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Abstract

Locating proteins within cellular contexts is of paramount significance in elucidating their biological functions. Computational

methods based on knowledge databases (such as gene ontology annotation (GOA) database) are known to be more efficient than

sequence-based methods. However, the predominant scenarios of knowledge-based methods are that (1) knowledge databases

typically have enormous size and are growing exponentially, (2) knowledge databases contain redundant information, and (3) the

number of extracted features from knowledge databases is much larger than the number of data samples with ground-truth labels.

These properties render the extracted features liable to redundant or irrelevant information, causing the prediction systems suffer

from overfitting. To address these problems, this paper proposes an efficient multi-label predictor, namely R3P-Loc, which uses

two compact databases for feature extraction and applies random projection (RP) to reduce the feature dimensions of an ensemble

ridge regression (RR) classifier. Two new compact databases are created from Swiss-Prot and GOA databases. These databases

possess almost the same amount of information as their full-size counterparts but with much smaller size. Experimental results

on two recent datasets (eukaryote and plant) suggest that R3P-Loc can reduce the dimensions by seven folds and significantly

outperforms state-of-the-art predictors. This paper also demonstrates that the compact databases reduce the memory consumption

by 39 times without causing degradation in prediction accuracy. For readers’ convenience, the R3P-Loc server is available online

at http://bioinfo.eie.polyu.edu.hk/R3PLocServer/.

Keywords: Multi-location proteins; Compact databases; Protein subcellular localization; Random projection; Multi-label

classification.

1. Introduction

Most eukaryotic proteins are synthesized in the cytosol and

must be transported to the correct spatiotemporal cellular con-

texts to perform their biological functions. The knowledge of

protein subcellular localization helps biologists elucidate the

functions of proteins and identify drug targets [1, 2]. Mislo-

calization of proteins within cells may lead to a broad range

of human diseases, such as breast cancer [3], kidney stone

[4], Alzheimer’s disease [5], Bartter syndrome [6], primary

human liver tumors [7], minor salivary gland tumors [8] and

pre-eclampsia [9]. Conventionally, high quality localization

databases are obtained by wet-lab experiments such as cell

fractionation, fluorescent microscopy imaging and electron mi-

croscopy, which are also regarded as gold standard for validat-

ing subcellular localization. These methods, however, are la-

borious and costly, especially for the avalanche of newly dis-

covered protein sequences in the post-genomic era. There-

fore, computational methods are required to assist biologists for

large-scale protein subcellular localization.
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Recent decades have witnessed remarkable progress of com-

putational methods for predicting subcellular localization of

proteins, which can be roughly divided into sequence-based

and knowledge-based. Sequence-based methods include: (1)

sorting-signals based methods [10, 11, 12], such as using sig-

nal peptides, which can be predicted by signal peptide pre-

dictors like Signal-CF [13] and Signal-3L [14]; (2) amino-

acid composition-based methods [15, 16, 17, 18, 19, 20]; and

(3) homology-based methods [21, 22, 23]. Knowledge-based

methods use information from knowledge databases, such as

Gene Ontology (GO)1 terms [24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34], Swiss-Prot keywords [35, 36], functional domains [37],

or PubMed abstracts [38, 39]. Among them, GO-based meth-

ods have demonstrated to be superior to methods based on other

features [27, 40, 41, 42].

Because some proteins can exist in more than one organelle

in a cell [43, 44, 45, 46], recent researches have been focusing

on predicting both single- and multi-location proteins. In fact,

multi-location proteins play important roles in some metabolic

processes that take place in more than one cellular compart-

ment, e.g., fatty acid β-oxidation in the peroxisome and mito-

chondria, and antioxidant defense in the cytosol, mitochondria

and peroxisome [47].

1http://www.geneontology.org
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Recently, several state-of-the-art multi-label predictors have

been proposed, such as Plant-mPLoc [48], Euk-mPLoc 2.0

[49], iLoc-Plant [50], iLoc-Euk [51], mGOASVM [52],

HybridGO-Loc [53] and other predictors [54, 55, 56]. They

all use the GO information as the features and apply differ-

ent multi-label classifiers to tackle the multi-label classification

problem. However, these GO-based methods are not without

disadvantages. Currently the predominant scenarios of GO-

based methods are that:

1. The gene ontology annotation (GOA) database,2 from

which these GO-based predictors extract the GO infor-

mation for classification, is usually in enormous size and

is also growing rapidly. For example, in October 2005,

the GOA database contains 7,782,748 entries for pro-

tein annotations; in March 2011, GOA database contains

82,632,215 entries; and in July 2013, the number of en-

tries increases to 169,603,862, which suggests that in less

than 8 years, the number of annotations in GOA database

increases 28 times. Even after compressing the GOA

database released in July 2013 by removing the repeated

pairing of accession numbers (ACs) and GO terms, the

number of distinct pairs of AC–GO terms is still as high

as 25,441,543. It is expected that searching a database

with such a enormous and rapidly-growing size is compu-

tationally prohibitive, which makes large-scale subcellular

localization by GO-based methods inefficient and even in-

tractable.

2. The GOA database contains many redundant AC entries

that will never be used by typical GO-based methods.

This is because given a query protein, GO-based meth-

ods search for homologous ACs from Swiss-Prot and use

these ACs as keys to search against the GOA database for

retrieving relevant GO terms. Therefore, those ACs in the

GOA database that do not appear in Swiss-Prot are redun-

dant. Among all the ACs in the GOA database, more than

90% are in this category. This calls for a more compact

GO-term database that excludes these redundant entries.

