
Differences in chemical doping matter - 

Superconductivity in Ti1-xTaxSe2 but not in Ti1-xNbxSe2  
 

Huixia Luo
1,

*, Weiwei Xie
1
, Jing Tao

2
, Ivo Pletikosic

2,3
, Tonica Valla

2
, Girija S. 

Sahasrabudhe
1
,
 
Gavin Osterhoudt

4
, Erin Sutton

4
, Kenneth S. Burch

4
 Elizabeth M. 

Seibel
1
, Jason W. Krizan

1
, Yimei Zhu

2
 and Robert J. Cava

1, 

 

1
Department of Chemistry, Princeton University, Princeton, NJ 08544, USA 

2
Condensed Matter Physics and Materials Science Department, Brookhaven National 

Lab, Upton, New York 11973, USA 

3
Department of Physics, Princeton University, Princeton, NJ 08544, USA 

4
Department of Physics, Boston College, 140 Commonwealth Ave 

Chestnut Hill, Boston, MA 02467-3804, USA 

 

ABSTRACT  

       We report that 1T-TiSe2, an archetypical layered transition metal dichalcogenide, 

becomes superconducting when Ta is substituted for Ti but not when Nb is substituted 

for Ti. This is unexpected because Nb and Ta should be chemically equivalent 

electron donors. Superconductivity emerges near x = 0.02 for Ti1-xTaxSe2, while for 

Ti1-xNbxSe2, no superconducting transitions are observed above 0.4 K. The equivalent 

chemical nature of the dopants is confirmed by X-ray photoelectron spectroscopy. 

ARPES and Raman scattering studies show similarities and differences between the 

two systems, but the fundamental reasons why the Nb and Ta dopants yield such 

different behavior are unknown. We present a comparison of the electronic phase 

diagrams of many electron-doped 1T-TiSe2 systems, showing that they behave quite 

differently, which may have broad implications in the search for new superconductors. 

We propose that superconducting Ti0.8Ta0.2Se2 will be suitable for devices and other 

studies based on exfoliated crystal flakes. 
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INTRODUCTION 

Layered transition-metal dichalcogenides (TMDs) have been studied for 

decades as archetypical examples of materials where superconductivity is balanced 

against a competing charge density wave (CDW) state.
1-10

 The superconducting and 

CDW transition temperatures in this family can be tuned by changing electron count 

through chemical substitution or intercalation (e.g. refs. 11-13), using high pressure 

(e.g. refs. 14-17), or gating
18

). 1T-TiSe2 is one of the simplest and most widely 

studied TMDs, undergoing a transition to a CDW state at about 200 K in its native 

form
19

 and becoming a superconductor when put under pressure or electron doped 

through intercalation. In CuxTiSe2, Cu donates electrons to the TiSe2 layers, and 

superconductivity is induced with a maximum Tc of 4.2 K. This observation has 

triggered a great deal of recent activity on long-studied 1T-TiSe2 (e.g. refs 13, and 19-

24), especially as the superconducting phase is proposed to be an example of an 

exciton condensate. Similarly, Pd-intercalated TiSe2 is also superconducting.
24 

 

Here we report the observation of superconductivity in 1T-TiSe2 induced by 

doping with electrons through partial substitution of Ta for Ti, in materials of the type 

Ti1-xTaxSe2. We find that for Ti1-xTaxSe2 the CDW transition remains present and a 

superconducting state emerges near x = 0.02 with a maximum Tc of 2.2 K at x = 0.2. 

In contrast, we find that similarly made and tested isostructural and chemically 

isoelectronic Ti1-xNbxSe2 is not superconducting above 0.4 K. This is unexpected 

because both Nb and Ta have 5 valence electrons, and thus should simply donate their 

electrons to the conduction band of 1T-TiSe2, which is dominated by normally empty 

Ti (4 valence electrons) electronic states. This conventional electronic picture is 

verified by our chemical spectroscopy (X-ray photoelectron spectroscopy (XPS)) 

measurements, and our ARPES characterization of the materials shows that electrons 

are indeed donated to the formerly empty conduction band in 1T-TiSe2 by both 

substitutions, but also that there are some significant differences. Consistent with the 

ARPES characterization, the Nb substitution leads to a lower electronic density of 

states than the Ta substitution, inferred from specific heat measurements. Further the 

Nb substituted material shows non-metallic resistivity behavior, in contrast to the 

metallic and superconducting behavior induced by Ta substitution. Finally, we 

construct a composition-dependent superconductivity phase diagram for many 

dopants in the archetype 1T-TiSe2 system, comparing Ti1-xTaxSe2, Ti1-xNbxSe2, 

PdxTiSe2 and CuxTiSe2. The phase diagram shows that the superconductivity that is 



induced in doped 1T-TiSe2 is dramatically dependent on the chemical method used to 

change its electron count. This result for the TMD 1T-TiSe2 is in contrast to what is 

found for other important superconducting systems, such as the iron arsenides, where 

substitutions of many different kinds induce nearly equivalent maximum 

superconducting Tc’s at the same electron count.
25-27

 Our results show that what 

appear to be chemically equivalent electron donors are in fact not at all electronically 

equivalent in this system. If this is frequently the case, then it raises significant 

general issues in the search for superconductivity in all doped materials, where 

chemically equivalent dopants are only rarely individually tested.  

