouse gases is the leading cause for all three events even if the 668 

sources differ (Table 1). Critical is the rapid rate of climate warming that is vastly (12 to 669 

16 times) more rapid for the Anthropocene. The tipping point may be around 5 °C and 670 

just 1 °C off from the current overall temperature rise (Hay, 2011).  671 

Ocean acidification and acid rain on land had catastrophic effects for PETM and 672 

KPB events and similar effects are already ongoing today. For example, seasonal 673 

aragonite undersaturation observed in surface waters of the Southern Ocean already have 674 

harmful effects on live pteropods (Bednarsek et al., 2012; Hunt et al., 2008; Sunday et al., 675 

2014). By 2030 undersaturation is predicted to spread to ~30 % of the Southern Ocean 676 

and >70 % by 2100 as a result of anthropogenic CO2, thus severely affecting the marine 677 

food chain (McNeil and Matear, 2008; Hauri et al., 2016).   678 

        A cartoon illustrates the nature of the three events (Fig. 15). Climate warming and 679 

the end-Cretaceous mass extinction are closely linked to the Chicxulub impact and 680 

Deccan volcanism (Fig. 15A). The latter emitted huge quantities of aerosols and 681 

greenhouse gases (CO2, SO2) into the atmosphere over 350 ky and the impact added in a 682 

single instant a quantity about equal to one major Deccan eruption pulse (Chenet et al., 683 

2008; Courtillot and Fluteau, 2014). Accelerating large volcanic eruptions during the last 684 

10 ky prior to the mass extinction led to increased warming and the tipping point 685 

resulting in the rapid mass extinction of 66 % planktic foraminiferal species during the 686 

last few thousand years of the Cretaceous, followed by another 33 % within 50-150 ky in 687 
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the early Danian. Continued eruptions in the early Danian delayed full recovery for over 688 

500 ky.  689 

        The PEB event can be attributed to NAIP volcanism and climate warming that 690 

likely set the conditions for the abrupt release of methane (CH4) stored in organic-rich 691 

sediments on land and continental shelves resulting in the rapid PETM warming of 5 °C 692 

within ~10 ky (Fig. 15B). Methane, partially oxidized in the water column leading to 693 

ocean acidification during the relatively short but intense PETM event (~170 ky) raising 694 

the CCD by 2000 m. Prevailing hot-humid conditions on land and recovery of carbonate 695 

deposition via CO2 drawdown by organic matter burial in the oceans are likely causes for 696 

the rapid return/recovery and diversification of marine faunas after the PETM (Bains et 697 

al., 2000). 698 

Current rapid warming is the result of huge inputs of greenhouse gases (CO2, 699 

CH4) linked to human activities and fossil fuel burning during the Anthropocene (Fig. 700 

15C). The input rate of greenhouse gases exceeds those at the PETM and KPB by orders 701 

of magnitude. Ozone depletion and particle pollution from fossil fuel burning and other 702 

human activities result in dust clouds that trap solar radiation in Earth’s atmosphere with 703 

little reflected back into space, thus contributing to Earth’s rising temperature. Similar to 704 

PEB and KPB events, today’s CO2 from the atmosphere is absorbed in the oceans and has 705 

already lowered the pH; ocean acidification is already affecting shelly organisms at the 706 

base of the food chain (e.g., pteropods, corals) and endangering all life up the food chain. 707 

At the current trend of greenhouse gas emissions, the prediction is that Cretaceous-like 708 

climate could be reached by 2070 setting us well on the way to the sixth mass extinction 709 

within as little as a couple of hundred years (Hay, 2011; Hauri et al., 2016).  710 
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The worst-case scenario could thus be similar to the KPB mass extinction but 711 

with a faster rate of extinctions; this is currently predicted as the Anthropocene mass 712 

extinction – or sixth mass extinction. The best-case scenario could be similar to the 713 

PETM event: We escape mass extinctions but suffer through a period of extreme 714 

environmental stress marked by intense heat, extreme climate events, rising sea level and 715 

severe food shortages reducing populations and forcing migration to higher latitudes for 716 

survival. This scenario depends on dramatically reducing greenhouse gas input thus 717 

slowing the rate of global warming and its dire long-term consequences. 718 

  719 

7. CONCLUSIONS  720 

 721 

The PETM extreme warming is a commonly used analogue and predicted best-722 

case scenario for the current rapid climate warming in the coming decades and centuries. 723 