3. The number of extracted GO features from the GOA

database is much larger than the number of proteins that

are relevant to the prediction task. For example, Xiao et.

al. [57] extracted GO information of 207 proteins from the

GOA database; the resulting feature vectors have 11,118

dimensions, which suggests that the number of features is

more than 50 times the number of proteins. It is likely that

among the large number of features, many of them contain

redundant or irrelevant information, causing the prediction

systems suffer from overfitting and thus degrading the pre-

diction performance.

To tackle the problems mentioned above, this paper proposes

an efficient and compact multi-label predictor, namely R3P-

Loc, which uses Ridge Regression and Random Projection

for predicting subcellular Localization of both single-label and

multi-label proteins. Instead of using the Swiss-Prot and GOA

2http://www.ebi.ac.uk/GOA

databases, R3P-Loc uses two newly-created compact databases,

namely ProSeq and ProSeq-GO, for GO information transfer.

The ProSeq database is a sequence database in which each

amino acid sequence has at least one GO term annotated to it.

The ProSeq-GO comprises GO terms annotated to the protein

sequences in the ProSeq database. An important property of the

ProSeq and ProSeq-GO databases is that they are much smaller

than the Swiss-Prot and GOA databases, respectively.

Given a query protein, a set of GO-terms are retrieved by

searching against the ProSeq-GO database using the accession

numbers of homologous proteins as the searching keys, where

the homologous proteins are obtained from BLAST searches,

using ProSeq as the sequence database. The frequencies of GO

occurrences are used to formulate frequency vectors, which are

projected onto much lower-dimensional space by random ma-

trices whose elements conform to a distribution with zero mean

and unit variance. Subsequently, the dimension-reduced feature

vectors are classified by a multi-label ridge regression classi-

fier. Results on two recent benchmark datasets demonstrate that

R3P-Loc substantially outperforms other existing state-of-the-

art predictors.

According to a recent comprehensive review [58], the estab-

lishment of a statistical protein predictor involves the following

five steps: (i) construction of a valid dataset for training and

testing the predictor; (ii) formulation of effective mathemati-

cal expressions for converting proteins’ characteristics to fea-

ture vectors that are relevant to the prediction task; (iii) devel-

opment of classification algorithm for discriminating the fea-

ture vectors; (iv) evaluation of cross-validation tests for mea-

suring the performance of the predictor; and (v) deployment

of a user-friendly, publicly accessible web-server for other re-

searchers to use and validate the prediction method. These

steps are also carried out in a series of recent publications

[59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71], which are

further elaborated below.

2. Legitimacy of Using GO Information

First, some researchers may be skeptical about using GO in-

formation for protein subcellular localization, because the cel-

lular component GO terms have already been annotated with

cellular component categories. The GO comprises three orthog-

onal categories whose terms describe the cellular components,

biological processes, and molecular functions of gene products.

These researchers argue that the only thing that needs to be done

is to create a lookup table using the cellular component GO

terms as the keys and the component categories as the hashed

values. Such a naive solution, however, is undesirable and will

lead to poor performance, as shown and explained in our previ-

ous studies [52, 42].

Second, some researchers also disprove the effectiveness of

GO-based methods by claiming that only cellular component

GO terms are necessary and that GO terms in the other two

categories play no role in determining the subcellular localiza-

tion. This concern has been explicitly addressed by Lu and

Hunter [72], who demonstrated that GO molecular function

terms are also predictive of subcellular localization, particularly

2



for nucleus, extracellular space, membrane, mitochondrion, en-

doplasmic reticulum and Golgi apparatus. The in-depth analy-

sis of the correlation between the molecular function GO terms

and localization in [72] provides an explanation of why GO-

based methods outperform sequence-based methods.

Third, even though GO-based methods can predict novel pro-

teins based on the GO information obtained from their homolo-

gous proteins [52, 42], some researchers still argue that the pre-

diction is equivalent to simply using the annotated localization

of the homologs (i.e., using BLAST with homologous trans-

fer). This claim is clearly proved to be untenable in our pre-

vious study [42], which demonstrates that GO-based methods

remarkably outperform methods that only use BLAST and ho-

mologous transfer (in Table 4 of [42]). Besides, Briesemeister

et al. [73] also suggest that using BLAST alone is not sufficient

for reliable prediction.

Moreover, as suggested by Chou [74], as long as the input of

query proteins for predictors is the sequence information with-

out any GO annotation information and the output is the sub-

cellular localization information, there is no difference between

non-GO based methods and GO-based methods, which should

be regarded as equally legitimate for subcellular localization.

Some other papers [75, 76] also provide strong arguments

supporting the legitimacy of using GO information for subcel-

lular localization. In particular, as suggested by [76], the good

performance of GO-based methods is due to the fact that the

feature vectors in the GO space can better reflect their subcel-

lular locations than those in the Euclidean space or any other

simple geometric space.

3. Creation of Compact Databases

Typically, for a query protein, an efficient predictor should

be able to deal with two possible cases: (1) the accession num-

ber (AC) is known and (2) only the amino acid sequence is

known. For proteins with known ACs, their respective GO

terms are retrieved from a database containing GO terms (i.e.,

GOA database) using the ACs as the searching keys. For a pro-

tein without an AC, its amino acid sequence is presented to

BLAST [77] to find its homologs against a database contain-

ing protein amino acid sequences (i.e., Swiss-Prot), whose ACs

are then used as keys to search against the GO-term database.

While the GOA database allows us to associate the AC of a

protein with a set of GO terms, for some novel proteins, nei-

ther their ACs nor the ACs of their top homologs have any en-

tries in the GOA database; in other words, no GO terms can

be retrieved by their ACs or the ACs of their top homologs.

In such case, some predictors use back-up methods that rely on

other features, such as pseudo-amino-acid composition [15] and

sorting signals [78]; some predictors [42, 52] use a successive-

search strategy to avoid null GO vectors. However, these strate-

gies may lead to poor performance and increase computation

and storage complexity.

