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Abstract

We provide a computationally and statistically efficient method for estimating
the parameters of a stochastic Gaussian model observed on a regular spatial grid in
any number of dimensions. Our proposed method, which we call the debiased spatial
Whittle likelihood, makes important corrections to the well-known Whittle likeli-
hood to account for large sources of bias caused by boundary effects and aliasing.
We generalise the approach to flexibly allow for significant volumes of missing data,
for the usage of irregular sampling schemes including those with lower-dimensional
substructure, and for irregular sampling boundaries. We build a theoretical frame-
work under relatively weak assumptions which ensures consistency and asymptotic
normality in numerous practical settings. We provide detailed implementation guide-
lines which ensure the estimation procedure can still be conducted in O(n log n)
operations, where n is the number of points of the encapsulating rectangular grid,
thus keeping the computational scalability of Fourier and Whittle-based methods for
large data sets. We validate our procedure over a range of simulated and real world
settings, and compare with state-of-the-art alternatives, demonstrating the enduring
significant practical appeal of Fourier-based methods, provided they are corrected by
the constructive procedures developed in this paper.

Keywords : Random fields; Missing data; Irregular boundaries; Aliasing; Whittle likelihood

1 Introduction

Among the main challenges of modern data analysis is making sense of large volumes of spa-
tial and spatiotemporal data. The state-of-the-art parameter estimation methods currently
in use are based on various different likelihood approximation methods designed to combine
statistical and computational efficiency. Such methods are primarily reliant on spatial/pixel
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models (Anitescu et al., 2017; Guinness and Fuentes, 2017; Katzfuss, 2017; Stroud et al.,
2017), spectral/Fourier understanding (Kaufman et al., 2008; Matsuda and Yajima, 2009;
Shaby and Ruppert, 2012; Guinness, 2019), or other methods of likelihood approxima-
tion (Stein et al., 2004; Banerjee et al., 2008; Lee and Mitchell, 2013; Sang and Huang,
2012). Fourier-based methods, typically based on the Whittle likelihood, are fast and can
scale well to massive data sets. Fourier-based methods, on the other hand, are known to
engender large sources of bias, particularly in dimensions greater than one (Dahlhaus and
Künsch, 1987), or in the presence of missing data or under irregular sampling (Fuentes,
2007; Matsuda and Yajima, 2009). In this paper we propose a novel methodology that si-
multaneously addresses these challenges for spatial data observed on a regular grid, which
may have missing data and irregular sampling boundaries, in any number of dimensions.

The bias which we remove is due to finite-domain effects, and to the multidimensional
boundary. Much of the literature on Whittle estimation has focused on modifications to
the periodogram to reduce bias, such as tapering (Dahlhaus and Künsch, 1987), edge-
effect estimation (Robinson and Sanz, 2006), or accounting for non-standard sampling
scenarios (Fuentes, 2007; Matsuda and Yajima, 2009; Rao, 2018). The solution we propose
is simple yet effective: determine the true expectation of the periodogram, and construct a
quasi-likelihood using this quantity rather than the true spectrum—further developing and
generalizing a procedure recently proposed by Sykulski et al. (2019) for one-dimensional
completely observed time series. We shall show that the debiased Spatial Whittle likelihood
almost completely removes estimation bias in spatial inference, even in the presence of
significant amounts of missing data, while leaving estimation variance essentially unaffected.
We also establish a convergence rate under very general sampling and model assumptions.

The notion of debiasing Whittle estimates using the expected periodogram has been
previously investigated in various more restrictive frameworks by Fernández-Casal and
Crujeiras (2010), Simons and Olhede (2013), and Deb et al. (2017). This article however
is the first to formalize the estimation procedure by providing theoretical guarantees that
apply to any number of dimensions, allow for missing data, and account for irregular
sampling boundaries. To achieve this we introduce the concept of significant correlation
contribution, which provides weak conditions on sampling regimes for stochastic process
models that allow for asymptotically efficient parameter estimation. This paper is also the
first to provide fast n log n computational implementation, including for missing data and
higher dimensions.

This article first provides the choice of notation and assumptions in Section 2. We pro-
pose our spatial quasi-likelihood in Section 3. Then in Section 4 we introduce significant
correlation contribution, which provides conditions guaranteeing consistent estimation un-
der a wide range of sampling schemes. Section 5 develops our theoretical results. Section 6
shows the improved performance on simulated data and actual data of Venus’ topography.
Finally we conclude with discussion in Section 7.
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2 Notation and assumptions

Consider a finite-variance and zero-mean Gaussian random field X(s), for s ∈ IRd, where
d ≥ 1 is a positive integer. Under the assumption of homogeneity, we denote the covariance
function of X(s) by cX(u), u ∈ IRd, and assume the existence of a positive piecewise
continuous Riemann-integrable spectral density function fX(ω), such that ∀u, s ∈ IRd,

cX(u) = E {X(s)X(s + u)} =

∫
IRd

fX(ω) exp(iω · u) dω, (1)

and fX(ω) =
∫
IRd cX(u) exp(−iω · u) du. We shall assume the spectral density belongs

to a parametric family indexed by the parameter θ ∈ Θ, or fX(ω) = f(ω;θ0), denoting
the true parameter value by θ0 ∈ Θ. The random field X(s) is taken to be Gaussian and
homogeneous but not necessarily isometric. We denote n = (n1, . . . , nd) ∈ (IN+)d, with
IN+ the set of positive integers, the dimensions of an orthogonal regular and rectangular
bounding grid, defined by

Jn =
{
δ ◦ [x1, . . . , xd]

T : (x1, . . . , xd) ∈ INd, 0 ≤ xi ≤ ni − 1, i = 1, . . . , d
}
, (2)

and denote by |n| =
∏d

i=1 ni the total number of points of this grid. We denote by
Xs, s ∈ Jn the values of the process on the grid. In (2), the quantity δ ∈ (IR+)d indicates
the regular spacing along each axis, with IR+ the set of positive real numbers, and ◦ denotes
the pointwise Hadamard product between two vectors. We always take δ = [1, . . . , 1]T for
simplicity, yet without loss of generality. We write fX,δ(ω) for the spectral density of the
sampled process, the aliased spectral density, defined by

fX,δ(ω) =
∑
u∈ZZd

fX (ω + 2πu), ω ∈ IRd, (3)

which is a Fourier pair with cX(u) =
∫
T d fX,δ(ω) exp(iω · u) dω, ∀u ∈ ZZd, and T = [0, 2π),

with ZZ the set of natural integers.
To account for irregular domain shapes and missing data, we define a deterministic

modulation value gs at each location of the grid Jn. If a point on the regular grid is
missing then gs = 0, otherwise gs = 1. By convention, gs is extended to the whole set ZZd,
defining gs = 0 if s /∈ Jn. Using this notation, the periodogram of the observed data takes
the form

In(ω) =
(2π)−d∑
s∈Jn gs

2

∣∣∣∣∣∑
s∈Jn

gsXs exp(−iω · s)

∣∣∣∣∣
2

, ω ∈ IRd, (4)

where normalizing by
∑

s∈Jn gs
2 rescales the periodogram for missing data, as performed in

Fuentes (2007). Note that, despite this similarity, our approach is fundamentally different
to that of Fuentes (2007), where this extended definition of the periodogram is used in the
Whittle procedure to address missing data. While this rescaling is central to the method
proposed by Fuentes, it is merely a convention in our case. In practice, this rescaling is not
actually required in our implementation.
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Evaluating the periodogram on the multidimensional Fourier grid

Ωn =
d∏
i=1

{
2πkn−1

i : k = 0, . . . , ni
}

associated with the spatial grid Jn requires O(|n| log |n|) elementary operations using the
Fast Fourier Transform (FFT). If a taper is used in the spectral estimate, then the values
of the taper are directly incorporated into gs, such that gs is proportional to the taper at
locations where data are observed (and still set to zero otherwise). We shall assume that
gs takes values in the interval [0, 1], however this condition could be relaxed to assuming
an upper-bound for the absolute value.

3 Methodology

In Section 3.1 we introduce our new spatial frequency-domain quasi-likelihood estimator.
In Section 3.2 we present an algorithm for the computation of the quasi-likelihood that
only requires FFTs, even in the scenario of missing data and general boundaries. Thus
our estimation method uniquely retains the O(|n| log |n|) computational cost of frequency-
domain approaches for regular grids. Finally, in Section 4 we introduce the notion of
significant correlation contribution for random fields, a set of sufficient conditions that
ensures that our estimate is consistent under growing-domain asymptotics, for a wide range
of sampling schemes and model families.

3.1 Estimation procedure

While exact likelihood has optimal statistical properties in the framework of an increasing
domain (Mardia and Marshall, 1984), it is computationally inadequate for large data sets of
spatial observations due to the determinant calculation and linear system that needs to be
solved. A common approach is to trade off computational cost with statistical efficiency by
using approximations of the likelihood function (Fuentes, 2007; Varin et al., 2011; Guinness
and Fuentes, 2017). Such functions are commonly called quasi-likelihood methods. Our
proposed estimation method is based on the following quasi-likelihood,

`(θ) = |n|−1
∑
ω∈Ωn

{
log In(ω;θ) +

In(ω)

In(ω;θ)

}
, ∀ω ∈ T d, (5)

where for all θ ∈ Θ,
In(ω;θ) = Eθ{In(ω)}, (6)

is defined as the expected periodogram given the modulation values gs, under the mean-zero
Gaussian distribution of Xs specified by the parameter vector θ—see also Fernández-Casal
and Crujeiras (2010). Replacing In(ω;θ) with fX(ω) in (5) yields the discretized form
of the standard Whittle likelihood. Note however that unlike the spectral density, the
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expected periodogram directly accounts for the sampling, as it depends on the dimensions
of the lattice n as well as the modulation values gs accounting for missing points. We
minimize (5) over Θ to obtain our estimate,

θ̂ = arg min
θ∈Θ
{`(θ)}. (7)

By minimizing (5), we find the maximum-likelihood estimate of the data under the
following parametric model,

In(ω)
i.i.d.∼ Exp

{
In(ω;θ)−1

}
, ω ∈ Ωn, (8)

where Exp(λ) stands for the exponential distribution with parameter λ. Hence the quantity
given in (5) can be seen as a composite likelihood (Varin et al., 2011; Bevilacqua and Gaetan,
2015). We also observe that ∆θ`M(θ0) = 0 such that our method fits within the general
theory of estimating equations (Heyde, 1997; Jesus and Chandler, 2017).