 

EXPERIMENTAL SECTION 

       Polycrystalline samples of Ti1-xTaxSe2 and Ti1-xNbxSe2 were synthesized in two 

steps by solid state reaction. First, the mixtures of high-purity fine powders of Ta 

(99.8%) or Nb (99.8%), Ti (99.9%) and Se (99.999%) in the appropriate 

stoichiometric ratios were thoroughly ground, pelletized and heated in sealed 

evacuated silica tubes at a rate of 1 
o
C/min to 700 

o
C and held there for 120 h. 

Subsequently, the as-prepared powders were reground, re-pelletized, and sintered 

again, heated at a rate of 3 
o
C/min to 700 

o
C and held there for 120 h. Single crystals 

of selected compositions were grown by the chemical vapor transport (CVT) method 

with iodine as a transport agent. Two- gram as-prepared powders of Ti0.8Ta0.2Se2 or 

Ti0.8Nb0.2Se2 were mixed with 100 mg iodine, sealed in evacuated silica tubes and 

heated for one week in a two zone furnace, where the temperature of source and 

growth zones were fixed at 675 
o
C and 725 

o
C, respectively. The identity and phase 

purity of the samples were determined by powder X-ray diffraction (PXRD) using a 

Bruker D8 Advance ECO with Cu Kα radiation and a LYNXEYE-XE detector. To 

determine the unit cell parameters, LeBail fits were performed on the powder 

diffraction data through the use of the FULLPROF diffraction suite using Thompson-

Cox-Hastings pseudo-Voigt peak shapes.
28

 Single crystals selected from partially 

crushed crystalline samples were employed for the single crystal structure 

determinations.  

       Measurements of the temperature dependence of the electrical resistivity (4 

contact), specific heat and magnetic susceptibility of the materials were performed in 

a Quantum Design Physical Property Measurement System (PPMS). There was no 

indication of air-sensitivity of the materials during sample preparation. Selected 



resistivities and heat capacities were measured in the PPMS equipped with a 
3
He 

cryostat. Magnetic susceptibility characterization for Ti0.8Ta0.2Se2 and Ti0.8Nb0.2Se2 

was carried out in a 5T applied AC field. Specimens for the electron diffraction 

studies in a transmission electron microscope were obtained from synthesized samples 

crushed in a dry box and transported to the microscope in ultra-high vacuum. 

Temperature-dependent electron diffraction measurements were performed at 

Brookhaven National Laboratory on a JEOL 2100F microscope equipped with a 

liquid-helium cooled sample holder. The angle-resolved photoelectron spectroscopy 

(ARPES) measurements were conducted at beamlines 10 and 12 of Advanced Light 

Source, Lawrence Berkeley National Laboratory using Scienta electron analyzers set 

to overall resolution of 25 meV and 0.3°. Two-dimensional angular maps were 

assembled at BL10 from multiple line scans taken by rotating the analyzer around the 

axis parallel to its slit. Samples were cleaved at 15 K in ultrahigh vacuum of 5×10
-9

 

Pa and all the data were collected at 15 K. The phonon spectra of Nb- and Ta- doped 

TiSe2 were probed using micro-Raman spectroscopy. In layered TMDs this can be 

challenging due to their strong tendency to oxidize at the surface. Thus we performed 

the experiments entirely in a glovebox with argon atmosphere, with samples being 

freshly cleaved just before the measurement. This was achieved with a WITec 

alpha300R spectrometer customized to work inside an Ar-filled glovebox. The sample 

was excited with unpolarized light at 532 nm with the reflected and Raman scattered 

light collected in a backscattering configuration. The reflected light was removed 

using an edge filter, resulting in a lower cut-off of 85 cm
-1

. To avoid unwanted 

heating, the power was kept below 20 μW and focused to a spot size approximately 1 

μm in diameter. Results shown are the average of at least 6 such measurements, 

corrected for the integration time and laser power. To confirm the single crystal nature 

and reproducibility, all spectra were confirmed by measuring spots millimeters apart.  

      X-ray Photoelectron Spectroscopy (XPS) characterization was performed with a 

VG ESCA Lab Mk.II instrument. All spectra were obtained using Mg Kα radiation 

(1284 eV) and 20 eV pass energy. NbSe2, Ti0.8Nb0.2Se2, Ti0.8Ta0.2Se2 polycrystals and 

TaSe2 single crystals were placed on carbon tape attached to separate metal sample 

holders. Usually, the Carbon 1s (C1s) peak originating from adventitious carbon on 

the sample surface is used for calibration purposes. But as the samples were 

polycrystalline, C1s signal from the carbon tape could not be obviated. Thus, to 

compensate for the charging effects, the sample holders were biased at +10 volts 
29

. 



Since, the surface of the polycrystals and single crystals were oxidized due to ambient 

oxidation; TiO2, Nb2O5, Ta2O5 formed at the surface of the samples were used for 

comparison and calibration. All scans were taken with a 0.05 eV step size and 0.5 s 

dwell time. The resolution of the instrument is less than 0.1 eV. The obtained scans 

were fit with Casa XPS using a Shirley background, area and positions were 

constrained using standard values. 

 

Results and Discussion 

       First we consider the chemistry and structures of the Ti1-xTaxSe2 and Ti1-xNbxSe2 

systems. 1T-TiSe2 is a layered compound with trigonal symmetry.
30

 The Ti atoms, 

which are in octahedral coordination with Se, form planar TiSe2 layers of edge 

sharing octahedra. These layers are bonded to each other by van der Waals forces. 