If this is our fate, survival is possible although in reduced populations with the best 724 

chances for survival in higher latitudes. The predicted worst-case scenario for the current 725 

climate trend is the sixth mass extinction. The KPB mass extinction is a good analogue 726 

for this catastrophic scenario because accelerating Deccan volcanic eruptions and 727 

increasing greenhouse gas input into the atmosphere can have similar effects on the 728 

biosphere as current fossil-fuel burning. Perhaps all it takes to realize the sixth mass 729 

extinction scenario is continued or increasing greenhouse gas input reaching the tipping 730 

point. It is unclear whether current climate warming will follow the PETM or KPB 731 

analogue, or a completely different model of biosphere destruction unseen in Phanerozoic 732 

mass extinctions.  733 
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Abramovich, S., Keller, G., Stüben, D., and Berner, Z., 2003. Characterization of late 761 

Campanian and Maastrichtian planktonic foraminiferal depth habitats and vital 762 

activities based on stable isotopes. Palaeogeography, Palaeoclimatology, 763 

Palaeoecology, 202, 1-29, doi:10.1016/S0031-0182(03)00572-8. 764 

Abramovich, S., Yovel-Corem, S., Almogi-Labin, A., and Benjamini, C., 2010. Global 765 

climate change and planktic foraminiferal response in the Maastrichtian. 766 

Paleoceanography, 25, PA2201, doi:10.1029/2009PA001843. 767 

Adatte, T., Keller, G., and Stinnesbeck, W., 2002. Late Cretaceous to early Paleocene 768 

climate and sea-level fluctuations: the Tunisian record. Palaeogeography, 769 

Palaeoclimatology, Palaeoecology, 178(3), 165-196, doi:10.1016/S0031-770 

0182(01)00395-9. 771 



 35 

Alegret, L., and Ortiz, S., 2006. Global extinction event in benthic foraminifera across the 772 

Paleocene/Eocene boundary at the Dababiya Stratotype section. Micropaleontology, 773 

52(5), 48-63, doi:10.2113/gsmicropal.52.5.433. 774 

Alegret, L., Ortiz, S., Arenillas, I., Molina, E., 2005. Paleoenvironmental turnover across 775 

the Paleocene/Eocene Boundary at the Stratotype section in Dababiya (Egypt) 776 

based on benthic foraminifera. Terra Nova, 17, 526-536. 777 

Alegret, L., Ortiz, S., Molina, E., 2009. Extinction and recovery of benthic foraminifera 778 

across the Paleocene–Eocene ThermalMaximum at the Alamedilla section 779 

(Southern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 279, 186-780 

200, doi:10.1016/j.palaeo.2009.05.009. 781 

Archibald, J.D., 1996. Testing extinction theories at the Cretaceous-Tertiary boundary 782 

using the vertebrate fossil record. In: MacLeod, N., Keller, G. (Eds.), Cretaceous-783 

Tertiary Mass Extinctions: Biotic and Environmental Changes. WW Norton & 784 

Company, New York/London, pp. 373-397. 785 

Archibald, J.D., 2011. Extinction and radiation: how the fall of dinosaurs led to the rise of 786 

mammals. JHU Press, p. 108. 787 

Ashckenazi-Polivoda, S., Abramovich, S., Almogi-Labin, A., Schneider-Mor, A., 788 
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FIGURE CAPTIONS 1407 

 1408 

Figure 1: (A) Paleogeography at the KPB (66.02 Ma) and paleolocations of El Kef and 1409 

Elles sections, Reunion hotspot, Deccan volcanism and Chicxulub impact site. (B) 1410 

Paleogeography at the PEB (55.8 Ma) and paleolocations of the Dababiya section, North 1411 

Atlantic Igneous Province and circum-Caribbean volcanism. Paleomaps from Scotese 1412 

(2013a, b). 1413 

 1414 

Figure 2: Locations of the Cretaceous-Paleogene boundary (KPB) GSSP El Kef and 1415 

Elles, Tunisia, and the Paleocene-Eocene boundary (PEB) GSSP at Dababiya, Egypt. 1416 

 1417 

Figure 3: (A) The KPB event at Elles, Tunisia, is well exposed across the hillside 1418 

marked by a lithological change from gray shale of the Maastrichtian to dark gray clay of 1419 

the early Danian weathered to a light brownish color. (B) A 1-2 cm thick rusty "red layer" 1420 

at the base of the KPB clay layer contains maximum Ir concentrations and marks the 1421 

mass extinction. (C) A blow-up of this red layer shows the sharp contact with the 1422 