3.2 Computation of the expected periodogram

In this section we show how the expected periodogram in (5) can be computed using
FFTs such that our quasi-likelihood remains an O(|n| log |n|) procedure, for any dimen-
sion d and independently of the missing data patterns. Direct calculations show that the
expected periodogram is the convolution of the spectral density of the process with the
multi-dimensional kernel Fn(ω),

In(ω;θ) = {fX( · ;θ) ∗ Fn(·)} (ω) =

∫
T d
fX,δ(ω − ω′;θ)Fn(ω′) dω′,

where

Fn(ω) =
(2π)−d∑

g2
s

∣∣∣∣∣∑
s∈Jn

gs exp(iω · s)

∣∣∣∣∣
2

, ω ∈ IRd. (9)

When gs = 1 ∀s ∈ Jn, Fn(ω) is simply the multi-dimensional rectangular Féjer kernel,
i.e. a separable product of one-dimensional Féjer kernels. For this reason we call Fn(ω) a
modified Féjer kernel. We now provide two lemmata stating that the expected periodogram
can be computed via FFTs for any value of the modulation gs on the grid Jn.

Lemma 1 (Expected periodogram as a Fourier series). The expected periodogram can be
written as the following Fourier series,

In(ω;θ) = (2π)−d
∑
u∈ZZd

cn(u;θ) exp(−iω · u), ∀ω ∈ T d,∀θ ∈ Θ, (10)

where cn(u;θ) is defined by,

cn(u;θ) = cg,n(u)cX(u;θ), u ∈ ZZd,with, (11)

cg,n(u) =

∑
s∈Jn gsgs+u∑

s∈Jn g
2
s

, u ∈ ZZd. (12)
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Proof. This is obtained by direct calculation on taking the expectation of the periodogram
as defined in (4).

In practice we can evaluate the expected periodogram at the set of Fourier frequencies
through a multidimensional FFT, as detailed in the following lemma.

Lemma 2 (Computation of the expected periodogram via FFT). The expected periodogram
takes the form

In(ωk;θ) = (2π)−d
n1−1∑
u1=0

· · ·
nd−1∑
ud=0

∑
q

cn (u− q ◦ n;θ) exp(−iωk · u), (13)

where the sum over q ranges over all vectors of size d with elements in the set {0, 1} (hence,
2d of them), and where ◦ denotes the Hadamard product. Thus the expected periodogram
can be computed via an aggregation of 2d separate FFTs.

Proof. Please see the Supplementary material.

In dimension d = 2, q goes over
{

[0 0]T , [1 1]T , [0 1]T , [1 1]T
}

, and the above formula
therefore takes the form

In(ωk;θ) = (2π)−d
n1−1∑
u1=0

· · ·
nd−1∑
ud=0

{cn ([u1 u2];θ) + cn ([u1 − n1 u2 − n2];θ) (14)

+ cn ([u1 u2 − n2];θ) + cn ([u1 − n1 u2];θ)} exp(−iωk · u).

We remind the reader that gs is defined to be zero outside Jn. Hence cg,n(u) is the ratio
of the number of pairs of observations separated by the vector u over the total number
of points of the rectangular grid Jn. In the special case of complete observations on the
rectangular grid (12) simplifies to

cg,n(u) =

{
|n|−1

∏d
i=1 (ni − |ui|) =

∏d
i=1

(
1− |ui|

ni

)
if |ui| ≤ ni − 1, i = 1, . . . , d,

0 otherwise.
(15)

In the general case, cg,n(u) is precomputed for all relevant values of u via an FFT inde-
pendently of the parameter value θ, such that our method can be applied to scenarios of
missing data without loss of computational efficiency. Similarly, we can combine our debi-
asing procedure with tapering by using a tapered spectral estimate for In(ω) in (5) with
adjusted values for gs (as discussed at the end of Section 2). The expected periodogram,
In(ω;θ), is then computed by using these values of gs in the formulation of cg,n(u) in (12).
Combining debiasing and tapering therefore remains an O(|n| log |n|) procedure.
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4 Properties of sampling patterns

To account for missing observations on the rectangular grid Jn, we have replaced missing
values with zeros via the modulation function gs. Depending on gs this may result in losing
identifiability of the parameter vector from the second-order moment quantities available
from the data. More generally, we wish to understand how the sampling pattern affects the
consistency of our estimation procedure. To this end, we define the notion of significant
correlation contribution for spatial random fields, which allows us to determine whether
our sampling pattern samples enough spatial lags where information about the model lies.
This generalizes ideas from modulated time series (Guillaumin et al., 2017). Following two
simple lemmata on some properties of cg,n(u), we provide the formal definition of Significant
Correlation Contribution (SCC), and follow with some general cases and an example with
an isometric model family to provide more intuition and demonstrate the generality of our
framework.

4.1 Basic properties of cg(u) and Fn(ω)

We state three basic properties of the introduced quantity cg,n(u), both in order to provide
more intuition, but also for further use in this paper.

Lemma 3. The kernel Fn(ω) defined in (9) and cg,n(u) form a Fourier pair.

Lemma 4. We have
0 ≤ cg,n(u) ≤ 1, ∀u ∈ ZZ. (16)

Proof. The left side of the inequality is obvious as by assumption gs ≥ 0. The right side is
obtained by direct application of the Cauchy-Schwartz inequality.

Lemma 5. We have ∑
u∈ZZ

cg,n(u) ≥
∑
s∈ZZ

gs. (17)

Proof. Please see the Supplementary material.

4.2 Definitions

Our concept of Significant Correlation Contribution (SCC), which we provide below, is
defined in asymptotic terms, since we shall later on make use of it to establish consistency
of our estimator. More specifically, we consider a sequence of grids, indexed by k ∈ IN,
which goes to infinity, rather than a single grid.

Definition 1 (Significant Correlation Contribution (SCC)). A sequence of observed grids
(Jnk , gk)k∈IN leads to significant correlation contribution for the model family {f( · ;θ) :
θ ∈ Θ} if it satisfies both{∑

u∈ZZ cg,nk(u)c2
X(u) =

k→∞
o (
∑
g2
s) ,

limk→∞Sk(θ1,θ2) > 0, ∀θ1 6= θ2 ∈ Θ,
(18)

7



where limk→∞ denotes the limit inferior and where we have defined

Sk(θ1,θ2) ≡
∑
u∈ZZd

c2
g,nk

(u) {cX(u;θ1)− cX(u;θ2)}2, ∀θ1,θ2 ∈ Θ2. (19)

We remind the reader that the sums in (18) and (19) are de facto finite (although they
might diverge to infinity with k), due to the definition of cg,n(u). We observe that the
above definition depends on both the sequence of grids, from cg,nk(u), and on the model
family, from cX(u). In the rest of this paper we shall say that a sequence of grids leads to
SCC, if the model family this applies to is obvious from the context. In addition we define
the notion of Highly Significant Correlation Contribution (HSCC), which will allow us to
establish a convergence rate.

Definition 2 (Highly Significant Correlation Contribution). A sequence of observed grids
(Jnk , gk)k∈IN leads to Highly Significant Correlation Contribution for the model family
{f( · ;θ) : θ ∈ Θ}
• if it leads to Significant Correlation Contribution,

• if the covariance function is differentiable with respect to the parameter vector, and

in particular, the quantity min
v∈IRp

,‖v‖=1

∑
u∈ZZd c2

g,nk
(u)
(∑p

j=1 vj

{
∂cX
∂θj

(u;θ)
})2

is

asymptotically lower-bounded by a non-zero value, denoted S(θ).

• if the expected periodogram is twice differentiable with respect to the parameter vector,
and such that its first and second derivatives are both upper-bounded in absolute value
by a constant denoted M∂θ2 > 0.

Note that a necessary and more intuitive condition for the second item of the above
definition is that for all j = 1 . . . , d,

∑
u∈ZZd c2

g,nk
(u)∂cX

∂θj
(u;θ)2 be lower-bounded by a

positive value. Broadly speaking, the first part of (18) is required so that information
grows fast enough. It can be compared to necessary conditions of decaying covariances in
laws of large numbers, with the additional requirement of accounting for sampling when
considering spatial data. Note that the first part of (18) is obviously satisfied if the sample
covariance sequence is assumed square summable and the number of observations grows
infinite.

The second part of (18) ensures that the expected periodograms for any two param-
eter vectors of the parameter set remain asymptotically distant in terms of L2 norm. In
Lemma 11 in Section 5, we show how this transfers to the expectation of the likelihood
function, ensuring that it attains its minimum at the true parameter vector uniquely. Then
in Lemma 14 we show that the likelihood function converges uniformly in probability to
its expectation over the parameter set, as long as the first part of (18) is satisfied. This
all together will eventually lead to the consistency of our inference procedure, which is the
result of Theorem 1. Hence the second part of (18) is required to ensure that the sam-
pling allows to distinguish parameter vectors based on the expectation of our approximate
likelihood function. To provide further understanding, we shall now consider some general
cases and specific examples with respect to this definition.
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4.3 General cases and example

Definition 1 extends the definition of SCC provided by Guillaumin et al. (2017) for time
series in two ways. First, it provides a generalization for spatial data with the notable
difference that spatial sampling is more complex than in time. Indeed, one needs to not
only account for the frequency of the sampling but also for the direction. Secondly, even
in dimension one, the version provided by Guillaumin et al. (2017) implies the version
provided here, while the reverse is not always true—thus relaxing the assumptions required
for consistency. In the second part of equation (18), we do not require to observe a specific
finite set of lags that will allow identification of the parameters as by Guillaumin et al.
(2017). We now provide more intuition about SCC through general cases and then provide
two examples.

4.3.1 General cases

Under standard sampling conditions, SCC takes a simpler form, as we show through the
two following lemmata.

Lemma 6 (SCC for full grids). If we observe a sequence of full rectangular grids that grow
unbounded in all directions (i.e., ni → ∞, i = 1, . . . , d), SCC is then equivalent to the
standard assumption that for any two distinct parameter vectors θ1,θ2 ∈ Θ, the measure
of the set {ω ∈ T d : fX,δ(ω;θ1) 6= fX,δ(ω;θ2)} is positive.

Proof. Please see the Supplementary Material.

Importantly, we do not require that the growth happens with the same rate in all direc-
tions. We do require that grids grow unbounded in all directions to obtain this equivalence
when we have no further knowledge on the functional form of the spectral densities. How-
ever, in many practical cases, such as that of an isometric exponential covariance function,
our results still hold if the grid grows unbounded in one direction rather than all. Another
important case for practical applications is that of a fixed shape of observations that grows
unbounded, which is the subject of the following lemma.

