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Frustration-induced anomalous transport and strong photon decay in waveguide QED
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We study the propagation of photons in a one-dimensional environment consisting of two noninteracting
species of photons frustratingly coupled to a single spin 1/2. The ultrastrong frustrated coupling leads to an
extreme mixing of the light and matter degrees of freedom, resulting in the disintegration of the spin and
a breakdown of the “dressed-spin,” or polaron, description. Using a combination of numerical and analytical
methods, we show that the elastic response becomes increasingly weak at the effective spin frequency, showing
instead an increasingly strong and broadband response at higher energies. We also show that the photons can
decay into multiple photons of smaller energies. The total probability of these inelastic processes can be as large
as the total elastic scattering rate, or half of the total scattering rate, which is as large as it can be. The frustrated
spin induces strong anisotropic photon-photon interactions that are dominated by interspecies interactions. Our
results are relevant to state-of-the-art circuit and cavity quantum electrodynamics experiments.
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Introduction. Photons propagating in one-dimensional
environments are a fundamental building block for quan-
tum optics and waveguide quantum electrodynamics (QED).
While interaction among photons is inherently negligible,
strong effective interactions can be induced by coupling the
light to atoms, or “impurities.” Such photon-photon interac-
tions are a crucial ingredient in many technologies ranging
from quantum communication to quantum computation and
metrology [1–4]. Even a single two-level-atom (or a spin-1/2)
can induce nontrivial behavior, perfectly reflecting photons
whose energy matches the two-level gap �, while being trans-
parent for other photons [5–8].

This picture can be greatly modified when the light-
matter coupling is increased to the so-called ultrastrong
coupling (USC) regime of waveguide QED [9–14]. This
regime has been recently of great experimental and theoretical
interest [2–4,15,16], and has been experimentally realized
in superconducting quantum circuits [17–21], allowing the
exploration of quantum many-body physics with a single ar-
tificial atom [22]. The hallmark feature of the USC regime
is the breakdown of the rotating-wave approximation and the
description of light and matter as separate entities, which must
instead be described by hybridized excitations.
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Nevertheless, most light-matter systems do admit an intu-
itive interpretation in terms of quasiparticles whose behavior
closely resembles the bare constituents of the system. For a
two-level atom coupled to a 1D continuum, such a hybridized
description is given in terms of a “dressed spin” or a polaron
[23–25]. The strong dressing of the spin by photons leads
to a dramatic Lamb shift of the bare spin frequency � to a
renormalized value �R � � [26], the energy of the polaron
excitation. The propagation of photons in the system can
be understood in terms of scattering of free photons off the
polaron, with the scattering resonance being shifted from �

to �R [10,14]. This renormalized frequency emerges as the
natural intrinsic energy scale of the system, with all nontrivial
physics, such as photon-photon interactions, occurring in the
vicinity of �R. This intuition can be formalized with the well-
known variational polaron transformation, which has been
widely successful in describing both static and dynamical
observables in various spin-boson systems [14,27–34].

In this Letter, we introduce a regime of light-matter inter-
action where the dressed-spin quasiparticle description of the
combined light-matter system qualitatively breaks down. This
is induced by ultrastrong frustrated interactions between a sin-
gle two-level atom and two different species of photons in one
dimension [35,36] (see Fig. 1). We use matrix-product-state
(MPS) numerics together with field-theoretical calculations
to study the propagation of a single photon in the system.
At weaker couplings, the elastic scattering shows a peaked
response at a renormalized value �R < �, consistent with
the polaron interpretation. However, at larger couplings, this
resonance becomes increasingly weak, and instead there is
an emergent increasingly large and broadband response at
large frequencies ω > �R. We also find that inelastic pro-
cesses, where the photon decays into several smaller-energies
photons, can be as important or even dominate the elastic
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FIG. 1. Schematic of the model, where a single spin 1/2 is cou-
pled locally to two independent electromagnetic fields, represented
here as two separate waveguides.

scattering. This decay rate does not peak in the vicinity of
�R, in contrast to the polaron scenario, but saturates close
to its allowed maximum and persists at very high energies,
exceeding even the bare gap �. Both the elastic and inelas-
tic results show that the induced photon-photon interactions
can be highly anisotropic, being dominated by interactions
between photons of different species.