Maastrichtian marl below and dark Danian clay of zone P0 above. 1423 

 1424 

Figure 4: KPB extinction pattern at El Kef, Tunisia, shows all large tropical to 1425 

subtropical species extinct at or near the KPB (2/3 of all species, SEM illustrations 1-10, 1426 

numbers keyed to species), the short-term survivorship of small ecologically more 1427 

tolerant species (1/3 of the species, SEMs 11-18) including a single long-term survivor 1428 

(Guembelitria cretacea, SEM 14). Early Danian evolution begins within a few thousand 1429 
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years of the mass extinction but diversity remains low and species small (SEMs 1-9) 1430 

marking high-stress conditions over ~500 ky of the earliest Danian. SEM illustrations are 1431 

shown in relative species sizes in the assemblages. Faunal data updated from Keller 1432 

(1988a). 1433 

 1434 

Figure 5: El Kef, Tunisia, relative abundances of planktic foraminifera across the KPB 1435 

(>63 μm size fraction for all species except 38-63 μm for Guembelitria) with SEM 1436 

illustrations of marker species (numbers keyed to species names and abundance data). 1437 

Carbon stable isotopes of bulk rock and benthic species Anomalinoides acutus across the 1438 

KPB transition. Note the abrupt diversity change that marks the KPB mass extinction and 1439 

the δ
13

C negative shift that signals the collapse of primary productivity. Faunal data from 1440 

Keller (1988a, updated), isotope data from Keller and Lindinger (1989). 1441 

 1442 

Figure 6: (A) Relative abundances of planktic foraminifera (>63 μm) across the KPB at 1443 

Elles, Tunisia, reveal low diversity assemblages dominated by small biserial species, but 1444 

not Guembelitria, during the climate warming of the latest Maastrichtian and an interval 1445 

of the early Danian. (B) Relative abundances of planktic foraminifera in the smaller (38-1446 

63 μm) size fraction reveals abundant dwarfed species in the earliest Danian as well as 1447 

peak abundances (40 %) during the latest Maastrichtian preceding the mass extinction. 1448 

This indicates that dwarfing of the disaster opportunist Guembelitria is a response to 1449 

extreme environmental stress. SEM illustrations (numbers keyed to species names) are 1450 

shown in relative species sizes in the assemblages. Faunal data from Keller et al. (2002). 1451 

 1452 
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Figure 7: Effects of increasing environmental stress upon planktic foraminiferal 1453 

assemblages from optimum to catastrophe conditions. Note the successive elimination of 1454 

large, specialized k-strategy species during climate warming, particularly in restricted 1455 

basins and marginal marine environments, and the survival of small r-strategy species 1456 

commonly associated with volcanic activity. Disaster opportunists flood the environment 1457 

during catastrophes. Modified from Keller and Abramovich (2009). 1458 

 1459 

Figure 8: Early Danian evolution and decline in Cretaceous survivor species illustrate 1460 

high-stress environments. Small dwarfed species and low diversity mark delayed marine 1461 

recovery in magnetochron C29r from zones P0 through P1a(2) correlative with 1462 

decreasing abundance and gradual extinction of dwarfed survivor species. The last phase 1463 

of Deccan volcanism began near the zone P1a/P1b boundary (C29r/C29n) and marks the 1464 

extinction of two dominant zone P1a index species (Parvularugoglobigerina eugubina, 1465 

P. longiapertura). Marine recovery begins after this last volcanic phase and is marked by 1466 

higher diversity and increasing species sizes. Note the number of the same specimens in 1467 

each column indicates relative abundance. From Punekar et al. (2014). 1468 

 1469 

Figure 9: Relative abundances of benthic foraminifera (>63 μm) and carbon stable 1470 

isotopes of bulk rock and benthic species Anomalinoides acutus across the KPB transition 1471 

at El Kef, Tunisia. Note the major faunal turnover across the KPB with up to 48 % 1472 

species disappearing over 500 ky with many of them reappearing after environmental 1473 

recovery. Faunal data from Keller (1988b); stable isotope data from Keller and Lindinger 1474 