To address this problem, we created two small yet efficient

databases: ProSeq and ProSeq-GO. The former is a sequence

database and the latter is a GO-term database. The procedures

GOA 

Database 

 

Swiss-Prot 

Database 

ProSeq 

Database 

 

ProSeq-GO 

Database 

Creating Compact Databases 



Extraction 

of All ACs 

Extraction 

of Valid ACs 

Extraction of Valid 

Swiss-Prot ACs 

GO-Term 

Retrival 

Sequence

Retrival 

ACs 
Sequences 

ACs  

GO terms 

ACs 
ACs 

Figure 1: Procedures of creating the compact databases (ProSeq and ProSeq-

GO). AC: accession numbers; GO: gene ontology; GOA database: gene ontol-

ogy annotation database.

of creating these databases are shown in Fig. 1. The proce-

dure extracts accession numbers from two different sources:

Swiss-Prot and GOA database. Specifically, all of the ACs

in the Swiss-Prot database and the valid ACs in the GOA

database are extracted. Here, an AC is considered valid when

it has at least one GO term annotated to it. Then, the com-

mon ACs that appear in both sets are selected (the
⋂

sym-

bol in Fig. 1). These ACs are regarded as ‘valid Swiss-Prot

ACs’; each of them corresponds to at least one GO term in the

GOA database. Next, using these valid ACs, their correspond-

ing amino-acid sequences can be retrieved from the Swiss-Prot

database, constituting a new sequence database, which we call

‘ProSeq database’; similarly, using these valid ACs, their cor-

responding GO terms can be retrieved from the GOA database,

constituting a new GO-term database, which we call ‘ProSeq-

GO database’. In this work, we created ProSeq and ProSeq-GO

databases from the Swiss-Prot and GOA databases released in

July 2013. The ProSeq-GO database has 513,513 entries while

the GOA database has 25,441,543 entries; the ProSeq database

has 513,513 protein sequences while the Swiss-Prot database

has 540,732 protein sequences.

4. Feature Extraction

The feature extraction of R3P-Loc includes two steps: (1)

retrieval of GO terms; and (2) construction of GO vectors.

4.1. Retrieval of GO Terms

Similar to our earlier predictors [52, 42, 53], R3P-Loc can

deal with two possible cases: (1) the accession number (AC) is

known and (2) only the amino acid sequence is known. In-

stead of using the Swiss-Prot and GOA databases, R3P-Loc

uses ProSeq and ProSeq-GO to retrieve GO terms (See Fig. 3),

which can guarantee that valid GO terms can always be found

for a query protein with known amino-acid sequence.
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4.2. Construction of GO Vectors

Given a dataset, the GO terms of all of its proteins are re-

trieved by using the procedures described in Section 4.1. Simi-

lar to our earlier works [42, 52], the GO frequency information

is used to construct GO feature vectors. Specifically, the GO

vector qi of the i-th protein Qi is defined as:

qi = [bi,1, · · · , bi, j, · · · , bi,T ]T, bi, j =

{

fi, j , GO hit

0 , otherwise
(1)

where fi, j is the number of occurrences of the j-th GO term

(term-frequency) in the i-th protein sequence. Detailed infor-

mation can be found in [52, 42].

5. Random Projection

The key idea of RP arises from the Johnson-Lindenstrauss

lemma [79]:

Lemma 1. (Johnson and Lindenstrauss [79]). Given ǫ > 0,

a set X of N points in RT , and a positive integer d ≥ d0 =

O(log N/ǫ2), there exists f : RT → Rd such that

(1 − ǫ)‖u − v‖2≤ ‖ f (u) − f (v)‖2≤ (1 + ǫ)‖u − v‖2

for all u, v ∈ X. A proof can be found in [80].

The lemma suggests that if points in a high-dimensional space

are projected onto a randomly selected subspace of suitable di-

mension, the distances between the points are approximately

preserved.

Specifically, the original T -dimensional data is projected

onto a d-dimensional (d ≪ T ) subspace, using a d × T random

matrix R whose columns are unit lengths. A vector qi ∈ RT is

projected to:

qRP
i =

1
√

d
Rqi, (2)

where 1/
√

d is a scaling factor, qRP
i

is the projected vector after

RP, and R is a random d × T matrix.

The choice of the random matrix R is one of the key points of

interest. Practically, as long as the elements rh, j of R conforms

to any distributions with zero mean and unit variance, R will

give a mapping that satisfies the Johnson-Lindenstrauss lemma

[81]. For computational simplicity and also the requirement

of sparseness, we adopted a simple distribution proposed by

Achlioptas [82] for the elements rh, j as follows:

rh, j =
√

3 ×



















+1 with probability 1/6,

0 with probability 2/3,

−1 with probability 1/6.

(3)

It is easy to verify that Eq. 3 conforms to a distribution with

zero mean and unit variance [82] and that R is sparse.

As stated in [83], if R and qi satisfy the conditions of the ba-

sis pursuit theorem (i.e., both are sparse in a fixed basis), then

qi can be reconstructed perfectly from a vector that lies in a

lower-dimensional space. In fact, the GO vectors and our pro-

jection matrix R satisfy these conditions. As shown in Fig. 2,
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Figure 2: Histogram illustrating the distribution of the number of non-zero en-

tries (spareness) in the GO vectors with dimensionality 1541. The histogram

is plotted up to 45 non-zero entries in the GO vectors because among the 978

proteins in the dataset, none of their GO vectors have more than 45 non-zero

entries.

the number of non-zero entries in the GO vectors tends to be

small (i.e. sparse) when compared to the dimension of the

GO vectors. Among the 978 proteins in the plant dataset (See

Fig. 4), a majority of them only have 9 non-zero entries in the

1541-dimensional vectors, and the largest number of non-zero

entries is only 45. These statistics suggest that the GO vectors

qi in Eq. 2 are very sparse.