Lemma 7 (Fixed shape of observations). Consider a fixed shape defined by a function
Ξ : [0, 1]d 7→ {0, 1}, and let gk,s = Ξ(s ◦ n−1

k ),∀s ∈ Jnk ,∀k ∈ IN. If the grids grow
unbounded in all directions, and if the interior of the support of Ξ is not empty, then SCC
is again equivalent to the condition stated in Lemma 6 on the parametric family of spectral
densities.

Proof. Please see the Supplementary Material.

In Section 6.2 we provide a simulation study for the particular case of a circular shape
of observations. Finally, from a frequency-domain point of view, the second part of SCC
can be understood according to the following lemma.
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Lemma 8. The second part of SCC is equivalent to

Sk(θ1,θ2) =

∫
T d

∣∣∣∣∫ Fnk(ω
′) {fX(ω′ − ω;θ1)− fX(ω′ − ω;θ2)} dω′

∣∣∣∣2 dω > 0.

Proof. This comes as a consequence of Lemma 3 and standard Fourier theory.

Most importantly, note that in general SCC requires more than the basic requirement
that for two distinct parameters, the expected periodograms for the sequence of grids
should be non-equal, and this is to correctly account for missing data mechanisms and
their impact on consistency. We will now study SCC for an isometric model family to
provide some intuition and show the generality of this framework.

4.3.2 Example

We consider a separable exponential covariance function (d = 2 here) defined by

cX(u) = σ2 exp
(
−ρ−1

1 |u1|
)

exp
(
−ρ−1

2 |u2|
)
, u ∈ IR2. (20)

In the scenario where we sample along one axis only, it is clear that the second part of
SCC fails as the range parameter along the other axis cannot be identified from the data.
Interestingly, the second part of SCC will be satisfied for this particular model and for a
full rectangular grid as long as n1 ≥ 2 and n2 ≥ 2. The first part of SCC is valid as long as
the sample size grows to infinity, since the sample covariance function is square summable.
Therefore for this model family, SCC is satisfied if and only if n1 ≥ 2 and n2 ≥ 2 and n1n2

goes to infinity. It is also worth observing that under those conditions, the convergence
rate of our estimator will be O

(
(n1n2)−1/2

)
(see Theorem 2), irrespective of the ratio n1

n2
,

which in particular is allowed to converge to zero or infinity.
These two examples show the flexibility of SCC compared to standard assumptions.

They show that the two parts of SCC are complimentary and help understand their role
in establishing consistency. The second part is required to ensure identifiabilty of the
parameter vector from the expected periodogram. The first part of SCC is required to
ensure that the observed periodogram becomes uncorrelated at distinct frequencies.

4.3.3 Application to randomly missing data

Our extended definition of SCC can be applied to the scenario where data are missing at
random, on the condition that the randomness scheme for the missing data is independent
from that of the observed process. For such applications we shall say that a sequence of
grids leads to SCC almost surely if (18) is satisfied almost surely under the probability
that defines the missingness scheme. If a sequence of grids leads to SCC almost surely, it
is easy to verify that all our consistency results derived in Section 5 still hold.

A simple application of these considerations is that where each point of a rectangular
grid is observed or missed according to a Bernoulli random variable (with a positive prob-
ability of being observed), independently of other points of the grid, and independently of
the observed process.

10



5 Theory

In this section, we provide the proof of our estimator’s consistency, derive its rate of conver-
gence and its asymptotic distribution. We assume the following set of assumptions holds
in order to establish consistency.

Assumption 1 (Consistency assumptions).

1. The parameter set Θ is compact.

2. The aliased spectral density fX,δ(ω;θ),ω ∈ T d,θ ∈ Θ is bounded above by fδ,max <∞
and below by fδ,min > 0. Additionally, fX,δ(ω;θ) admits a derivative with respect to
the parameter vector θ, which is upper-bounded by M∂θ.

3. The sequence of observation grids leads to SCC for the considered model family.

4. The modulation gs, s ∈ ZZd, takes its values in the interval [0, 1].

Two main asymptotic frameworks coexist in spatial data analysis, infill asymptotics
and growing-domain asymptotics (Zhang and Zimmerman, 2005). We study our estimator
within the latter framework, which we consider most plausible for finite-resolution remote-
sensing observations, imposing that the sample size goes to infinity (through our SCC
assumption) while having fixed δ. Our set of assumptions is standard, except for SCC,
which generalizes the standard assumption of a fully-observed rectangular grid associated
with the requirement that two distinct parameter vectors map to two spectral densities
which are distinct on a Lebesgue set of non-zero measure.

Theorem 1 (Consistency). Under the set of Assumptions 1, the sequence of estimates θ̂k
defined by (7) converges in probability to the true parameter vector θ as the observational
domain diverges.

This result holds for a wide class of practical applications, as

• we do not require the rectangular grid to be fully observed. We allow for a wide class
of observational domains, as long as SCC is satisfied.

• we do not require the grid to grow at the same rate along all dimensions. Classical
frequency-domain results make use of the fact that the multilevel Block Toeplitz
with Toeplitz Blocks covariance matrix has its eigenvalues distributed as the spectral
density. However this result only holds under the assumption that the sampling grid
grows at the same rate along all dimensions.

We shall prove Theorem 1 in a series of steps, but start by introducing some additional
notation.

11



5.1 Additional notation

The vector of the values taken by the process on the rectangular grid Jn is denoted X =
[X0, . . . , X|n|−1]T , where points are ordered into a vector according to the colexicographical
order. Therefore in dimension d = 2, X0, . . . , Xn1−1 are values from the first row of Jn,
Xn1 , . . . , X2n1−1 are values from the second row, and so on. Similarly we denote g the
vector of the values taken by the modulation function on Jn, with points ordered in the
same way. We also denote by s0, . . . , s|n|−1 the locations of the grid ordered according to
the same order, such that X0 = X(s0), X1 = X(s1), etc.

We also denote by G the diagonal matrix with elements taken from g, such that the
vector corresponding to the observed random field (rather than X which corresponds to
the random field on the rectangular grid Jn) is given by the matrix product GX.

Finally, for any vector V we shall denote by ‖V‖p its Lp norm (in particular ‖ · ‖2 is
the Euclidean norm), and for any p× p matrix A, ‖A‖ shall denote the spectral norm, i.e.,
the L2-induced norm,

‖A‖ = max
V∈IRp

,V 6=0

‖AV‖2

‖V‖2

. (21)

We remind the reader that if H is a Hermitian matrix, since ‖HV‖2
2 = V∗H∗HV =

V∗H2V, the spectral norm of H is its spectral radius, i.e.,

‖H‖ = ρ(H) ≡ max{|λ| : λ eigenvalue of H}.

5.2 Distributional properties of the periodogram

It is well known that the bias of the periodogram as an estimator of the spectral density
is asymptotically zero (see, e.g., Koopmans, 1995). However, in dimension d ≥ 2, the
decay of the bias of the periodogram is known to be the dominant factor in terms of
mean-squared error (Dahlhaus and Künsch, 1987). By directly fitting the expectation of
the periodogram, rather than the spectral density, we circumvent this major pitfall of the
Whittle likelihood for random fields. Having removed the effect of bias, we are left with
studying the correlation properties of the periodogram. We show that the variance of a
bounded linear combination of the periodogram at Fourier frequencies goes to zero. This
is the result of Proposition 1, which we use later in Lemma 14 to prove that our likelihood
function converges uniformly in probability to its expectation.

Proposition 1 (Variance of linear functionals of the periodogram). Let ak(ω) be a family
of functions with support T d, indexed by k ∈ IN, and uniformly bounded in absolute value.
Then,

var

|nk|−1
∑
ω∈Ωnk

ak(ω)Ink(ω)

 = O

{∑
u∈ZZd cX(u)2cg,k(u)∑

g2
s

}
. (22)

Proof. Please see the Supplementary Material.
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We note that in the simple case where we observe a full rectangular grid with no tapering
we have

∑
g2
s = |n|.

5.3 Lemmata required for Theorem 1

We provide all the proofs of this section in the Supplementary Material. To establish
consistency we introduce some specific notation for the expectation of our quasi-likelihood,

˜̀
n(γ) = Eθ {`n(γ)} = |n|−1

∑
ω∈Ωn

{
log In(ω;γ) +

In(ω;θ)

In(ω;γ)

}
, ∀n ∈ (IN+)d \ {0},∀γ ∈ Θ,

(23)
which we shall regard as a function of γ. The following lemma relates the minimum of that
function to the true parameter vector (with no uniqueness property as of now).

Lemma 9 (Minimum of the expected quasi-likelihood function). The expected likelihood
function attains its minimum at the true parameter value, i.e,

˜̀
n(θ) = min

γ∈Θ

˜̀
n(γ). (24)

We shall also make repeated use of the following lemma.

Lemma 10 (Lower and upper bounds on the expected periodogram). The expected peri-
odogram satisfies, for all parameter vector γ ∈ Θ, and at all wave-numbers ω ∈ T d, for
any n ∈ INd,

fδ,min ≤ In(ω;γ) ≤ fδ,max.

We now provide additional lemmata which are key to proving the consistency of our
maximum quasi-likelihood estimator. Lemma 11 states that the expected likelihood value at
a parameter vector distinct from the true parameter value is asymptotically bounded away
from the expected likelihood at the true parameter value. This comes as a consequence of
the second part of SCC and the upper-bound on the spectral densities of the model family.

Lemma 11 (Identifiability from the expected likelihood function). Let γ ∈ Θ distinct
from θ. Then,

limk→∞

∣∣∣˜̀nk(γ)− ˜̀nk(θ)
∣∣∣ > 0, (25)

where limk→∞ denotes the limit inferior as k goes to infinity.

Lemma 12 now states a form of regularity of our expected likelihood functions.

Lemma 12. Let γ ∈ Θ and let (γk)k∈IN be a sequence of parameter vectors that converges
to γ. Then, ˜̀

nk(γk)− ˜̀nk(γ) −→ 0, (k −→∞). (26)

Lemma 13. Let γk ∈ ΘIN be a sequence of parameter vectors such that ˜̀nk(γk) − ˜̀nk(θ)
converges to zero as k goes to infinity. Then γk converges to θ.
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And finally, the following lemma helps us understand how the likelihood function, as a
random element, behaves with regard to the expected likelihood function.

Lemma 14 (Uniform convergence in probability of the likelihood function). The likelihood

function `nk(·) converges uniformly in probability to ˜̀nk(·) over the parameter set Θ as k
goes to infinity.