Previous work has shown that when Cu atoms are intercalated to form the CuxTiSe2 

superconductor, they occupy positions between the TiSe2 layers .
13

 Here we find from 

our high quality single crystal structural analyses of Ti0.9Ta0.1Se2 and Ti0.8Nb0.2Se2 

that when Ta or Nb atoms are substituted for Ti, they substitute directly on the Ti site, 

replacing some of the Ti in the octahedra. There are no interstitial atoms in either case, 

to a high level of precision, and both structures are that of ideal 1T-TiSe2 (see Table 

1S and Table 2S Supplementary Information). Figure 1a shows the powder x-ray 

diffraction patterns for selected members of both families. The results show that 

single phase solid solutions are indeed formed in these systems. The solubility limit 

for intercalated Cu in TiSe2 is x ≈ 0.11. However, in the substitution case, the 

solubility limits for Ti1-xTaxSe2 and Ti1-xNbxSe2 in the 1T structure phase are x ≈ 0.9 

and x ≈ 0.7, respectively; at higher doping contents, the 2H-type TMDC structure is 

found for both Ti1-xTaxSe2 and Ti1-xNbxSe2.  

        The composition dependence of the room temperature lattice parameters for 1T-

Ti1-xTaxSe2 (0 ≤ x ≤ 0.9), 1T-Ti1-xNbxSe2 (0 ≤ x ≤ 0.7), and a comparison to those for 

1T-CuxTiSe2 (0 ≤ x ≤ 0.11) are shown in Figure 1b. The a parameters increase 

through both substitution of Ta or Nb and intercalation of Cu in TiSe2, but the c 

parameters change in an opposite fashion for substitution vs. intercalation: c decreases 

with increasing Ta or Nb substitution in Ti1-x(Ta/Nb)xSe2, while it increases with 

increasing Cu intercalation in CuxTiSe2 (0 ≤ x ≤ 0.11). The fact that the lattice 

parameters track each other so well in the two cases is an indirect indication that the 



Nb and Ta doped systems are structurally analogous. The anomalous c axis behavior 

of CuxTiSe2 has been previously noted.
13 

        Superconductivity emerges near x = 0.02 for Ti1-xTaxSe2, while for Ti1-xNbxSe2, 

no superconducting transitions are observed above 0.4 K in the broad composition 

range of 0 ≤ x ≤ 0.7. Looking to find differences in the chemistry of two systems, we 

performed XPS studies Ti0.8Ta0.2Se2 and Ti0.8Nb0.2Se2, as shown in Figure 1 e, f. For 

comparison, the Nb 3d and Ta 4f spectra for undoped 2H-NbSe2 and 2H-TaSe2 are 

included in Figure 1 c, d. The binding energy of the Ta 4f7/2 peak in TaSe2 is 0.8 eV 

lower than that in Ti0.8Ta0.2Se2. The binding energy of the Ta 4f7/2 peaks 

corresponding to Ta2O5 formed at the surface of TaSe2 and Ti0.8Ta0.2Se2 is 26.5 eV 
31

 

Similarly, the binding energy of the Nb 3d5/2 peak in NbSe2 is 1.2 eV lower than that 

in Ti0.8Nb0.2Se2. The binding energy of the Nb 3d5/2 peaks corresponding to Nb2O5 

formed at the surface of NbSe2 and Ti0.8Nb0.2Se2 is 207.5 eV 
32

 Thus, both Ta and Nb 

are more oxidized (i.e. have formal oxidation states between 4+ and 5+) when used as 

dopants in TiSe2 than in the individual selenides. The relative shifts in binding 

energies are the same for both species, indicating that as chemical dopants they are 

indeed equivalent in 1T-TiSe2. The Ti 2p and Se 3d XP spectra for both Ti0.8Ta0.2Se2 

and Ti0.8Nb0.2Se2 are identical 
33

 as shown in Figures 1S and 2S (Supporting 

Information) further supporting the chemical equivalence of the two systems  

       We next consider the transport properties of the two systems. A systematic 

change in the temperature dependence of the resistivity of Ti1-xTaxSe2 occurs on 

increasing x. Figures 2a shows the temperature dependence of the normalized 

electrical resistivity (/300K) for polycrystalline samples of Ti1-xTaxSe2 (0 ≤ x ≤ 0.3). 

At low temperatures, a clear, sharp (∆Tc < 0.1 K) drop of (T) is observed in the 

doped samples, signifying the onset of superconductivity at low temperatures in Ti1-

xTaxSe2 for x  0.02; as the Ti1-xTaxSe2 compounds become better metals, 

superconductivity emerges. The Ta substituted sample with x = 0.2 shows the highest 

Tc, 2.2 K (inset of Figure 2a). In addition, the signature of the CDW transition is seen 

for the low x content samples through the presence of the maxima in (T); at higher 

doping content the signature of the CDW transition gets much weaker.  

         The temperature dependence of the normalized electrical resistivities (/300K) 

for the polycrystalline samples of Ti1-xNbxSe2 (0 ≤ x ≤ 0.7) are shown in Figure 2b. In 

contrast to the situation for Ti1-xTaxSe2, non-metallic behavior is clearly observed. We 



examine the non-metallic behavior more closely in Figure 2c. The figure shows that 

the low temperature data can be fit by a two-dimensional variable range hopping 

model ρ(T) = ρ0exp(T0/T)
n
,
 
where T0 is the characteristic Mott temperature, which 

depends on the electronic structure, the density of states near the Fermi level and 

localization length, ρ0 is the pre-exponential factor and n = 1/(d+1) for d-dimensional 

variable range hopping.
34

 The materials are clearly not semiconducting at low 

temperatures, for which n = 1, although at higher temperatures the behavior appears to 

be semiconducting, with an activation energy of EA = 0.17 eV. No superconducting 

transition is seen in any of the Nb substituted samples down to 0.4 K.  