6. Ensemble Multi-label Ridge Regression Classifier

6.1. Single-Label Ridge Regression

Ridge regression (RR) is a simple yet effective linear re-

gression model, which has been applied to many domains

[84, 85, 86]. Here we apply RR to classification. Suppose for

a two-class single-label problem, we are given a set of training

data {xi, yi}Ni=1
, where xi ∈ RT+1 and yi ∈ {0, 1}. In our case,

xi =

[

1

qRP
i

]

, where qRP
i

is defined in Eq. 2. Generally speak-

ing, an RR model is to impose an L2-style regularization to or-

dinary least squares (OLS), namely minimizing the empirical

loss l(β) as:

l(β) =

N
∑

i=1

(yi − f (xi))
2 =

N
∑

i=1

(yi −
T+1
∑

j=1

β jxi, j)
2, (4)

subject to
T+1
∑

j=1

β2
j ≤ s,

where s > 0, xi, j is the j-th element of xi and β =

[β1, . . . , β j, . . . , βT+1]T is the ridge vector to be optimized. Eq. 4
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Figure 3: Flowchart of R3P-Loc. Qi: the i-th query protein; S: protein sequence; AC: protein accession number; ProSeq/ProSeq-GO: the proposed compact sequence

and GO databases, respectively; RP: random projection; RR: ridge regression scoring (Eq. 8); Ensemble R3P: ensemble ridge regression and random projection; w1,

wl and wL: the 1-st, l-th and L-th weights in Eq. 9; sen
m (Qi): the ensemble score in Eq. 9; SCLs: subcellular location(s).

is equivalent to minimize the following equation:

l(β) =

N
∑

i=1

(yi − βTxi)
2 + λβTβ, (5)

where λ > 0 is a penalized parameter to control the degree of

regularization. Then after optimization, β is given as:

β = (XTX + λI)−1Xy, (6)

where X = [x1, . . . , xi, . . . , xN]T,y = [y1, . . . , yi, . . . , yN]T, and I

is a (T + 1) × (T + 1) identity matrix.

6.2. Multi-label Ridge Regression

In an M-class multi-label problem, the training data set is

written as {xi,Yi}Ni=1
, where xi ∈ RT+1 and Yi ⊂ {1, 2, . . . ,M} is

a set which may contain one or more labels. M independent bi-

nary one-vs-rest RRs are trained, one for each class. The labels

{Yi}Ni=1
are converted to transformed labels [52] yi,m ∈ {−1, 1},

where i = 1, . . . ,N, and m = 1, . . . ,M. Then, Eq. 7 is extended

to:

βm = (XTX + λI)−1Xym, (7)

where m = 1, . . . ,M, ym are vectors whose elements are

{yi,m}Ni=1
.

The projected GO vectors obtained from Eq. 2 are used for

training multi-label one-vs-rest ridge regression (RR) classi-

fiers. Specifically, for an M-class problem (here M is the num-

ber of subcellular locations), M independent binary RRs are

trained, one for each class. Then, given the i-th query protein

Qi, the score of the m-th RR is:

sm(Qi) = βm
Txi, where xi =

[

1

qRP
i

]

. (8)

Since R is a random matrix, the scores in Eq. 8 for each ap-

plication of RP will be different. To construct a robust classifier,

we fused the scores for several applications of RP and obtained

an ensemble classifier, where the ensemble score of the m-th

RR for the i-th query protein is given as follows:

sen
m (Qi) =

L
∑

l=1

wl · s(l)
m (Qi), (9)

where
∑L

l=1 wl = 1, s
(l)
m (Qi) represents the score of the m-th RR

for the i-th protein via the l-th application of RP, L is the total

number of applications of RP, and {wl}Ll=1
are the weights. For

simplicity, here we set wl = 1/L, l = 1, . . . , L. We refer L

as ‘ensemble size’ in the sequel. Unless stated otherwise, the

ensemble size was set to 10 in our experiments, i.e., L = 10.

Note that instead of mapping the original data into an Ld-dim

vector, the ensemble RP projects it into L d-dim vectors.

To predict the subcellular locations of datasets containing

both single-label and multi-label proteins, a decision scheme

for multi-label RR classifiers should be used. Unlike the single-

label problem where each protein has one predicted label only,

a multi-label protein should have more than one predicted la-

bels. In this paper, we used the decision scheme described in

mGOASVM [52]. In this scheme, the predicted subcellular lo-

cation(s) of the i-th query protein are given by:
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Golgi apparatus
21(2%)

Mitochondrion
150(14%)

Extracellular
22(2%)

Endoplasmic reticulum
42(4%)

Nucleus
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Peroxisome
21(2%)Plastid

39(4%)
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56(5%)
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32(3%)
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286(27%)

Figure 4: Breakdown of the plant dataset. The number of proteins shown in

each subcellular location represents the number of ‘locative proteins’ [57, 52].

Here, 978 actual proteins have 1055 locative proteins. The plant proteins are

distributed in 12 subcellular locations, including cell membrane, cell wall,

chloroplast, cytoplasm, endoplasmic reticulum, extracellular, Golgi apparatus,

mitochondrion, nucleus, peroxisome, plastid and vacuole.

M∗(Qi) =



















⋃M
m=1 {m : sen

m (Qi) > 0}, where ∃ sen
m (Qi) > 0 ;

arg maxM
m=1

sen
m (Qi), otherwise.