The model we study is closely related to the problem of
a spin coupled to two competing Ohmic baths. The ground-
state phase diagram and the spin properties in such a system
were originally studied in the context of quantum impurities
in magnetically ordered backgrounds [35–40], where it was
observed that the two competing baths result in the preser-
vation of coherence in the spin dynamics, which was named
“quantum frustration of decoherence” [35,36]. Here we are
instead interested in the dynamics of the photons.

Model. We consider a single spin-1/2 that is coupled, via
two noncommuting operators, to two species of propagating
photons in one dimension, as shown in Fig. 1, and as described
by the Hamiltonian [35,36] (h̄ = 1)

Ĥ =
∑
i=x,y

∫
dz

1

2
{qi(z)2 + [∂zφi(z)]2} − �

2
σ̂z

+π
√

αxqx(0)σ̂x + π
√

αy∂zφy(0)σ̂y. (1)

The two photon species have a linear dispersion ωk =
|k| and are described by the scalar fields φi(z) satisfying
[qi(z), φ j (z′)] = −iδi jδ(z − z′). Here, qi(z) and φi(z) could
represent the charge and flux degrees of freedom of two su-
perconducting transmission lines [10], and the spin degree of
freedom can be a qubit that is coupled capacitively to one
transmission line and inductively to the other [41]. We note
that our results would apply equally well to other geometries,
such as a spin coupled to two semi-infinite leads [11], or a
spin coupled to two polarizations of a single waveguide as in
Ref. [42]. In Eq. (1), αi (i = x, y) are the dimensionless cou-
pling constants, which, for the rest of the Letter, we assume to
be equal (αx = αy ≡ α).

The Hamiltonian in Eq. (1) needs to be supplemented with
an ultraviolet cutoff ωc. The latter can be used to define, via
a renormalization group (RG) procedure [36], a renormalized
spin frequency �R, implicitly given by

�R = �

1 + 2αln(ωc/�R)
. (2)

This quantity, derived in Refs. [35,36], is close to the bare
spin frequency � for small α → 0, and it decreases as α is
increased, approaching 0 as α → ∞. As we show in the next
section, for intermediate coupling strengths α � 0.4, �R plays
an important role in the photon dynamics, where it can be

interpreted as the splitting of the dressed spin, whereas this
picture breaks down for larger α (see Fig. 2).

Anomalous transport. We begin by considering the elastic
scattering of a single photon. Without loss of generality, we
assume an incoming x photon that can scatter elastically in
four different ways, as shown in Fig. 1. We computed the
scattering coefficients both numerically, using an MPS-based
approach, and analytically, with diagrammatic perturbation
theory. In order to simulate the system numerically, we use
an orthogonal polynomials mapping [43,44] that transforms
Eq. (1) into a one-dimensional tight-binding model with only
local interactions [see the Supplemental Material (SM) [45]].
We first use the density matrix renormalization group method
to find the ground state of the system and then create a
broad-in-frequency single-photon wave packet on top of it.
This state is then evolved for sufficiently long times so that
the scattering process has ended. From the resulting state, we
extract the elastic probabilities [46], shown in the top row of
Fig. 2, as a function of the incoming frequency ω and coupling
constant α.

In order to gain analytical insight into the problem, we use
the fact that the elastic S matrix can be written in terms of spin
susceptibilities [11,12,18,47–50]. For the setup in Fig. 1, we
find [45]

rαβ (ω) = −i2παωχαβ (ω), tαβ (ω) = δαβ + rαβ (ω), (3)

where the spin susceptibilities χαβ (ω) are given by the
Fourier-transformed retarded Green’s function