        Hall measurement data confirms that both the Ti1-xTaxSe2 and Ti1-xNbxSe2 

materials are n-type as expected for electron doping of 1T-TiSe2; the larger negative 

Hall resistivity and its increase in magnitude with decreasing temperature for 

Ti0.8Nb0.2Se2 (Figure 2d inset) is consistent with a lower n-type carrier concentration 

than in the Ta doping case. Further, Figure 2d shows that in neither case does the 

substitution in 1T-TiSe2 lead to localized magnetic states; induced magnetism being a 

possible reason for the differences in behavior for the two systems. The 

susceptibilities are diamagnetic, dominated by the core diamagnetism, and the small 

Curie tails at low temperatures are from a very small fraction (sub percent) of spin-

bearing defects. Thus magnetism induced by doping cannot be behind the difference 

in the electronic behavior observed in the two systems. 

        We next consider a comparison of the low temperature specific heats of the two 

systems and the thermodynamic characterization of the new superconductor. Figure 

2e shows the specific heat data employed in order to further investigate the electronic 

properties and superconductivity in the optimal Ti1-xTaxSe2 superconductor. The main 

panel of Figure 2e shows the temperature dependence of the specific heat (Cp/T 

versus T
2
) under zero-field and under 5 Tesla field for Ti0.8Ta0.2Se2. For comparison, 

the temperature dependence of the zero-field specific heat (Cp/T versus T
2
) for 

Ti0.8Nb0.2Se2 is shown in Figure 2f. In both materials, the specific heat at low 

temperatures (but above Tc) obeys the relation of Cp = γT + βT
3
, where γ and β 

describe the electronic and phonon contributions to the heat capacity, respectively, the 

latter of which is a measure of the Debye Temperature (θD), and the former of which 

is the Sommerfeld parameter. By fitting the data in the temperature range of 2 - 10 K, 

we obtain the electronic specific heat coefficient γ = 1.99 mJmol
-1
K

-2
, and the 



phonon specific heat coefficient β = 0.701 mJmol
-1
K

-4
 for Ti0.8Ta0.2Se2. Fitting the 

data for Ti0.8Nb0.2Se2 similarly yields γ = 0.45 mJmol
-1
K

-2
 and β = 0.475 mJmol

-1
K

-

4
. We can estimate the Debye temperatures by using the values of β, and θD = 

(12π
4
nR/5β)

1/3
, where n is the number of atoms per formula unit (n = 3), and R is the 

gas constant. The θD values are thus calculated to be 202 K for Ti0.8Ta0.2Se2 and 230 

K for Ti0.8Nb0.2Se2. Finally, it can be seen that γ in Ti0.8Ta0.2Se2 is nearly 5 times of 

that of Ti0.8Nb0.2Se2. Since the value of γ is proportional to the electronic density of 

states (DOS) near the Fermi level (EF), and the DOS near EF has a very strong 

influence on Tc, this difference is likely a major factor in the lack of a 

superconducting transition in the Nb case. These data do not, however, tell us why the 

nominally equivalent Nb doping and Ta doping of 1T-TiSe2 yield such different γs.                

        Ti0.8Ta0.2Se2 displays a large specific heat jump associated with a transition to 

superconductivity at Tc, as shown in the insets for Figures 2e and f. The 

superconducting transition temperature observed in the specific heat measurements 

for Ti0.8Ta0.2Se2 is in excellent agreement with the Tc determined in the (T) 

measurements. From the inset in Figure 2a, using the equal area construction method, 

we obtain ∆C/Tc = 3.78 mJ·mol
-1

·K
-2

 for Ti0.8Ta0.2Se2. The normalized specific heat 

jump value ∆C/γTc is thus found to be 1.9 for Ti0.8Ta0.2Se2, somewhat higher than that 

of the Bardeen-Cooper-Schrieffer (BCS) weak-coupling limit value (1.43), 

confirming bulk superconductivity. Using the Debye temperature (θD), the critical 

temperature Tc, and assuming that the electron-phonon coupling constant (λep) can be 

calculated from the inverted McMillan formula
35

:
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value of λep obtained is 0.61 for Ti0.8Ta0.2Se2. This suggests weak coupling 

superconductivity. The density of states at the Fermi level (N(EF)) can be calculated 

from 
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by using the value of γ and the electron-phonon 

coupling (λep). This yields N(EF) = 0.53 states/eV f.u. for this system’s optimal 

superconductor Ti0.8Ta0.2Se2.  