With these lemmata we have all the necessary results to establish Theorem 1. This
theorem is important as it establishes the consistency of our estimator under a very wide
range of sampling schemes and model familites. We contrast our results with those of
Dahlhaus and Künsch (1987), Guyon (1982), as well as Fuentes (2007). The insight from
Theorem 1, as compared to the insight of the need for tapering provided by Dahlhaus and
Künsch (1987) is clear. The aim of this paper is to balance computational tractability with
estimation performance. Very standard assumptions allow us to still derive the results
required for estimation.

5.4 Convergence rate and asymptotic normality

We now study the convergence rate and asymptotic distribution of our estimates within
the increasing-domain asymptotics framework. We establish a convergence rate in the
general framework of SCC, and additionally establish asymptotic normality in the scenario
of a full grid. We first need to understand better the behaviour of quantities of the form
|n|−1

∑
ω∈Ωnk

wk(ω)In(ω), for some weights wk. In Proposition 1, we showed that under

mild conditions, their variance was vanishing, with a rate driven by the number of observed
points. In Proposition 2, and under the assumption of a full grid, by writing this quantity
as a quadratic form in the random vector X, and by extending a result by Grenander and
Szegö (1958), we show that this quantity is asymptotically normally distributed, under mild
conditions on the family of functions wk(·). Before getting there, we need the following
intermediary result, which extends a standard result for Toeplitz matrices to their multi-
dimensional counterpart, Block Toeplitz with Toeplitz Block matrices.

Lemma 15 (Upper bound on the spectral norm of the covariance matrix). In the case of
a full grid, the spectral norm of CX and that of its inverse are upper-bounded according to

‖CX‖ ≤ fδ,max, ‖C−1
X ‖ ≤ f−1

δ,min.

Proof. Please see the Supplementary Material.

Proposition 2 (Asymptotic normality of bounded linear combinations of the periodogram).
Let X(s), s ∈ IRd be a homogeneous Gaussian process observed on the lattice Jn. Let
wk(·), k ∈ IN be a family of real-valued functions defined on T d bounded above and below by
two constants, denoted MW ,mW > 0 respectively. Additionally, assume gs = 1,∀s ∈ Jnk .
Then |n|−1

∑
ω∈Ωnk

wk(ω)In(ω) is asymptotically normally distributed.

Proof. Please see the Supplementary Material.
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Before finally establishing our convergence rates, as well as the asymptotic normality
in the case of full grids, we require one additional set of assumptions.

Assumption 2 (Assumptions for convergence rate and asymptotic normality).

1. The interior of Θ is non-null and the true length-p parameter vector θ lies in the
interior of Θ.

2. The sequence of grids leads to HSCC.

The following lemma relates HSCC to the minimum eigen value of the expectation of
the Hessian matrix of l(θ) at the true parameter vector.

Lemma 16. Under HSCC, the minimum eigenvalue of the expectation of the Hessian
matrix (with respect to the parameter vector) at the true parameter, given by(

|nk|−1
∑
ω∈Ω

Ink(ω;θ)−2∇θInk(ω;θ)∇θInk(ω;θ)T

)
, (27)

is lower-bounded by S(θ), which was defined in Definition 2.

Proof. This can be established by a direct adaptation of Lemma 7 of Guillaumin et al.
(2017).

Theorem 2 (Convergence rate and asymptotic normality of estimates). Under the sets of
Assumptions 1 and 2, our estimate converges with rate

rk =
(∑

gs
2
)−1/2

∑
u∈ZZ

cg,nk(u)cX(u)2

1/2

. (28)

In the case of a full grid, i.e. gs = 1,∀s ∈ Jn, the estimate θ̂ is asymptotically normally
distributed and converges with rate |nk|−1/2.

Proof. Please see the Supplementary Material.

In the case of a full grid, having established asymptotic normality allows to derive
confidence intervals based on the estimation of standard errors, which is the topic of the
following section.

5.5 Estimating standard errors

We now seek to derive how to estimate the standard error of θ̂. Using equations (41)
and (42) from the Supplementary Material, we obtain an approximation for the variance

of θ̂ in the following proposition.
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Proposition 3 (Exact form of the variance). The covariance matrix of the quasi-likelihood
estimator takes the form of

var
{
θ̂
}
≈H−1(θ)var {∇`M(θ)}H−1(θ), (29)

with the covariance matrix of the score taking the form of

cov

{
∂`M(θ)

∂θp
,
∂`M(θ)

∂θq

}
= |n|−2

∑
ω1∈Ωn

∑
ω2∈Ωn

∂In(ω1;θ)

∂θp

∂In(ω2;θ)

∂θq

cov {In(ω1), In(ω2)}
I

2

n(ω1;θ)I
2

n(ω2;θ)
.

(30)

The computation that appears in (30) does not scale well for large grid sizes, as it
scales like |n|2. We instead propose a Monte Carlo implementation to speed this up. The
dominant terms in (30) correspond to ω1 = ω2. We approximate the sum over the rest of
the terms, i.e., our approximation takes the form:

cov

{
∂`M(θ)

∂θp
,
∂`M(θ)

∂θq

}
=

1

|n|2
∑
ω1∈Ωn

{
∂In(ω1;θ)

∂θp

∂In(ω1;θ)

∂θq

var {In(ω1)}
I

4

n(ω1;θ)

}

+
n2 − 2n+ 1

M |n|2
∑

i=1...M

∂In(ω1,i;θ)

∂θp

∂In(ω2,i;θ)

∂θq

cov {In(ω1,i), In(ω2,i)}
I

2

n(ω1,i;θ)I
2

n(ω2,i;θ)
,

where the ω1,i,ω2,i, i = 1 . . .M are uniformly and independently sampled from the set of
Fourier frequencies Ωn under the requirement ω1,i 6= ω2,i. Note that if tapering is used,
one should consider a few coefficients near the main diagonal in the above approximation,
as tapering generates strong short-range correlation in the frequency domain.

The covariances of the periodogram at two distinct Fourier frequencies can be approxi-
mated by Riemann approximation of the two integrals that appear in the expression below,
before taking squared absolute values and summing,

cov {In(ω1,i), In(ω2,i)} = |n|−1

(∣∣∣∣∫ π

−π
f̃(λ)Dn(λ− ω1,i)D∗n(λ− ω2,i) dλ

∣∣∣∣2
+

∣∣∣∣∫ π

−π
f̃(λ)Dn(λ− ω1,i)D∗n(λ+ ω2,i)dλ

∣∣∣∣2
)
, i = 1, . . . ,M.

In the above, f̃ is the following approximation to the spectral density, which can be com-
puted by a DFT,

f̃(λ) =
∑

u∈
∏d
i=1 [−(ni−1)...(ni−1)]

cX(u;θ) exp(−iλ · u),

and Dn(λ) is the non-centred modified (due to the modulation gs) Dirichlet kernel of order n
given by

Dn(λ) =
∑
s∈Jn

gs exp(iλ · s),
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where for clarity we omit the dependence on the modulation gs in the notation. Finally we
compute the derivatives of In(ω;θ) as follows,

∇θIn(ω;θ) =
∑
u∈ZZd

∇θcX(u;θ) exp(−iω · u). (31)

6 Simulation studies and application to the study of

planetary topography

In this section we present simulation studies and an application to the study of Venus’
topography that demonstrate the performance of the debiased spatial Whittle estimator.
The simulations presented in Section 6.1 address the estimation of the range parameter
of a Matérn process, whose slope parameter is known, observed over a full rectangular
grid. These simulations corroborate our theoretical results on the optimal convergence rate
of our estimator despite edge effects, in contrast to the standard Whittle method. Our
second simulation study in Section 6.2 shows how our estimation procedure extends the
computational benefits of frequency-domain methods to non-rectangular shapes of data,
where we compare parameter estimates with those of Guinness and Fuentes (2017) in the
scenario of a circular shape of observations. In Section 6.3 we estimate the parameters of a
simulated Matern process sampled according to a real-world sampling scheme of terrestrial
ocean-floor topography (GEBCO Bathymetric Compilation Group, 2019) with approxi-
mately 72% missing data. Finally, in Section 6.4 we demonstrate the performance of the
debiased spatial Whittle estimator when applied to topographical datasets obtained from
Venus (Rappaport et al., 1999).

6.1 Estimation from a fully-observed rectangular grid of data

We simulate from the isotropic Matérn model family, which corresponds to the following
covariance function,

cX(u) = σ2 21−ν

Γ(ν)

(√
2ν
‖u‖
ρ

)ν
·Kν

(√
2ν
‖u‖
ρ

)
, (32)

where Kν(x) is a Bessel function of the second kind. We consider the problem of estimating
the range parameter ρ, which is fixed to 10 units, while the amplitude σ2 = 1 and the slope
parameter ν ∈ {1

2
, 3

2
} are fixed and known. Inference is achieved from simulated data on

two-dimensional rectangular grids of increasing sizes, specifically {2s : s = 4, · · · , 8} in each
dimension.

We implement four inference methods:

(1) The debiased Whittle method, i.e., the estimate derived from (7);

(2) The debiased Whittle method combined with a taper, specifically the estimate derived
from (7) with gs proportional to a Hanning taper;
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(3) The standard Whittle likelihood, i.e., estimators obtained by replacing In(ω;θ) with
fX(ω) in (5) and then minimizing (7);

(4) The standard Whittle likelihood combined with tapering using a Hanning taper, again
derived from (7) fitting to fX(ω).

For each configuration of the slope parameter and grid size, we report summary statistics
corresponding to 1,000 independently realized random fields. We report bias, standard
deviation and root mean-squared error for ν = 0.5 and ν = 1.5 in Figures 1 and 2, respec-
tively.

We first observe that the rate of the Whittle likelihood (3) is very poor, due to its
large bias. It appears that tapering (4) leads to improved convergence rates when ν = 1.5,
although bias remains. On the contrary, the rates of our proposed method (1) and its
tapered version (2) seem to not curb down even with larger grid sizes. This concurs with
the theoretical results on the rate of convergence provided in Section 5. This example
demonstrates that our debiased Whittle method balances the need for computational and
statistical efficiency with large data sets.

In Figure 3 we report the empirical distribution of each estimator obtained from the
1,000 independent inference procedures for ν = 1

2
. The four panels (a), (b), (c) and (d)

show the distribution of estimates from the four methods stated on the previous page.
The first two panels, (a) and (b), are broadly unbiased with estimates centred at ρ = 10
that converge quickly. The standard Whittle method (c) has issues with underestimation,
tending towards ρ = 5. This asymptotic bias is in large part due to aliasing not being
accounted for combined with the relatively small value of ν = 0.5; these effects are still
present in the tapered estimates (d). As would be expected, in all four subplots the variance
is decreasing with increasing sample size, at similar rates.