(1989). 1475 
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 1476 

Figure 10: Paleoenvironmental proxies (oxygen isotopes, mercury and disaster 1477 

opportunist species) across the KPB at Elles, Tunisia. Note climate warming during the 1478 

last 10 ky of the Maastrichtian coincides with increased Deccan volcanism (Hg/TOC 1479 

ratio), which accelerates during the last thousand years and culminates with the KPB 1480 

mass extinction. Hg and TOC data in Supplementary Materials S2, Table S2.  1481 

 1482 

Figure 11: Paleoenvironmental proxies for the KPB transition at El Kef, Tunisia. The 1483 

interval analyzed spans part of the latest Maastrichtian warming (zone CF1) marked by 1484 

ocean acidification and high dissolution effects (FI), and 500 ky of the early Danian 1485 

zones P0-P1a(2) marked by continuous high-stress low oxygen conditions and ends with 1486 

the onset of recovery in P1b (base C29n). Data table (Table S1) in Supplementary 1487 

Materials S2. 1488 

 1489 

Figure 12: (A) Dababiya outcrop with GSSP designated cliff to the right and our 1490 

sampled location 25 m to the left (East). (B) Sampling of the section using a ladder. (C) 1491 

Contiguous outcrop between the GSSP cliff and our sampled section at 25 m east permits 1492 

tracing the lithology bed by bed. Note the GSSP outcrop collapsed in the spring of 2016 1493 

at the vertical crack seen in C across the label "PEB". Armed guards protected the 1494 

outcrop from eagerly sampling geologists. 1495 

 1496 

Figure 13: (A) Relative abundances of planktic foraminifera, carbon stable isotopes and 1497 

species richness at Dababiya, Egypt, 25 m east of the GSSP outcrop. The PETM interval 1498 
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spans from its gradual onset 75 cm below to 1 m above the PEB and is marked by near 1499 

total carbonate dissolution. Another strong dissolution interval at the base of the section 1500 

has common benthic species but only rare planktics. Faunal data from this study, isotope 1501 

data from Khozyem et al. (2014, 2015). (B) Relative abundances of benthic foraminifera 1502 

show a major faunal turnover but few species extinctions (18 %, 7 species). Faunal data 1503 

from Alegret and Ortiz (2006). 1504 

 1505 

Figure 14: Paleoenvironmental proxies for the PETM transition at Dababiya, Egypt. 1506 

Dissolution first appears in zone P4C coincident with high Hg/TOC values. The onset of 1507 

the PETM begins with gradually decreasing δ
13

C values in zone P5 that reached 1508 

maximum at the PEB. Near total CaCO3 dissolution in the lower part of zone E1 and 1509 

strong dissolution in the upper part marks an interval nearly devoid of marine calcareous 1510 

plankton during the PETM and signals strong ocean acidification despite the onset of 1511 

recovery in δ
13

C and CaCO3. Faunal recovery begins in zone E2 with increasing δ
13

C 1512 

values and CaCO3 reaching 60 %. Data table (Table S3) in Supplementary Materials S2. 1513 

 1514 

Figure 15: Illustration of the KPB mass extinction, the PETM and Anthropocene climate 1515 

warming. (A) During the latest Maastrichtian environmental devastation is mainly due to 1516 

volcanism (ash, aerosols and greenhouse gases), resulting in rapid climate changes, acid 1517 

rains and ocean acidification that is exacerbated by the Chicxulub impact, thus impeding 1518 

calcification by marine plankton at the base of the food chain. (B) During the latest 1519 

Paleocene to early Eocene: Gradual climate warming preceding the PEB is attributed to 1520 

North Atlantic Igneous Province volcanism (NAIP), but the rapid warming of 5 °C 1521 
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(PETM) is linked to methane hydrates released from continental shelves resulting in acid 1522 

rain on land and ocean acidification (~170 ky). (C) During the Anthropocene  large 1523 

inputs of greenhouse gases (CO2, SO2, N2O) linked to human activities and fossil fuel 1524 

burning leads to rapid warming and ocean acidification at a rate exceeding those at the 1525 

PETM and KPB by orders of magnitude. Global carbon budget data for the Anthropocene 1526 

from Le Quéré et al. (2013). Illustration modified from Glikson (2014). 1527 

 1528 

TABLE CAPTIONS 1529 

 1530 

Table 1: Comparison of KPB, PETM and Anthropocene events based on climate and 1531 

environmental changes shows great similarities, except that the Anthropocene warming is 1532 

orders of magnitude more rapid than the PETM and KPB warming. The rate of faunal 1533 

turnover and particularly extinctions is very difficult to estimate and contains the largest 1534 

potential errors. At the current rate of CO2 input into the atmosphere, the Anthropocene 1535 

extinction is estimated to reach the 75 % mass extinction level within the next 250-500 1536 

ky. 1537 

 1538 
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1

Events 
Anthropocene: 