        The superconducting transition for the optimal superconducting sample was 

further examined through temperature dependent measurements of the electrical 

resistivity under applied magnetic field. The (T,H) obtained for Ti0.8Ta0.2Se2 is 



presented in the supplementary information, Figure 3S. Based on the Tc determined 

for different magnetic fields, the upper critical field values, µ0Hc2, are plotted vs. 

temperature in the inset to Figures 3S. A clear linear dependence of µ0Hc2 vs. T is 

seen near Tc; the solid line through the data shows the best linear fit with the initial 

slope dHc2/dT = -1.4 T/K for both Ta0.2Ti0.8Se2 and. Ta0.15Ti0.85Se2. We estimate the 

zero temperature upper critical field µ0Hc2 = 2.23 T for Ti0.8Ta0.2Se2 (and 2.21 T for 

Ta0.15Ti0.85Se2) using the Werthamer-Helfand-Hohenberg (WHH) expression, µ0Hc2 = 

-0.693Tc (dHc2/dTc)
36-38

. The upper critical field µ0Hc2(0) calculated for Ti0.8Ta0.2Se2 

is larger than that reported for the Cu0.08TiSe2, (Tc = 4.15 K, µ0Hc2(0) = 1.33 T).
13
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  , where o is the quantum of flux, the Ginzburg-Laudau 

coherence length can be estimated as GL(0) ~ 120 Å for Ti0.8Ta0.2Se2.  

      Returning to the comparison of the two systems, we consider their 

characterization by low temperature electron diffraction, which is an excellent probe 

of the existence of CDWs in layered dichalcogenides.
9
 Thus in Figures 1g-j we 

compare the electron diffraction patterns in the [001] diffraction zones for both 

Ti0.8Ta0.2Se2 and Ti0.8Nb0.2Se2, determined in the TEM experiments at both ambient 

temperature and 89 K, the latter temperature chosen to be low enough to probe the 

possible presence of a CDW. Through these patterns we can determine whether the 

presence of superconductivity in The Ta one case but not in the Nb case has to do 

with whether the CDW is more efficiently suppressed through the doping, thus 

tipping the CDW-superconductivity balance toward the latter. The results are initially 

surprising. They show that the (½, ½, ½) superlattice due to the CDW is very weak or 

absent at 89 K in non-superconducting Ti0.8Nb0.2Se2 but is clearly present in 

superconducting Ti0.8Ta0.2Se2. Thus the appearance of superconductivity in the Ta-

doped case cannot be due to a more efficient suppression of the CDW by Ta doping. 

The CDW in TiSe2, however, is far from conventional in character and the literature 

remains divided on its origin. 
13-15

 Therefore in TiSe2, at least, whether the existence 

of the CDW should exclude the presence of superconductivity should not a priori be 

expected, and in fact is clearly not the current case. The interesting electronic picture 

for electron-doped doped 1T-TiSe2 is further elaborated through our ARPES 

characterization of the electronic structures of Ti0.85Nb0.15Se2 and Ti0.85Ta0.15Se2, 

described below.  



        In Figures 3a-h we present the electronic structures of Ti0.85Ta0.15Se2, 

Ti0.85Nb0.15Se2 and pristine 1T-TiSe2 determined in the ARPES experiments, which 

were performed at 15 K. Fermi surface cuts at the border of the Brillouin zone in the 

plane containing the high-symmetry points A, L, and H, at kc~ π/c, are shown in 

Figure 3a for Ti0.85Ta0.15Se2 and 3b for Ti0.85Nb0.15Se2. The cuts show the petal-like 

electron Fermi surfaces from the conduction bands, analogous to what is seen in 

CuxTiSe2.
39

 The direct comparison shows the qualitatively smaller electron Fermi 

surface for the case of Nb doping, even though the chemically equivalent dopants are 

expected to be electronically identical as well. Panels 3c and 3d show the band 

dispersions across the electron pocket at L for Ti0.85Ta0.15Se2 and Ti0.85Nb0.15Se2, 

demonstrating the similarity in the dispersions, but again illustrating the smaller 

filling of the electron pocket in the Nb-doping case. Estimates of the n-type carrier 

concentrations from the sizes of the Fermi surfaces are ~ 1 x 10
21

 cm
-3

 for 

Ti0.85Nb0.15Se2 and 4 x 10
21

 cm
-3

 for Ti0.85Ta0.15Se2, ARPES was used to study the 

character of the top of the valence band, that is, the bands forming the hole pockets in 

the center of the kc-projected Brillouin zone for 3e Ti0.85Ta0.15Se2 and 3f 

Ti0.85Nb0.15Se2. These bands exhibit a noticeable reduction of the spectral intensity 

approximately 100 mev below the Fermi level. Some calculate this to be the signature 

of a CDW phase with moderate to strong excitonic effects.
36 

        A general comparison between the cases of 1T-TiSe2 and Nb-doped TiSe2 is 

shown in panels 3g and 3h. The results for 1T-TiSe2 3g show what is so unusual 

about the electronic structure of this material – the band folding due to the CDW is 

reflected in the fact that at the M point in the Brillouin zone the valence band and the 

conduction band almost “touch” at EF with an electronic deformation (i.e. deviation 

from simple parabolic behavior) at the bottom of the conduction band.
33

 Thus the low 

temperature electronic structure of 1T-TiSe2 is not analogous to what is seen for the 

“Fermi surface nesting” scenario displayed by other layered TMDCs with CDW 

transitions, such as NbSe2.
40

 Comparison of the 1T-TiSe2 electronic structure (3g) to 

the case of the Nb doping (3h) shows that, as expected, the electrons donated by Nb 

result in significant occupancy of the conduction band. Just like pristine TiSe2, the 

doped samples show the hole-like band replicated below the electron pocket at M - 

however, with considerably lower spectral intensity. We note finally that there is a 

considerably larger energy overlap between the hole-like bands around Γ(A) and the 



electron pockets around M(L) in Ta- and Nb- doped TiSe2 than in either pristine 1T-

TiSe2, or 1T-TiSe2 intercalated with Cu.
42

  