6.2 Estimation from a circular set of observations

In this section, we show how our debiased Whittle method extends to non-rectangular data.
More specifically, we assume we only observe data within a circle with diameter 97 units.
We consider the exponential covariance kernel given by

cX(u) = σ2 exp

(
−‖u‖

ρ

)
, u ∈ IR2, (33)

where σ2 = 1 is fixed and known and we estimate the range parameter ρ whose true value
is set to 5 units. We note that the case of a growing circle satisfies SCC, according to
Lemma 7, and hence leads to consistency and asymptotic normality of our estimator.

A total number of 1,200 independent simulations are performed. As a state-of-the-art
baseline, we compare to a recent method proposed by Guinness and Fuentes (2017), which
is an approximation of the circulant embedding method developed by Stroud et al. (2017).
Stroud et al. (2017) propose an Expectation Maximization iterative procedure, where the
observed sample is embedded onto a larger grid that makes the covariance matrix Block
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Figure 1: Bias, standard deviation, and root mean-squared error of estimates of the range
parameter ρ = 10 of a Matérn process (32) with ν = 1

2
, σ2 = 1. The estimation method is

identified by the line style, and gray lines functionally express the theoretical dependence
on the square root of the sample size. The side length of the two-dimensional square grid
is indicated by the horizontal axis, leading to a sample size of the length squared.
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Figure 2: The same simulation setup as in Figure 1, but with ν = 3
2
. This higher slope

parameter is associated with smoother realizations, resulting in worsened edge effects. This
illustrate how our method effectively addresses the edge effect issue even in that setting.
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Figure 3: Nonparametric density estimates ρ̂ of the estimated range parameter ρ̂ (ρ =
10) for a Matérn random field (32), with σ2 = 1 and ν = 1

2
. The four subplots show

different estimation methods of (a) debiased Whittle, (b) debiased Whittle with tapering,
(c) standard Whittle, and (d) standard Whittle with tapering. The density estimate is
shaded to reflect the size of the random field, with the darkest corresponding to total
observations |n| = (24)2, and the shading incrementally taking a lighter colour for |n| =
(25)2, (26)2, (27)2, (28)2. Each density estimate is complemented by the best fitting Gaussian
approximation as a solid black or fading gray line (black corresponds to |n| = (28)2 and
the lightest gray to |n| = (24)2.)
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Circulant with Circulant Blocks (BCCB), from where one can leverage the fast diagonal-
ization procedure available for this class of matrices through the FFT algorithm. Guinness
and Fuentes (2017) discuss that the size of the embedding grid is very large, making the
imputations costly as well as the convergence of the iterative procedure slow. To address
this they propose using a periodic approximation of the covariance function on an embed-
ding grid which is much smaller than that required for the exact procedure. They show
via simulations that using an embedding grid ratio of 1.25 along each axis leads to good
approximations of the covariance function on the observed grid.

To implement the method developed by Guinness and Fuentes (2017), we use the code
provided by the authors. We set a grid ratio of 1.25 to limit the computational cost, and
implement the method with two choices of the number of imputations per iteration, M = 1
and M = 20. Each implementation is run for a number of 30 iterations for all samples.

Both our estimation method and that of Guinness and Fuentes (2017) are initialized
with the estimates provided by the method proposed by Fuentes (2007). We show in
Figure 4 (left panel) how debiased Whittle can achieve both computational and statistical
efficiency. The 95 per cent confidence interval achieved by our estimate is similar to that
obtained via the method of Guinness and Fuentes (2017) (M=1), however our method,
despite also using an iterative maximization procedure, is significantly faster. As shown
in Figure 4 (right panel), Guinness and Fuentes (2017) (M=20) leads to lower root mean
squared error but requires higher computational time.
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Figure 4: Mean and 95 per cent confidence intervals (left) and root mean-squared error
(right) of estimates of the range parameter ρ = 5 of an exponential covariance model (33).
Estimation is performed on a circular set of data with diameter 97 units. The converged
estimates of the debiased Whittle method are compared to the iterated estimates of two
implementations of Guinness and Fuentes (2017). The horizontal axis in both panels corre-
sponds to the average computational time, as performed on an Intel(R) Core(TM) i7-7500U
CPU 2.7–2.9 GHz processor.
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Figure 5: (Left) Simulated Matérn process with slope parameter 0.5 and range parameter 50
units, on a real-world sampling grid, with missing observations replaced by zeros. (Right)
Histogram of estimates of the range parameter of a simulated Matérn process observed on
the real-world grid shown in the left panel. We compare our proposed estimation method,
the Debiased Spatial Whittle likelihood, to the method proposed by Fuentes (2007). The
true value of the range is fixed to 20 or 50. Despite an increased variance due to the
complex missing data patterns, our method is still able to produce a useful estimate of
the range parameter, in comparison to the estimates produced by the method proposed by
Fuentes, which was not built to address such large and complex patterns of missing data.

6.3 Application to a realistic sampling scheme of ocean-floor to-
pography

In this simulation study we show that our estimator can address complex lower-dimensional
sampling substructure. We apply it to the estimation of a Matrn process sampled on a
real-world observation grid, characterized by a very large amount of missing data (≈ 72%).
We simulate two Matern processes, each with slope parameter 0.5 and with range 20 and
50 units respectively. The initial grid has size 1081 × 1081. For our study, we select a
subgrid of size 256× 256 with similar missingness properties to those of the whole grid. In
Figure 5 we plot (left) a simulated Matérn process on that grid where missing observations
have been replaced with zeros. We note the large amount of missing observations within
the bounding rectangular grid, as well as its complex patterns (i.e. rather than a uniform
missingness scheme). For this reason, the method proposed by Fuentes (2007) fails, while
our method is still able to produce useful estimates, as shown in the right panel of Figure 5.

6.4 Application to the study of Venus’ topography

In this section we apply our debiased spatial Whittle method to the study of Venus’ topog-
raphy. The motivation for modelling a planet’s topography using a parametric covariance
model such as the Matérn process is multifaceted. For instance, we may expect that the
combination of the slope and range parameters will carry important information about the
geomorphological process or age of formation of the observed topography, i.e. it is expected
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Table 1: Estimates of the three parameters of a Matérn process (32)
Patch 1 Patch 2 Patch 3 Patch 4

Parameter: σ ν ρ σ ν ρ σ ν ρ σ ν ρ
Debiased Whittle 1.2 0.5 17.7 1.2 0.7 6.8 2.1 0.5 36.5 1.5 0.6 15.0
Standard Whittle 1.6 0.3 62.7 1.8 0.3 73.9 1.5 0.2 77.3 1.7 0.3 87.3
Tapered Whittle 2.0 0.4 52.0 1.7 0.2 80.6 1.2 0.2 88.1 1.9 0.4 83.7

Table 2: Percentage of increase in the exact likelihood value at the estimated parameter
values from Table 1 in comparison to the minimal value obtained among the three methods.

Patch 1 Patch 2 Patch 3 Patch 4
Debiased Whittle 60.60 104.80 91.60 48.40
Standard Whittle 0 16.10 0 0
Tapered Whittle 23.20 0 53.90 25.20

that those parameters will have an interpretable physical meaning. The slope parameter
can be related to the smoothness of the topography, and the range parameter tells about
the typical distance over which two observed portions are uncorrelated.

Building on the work of Eggers (2013), we have selected four patches of data (including
that shown in Figure 6 which corresponds to Patch 3), each sampled regularly on a complete
rectangular grid. We compare three estimation procedures: the debiased Whittle method,
the standard Whittle method, and the standard Whittle method with tapering (again using
a Hanning taper). Parameter estimates are reported in Table 1. We also compare the value
of the exact likelihood function taken at the estimated parameters for each estimation
method in Table 2. Specifically, if θ̂M and θ̂W respectively denote the estimates obtained
via the debiased Whittle and standard Whittle procedure, we compare lE(θ̂M) and lE(θ̂W ),
with lE(·) denoting the exact likelihood function (which is expensive to evaluate but only
needs to be done once for each analyzed method). The results in Table 2 show a much
better fit of the model corresponding to the parameters estimated via the debiased Whittle
method, in comparison to the parameters estimated via either standard Whittle or tapered
Whittle. The parameter estimates in Table 1 should be interpreted with care due to
the challenges inherent in joint estimation of all three parameters of a Matérn covariance
function (see, e.g., Zhang, 2004). However in all four patches we observe that the standard
and tapered Whittle likelihood appear to overestimate the range while underestimating the
smoothness, consistent with results found by Sykulski et al. (2019) for oceanographic time
series.

To conclude our real-data analysis, we presented in Figure 6 a comparison of Patch 3
with three simulated samples, obtained using the Matérn model estimated using the de-
biased, standard and tapered Whittle methods respectively. This analysis supports the
conclusion that the debiased Whittle method has found more appropriate parameter val-
ues for the model fit.
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−2.05

0.1

1.67

c

Whittle (m −1.60, s 1.06)

1 63 125

1

37

73 −2.02

0.03

1.83
d

tapered Whittle (m −1.09, s 0.75)

1 63 125

−2.02

0.03

1.84

Figure 6: (a) A realized random field from the topography of Venus; and simulated
random fields from a Matérn model with parameters estimated using (b) debiased Whittle
estimation, (c) standard Whittle estimation, and (d) standard Whittle estimation using
a Hanning taper. Simulated random fields were obtained using the same random seed to
facilitate comparison. Parameter values for each method are given in Table 1 (Patch 3) in
Section 6.4. Sample means (m) and standard deviations (s) are in the titles. Color bars
are marked at the 2.5th, 50th and 97.5th quantiles. Axis labels are in pixels.
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7 Discussion

This paper has addressed the approximation of the likelihood of a Gaussian random field
using the discrete Fourier transform. Key to understanding a random field is its spatial
sampling; this can range from a spatial point process, to regular sampling with an irregular
boundary, to observations missing at random to a fully sampled square regular grid. To
maintain computational feasibility, this paper addresses the analysis of a regularly sampled
random field, with potentially missing observations and an irregular boundary.

The Whittle likelihood uses the fast Fourier transform to achieve computational effi-
ciency. The approximation is based on results for block-Toeplitz matrices (Tyrtyshnikov
and Zamarashkin, 1998; Kazeev et al., 2013). This approximation is based on (growing-
domain) asymptotics and arguments that equate the Gaussian non-diagonal quadratic form
with another Gaussian, nearly diagonal, form. For time series this argument is relatively
straightforward; but is somewhat more complex for spatial data in higher dimensions, where
the bias becomes the dominant term, and the geometry of the sampling process leaves its
imprint.