(10)

For ease of comparison, we refer to the proposed ensem-

ble classifier with this multi-label decision scheme as R3P-Loc.

The flowchart of R3P-Loc is shown in Fig. 3.

Similar to other predictors [64, 65, 67, 68, 87, 69, 71, 88, 60],

for users’ convenience, a step-by-step guide for the R3P-Loc

web-server is provided, which is included in the supplementary

materials of the R3P-Loc web-server available online.

7. Experiments

7.1. Datasets

In this paper, a plant dataset [50] and a eukaryotic dataset

[49] were used to evaluate the performance of R3P-Loc. The

plant and the eukaryotic datasets were both created from Swiss-

Prot 55.3. The plant dataset contains 978 plant proteins dis-

tributed in 12 locations. Of the 978 plant proteins, 904 belong

to one subcellular location, 71 to two locations, 3 to three loca-

tions and none to four or more locations. The eukaryotic dataset

contains 7766 eukaryotic proteins distributed in 22 locations.

Of the 7766 eukaryotic proteins, 6687 belong to one subcellu-

lar location, 1029 to two locations, 48 to three locations, 2 to

four locations and none to five or more locations. The sequence

identity of both datasets was cut off at 25%. The breakdown of

these two datasets are listed in Figs. 4 and 5. As can be seen,

both datasets are multi-class distributed and imbalanced.

7.2. Performance Metrics

Compared to traditional single-label classification, multi-

label classification requires more complicated performance

metrics to better reflect the multi-label capabilities of classi-

fiers. These measures include Accuracy, Precision, Recall, F1-

score (F1) and Hamming Loss (HL). Specifically, denote L(Qi)

LYS
57(1%)

MEL
47(1%)

HYD
10(0%)

MIT
610(7%)

MIC
13(0%)

GOL
254(3%)

EXT
1048(12%)

NUC
2320(26%)

END
41(0%)ER

457(5%)
CYK

139(2%)

PER
110(1%)

SPI
68(1%)

SYN
47(1%)

ACR
14(0%)

VAC
170(2%)

CYT
2186(25%)

CM
697(8%)
CW

49(1%)

CHL
385(4%)

CYA
79(1%)

CEN
96(1%)

Figure 5: Breakdown of the eukaryotic dataset. The number of proteins

shown in each subcellular location represents the number of ‘locative pro-

teins’ [57, 52]. Here, 7766 actual proteins have 8897 locative proteins. The

eukaryotic proteins are distributed in 22 subcellular locations, including acro-

some (ACR), cell membrane (CM), cell wall (CW), centrosome (CEN), chloro-

plast (CHL), cyanelle (CYA), cytoplasm (CYT), cytoskeleton (CYK), endo-

plasmic reticulum (ER), endosome (END), extracellular (EXT), Golgi appa-

ratus (GOL), hydrogenosome (HYD), lysosome (LYS), melanosome (MEL),

microsome (MIC), mitochondrion (MIT), nucleus (NUC), peroxisome (PER),

spindle pole body (SPI), synapse (SYN) and vacuole (VAC).

andM(Qi) as the true label set and the predicted label set for

the i-th protein Qi (i = 1, . . . ,N), respectively.3 Then the five

measurements are defined as follows:

Accuracy =
1

N

N
∑

i=1

(

|M(Qi) ∩ L(Qi)|
|M(Qi) ∪ L(Qi)|

)

(11)

Precision =
1

N

N
∑

i=1

(

|M(Qi) ∩ L(Qi)|
|M(Qi)|

)

(12)

Recall =
1

N

N
∑

i=1

(

|M(Qi) ∩ L(Qi)|
|L(Qi)|

)

(13)

F1 =
1

N

N
∑

i=1

(

2|M(Qi) ∩ L(Qi)|
|M(Qi)|+|L(Qi)|

)

(14)

HL =
1

N

N
∑

i=1

(

|M(Qi) ∪ L(Qi)|−|M(Qi) ∩ L(Qi)|
M

)

(15)

where |·| means counting the number of elements in the set

therein and ∩ represents the intersection of sets.

Accuracy, Precision, Recall and F1 indicate the classifica-

tion performance. The higher the measures, the better the

prediction performance. Among them, Accuracy is the most

commonly used criteria. F1-score is the harmonic mean of

Precision and Recall, which allows us to compare the perfor-

mance of classification systems by taking the trade-off between

3Here, N = 978 for the plant dataset and N = 7766 for the eukaryotic

dataset.
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Precision and Recall into account. The Hamming Loss (HL)

[89, 90] is different from other metrics. As can be seen from

Eq. 15, when all of the proteins are correctly predicted, i.e.,

|M(Qi)∪L(Qi)|= |M(Qi)∩L(Qi)| (i = 1, . . . ,N), then HL = 0;

whereas, other metrics will be equal to 1. On the other hand,

when the predictions of all proteins are completely wrong, i.e.,

|M(Qi) ∪ L(Qi)|= M and |M(Qi) ∩ L(Qi)|= 0, then HL = 1;

whereas, other metrics will be equal to 0. Therefore, the lower

the HL, the better the prediction performance.

Two additional measurements [57, 52] are often used in

multi-label subcellular localization prediction. They are overall

locative accuracy (OLA) and overall actual accuracy (OAA).