      Because superconductivity ultimately arises from electron-phonon coupling in 

conventional materials, we look further into the potential differences between the 

doped systems by comparing their phonon spectra, probed by Raman scattering, to 

that of undoped TiSe2. The Raman spectra for 1T-TiSe2 and the 15% Nb and Ta 

doped samples are shown in Figure 3i. The 1T-TiSe2 Raman spectrum is in good 

agreement with previously published studies
43,44

. Specifically, we observe a strong 

A1g peak at 200 cm
-1

 and an Eg peak at 136 cm
-1 

(the symmetries were established in 

previous studies). The Nb-doped sample produces a near identical spectrum to that of 

undoped TiSe2. Interestingly, the Eg mode is unaffected by Ta-doping, while two 

significant differences are observed near the A1g mode. Specifically, the A1g mode 

shifts to lower energies, while a new mode appears above it. This is best seen in 

Figure 3j where we focus on just the region near the A1g mode. By fitting with two 

Lorentzians, we find that the A1g mode has been shifted down to ~197 cm
-1 

while a 

new mode has appeared at ~213 cm
-1

. The shift of the A1g mode to lower energies is 

consistent with previous studies of 1T-TaSe2, where the mode is found at 190 cm
-1

 

with no others in this range 
45

. 1T-TaSe2 has only been measured in its commensurate 

CDW state. Nonetheless, from group theory, we would not expect an additional mode 

in the absence of a CDW distortion. 2H-TaSe2 does possess a mode very close to the 

observed new mode, but 2H-TaSe2 could not be present as a separate phase because it 

would display two additional modes in the studied frequency range (at 210 cm
-1

 and at 

240 cm
-1

) 
46

. Given the high doping levels in Ti0.8Ta0.2Se2 this could instead be a local 

defect induced mode resulting from the Ta doping. Ta is quite a bit heavier than Ti, 

however and as such is expected to produce local modes below the bulk modes and 

not above as is observed here. Ultimately further studies using polarization and/or 

temperature dependence could potentially rule out the different scenarios for the 

origin of this mode. Nonetheless, the emergence of superconductivity in Ta doped 

TiSe2, and its absence with similar levels of Nb doping may, in addition to the 

differences in the electronic densities of states, also lie in the difference in the way 

these dopants modify the phonon modes of the materials.  

       Finally, the electronic phase diagram as a function of temperature and doping 

level for many electron-doped 1T-TiSe2 systems is summarized in Figure 4. For 

comparison to the present results for 1T-Ti1-xTaxSe2 and 1T-Ti1-xNbxSe2 the electronic 



phase diagrams for CuxTiSe2 and PdxTiSe2 are included in the figure. The CDW 

signature in the resistivity gets weaker with higher x content in Ti1-xTaxSe2, and the 

CDW transition is driven down only slightly in temperature. This is different from the 

case in CuxTiSe2, in which the CDW transition in TiSe2 is driven down substantially 

in temperature with increasing Cu content, followed by the emergence of a 

superconducting state.
13

 In the Ti1-xTaxSe2 system, the x dependence of Tc displays a 

dome-like shape that is broad in composition. The superconducting state appears for 

x > 0.02, going through a maximum Tc of 2.2 K at x = 0.2, followed by a decrease of 

Tc and then disappearance when at x ˃ 0.5. Compared with CuxTiSe2, the maximum 

Tc in Ti1-xTaxSe2 is lower but the superconducting region is much broader. In addition, 

there is a significant boundary composition region (0.02 < x < 0.2) where 

superconductivity and CDW behavior may coexist. For the isoelectronic equivalent 

material Ti1-xNbxSe2, on the other hand, superconductivity does not appear for 

temperatures above 0.4 k for any of the materials. For the Pd-intercalated system, 

PdxTiSe2, Tc is low and is found for only a narrow composition range.
24

 

 

Conclusion 

We have found that TiSe2 becomes superconducting when doped with Ta, a dopant 

which, consistent with a simple chemical picture, donates electrons to the conduction 

band. ARPES characterization of the resulting material shows that the Fermi surface 

is very similar to that seen for Cu-intercalated TiSe2. The Tc for the Ta doped case is a 

factor of 2 lower than that observed for Cu intercalation and is seen over a much 

wider range of electron doping concentrations. For chemically equivalent and 

chemically isoelectronic Nb doping, on the other hand, the phonon spectrum and the 

electronic system do appear to be significantly different. The smaller observed γ is 

consistent with the observation that the Fermi surface and conduction band filling are 

significantly smaller in the Nb doped case than it is seen in the Ta doped case. That in 

itself would not obviously lead to the absence of superconductivity, since it emerges 

in other doped 1T-TiSe2 systems at very low electron doping levels (i.e. x ~ 0.02), 

where the filling of the conduction band and thus the size of the electron Fermi 

surface is very small. The data overall imply that although chemically equivalent, the 

Nb dopant is not as effective in donating electrons into the conduction band of 1T-