The bias of the periodogram, as an estimator of the spectral density (which drives
subsequent bias), decreases with rate O

(
|n|−1/d

)
(Guyon, 1982; Dahlhaus and Künsch,

1987) in the case of a fully-observed rectangular lattice in d dimensions that grows at the
same rate along all directions. A more precise result by Kent and Mardia (1996) shows that
the approximation resulting from replacing the exact likelihood with the Whittle likelihood
is driven by the size of the smallest side of the rectangular lattice. Dahlhaus (1983) proposed
the use of tapering to remedy this issue.

Tapering alone can mitigate but not fully annihilate bias. We propose to replace the
spectral density by the true expectation of the periodogram and thus perfectly remove bias.
By introducing the notion of significant correlation contribution, we can also understand
the mechanics of this process and draw a general framework of sampling schemes and model
families for which our estimator is efficient.

For random fields with missing observations, Fuentes (2007) suggested to replace the
missing points of a rectangular lattice with zeros as in (4) and correcting uniformly across
frequencies for the amplitude of the periodogram, based on the ratio of the number of
observed points to the total number of points in the grid. This only partly corrects for the
bias of the periodogram that results from any non-trivial shape of the data, as frequencies
are likely to not be affected uniformly by the sampling scheme.

Whittle estimation is often used when observations are non-Gaussian. This relaxation
is less common for spatial observations. When studying non-Gaussian observations one can
take two approaches; either limiting the effects of the non-Gaussianity on the variance of
the estimator (Giraitis and Taqqu, 1999; Sykulski et al., 2019), or even permitting Whittle-
type estimation based on higher order spectral moments, see e.g. Anh et al. (2007). It is
also known that if infill asymptotics are considered (Bandyopadhyay and Lahiri, 2009),
then the limiting distribution of the Fourier transform need not be Gaussian. Note that
the aforementioned authors assumed completely random sampling of the field, which we
do not assume, and such sampling leads to a “nugget-like effect” at frequency zero and
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beyond.
We have assumed that the original observations are Gaussian, and whilst relaxing the

growth of observations to be not necessarily matched in spatial directions, this leads to
Gaussian estimators. We have carved out a large domain of spatial processes with non-
regular sampling, and treating these effects fully with non-Gaussianity is too complex an
issue to address in one instance.

Recently, Stroud et al. (2017) proposed a novel approach. Instead of approximating
the multi-level Toeplitz covariance matrix of the rectangular lattice sample by a multi-level
circulant matrix, one finds a larger lattice, termed an embedding, such that there exists
a Block Circulant with Circulant Blocks (BCCB) matrix that is the covariance matrix of
a Gaussian process on this extended lattice, and such that the covariance matrix of the
real process is a submatrix of this extended matrix. One can then simulate efficiently the
missing data on the extended lattice, and estimate the parameters of the models. This
process can be iterated until a convergence criterion is met. This elegant method still
suffers from computational issues, as the size of the embedding might be quite large. A
solution suggested by Guinness and Fuentes (2017) is to use a circulant approximation of the
covariance on a smaller rectangular lattice. The method is no longer exact, but Guinness
and Fuentes (2017) showed via simulations that using small embeddings can in some cases
provide a good compromise between statistical and computational efficiency.

In contrast, in this paper we have revisited the root cause of why the approximation of
the likelihood may deteriorate, while still requiring any proposed bias elimination to result
in a computationally competitive method. This bias elimination is “built in” by fitting
the periodogram to In(ω;θ), which is the expected periodogram. This is in contrast to
estimating the bias and removing it, as this procedure would typically increase variance,
and might lead to empirical spectral density estimates that are negative.

We have thus proposed a bias elimination method that is data-driven, automated,
and computationally practical for a number of realistic spatial sampling methods in any
dimension. Our methods are robust to huge volumes of missing data, as evidenced by our
theoretical investigations, as well as our practical simulation examples. As a result, our
methodology is not only of great benefit for improved parameter estimation directly, but
also has knock-on benefits in, for example, the problem of prediction. Here a huge number
of methods exist and there is some debate as to which are most practically useful (Heaton
et al., 2019), however the broader point is that many of these methods are based on Matérn
covariance kernels—meaning our methods, which we have shown to greatly improve Matérn
parameter estimation, can be naturally incorporated to improve the performance of spatial
methods for prediction. Quantifying this benefit in a range of settings is a natural line of
further investigation.

Within parameter estimation, there are a number of large outstanding challenges which
are nontrivial extensions and merit further investigation as standalone pieces of work:
1) Extensions to irregularly sampled process on non-uniform grids; 2) Extensions to non-
Gaussian random fields; and 3) Extensions to multivariate processes. In each case the
impact on the Fourier Transform and the expected periodogram needs to be carefully han-
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dled to properly account for the bias of naively using basic Whittle-type approximations—
however we expect large improvements are possible both in terms of bias reduction (vs
standard Whittle methods where edge effect contamination will increase) and in terms of
computational speed (vs exact likelihood and other pseudo-likelihoods which will become
increasingly intractable as assumptions are relaxed).
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Proofs of lemmata, propositions and theorems

Proof of lemma 2

Proof. Let k ∈
∏d−1

i=0 {0, . . . , nk − 1}. We remind the reader that for u ∈ ZZd, cn(u) =
cg,nk(u)cX(u), where,

cg,nk(u) =

∑
s∈ZZd gsgs+u∑

s∈ZZd g2
s

.

Using the fact that for any q ∈ {0, 1}d,

cn(u− q ◦ n) exp

(
−i

d−1∑
j=0

2kjπ

nj
(uj − qjnj)

)
= cn(u− q ◦ n) exp

(
−i

d−1∑
j=0

2kjπ

nj
uj

)
,

and since cn(u−q◦n) is zero if any component of u is zero and the corresponding component
of q is one (due to the definition of cg,nk), we obtain the proposed formula. Indeed, any

u ∈
∏d−1

i=0 {−(nk − 1), . . . , nk − 1} that contribute to the LHS of the proposed formula can

be written as u = u+−q◦n for some unique u+ ∈
∏d−1

i=0 {0, . . . , nk − 1}. The extra terms in
the RHS of the proposed formula take value zero according to the previous argument.

Proof of Lemma 5

Proof. ∑
u∈ZZ

cg(u) =
1∑

s∈ZZ g
2
s

∑
u∈ZZ

∑
s∈ZZ

gsgs+u =
1∑

s∈ZZ g
2
s

∑
s∈ZZ

gs
∑
u∈ZZ

gs+u

=

(∑
s∈ZZ gs

)2∑
s∈ZZ g

2
s

≥
(∑

s∈ZZ gs
)2∑

s∈ZZ gs
=
∑
s∈ZZ

gs,

where we have used the fact that gs is assumed to be upper-bounded by one.
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Proof of Lemma 6

Proof. This comes as a consequence of the fact that for a sequence of full rectangular grids
that grow unbounded in all directions, for any u ∈ ZZd we have cg,nk(u) → 1 as k goes to
infinity, see equation (15) in the main body. We then conclude by application of Parseval’s
equality.

Proof of Lemma 7

Proof. The argument is very similar to that of Lemma 6, with the difference that for any
u ∈ ZZd we have that cg,nk(u) converges to a positive constant (which might be strictly
smaller than one) as k goes to infinity.

Proof of Theorem 1

Proof. We will show in Lemma 14 that lnk(·) converges uniformly to l̃nk(·) in probability,
i.e., their difference converges uniformly to the zero function in probability. Hence the
difference lnk(θ̂k)− l̃nk(θ̂k) converges to zero in probability. Additionally, lnk(θ̂k)− l̃nk(θ)

converges to zero in probability. Indeed, by definition, the parameter vector θ̂k minimizes
the function lnk(·) over the parameter set Θ, and according to Lemma 9, the parameter

vector θ minimizes the function l̃nk(·). We therefore have, by the triangle inequality,∣∣∣l̃nk(θ)− l̃nk(θ̂k)
∣∣∣ ≤ ∣∣∣lnk(θ̂k)− l̃nk(θ̂k)∣∣∣+

∣∣∣lnk(θ̂k)− l̃nk(θ)
∣∣∣ ,

which converges to zero in probability. Making use of Lemma 13 we conclude that θ̂k
converges in probability to θ.

Proof of Proposition 1

Proof. Let amax > 0 be a finite constant such that |an(ω)| ≤ amax,∀ω ∈ T 2,∀n ∈ INd. We
first make the observation that the sum of the periodogram values at the Fourier frequencies
is the squared L2 norm of the sample, up to some multiplicative constant, since the Discrete
Fourier Transform is orthonormal, i.e.∑

ω∈Ωn

In(ω) =
|n|

(2π)d
∑

s∈ZZd g2
s

∑
s∈ZZd

g2
sX

2
s .

Therefore,
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var

{
|n|−1

∑
ω∈Ωn

an(ω)In(ω)

}
≤ a2

maxvar

{
|n|−1

∑
ω∈Ωn

In(ω)

}

=
a2

max

(2π)2d (
∑
g2
s)2 var

∑
s∈ZZd

g2
sX

2
s

 . (34)

Note that the first inequality is valid since the covariance of the periodogram at two
Fourier frequencies ω,ω′ is non-negative for a Gaussian process. Indeed, letting

J(ω) =
(2π)−d/2√∑

s∈Jn g
2
s

∑
s∈Jn

gsXs exp(−iω · s),

we have, by Isserlis’ theorem,

cov {I(ω), I(ω′)} = E {J(ω)J∗(ω)J(ω′)J∗(ω′)} − E {I(ω)I(ω′)}
= E {J(ω)J(ω′)}E {J∗(ω)J∗(ω′)}+ E {J(ω)J∗(ω′)}E {J∗(ω)J(ω′)}
= |E {J(ω)J(ω′)}|2 + |E {J∗(ω)J(ω′)}|2 ,

which is non-negative as the sum of two squares. We study the term var
{∑

s∈ZZd g2
sX

2
s

}
.