The former is given by:

OLA =
1

∑N
i=1|L(Qi)|

N
∑

i=1

|M(Qi) ∩ L(Qi)|, (16)

and the overall actual accuracy (OLA) is:

OAA =
1

N

N
∑

i=1

∆[M(Qi),L(Qi)] (17)

where

∆[M(Qi),L(Qi)] =

{

1 , ifM(Qi) = L(Qi)

0 , otherwise.
(18)

According to Eq. 16, a locative protein is considered to be

correctly predicted if any of the predicted labels matches any

labels in the true label set. On the other hand, Eq. 17 suggests

that an actual protein is considered to be correctly predicted

only if all of the predicted labels match those in the true label

set exactly. For example, for a protein coexist in, say, three

subcellular locations, if only two of the three are correctly pre-

dicted, or the predicted result contains a location not belonging

to the three, the prediction is considered to be incorrect. In

other words, when and only when all the subcellular locations

of a query protein are exactly predicted without any overpre-

diction or underprediction, can the prediction be considered as

correct. Therefore, OAA is a more stringent measure as com-

pared to OLA. OAA is also more objective than OLA. This is

because locative accuracy is liable to give biased performance

measure when the predictor tends to over-predict, i.e., giving

large |M(Qi)| for manyQi. In the extreme case, if every protein

is predicted to have all of the M subcellular locations, accord-

ing to Eq. 16, the OLA is 100%. But obviously, the predictions

are wrong and meaningless. On the contrary, OAA is 0% in this

extreme case, which definitely reflects the real performance.

Among all the metrics mentioned above, OAA is the most

stringent and objective. This is because if some (but not all) of

the subcellular locations of a query protein are correctly pre-

dict, the numerators of the other 4 measures (Eqs. 11 to 16) are

non-zero, whereas the numerator of OAA in Eq. 17 is 0 (thus

contribute nothing to the frequency count).

In statistical prediction, there are three methods that are of-

ten used for testing the generalization capabilities of predictors:

independent test, subsampling test (or K-fold cross-validation)

and jackknife test [91]. The jackknife test is considered to be

Table 1: Performance of R3P-Loc on the proposed compact databases based

on the jackknife test using the eukaryotic dataset. SCL: subcellular location;

ER: endoplasmic reticulum; SPI: spindle pole body; OAA: overall actual accu-

racy; OLA: overall locative accuracy; F1: F1-score; HL: Hamming loss; Mem-

ory Requirement: memory required for loading the GO-term database; No. of

Database Entries: number of entries in the corresponding GO-term database;

No. of Distinct GO Terms: Number of distinct GO terms found by using the

corresponding GO-term database.

Label SCL
Jackknife Test Locative Accuracy (LA)

Swiss-Prot + GOA ProSeq + ProSeq-GO

1 Acrosome 2/14 = 0.143 2/14 = 0.143

2 Cell membrane 523/697 = 0.750 525/697 = 0.753

3 Cell wall 46/49 = 0.939 45/49 = 0.918

4 Centrosome 65/96 = 0.677 65/96 = 0.677

5 Chloroplast 375/385 = 0.974 375/385 = 0.974

6 Cyanelle 79/79 = 1.000 79/79 = 1.000

7 Cytoplasm 1964/2186 = 0.898 1960/2186 = 0.897

8 Cytoskeleton 50/139 = 0.360 53/139 = 0.381

9 ER 424/457 = 0.928 426/457 = 0.932

10 Endosome 12/41 = 0.293 12/41 = 0.293

11 Extracellular 968/1048 = 0.924 969/1048 = 0.925

12 Golgi apparatus 209/254 = 0.823 208/254 = 0.819

13 Hydrogenosome 10/10 = 1.000 10/10 = 1.000

14 Lysosome 47/57 = 0.825 47/57 = 0.825

15 Melanosome 9/47 = 0.192 10/47 = 0.213

16 Microsome 1/13 = 0.077 1/13 = 0.077

17 Mitochondrion 575/610 = 0.943 576/610 = 0.944

18 Nucleus 2169/2320 = 0.935 2157/2320 = 0.930

19 Peroxisome 103/110 = 0.936 104/110 = 0.946

20 SPI 47/68 = 0.691 42/68 = 0.618

21 Synapse 26/47 = 0.553 26/47 = 0.553

22 Vacuole 157/170 = 0.924 156/170 = 0.918

OAA 6191/7766 = 0.797 6201/7766 = 0.799

OLA 7861/8897 = 0.884 7848/8897 = 0.882

Accuracy 0.859 0.859

Precision 0.882 0.882

Recall 0.899 0.898

F1 0.880 0.880

HL 0.013 0.013

Memory Requirement 22.5G 0.6G

No. of Database Entries 25.4 million 0.5 million

No. of Distinct GO Terms 10808 10775

the most rigorous and bias-free method that can always yield a

unique outcome for the predictors as elaborated by Eqs. 28–

30 in [58]. Accordingly, the jackknife test has been widely

used by researchers to examine the power of various predictors

[92, 93, 94, 95, 96].

8. Results and Discussions

8.1. Performance on the Compact Databases

Table 1 compares the subcellular localization performance

of R3P-Loc under two different configurations. The column

“Swiss-Prot + GOA” shows the performance when Swiss-prot

and the GOA database were used as the data sources for BLAST

search and GO terms retrieval in Fig. 3, whereas the column

“ProSeq + ProSeq-GO” shows the performance when the pro-

posed compact databases were used instead. As can be seen,

the performances of the two configurations are almost the same,
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which clearly suggests that the compact databases can be used

in place of the large Swiss-Prot and GOA database.

The bottom panel of Table 1 compares the implementation

requirements and the number of distinct GO terms (dimension

of GOA vectors) of R3P-Loc under the two configurations. In

order to retrieve the GO terms in constant time (i.e., complexity

O(1)) regardless of the database size, the AC to GO-terms map-

ping was implemented as a hash table in memory. This instan-

taneous retrieval, however, comes with a price: The hash table

consumes considerable amount of memory when the database

size increases. Specifically, to load the whole GOA database

released in March 2011, only 15 gigabytes of memory is re-

quired; the memory consumption rapidly increases to 22.5 gi-

gabytes if the GOA database released in July 2013 is loaded.