χαβ (ω) = − i

4

∫ ∞

0
dteiωt 〈[σ̂α (t ), σ̂β (0)]〉, (4)

evaluated in the ground state. Equations (3) and (4) are exact
for a single incoming photon, but they can be understood
intuitively within linear response formalism. The scattering
of a β photon acts as a perturbation σ̂β (0) on the spin, and
the response σ̂α (t ) of the spin describes the emission of an α

photon.
The advantage of writing the elastic S matrix in the form

of Eqs. (3) and (4) is that it allows the use of powerful
field-theoretical methods. In particular, we use an Abrikosov
pseudofermion representation of the spin to perturbatively
compute Eq. (4) to leading order in α, and employ the Dyson
equation to sum an infinite subset of diagrams, as in the
random-phase approximation of the Coulomb gas [51]. We
then use the Callan-Symanzik equation together with the RG
flow equations from Refs. [35,36] to improve upon the pertur-
bative results, taking into account the nonperturbative Lamb
shift in Eq. (2). The end result is (see the SM for derivation
[45])

χxx(ω) = (−� + iπαω)/2

�2 − ω2
[
π2α2 + [

1 + 2αln
(

ωc
ω

)]2
]

− i2πα�ω
,

(5)

χxy(ω) = −iω[1 + 2αln(ωc/ω)]/2

�2 − ω2
[
π2α2 + [

1 + 2αln
(

ωc
ω

)]2
]

− i2πα�ω
.

(6)

These forms for the susceptibility have a peak near �R with
a width of order τ−1 ∼ α�R, where τ is the lifetime of a
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FIG. 2. Numerical (a)–(c) and analytical (d)–(f) elastic scattering coefficients corresponding to Fig. 1, as a function of the incoming
frequency ω and coupling constant α. The red dashed line corresponds to �R from Eq. (2). The cutoff is ωc = 10�. The oscillating behavior
in the numerical plots at large α is a finite-size effect due to the scattering being very broad in space-time.

spin excitation. At small α, both expressions reduce to narrow
peaks at �, since �R → � and τ−1 → 0 for α → 0. The
resulting transmission and reflection probabilities are shown
in the bottom row of Fig. 2.

We find excellent qualitative agreement between the nu-
merical and analytical results, particularly for α � 0.5. At
very small α, we have the standard situation in waveguide
QED [5–8], where only photons at ω ≈ � are coupled to the
spin and experience scattering, being equally split among the
four channels in Fig. 1, and the rest are simply transmitted.
As α is increased, the location of the resonance drastically
decreases, in excellent agreement with the RG predicted �R

in Eq. (2) (red dashed lines in Fig. 2).
For ω � �R, Fig. 2 shows perfect transmission for all α,

indicating that modes with frequencies smaller than �R are
effectively uncoupled from the impurity. This regime is qual-
itatively similar to that of the usual unfrustrated spin-boson
model [26] and the Kondo problem [52]. In the latter, for
energies smaller than the Kondo temperature (the equivalent
of �R), the impurity is screened and essentially disappears
from the problem [50,52,53].

The ω > �R regime, on the other hand, is drastically dif-
ferent than in these paradigmatic models and the standard
ultrastrong waveguide QED systems (see the SM for a more
detailed comparison to the case when the coupling operator
to both waveguides is the same [45]). Surprisingly, we find
that, at large α, there is very little transmission, even for
ω � �R. For α � 0.4, the system still admits the effective
polaron description, since the strongest elastic response for
all scattering channels in Fig. 2 is still concentrated near
�R. This picture changes dramatically for α � 0.4, where
the reflection |rxx(ω)|2, for example, instead of monotonically
decreasing away from the resonance at �R, first decreases
but then starts increasing for ω > �R. This behavior is more
easily seen in the numerical plots but is nonetheless quali-
tatively consistent with the analytical solution. In particular,
from Eq. (5) we see that, at large α and ω � �R, χxx(ω)
decays sublinearly ∼ω−1ln−2(ωc/ω), as was also pointed out

in Refs. [35,36]. Hence, the reflection coefficient [∼ωχxx(ω)
from Eq. (3)] increases, while the transmission decreases, in
that regime. At even higher couplings α � 0.5, the numerical
results show that the �R resonance in |rxx(ω)|2 becomes in-
creasingly weaker, becoming less intense than the extremely
broadband response at higher frequencies. All this implies
that the spectral weight of the spin {∼Im[χxx(ω)]} becomes
increasingly spread out over larger energies instead of having
a sharp peak at �R. This anomalous behavior of the elastic
reflection and transmission at large α, bearing no resemblance
to a two-level system, constitutes the first of the two main
results of this work.