TiSe2 as the Ta dopant is, even though it does weaken the CDW. Our comparison of 

the electronic phase diagrams for the different types of electron doping of 1T-TiSe2 



finds them to be quite different, clearly showing that how one chemically dopes 

electrons into the 1T-TiSe2 system strongly matters. Although differences in the 

underlying electronic and phonon systems are observed, the fundamental reasons 

behind why Ta and Nb doping should lead to such differences remain obscure. The 

big difference between Nb and Ta doping in inducing superconductivity in the present 

material may have broad implications for doping-induced superconductivity in 

conventional electronic systems in general because failed attempts to introduce 

superconductivity in a material through chemical substitution may succeed if a 

different dopant is employed, or may be specific to the case of 1T-TiSe2, which has 

certainly proven to be an unusual electronic material, and would be of interest for 

further study. We conclude by pointing out that while intercalation-induced 

superconductors such as 1T CuxTiSe2 or PdxTiSe2 may not be suitable for exfoliation 

and the fabrication of experimental devices due to the difficulty in cleaving TMDCs 

with intercalants that strongly bond the layers together, Ta-doped 1T-TiSe2 is likely to 

be highly suitable for that purpose since the van der Waals bonding between MX2 

layers remains undisturbed in the superconducting material and exfoliation is 

expected to be relatively easy.  
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Figures legends 

 

Figure 1 Structural and chemical characterization of Ti1-xTaxSe2, Ti1-xNbxSe2 (a) 

Powder XRD patterns (Cu Kα) for selected samples (TiSe2, Ti0.8Ta0.2Se2 and 

Ti0.8Nb0.2Se2) in this study. (b) Composition dependence of the room temperature 

lattice parameters for Ti1-xTaxSe2 (0 ≤ x ≤ 0.9) and Ti1-xNbxSe2 (0 ≤ x ≤ 0.7), 

compared with that of CuxTiSe2 (0≤ x ≤ 0.11). Lattice parameters for CuxTiSe2 were 

extracted from Ref 13. (e,f) XPS spectra of the Nb 3d and Ta 4f regions of 

Ti0.8Nb0.2Se2 and Ti0.8Ta0.2Se2. For comparison, the Nb 3d and Ta 4f spectra for 

undoped 2H-NbSe2 and 2H-TaSe2 are included in (c,d). The shifts in binding energy 

Δ compared to the absolute binding energy (i.e. Δ/B.E.) are very similar for both Nb 

and Ta dopants, showing them to be chemically equivalent when substituted in 1T-

TiSe2. Electron diffraction in the [001] zones (g) and (i) Ti0.8Nb0.2Se2 at room 

temperature (RT) 300 K and 89 K respectively. (h) and (j) the same two temperatures 

for Ti0.8Ta0.2Se2. The CDW is present, visible due to its weak diffraction spots, in the 

Ta doped material at 89 K, but not in the Nb-doped material.   

 

Figure 2 Transport and specific heat characterization of the normal states and 

superconductuctivity. (a) The temperature dependence of the resistivity ratio 

(/300K) for polycrystalline Ti1-xTaxSe2 (0.02≤ x≤0.3). Inset: d/dT for Ti1-xTaxSe2 

(0.05 ≤ x ≤ 0.25) in the low temperature region (1 - 3 K), showing the 

superconducting transition. (b) The temperature dependence of the resistivity ratio 

(/300K) for polycrystalline Ti1-xNbxSe2 (0.02 ≤ x ≤ 0.7) Inset: enlarged view of the 

low temperature region (0.4 -3 K), showing the lack of a superconducting transition. 

(c) Temperature dependence of the resistivity of Ti1-xNbxSe2 as log ρ vs. log T. Red 

line is a fit to the 2D variable range hopping model at high temperatures. (d) Magnetic 

susceptibilities of Ti0.8Ta0.2Se2 and Ti0.8Nb0.2Se2 with applied field 5T. Inset: Hall 

measurement for Ti0.8Ta0.2Se2 and Ti0.8Nb0.2Se2. (e) Temperature dependence of the 

specific heat Cp of Ti0.8Ta0.2Se2 measured under magnetic fields of 0 T and 5 T, 

presented in the form of Cp/T vs T
2 

(main panel) and Cel/T vs T (inset). The green line 

shows the equal area construction to determine C/γTc. The red line shows the fit of 

the specific heat in the range 2 - 10 K at 5 T. (f) Temperature dependence of the 

specific heat Cp of Ti0.8Nb0.2Se2 measured under a magnetic field of 0 T, presented in 

the form of Cp/T vs T
2
. 

 

Figure 3. Probing the electronic structure and phonon spectra of the doped 1T-

TiSe2 materials.Performed on the (001) crystal surface ARPES measurements at 15 

K and Raman spectra at 300 K. ARPES-determined Fermi surface cuts at the border 

of the Brillouin zone in the plane containing the high-symmetry points A, L, and H at 

kc ~ π/c for (a) Ti0.85Ta0.15Se2 and (b) Ti0.85Nb0.15Se2, showing the qualitatively smaller 

Fermi surface for the case of Nb doping. (c) and (d) The ARPES-determined band 

dispersion across the electron pocket at L for (c) Ti0.85Ta0.15Se2 and (d) Ti0.85Nb0.15Se2 

respectively, again showing the smaller filling of the electron pocket in the Nb-doping 

case. (e) and (f): The bands forming the hole pockets in the center of the kc-projected 

Brillouin zone for (e) Ti0.85Ta0.15Se2 and (f) Ti0.85Nb0.15Se2 respectively. (g) and (h): 

The band dispersions along Γ-M at kc~0 for pristine 1T-TiSe2 and Nb-doped TiSe2, 

respectively. Spectra were taken at 15 K using photon excitation of 78 eV (a)-(f) and 

95 eV (g)-(h). (i) Raman spectra reveal no modification of the phonons of 1T-TiSe2 

by Nb doping and that Ta doping shifts the higher energy A1g mode to lower energies 



and induces a new mode at 213 cm
-1

. (j) Fit of the Raman spectrum in A1g region of 

Ti0.85Ta0.15Se2 clearly showing the existence of the new mode and the blue shift of the 

original A1g phonon. 