The main reason is that this release of GOA database contains

25 million entries. However, as shown in Table 1, the num-

ber of entries reduces to half a million if ProSeq-GO is used

instead, which amounts to a reduction of 39 times in memory

consumption. The small number of AC entries in ProSeq-GO

results in a small memory footprint. Despite the small number

of entries, the number of distinct GO terms in this compact GO

database is almost the same as that in the big GOA database.

This explains why using ProSeq and ProSeq-GO can achieve

almost the same performance as using Swiss-Prot and the orig-

inal GOA database.

8.2. Effect of Dimensions and Ensemble Size

Fig. 6(a) shows the performance of R3P-Loc at different pro-

jected dimensions and ensemble sizes of random projection

on the plant dataset. The dimensionality of the original fea-

ture vectors is 1541. The yellow dotted plane represents the

performance using only multi-label ridge regression classifiers,

namely the performance without random projection. For ease

of comparison, we refer it to as RR-Loc. The mesh with blue

(red) surfaces represent the projected dimensions and ensem-

ble sizes at which the R3P-Loc performs better (poorer) than

RR-Loc. As can be seen, there is no red region across all di-

mensions (200 to 1200) and all ensemble sizes (2 to 10), which

means that the ensemble R3P-Loc always performs better than

RR-Loc. The results suggest that using ensemble random pro-

jection can always boost the performance of RR-Loc. Simi-

lar conclusions can be drawn from Fig. 6(b), which shows the

performance of R3P-Loc at different projected dimensions and

ensemble sizes of random projection on the eukaryotic dataset.

The difference is that the original dimension of the feature vec-

tors is 10,775, which means that R3P-Loc performs better than

RR-Loc even when the feature dimension is reduced by almost

10∼100 times.

Fig. 7(a) compares the performance of R3P-Loc with

mGOASVM [52] at different projected dimensions and ensem-

ble sizes of random projection on the plant dataset. The green

dotted plane represents the accuracy of mGOASVM, which is

a constant for all projected dimensions and ensemble size. The

mesh with blue (red) surfaces represent the projected dimen-

sions and ensemble sizes at which the ensemble R3P-Loc per-

forms better (poorer) than mGOASVM. As can be seen, R3P-

Loc performs better than mGOASVM throughout all dimen-

sions (200 to 1400) when the ensemble size is more than 4. On

the other hand, when the ensemble size is less than 2, the per-

formance of R3P-Loc is worse than mGOASVM for almost all

the dimensions. These results suggest that a large enough en-

semble size is important for boosting the performance of R3P-

Loc. Fig. 7(b) compares the performance of R3P-Loc with

mGOASVM on the eukaryotic dataset. As can be seen, R3P-

Loc performs better than mGOASVM when the dimension is

larger than 300 and the ensemble size is no less than 3 or the

dimension is larger than 500 and the ensemble size is no less

than 2. These experimental results suggest that a large enough

projected dimension is also necessary for improving the perfor-

mance of R3P-Loc.

8.3. Performance of Ensemble Random Projection

Fig. 8(a) shows the performance statistics of R3P-Loc based

on the jackknife test at different feature dimensions, when the

ensemble size (L in Eq. 9) is fixed to 1, which we refer to as

1-R3P-Loc. We created ten 1-R3P-Loc classifiers, each with

a different RP matrix. The result shows that even the high-

est accuracy of the ten 1-R3P-Loc is lower than that of R3P-

Loc for all dimensions (200 to 1400). This suggests that the

ensemble random projection can significantly boost the perfor-

mance of R3P-Loc. Similar conclusions can also be drawn from

Fig. 8(b), which shows the performance statistics of R3P-Loc

on the eukaryotic dataset.

8.4. Comparing with State-of-the-Art Predictors

Table 2 and Table 3 compare the performance of R3P-Loc

against several state-of-the-art multi-label predictors on the

plant and eukaryotic dataset. All of the predictors use the in-

formation of GO terms as features. From the classification

perspective, both Plant-mPLoc [48] and Euk-mPLoc 2.0 [49]

use an ensemble OET-KNN (optimized evidence-theoretic K-

nearest neighbors) classifier; both iLoc-Plant [50] and iLoc-Euk

[51] use a multi-label KNN classifier; mGOASVM [52] uses a

multi-label SVM classifier;4 and the proposed R3P-Loc uses

ensemble RP and ridge regression classifiers.

As shown in Table 2, R3P-Loc performs significantly better

than Plant-mPLoc and iLoc-Plant. Both the OLA and OAA of

R3P-Loc are more than 20% (absolute) higher than iLoc-Plant.

When comparing with mGOASVM, the OAA of R3P-Loc is

more than 2% (absolute) higher than that of mGOASVM, al-

though a bit less than mGOASVM on the OLA and Recall. In

terms of Accuracy, Precision, F1 and HL, R3P-Loc performs

better than mGOASVM. The results suggest that the proposed

R3P-Loc performs better than the state-of-the-art classifiers.

The individual locative accuracies of R3P-Loc are remarkably

higher than that of Plant-mPLoc, iLoc-Plant, and are compara-

ble to mGOASVM.

Similar conclusions can be drawn from Table 3, which com-

pares R3P-Loc with state-of-the-art predictors on the eukary-

otic dataset. R3P-Loc performs significantly better than Euk-

mPLoc 2.0 and iLoc-Euk in terms of all the measures. And

4We performed mGOASVM on the eukaryotic dataset.
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Figure 6: Performance of R3P-Loc at different projected dimensions and ensemble sizes of random projection on (a) the plant dataset and (b) the eukaryotic dataset,

respectively. The yellow dotted plane represents the performance using only multi-label ridge regression classifiers (short for RR-Loc), namely the performance

without random projection. The mesh with blue surfaces represent the projected dimensions and ensemble sizes at which the R3P-Loc performs better than RR-Loc.