Another interesting aspect in Fig. 2 is the behavior of the
interspecies scattering, |tyx(ω)|2, where the �R resonance be-
comes extremely broad on the ω > �R side (note that χxy(ω)
[Eq. (6)] approaches a constant for large α and ω � �R).
This implies that the incoming x photon can be efficiently
converted into a y photon in a wide range of energies. The
interspecies scattering at large α shows significant disagree-
ment between the numerical and analytical results, with the
analytics suggesting that |tyx(ω)|2 increases as ω is increased
away from the �R resonance. The numerics do not show such
an increase, but rather show that |tyx(ω)|2 approaches zero for
very large ω and α. As we discuss in the next section, the
discrepancy in |tyx(ω)|2 [as well as in |rxx(ω)|2 and |txx(ω)|2]
at large α is due to the lack of certain kind of O(α2) diagrams
in the susceptibility calculation and is related to the presence
of substantial inelastic scattering.

Photon decay. As is well known, ultrastrong coupling can
give rise to number-nonconserving inelastic processes. The
probability of such processes is, however, typically much
weaker than the elastic rate and is usually peaked at the vicin-
ity of the polaron energy �R [11,48,50]. As we now show,
these two expectations are strongly invalidated due to the
strong frustration in our model, which constitutes the second
main unexpected result of this work.

Conservation of probability implies that |txx(ω)|2 +
|rxx(ω)|2 + 2|tyx(ω)|2 = 1 − γ (ω), where nonzero γ (ω) sig-
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FIG. 3. Numerically computed total number of elastic (a) and
inelastic (b) particles produced in each waveguide as a function of
α for six different incoming wave packets. The wave packets are
single-particle Gaussians centered at ω̄in with a standard deviation
of 0.2�. ωc = 10�.

nifies that the initial x photon of energy ω can decay into
multiple photons of smaller energies. Direct computation us-
ing Eqs. (3), (5), and (6) yields γ (ω) = 0, which is certainly
incorrect. In fact, the numerical plots in Fig. 2 show that the
total inelastic scattering rate approaches ≈0.5 (for ω � 0.5�

and α � 0.6). In those regimes, a photon is therefore as likely
to decay as to be scattered elastically. Note that the continuity
equation in Eq. (3) constrains that max[γ ] = 0.5, implying
that the scattering is nearly maximally inelastic in that regime.

To get a deeper understanding of the inelastic scattering,
we perform additional numerical simulations and analytical
computations. Numerically, we use narrower wave packets
in order to probe the dependence of the outgoing particles
on the energy of the incoming photon. After the scattering
event, we record the total number of elastically and inelas-
tically scattered photons in each waveguide [45], shown in
Fig. 3 for six wave packets with different mean energy. The
first observation from Fig. 3 is that the inelastic emission is
highly anisotropic, giving rise to significantly more y pho-
tons than x photons, for an initial x wave packet. Since the
scattering process cannot change the state of the spin, the
leading-order inelastic process involves four (one incoming
and three outgoing) photons and is therefore of order α2

[11]. It is precisely those diagrams which are missing in the
susceptibilities in Eqs. (5) and (6), explaining also why the
analytics become inaccurate for α � 0.5 where nearly half
of the scattering is inelastic. The four leading-order inelastic
processes are x → {xxx, yyy, xxy, xyy}. We denote the prob-
ability of these processes by γμ1μ2μ3 (ω1, ω2, ω3; ω) where μi

specifies the flavor of the outgoing photon (x or y) and ωi its
frequency. Energy conservation constrains ω1 + ω2 + ω3 =
ω. We have computed the leading order diagrams contributing
to these processes, and the expressions are provided in the
SM [45].