We have, again using Isserlis’ theorem for Gaussian random variables,

var

∑
s∈ZZd

g2
sX

2
s

 = E

(∑
s∈Jn

g2
sX

2
s

)2

−

(
E
∑
s∈Jn

g2
sX

2
s

)2

=
∑
s∈Jn

∑
s′∈Jn

E
{
g2
sg

2
s′X

2
sX

2
s′

}
− E

{
g2
sX

2
s

}
E
{
g2
s′X

2
s′

}
= 2

∑
s∈Jn

∑
s′∈Jn

g2
sg

2
s′ (E {XsXs′})2 (35)

We now obtain, combining equations (34) and (35),
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var

{
|n|−1

∑
ω∈Ωn

an(ω)In(ω)

}
≤ 2a2

max

(2π)2d (
∑
g2
s)2

∑
s∈Jn

∑
s′∈Jn

g2
sg

2
s′ (E {XsXs′})2

≤ 2a2
max

(2π)2d (
∑
g2
s)2

∑
u∈ZZd

cX(u)2
∑
s∈Jn

g2
sg

2
s+u

≤ 2a2
max

(2π)2d (
∑
g2
s)2

∑
u∈ZZd

cX(u)2g2
max

∑
s∈Jn

gsgs+u

≤ 2a2
max

(2π)2d
∑
g2
s

∑
u∈ZZd

cX(u)2cg(u),

where we have made use of the assumption that 0 ≤ gs ≤ 1,∀s ∈ ZZd. Therefore, we obtain
the stated result, i.e.,

var

|nk|−1
∑
ω∈Ωnk

ak(ω)Ink(ω)

 = O

{∑
u∈ZZd cX(u)2cg,k(u)∑

g2
s

}
,

where the big O is with respect to k going to infinity.

Proof of Lemma 9

Proof. The difference between the expected likelihood function at the true parameter vector
and any parameter vector γ ∈ Θ takes the form

l̃n(γ)− l̃n(θ) = |n|−1
∑
ω∈Ωn

φ

(
Ink(ω;θ)

Ink(ω;γ)

)
,

with φ : x 7→ x− log x− 1. This function is non-negative and attains it minimum uniquely
at x = 1.

Proof of Lemma 10

Proof. By combining equations (4) and (12) in the main body then the periodogram can
be expressed as

In(ω) =
(2π)−d∑

g2
s

∣∣∣∣∣∑
s∈Jn

gsXs exp(−iω · s)

∣∣∣∣∣
2

, ω ∈ T d.

33



Making use of equation (9) of the main body, we therefore have,

Ink(ω;γ) =

∫
T d
fδ,X(ω − λ;γ)Fnk(λ)dλ.

Also, ∫
T d
Fn(ω)dω =

(2π)−d∑
g2
s

∫
T d

∣∣∣∣∣∑
s∈Jn

gs exp(iω · s

∣∣∣∣∣
2

dω

=
(2π)−d∑

g2
s

∫
T d

∑
s∈Jn

∑
s′∈Jn

gsgs′ exp{iω · (s′ − s)} dω

=
(2π)−d∑

g2
s

∑
s∈Jn

∑
s′∈Jn

∫
T d
gsgs′ exp{iω · (s′ − s)} dω

=
1∑
g2
s

∑
s∈Jn

∑
s′∈Jn

gsgs′δs,s′

= 1,

which is a direct adaptation of a standard result for the Féjer kernel. Hence,∣∣Ink(ω;γ)
∣∣ ≤ ∫

T d
|fδ,X(ω − λ;γ)Fnk(λ)| dλ

≤ fδ,max

∫
T d
|Fnk(λ)| dλ

≤ fδ,max.

Similarly, we obtain the other inequality, i.e. Ink(ω;γ) ≥ fδ,min, which concludes the
proof.

Proof of Lemma 11

Proof. We first observe, given equation (23) of the main body, that

l̃nk(γ)− l̃nk(θ) = |nk|−1
∑
ω∈Ωnk

{
Ink(ω;θ)

Ink(ω;γ)
− log

Ink(ω;θ)

Ink(ω;γ)
− 1

}
.

As before, denoting φ : x 7→ x− log x−1, x > 0, and gn(ω) the piece-wise continuous func-
tion that maps any frequency of T d to the closest smaller Fourier frequency corresponding
to the grid Jn, we have

l̃nk(γ)− l̃nk(θ) = (2π)−d
∫
T d
φ

(
Ink(g(ω);θ)

Ink(g(ω);γ)

)
dω.
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A Taylor expansion of φ(·) around 1 gives, with ψ(x) = (x− 1)2,

φ(x) = ψ(x)(1 + ε(x)),

where ε(x) → 0 as x → 1. Therefore for any δ > 0 there exists µ > 0 such that for all x
such that |x− 1| ≤ µ, |ε(x)| < δ. Now let, for all k ∈ IN,

Πk =

{
ω ∈ T d :

∣∣∣∣ Ink(g(ω);θ)

Ink(g(ω);γ)
− 1

∣∣∣∣ ≤ µ

}
.

We distinguish two cases:

1. If for some δ > 0, the Lebesgue measure of Πk does not converge to (2π)d, equa-
tion (25) of the main body holds.

2. Otherwise, if for any δ > 0 the Lebesgue measure of Πk does converge to (2π)d, we
then have∣∣∣l̃nk(γ)− l̃nk(θ)

∣∣∣ =

∫
Πk∪ΠCk

ψ

(
Ink(g(ω);θ)

Ink(g(ω);γ)

){
1 + ε

(
Ink(g(ω);θ)

Ink(g(ω);γ)

)}
dω,

where ΠC
k denotes the complementary of Πk as a subset of T d and where the function

ε(·) was defined in equation (7). Denoting h(ω;θ,γ) =
Ink (g(ω);θ)

Ink (g(ω);γ)
(note that this

quantity also depends on k),

l̃nk(γ)− l̃nk(θ) =

∫
T d
ψ (h(ω;θ,γ))dω

+

∫
Πk

ψ (h(ω;θ,γ)) ε (h(ω;θ,γ))dω

+

∫
ΠCk

ψ(h(ω;θ,γ)ε(h(ω;θ,γ))dω.

We shall now show that the two last terms of the right-hand side of this equation are
asymptotically vanishing, so that we can limit our study to the first term, which will
turn out to take a simple form in relation to our definition of significant correlation
contribution (SCC) in the main body. Given the definition of Πk we have,∣∣∣∣∫

Πk

ψ (h(ω;θ,γ)) ε (h(ω;θ,γ))dω

∣∣∣∣ ≤ δ

∫
Πk

ψ (h(ω;θ,γ))dω ≤ δ

∫
T d
ψ (h(ω;θ,γ))dω,

where the two inequalities come from the fact that the function ψ(·) is non-negative.
We also have ∣∣∣∣∣

∫
ΠCk

ψ(h(ω;θ,γ)ε(h(ω;θ,γ))dω

∣∣∣∣∣ = o(1),
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since the integrand is upper-bounded given Assumption 1.2 and since the measure of
the set ΠC

k goes to zero. Hence we obtain, by the triangle inequality,∣∣∣l̃nk(γ)− l̃nk(θ)
∣∣∣ ≥ (∫

T d
ψ (h(ω;θ,γ))dω

)
(1− δ) + o(1).

We now study the term (2π)−d
∫
T d ψ (h(ω;θ,γ))dω = |nk|−1

∑
ω∈Ωnk

{
Ink (ω;θ)

Ink (ω;γ)
− 1
}2

.

We observe that

|nk|−1
∑
ω∈Ωnk

{
Ink(ω;θ)− Ink(ω;γ)

}2
= |nk|−1

∑
ω∈Ωnk

Ink(ω;γ)2

{
Ink(ω;θ)

Ink(ω;γ)
− 1

}2

≤ |nk|−1f 2
max,δ

∑
ω∈Ωnk

{
Ink(ω;θ)

Ink(ω;γ)
− 1

}2

.

Additionally, by Parseval’s equality,

|nk|−1
∑
ω∈Ωnk

{
Ink(ω;θ)− Ink(ω;γ)

}2
=
∑
u∈ZZd

{cnk(u;θ)− cnk(u;γ)}2

=
∑
u∈ZZd

cg,nk(u)2 {cX(u;θ)− cX(u;γ)}2

≥ 1

2
limk→∞Sk(θ,γ),

where the last inequality holds for k sufficiently large, given the SCC assumption, see
Definition 1. Therefore we obtain for k sufficiently large,∣∣∣l̃nk(γ)− l̃nk(θ)

∣∣∣ ≥ 1

2f 2
max,δ

(1− δ) limk→∞Sk(θ,γ) + o(1).

Choosing δ = 1/2, we obtain the inequality stated in equation (25) of the main body.
This concludes the proof.

Proof of Lemma 12

Proof. First we observe that for any fixed ω ∈ T d, Ink(ω;γk) converges to Ink(ω;γ) as k
goes to infinity. This comes from Assumption 1.2, where we have assumed an upper-bound
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on the derivative of the spectral density with respect to the parameter vector. In that case,

∣∣Ink(ω;γk)− Ink(ω;γ)
∣∣ ≤ ∣∣∣∣(2π)−d

∫
T d
{fX,δ(ω − ω′;γk)− fX,δ(ω − ω′;γ)}Fn(ω′)dω′

∣∣∣∣
≤ (2π)−d

∫
T d
|fX,δ(ω − ω′;γk)− fX,δ(ω − ω′;γ)| Fn(ω′)dω′

≤ (2π)−d
∫
T d
M∂θ‖γk − γ‖2Fn(ω′)dω′

≤M∂θ‖γk − γ‖2

which converges to zero as ‖γk − γ‖2 converges to zero by assumption.

Now using equation (23), we can apply the Dominated Convergence Theorem to (l̃nk(γk)−
l̃nk(γ))

k∈IN, using the bounds established in Lemma 10, and the ω-pointwise convergence

of
∣∣Ink(ω;γk)− Ink(ω;γk)

∣∣ to zero. Hence (l̃nk(γk)− l̃nk(γ))
k∈IN converges to zero, which

concludes the proof.

Proof of Lemma 13

Proof. Assume, with the intent to reach a contradiction, that (γk) does not converge to θ.
By compactness of Θ, there exists γ ∈ Θ distinct from θ and (γjk) a subsequence of (γk)
such that γjk converges to γ. We then have, using the inverse triangle inequality,

|l̃njk (γjk)− l̃njk (θ)| ≥
∣∣∣l̃njk (γ)− l̃njk (θ)

∣∣∣− ∣∣∣l̃njk (γjk)− l̃njk (γ)
∣∣∣ .

The second term on the right-hand side of the above equation converges to zero according to
Lemma 12 whereas the first term is asymptotically lower bounded according to Lemma 11.
Therefore the quantity |l̃njk (γjk)− l̃njk (θ)| is asymptotically lower bounded, which contra-

dicts the initial assumption that l̃nk(γk) − l̃nk(θ) converges to zero. This concludes the
proof, by obtaining a contradiction.