Mass Extinction? 
Paleocene/Eocene: PETM 

End-Cretaceous: 

Mass Extinction 

Age (Ma) 
Ongoing, predicted by 

~2250-2500
1
 

55.8±0.2 Ma 66.021±0.024 Ma 

Faunal turnover Ongoing extinctions Extinctions/originations Mass extinction 

Mass extinctions In progress Minor
2
 

~50% genera, 

~75% species 

Rate of extinctions 
In accelerating phase 

20-50X background rates
1

Rapid at max. warming 

6-12X background rates
 
in

benthic foraminifera
2

Rapid over ~1000 years 

~220X background rate in 

planktic foraminifera
3
 

Benthic foram extinctions Yes, ongoing 30-50% species Minor 

Planktic foram extinctions Yes, ongoing Minor 99% species 

Vertebrate extinctions Yes, ongoing Minor, migration Major 

Terrestrial extinctions Yes, ongoing Minor Major 

Recovery ---------- Rapid after PETM Delayed >500 ky 

Pre-event climate Gradual warming Gradual warming 
Rapid warm-cool changes 

over 350 ky
4
 

Climate (greenhouse gases) Rapid warming Rapid warming Rapid warming 

Warming: rate 
1-4 °C/100 yrs,

2-10 °C next 200-300 yrs

0.025 °C/100 yrs, 

total 5 °C
5
 

Oceans 3-4 °C
4
 

Land 6-8 °C
6
 

Warming: max duration Decades to 100’s of years Tens of thousands of years Tens of thousands of years 

Tipping point temperature 

increase >4°C 

~4 °C possibly reached 

by 2020 
5 °C ~5 °C 

Sea-level Rapid rise (1-2 m)
7
 Rapid rise (3-5 m) Rise ~50 m over 100 ky 

Anoxia/ dysoxia Yes Yes, continental shelf Dysoxia in water column 

Ocean Acidification (rate) Yes (0.3 units/100 yrs)
8
 Yes (0.3 units/20 ky)

9
 Yes

10
 

Clathrates (CH4) No (possible in future) Yes None confirmed 

Volcanism (LIPs) No 
North Atlantic Igneous 

Province (NAIP) 
Deccan Traps 

Global warming: 

main underlying cause(s) 

CO2: fossil fuel burning 

CH4: peat, coal, permafrost 

CO2: volcanoes,  

CH4: clathrates, peat, coal, 

permafrost 

CO2: volcanoes 

CH4: no data 

Impacts No Unconfirmed Chicxulub 180 km 
1 
Anthropocene extinctions are predicted to reach the 75 % mass extinction level within the next 250 to 500 ky (conservative estimate) 

based on projection of current rates of extinctions and current rates of fossil fuel burning (e.g. May et al., 1995; Hughes et al., 1997; 

Ceballos and Ehrlich, 2002; Pereira et al., 2010; Barnosky et al., 2011). 
2 

For the PETM event extinctions are limited to benthic foraminifera in the marine realm; with maximum 50 % extinct over 170 ky 

(estimated duration of PETM event), the rate of extinction estimated from El Kef is 0.12 species/ky or about 12-24 background rates 

at 1-2 species/100 ky (this study). 
3 
Estimated from planktic foraminifera: 66 % (44 species) extinct over about 10 ky, an average of 4.4 species/ky; background rates are 

1-2 species/100 ky or 0.01-0.02/ky. This means that the rate of extinction is at least 220 times background. About 33 % go extinct

within 50-100 ky after the KPB leaving a single survivor species (this study).
4 
e.g., Stüben et al. (2003), Li and Keller (1998), Abramovich and Keller (2003), Punekar et al. (2014)

5
 Zachos et al. (2005, 2006) 

6 
Wilf et al. (2003), Nordt et al. (2003) 

7 
IPCC 5th Assessment Report (2013), conservative estimate 

8 
e.g., Sluijs et al. (2008), IPCC 4th Assessment Report (2007), projected global average pH surface ocean, between 2000-2100

9 
Penman et al. (2014), comparison of δ

11
B data and LOSCAR model simulation 

10 
Font et al. (2011, 2014), Punekar et al. (2016) 
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