We find that the leading-order expression for γxxx exactly
matches that [11] of the standard unfrustrated spin-boson

model. Moreover, three of the four processes are elegantly
related to each other to leading order, as follows:

γyyy = γxxx
ω2

�2
R

, γxxy = γxxx
ω2

3

�2
R

. (7)

The first of these demonstrates that an incoming x photon with
energy ω > �R is more likely to decay into three y photons,
as opposed to three x photons. The second relation shows that
the γxxy process is more likely to occur than γxxx provided
that the energy of the y photon satisfies ω3 > �R. However,
it is far less likely compared to γyyy because if ω3 ≈ ω, en-
ergy conservation would require ω1 ≈ ω2 ≈ 0 and this would
highly suppress its probability. The remaining process, γxyy,
does not have a simple relation to the other three, but we
have verified by direct numerical integration that its total cross
section is of the same order as the one for γxxy, and both
of these are significantly less important than γyyy. In short,
all this demonstrates that, in the regime ω � �R, photons of
one flavor decay dominantly to the other. This agrees qualita-
tively with Fig. 3, since even the smallest energy wave packet
(ω̄in/� = 0.5) is in the regime of ω > �R for α � 0.2 (see
Fig. 2). In fact, for almost all the wave packets and the range
of α in Fig. 3, we have ω � �R.

Figure 3 also shows that the number of elastic y photons
goes to zero at large α and ω, consistent with tyx(ω) → 0 in
that regime, as we discussed in the previous section. Interest-
ingly, this says that the interspecies scattering can be com-
pletely inelastic, while also dominating over the intraspecies
scattering, as we have just shown. Remarkably, we also see
that the number of inelastically produced photons continues to
rise as a function of ω̄in, suggesting that γ (ω) remains close
to 0.5 even for ω > � � �R. This behavior is consistent with
the anomalous elastic scattering we identified in the previous
section, but we nonetheless expect that γ (ω), as well as the
nontrivial elastic scattering [rxx(ω), tyx(ω)], would eventually
decay to zero as ω → ∞. While all the presented results are
qualitatively independent of the high-energy cutoff, we con-
jecture that the exact location of this decay may be nonuniver-
sal and may depend on the precise cutoff function for a given
physical system. In the SM [45], we compare these results to
the situation where the two waveguides in Fig. 1 couple to
the spin via the same operator σ̂x, showing that, without the
frustrated coupling, the inelastic processes are comparatively
negligible and the anomalous elastic transport is absent.

Summary and outlook. In this work we have shown that
ultrastrong frustrated coupling between a two-level system
and free photons in one dimension leads to anomalous photon
transport and maximal photon decay. This behavior bears no
resemblance to scattering off a two-level system and hence
indicates the breakdown of the polaron quasiparticle descrip-
tion. Instead, this is reminiscent of non-Fermi-liquid behavior
of quantum impurity models in strongly correlated electron
systems [48,50].

While in this Letter we have focused solely on the equal
couplings case αx = αy, we expect our main results, namely
the anomalous transport and strong photon decay, to remain
qualitatively valid even in the presence of anisotropic cou-
plings, provided they are both large and similar in magnitude.
On the other hand, if the couplings are strongly asymmetric,
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say αx � αy, the behavior of the system would resemble more
the unfrustrated model. The weaker coupling in such a case
can be thought of as an unwanted source of dissipation acting
on the spin, which would necessarily be present experimen-
tally. Such unwanted dissipation can be similarly included
in our model by adding a third waveguide with coupling
α3 � αx ≈ αy. In superconducting circuits, such additional
dissipation channels can be made negligible compared to the
desired couplings [17,18], and thus should not qualitatively
affect our results.

Future theoretical work can investigate what kind of effec-
tive spin-spin interactions as well as novel phases of hybrid
light-matter systems can be engineered by adding multiple
impurities. The numerical and analytical methods developed
in this work can also be immediately applied in a variety of
other situations, such as photons with more exotic dispersions.
It would also be interesting to develop protocols that make
use of the unusual properties of the light-matter system in
this work for entanglement generation, single-photon switches
and routers, and frequency conversion, among other applica-

tions. Finally, our work may also shed light and inspire future
studies on the problems of heat and energy transport, relevant
for quantum thermodynamics and quantum chemistry, where
similar models to the one studied here appear [54,55].
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