Proof of Lemma 14

Proof. We have

l̃nk(γ)− lnk(γ) = |nk|−1
∑
ω∈Ωn

{
log Ink(ω;γ) +

Ink(ω;θ)

Ink(ω;γ)
− log Ink(ω;γ)− Ink(ω)

Ink(ω;γ)

}
= |nk|−1

∑
ω∈Ωn

Ink(ω;θ)− Ink(ω)

Ink(ω;γ)
.

We note that
E
{
l̃nk(γ)− lnk(γ)

}
= 0.
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Given that the quantity Ink(ω;γ)−1 is deterministic and upper-bounded independently of
γ by f−1

min,δ, we can use Proposition 1 to conclude that

var
{
l̃nk(γ)− lnk(γ)

}
= O

{∑
u∈ZZd cX(u)2cg(u)∑

g2
s

}
,

where the big O does not depend on γ. Thus using Chebychev’s inequality

l̃nk(γ)− lnk(γ) = OP


(∑

u∈ZZd cX(u)2cg(u)∑
g2
s

)1/2


This concludes the proof given the SCC assumption.

Proof of Lemma 15

Proof. The proof is adapted from the one-dimensional case, see Guillaumin et al. (2017)
and Sykulski et al. (2019). We first define the following isomorphism from

∏d
i=1{1, · · · , ni}

to {1, · · · , |n|}, that will be used for a change of variable:

j(j1, . . . , jd) =
d∑

k=1

{
(jk − 1)

k−1∏
j=1

nj

}
,

and j1(j), . . . , jd(j) the component functions of its inverse. This isomorphism gives the
index in the column vector X of the observation at location (j1, · · · , jd) on the grid, given
our choice of ordering.

Let α be any complex-valued vector of ICn, and denote α∗ its Hermitian transpose. We
then have, using the above isomorphism for a change of variables,

α∗CXα =

|n|∑
j,k=1

α∗j(CX)j,kαk

=

n1−1∑
j1=0

· · ·
nd−1∑
jd=1

n1−1∑
k1=0

· · ·
nd−1∑
kd=1

α∗j(j1,··· ,jd)(CX)j(j1,··· ,jd),k(k1,··· ,kd)αk(k1,··· ,kd).

Here we use the fact that

(CX)j(j1,··· ,jd),k(k1,··· ,kd) = cX(k1 − j1, . . . , kd − jd),
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so that

α∗CXα =

n1−1∑
j1=0

· · ·
nd−1∑
jd=1

n1−1∑
k1=0

· · ·
nd−1∑
kd=1

α∗j(j1,··· ,jd)αk(k1,··· ,kd)

∫
T d
fX,δ(ω)ei((k1−j1)ω1+···+(kd−jd)ωd)dω

=

∫
T d
fX,δ(ω)

n1−1∑
j1=0

· · ·
nd−1∑
jd=1

n1−1∑
k1=0

· · ·
nd−1∑
kd=1

α∗j(j1,··· ,jd)αk(k1,··· ,kd)e
i((k1−j1)ω1+···+(kd−jd)ωd)dω

=

∫
T d
fX,δ(ω)

∣∣∣∣∣
n1−1∑
j1=0

· · ·
nd−1∑
jd=1

αj(j1,··· ,jd)e
i(j1ω1+···+jdωd)

∣∣∣∣∣
2

dω

≤ fδ,max

∫
T d

∣∣∣∣∣
n1−1∑
j1=0

· · ·
nd−1∑
jd=1

αj(j1,··· ,jd)e
i(j1ω1+···+jdωd)

∣∣∣∣∣
2

dω.

By Parseval’s equality, we obtain,

0 ≤ α∗CXα ≤ fδ,max‖α‖2
2,

where ‖α‖2 is the l2 vector norm of the vector α. This concludes the proof of the upper
bound. The lower bound can be derived in the same way, which concludes the proof.

Proof of Proposition 2

Proof. We only treat the scenario where gs = 1,∀s ∈ Jnk , i.e., we do not consider the
situation of missing observations for this proposition. The proof is adapted from Grenander
and Szegö (1958, p. 217). Denote

Lk = |nk|−1
∑
ω∈Ωnk

wk(ω)Ink(ω),

as a weighted sum of periodogram values, and Unk the multi-dimensional Fourier matrix
corresponding to Jn. We have

Lk = |nk|−1X∗U∗nkdiag(wk(ω0), . . . , wk(ω|nk|−1))UnkX.

Denoting Wk = |nk|−1U∗nkdiag(wk(ω0), . . . , wk(ω|nk|−1))Unk , we then have

Lk = X∗WkX,

which we regard as a quadratic form in the vector X. Following Cramér (1946, p. 134), his
formula 11.12.2, the characteristic function of the random variable Lk therefore takes the
form of

φLk(α) = E {exp(iαLk)}

= (2π)−n/2 |CX(θ)|−1/2
∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

{
−x∗

(
−iαWk +

1

2
C−1
X (θ)

)
x

}
dx1 · · · dxn,
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where for a square matrix A, |A| denotes its determinant. Using a known result (Horn
and Johnson, 1985) for complex-valued symmetric matrices, there exists a diagonal matrix
Dk and a unitary matrix Vk such that

− iαWk +
1

2
C−1
X (θ) = V DkV

T . (36)

By posing the change of variables y = V Tx we obtain,

φLk(α) = (2π)−n/2 |CX(θ)|−1/2
n∏
j=1

∫ ∞
−∞

exp
{
−y2dj,k

}
dy,

where the dj,k, j = 1, · · · , n are the complex-valued elements of the diagonal matrix Dk

from equation (36), and where we remind the reader that |V | = 1 since V is unitary. As
we recognize integrals of the form

∫∞
−∞ exp(−y2)dy we obtain,

φLk(α) = 2−n/2 |CX(θ)|−1/2

∣∣∣∣−iαWk +
1

2
CX(θ)−1

∣∣∣∣−1/2

=
∣∣−2iαCX(θ)Wk + I|n|

∣∣−1/2

Hence,

log φLk(α) = −1

2
log
∣∣I|nk| − 2iαCX(θ)Wk

∣∣ .
Denoting with ν1,k, . . . , ν|nk|,k the eigenvalues of CX(θ)Wk, we therefore have

log φLk(α) = −1

2

|nk|∑
j=1

log (1− 2iανj,k) .

According to Proposition 15 the spectral norm of CX , the covariance matrix of X, is upper-
bounded by fmax,δ. The spectral norm of Wk is clearly upper-bounded by |nk|−1MW , as
from the definition of Wk its eigenvalues are exactly

|nk|−1wk(ω0), |nk|−1wk(ω1), · · · , |nk|−1wk(ω|nk|−1).

By property of the spectral norm of a product of matrices, we obtain,

|nk|−1mWfmin,δ ≤ |νj,k| ≤ |nk|−1MWfmax,δ, ∀j = 1, · · · , |nk|, k ∈ IN. (37)

The variance of Lk is given by

σ2
k = var {Lk} = 2

|nk|∑
j=1

ν2
j,k,

and therefore satisfies

2|nk|−1(mWfmin)2 ≤ σ2
k ≤ 2|nk|−1(MWfmax,δ)

2. (38)
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We also observe that
νj,k
σk
→ 0, (k →∞),

uniformly, given the bounds determined in equations (37) and (38). Denote Lk the stan-
dardized quantity (Lk − E{Lk}) /σk. After Taylor expansion of the logarithm terms to
third order, its characteristic function takes the form of

log φLk(α) = −1

2

|nk|∑
j=1

log

(
1− 2iανj,k

σk

)
− i

α
∑|nk|

j=1 νj,k

σk

= −1

2
α2 +

|nk|∑
j=1

[
4

3

(
iανj,k
σk

)3

+ o

{(
iανj,k
σk

)3
}]

, (39)

where the small o is uniform and is denoted εk in what follows, to make it clear that it does
not depend on j. The second term in equation (39) can be shown to become negligible as
k goes to infinity, since∣∣∣∣∣∣

|nk|∑
j=1

[
4

3

(
iανj,k
σk

)3

+ o

{(
iανj,k
σk

)3
}]∣∣∣∣∣∣ ≤ α3σ−3

k

(
4

3
+ εk

) |nk|∑
j=1

|νj,k|3

≤ α3

(
4

3
+ εk

)
|nk|−2M3

Wf
3
max

|nk|−3/2m3
Wf

3
min

= O(|nk|−1/2).

We conclude that φLk(α) converges to exp(−1
2
α), and therefore Lk is asymptotically stan-

dard normally distributed after appropriate normalization.

Proof of Theorem 2

Proof. Direct calculations show that the gradient of our quasi-likelihood function at the
true parameter vector is given by,

∇θlnk(θ) = |nk|−1
∑
ω∈Ωnk

Ink(ω;θ)−2∇θInk(ω;θ)
(
Ink(ω;θ)− I(ω)

)
. (40)

By expanding this gradient function at the true parameter value, and noting that∇θlnk(ω; θ̂) =

0 by definition of θ̂ and given Assumption 2.1, we obtain

∇θlnk(ω;θ) = H(θ′k)(θ − θ̂k),

where H(·) is the Hessian of lnk(·) and θ′k is a parameter vector that converges in probability

to the true parameter vector, since θ̂k is consistent as per Theorem 1. Therefore,

θ̂k − θ = −H−1(θ′k)∇θlnk(ω;θ). (41)
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We now study the expected Hessian of the likelihood function taken at the true parameter
vector, H(θ). Direct calculations lead to

H(θ) = |nk|−1
∑
ω∈Ωnk

Ink(ω;θ)−2∇θInk(ω;θ)∇θInk(ω;θ)T .

It can be shown, see Sykulski et al. (2019, p. 17 of their supplementary document) for
instance, that in equation (41) the quantity H(θ′k) satisfies, if Assumption 2.2 holds,

H(θ′k) = H(θ) +OP (rk) + oP (1).

Hence we have, asymptotically,

H−1(θ′k) = H−1(θ) + oP (1). (42)

Since equation (40) follows the conditions required for Proposition 1 to apply, the gradient
at the true parameter vector ∇θlnk(ω;θ) is itself OP (rk). Further more, Lemma 16 tells
us that the minimum eigenvalue of H is lower-bounded by S(θ), independently of k. We
finally obtain the stated result,

θ̂k − θ = OP (rk).

In the case of a sequence of full grids, |nk|1/2|∇θlnk(ω;θ) is additionally shown to fol-
low a standard normal distribution via Proposition 2, and we conclude to the asymptotic
normality of our estimator.
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