 

Figure 4 The electronic phase diagram of the superconducting 1T-TiSe2 system. 
The electronic phase diagrams for CuxTiSe2, PdxTiSe2, Ti1-xTaxSe2 and Ti1-xNbxSe2 

are shown as a function of Cu, Pd, Ta or Nb content x. All the nominally electron-

doped systems are different. Superconductor parameters for CuxTiSe2 and PdxTiSe2 

were extracted from Refs. 13 and 24, respectively. 

 

Table S1. Single crystal crystallographic data for Ti0.81Nb0.19(1)Se2 and 

Ti0.88Ta0.12(1)Se2 at 100(2) K. 

 

Table S2. Atomic coordinates and equivalent isotropic displacement parameters of  

Ti0.81Nb0.19Se2 and Ti0.88Ta0.12Se2 at 100 K. Ueq is defined as one-third of the trace of 

the orthogonalized Uij tensor (Å
2
). 

 

 

Figure 1S. XPS spectra of the Se 3d regions of Ti0.8Nb0.2Se2 and Ti0.8Ta0.2Se2. For 

comparison, the Se 3d spectrum for undoped 2H-NbSe2 and 2H-TaSe2 are included in 

(g,h)  

 

Figure 2S. XPS spectra of the Ti 2p regions of Ti0.8Nb0.2Se2 and Ti0.8Ta0.2Se2. 

 

Figure 3S. The upper critical field characterization of Ti1-xTaxSe2. Low 

temperature resistivity at various applied fields for (a) Ti0.8Ta0.2Se2 and (b) 

Ti0.85Ta0.15Se2. Inset shows the temperature dependence of the upper critical field 

(Hc2). 
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Crystal Structure analyses 

 

X-ray diffraction intensity data were collected at 100 K on a Bruker Apex Photon 

diffractometer with Mo radiation Kα1 ( = 0.71073 Å) or Cu radiation Kα1 ( = 

1.54098 Å). Data were collected over a full sphere of reciprocal space with 0.5° scans 

in ω with an exposure time of 10s per frame. The 2θ range extended from 4° to 60°. 

The SMART software was used for data acquisition. Intensities were extracted and 

corrected for Lorentz and polarization effects with the SAINT program. Empirical 

absorption corrections were accomplished with SADABS, based on modeling a 

transmission surface by spherical harmonics employing equivalent reflections with I > 

2σ(I).
S1-4

 Within the SHELXTL package, the crystal structures were solved using 

direct methods and refined by full-matrix least-squares on F
2

.
S3
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Table S1. Single crystal crystallographic data for Nb and Ta doped TiSe2 at 100(2) K. 

Refined Formula Ti0.81(1)Nb0.19Se2 Ti0.879(4)Ta0.121Se2 

F.W. (g/mol); 214.37 221.79 

Space group; Z  P3-m1(No.164); 1  P3-m1(No.164); 1 

a (Å) 

c (Å) 

3.5217(1) 

6.0443(3) 

3.5180(2) 

6.0093(4) 

V (Å
3
) 64.920(5) 64.409(8) 

Absorption Correction Numerical Numerical 

Radiation Cu Mo 

Extinction Coefficient None  None 

θ range (deg) 7.327-61.839 3.390-30.045 

No. reflections; Rint 617;0.0280 810;0.0138 

No. independent reflections 53 96 

No. parameters 8 8 

R1; wR2 (all I) 0.0341; 0.0438 0.0175; 0.0404 

Goodness of fit 1.294 1.392 

Diffraction peak and hole (e
−
/Å

3
) 0.636;–1.109 0.953; –1.052 

 

Table S2. Atomic coordinates and equivalent isotropic displacement parameters of 

Nb and Ta doped TiSe2 at 100(2) K. Ueq is defined as one-third of the trace of the 

orthogonalized Uij tensor (Å
2
). 

 

Ti0.81(1)Nb0.19Se2 

 

Atom Wyckoff. Occupancy. x y z Ueq 

Ta/Ti1 1a 0.81(1)/0.19 0 0 0 0.0124(13) 

Se2 2d 1 1/3 2/3 0.2581(2) 0.0104(7) 

 

Ti0.879(4)Ta0.121Se2 

 

Atom Wyckoff. Occupancy. x y z Ueq 

Ta/Ti1 1a 0.879(4)/0.121 0 0 0 0.0059(5) 

Se2 2d 1 1/3 2/3 0.2577(1) 0.0043(2) 

 

 

  



 

 

 

Figure 1S. XPS spectra of the Se 3d regions of Ti0.8Nb0.2Se2 and Ti0.8Ta0.2Se2 (c,d). 

For comparison, the Se 3d spectra for undoped 2H-NbSe2 and 2H-TaSe2 are included 

in (a,b)  

 

 

  



 

Figure 2S. XPS spectra of the Ti 2p regions of Ti0.8Nb0.2Se2 and Ti0.8Ta0.2Se2. 

  



 

 

Figure 3S. The upper critical field characterization of Ti1-xTaxSe2. Low 

temperature resistivity at various applied fields for (a) Ti0.8Ta0.2Se2 and (b) 

Ti0.85Ta0.15Se2. Inset shows the temperature dependence of the upper critical field 

(Hc2). 

 