The original dimensions of the feature vectors for the plant and eukaryotic datasets are 1541 and 10775, respectively. Ensemble Size: Number of times of random

projection for ensemble.
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Figure 7: Performance of R3P-Loc at different projected dimensions and ensemble sizes of random projection on (a) the plant dataset and (b) the eukaryotic dataset,

respectively. The green dotted plane represents the accuracy of mGOASVM [52], which is a constant for all projected dimensions and ensemble size. The mesh with

blue (red) surfaces represent the projected dimensions and ensemble sizes at which the ensemble R3P-Loc performs better (poorer) than mGOASVM. The original

dimensions of the feature vectors for the plant and eukaryotic datasets are 1541 and 10775, respectively. Ensemble Size: Number of times of random projection for

ensemble.

R3P-Loc performs better than mGOASVM in terms of OAA

Accuracy, Precision, F1 and HL, while a bit worse on OLA and

Recall. This is probably because the ensemble random projec-

tion makes R3P-Loc perform more stringently to control over-

predictions than mGOASVM.

According to Eqs. 43–48 and Fig. 4 in a comprehensive

review [34], in a system containing both single- and multi-

location proteins, the false positives (FP) or over-predictions

and the false negatives (FN) or under-predictions are defined

as:

FP =

N
∑

i=1

(|M(Qi)|−|M(Qi) ∩ L(Qi)|) (19)

FN =

N
∑

i=1

(|L(Qi)|−|M(Qi) ∩ L(Qi)|) (20)

Table 2 and Table 3 compare the performance of R3P-Loc

and mGOASVM in terms of these two metrics. As can be seen,

for both datasets, the FP of R3P-Loc is much smaller than that

of mGOASVM; on the contrary, the FN of R3P-Loc is larger
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Figure 8: Performance of R3P-Loc at different feature dimensions on (a) the plant dataset and (b) the eukaryotic dataset, respectively. The original dimensions of

the feature vectors for the plant and eukaryotic datasets are 1541 and 10775, respectively. 1-R3P-Loc: RP-Loc with an ensemble size of 1.

Table 2: Comparing R3P-Loc with state-of-the-art multi-label predictors using the plant dataset. “–” means the corresponding references do not provide the related

metrics.

Label Subcellular Location
Jackknife Test Locative Accuracy (LA)

Plant-mPLoc [48] iLoc-Plant [50] mGOASVM [52] R3P-Loc

1 Cell membrane 24/56 = 0.429 39/56 = 0.696 53/56 = 0.946 5/56 = 0.893

2 Cell wall 8/32 = 0.250 19/32 = 0.594 27/32 = 0.844 28/32 = 0.875

3 Chloroplast 248/286 = 0.867 252/286 = 0.881 272/286 = 0.951 279/286 = 0.976

4 Cytoplasm 72/182 = 0.396 114/182 = 0.626 174/182 = 0.956 172/182 = 0.945

5 Endoplasmic reticulum 17/42 = 0.405 21/42 = 0.500 38/42 = 0.905 36/42 = 0.857

6 Extracellular 3/22 = 0.136 2/22 = 0.091 22/22 = 1.000 17/22 = 0.773

7 Golgi apparatus 6/21 = 0.286 16/21 = 0.762 19/21 = 0.905 19/21 = 0.905

8 Mitochondrion 114/150 = 0.760 112/150 = 0.747 150/150 = 1.000 142/150 = 0.947

9 Nucleus 136/152 = 0.895 140/152 = 0.921 151/152 = 0.993 147/152 = 0.967

10 Peroxisome 14/21 = 0.667 6/21 = 0.286 21/21 = 1.000 21/21 = 1.000

11 Plastid 4/39 = 0.103 7/39 = 0.179 39/39 = 1.000 36/39 = 0.923

12 Vacuole 26/52 = 0.500 28/52 = 0.538 49/52 = 0.942 48/52 = 0.923

Overall Actual Accuracy (OAA) – 666/978 = 0.681 855/978 = 0.874 877/978 = 0.897

Overall Locative Accuracy (OLA) 672/1055 = 0.637 756/1055 = 0.717 1015/1055 = 0.962 995/1055 = 0.943

Accuracy – – 0.926 0.934

Precision – – 0.933 0.950

Recall – – 0.968 0.956

F1 – – 0.942 0.947

HL – – 0.013 0.011

False Positives (FP) – – 113 71

False Negatives (FN) – – 40 60

than that of the latter. The results suggest that R3P-Loc tends

to make more prudent predictions than mGOASVM, leading to

fewer false positives but more false negatives. When combining

with OAA, we can see that this prudent strategy enables R3P-

Loc to improve the performance in terms of OAA.

9. Conclusions

This paper proposes a compact multi-label predictor, namely

R3P-Loc, which is based on multi-label ridge regression and

random projection to predict subcellular localization of both

single- and multi-location proteins. The ‘compact’ properties

are demonstrated in the following two perspectives: (1) two

compact databases, namely ProSeq and ProSeq-GO databases,

are extracted from Swiss-Prot and GOA databases, respectively

for feature extraction; (2) the dimensions of feature vectors

are reduced to a compact level by an ensemble random projec-

tion method. Specifically, given a query protein, a feature vec-

tor is constructed by exploiting the information in the ProSeq-

GO database. The GO-vector is projected onto much lower-

dimensional space by random matrices whose elements con-

form to Achlioptas distribution, which are presented to multi-
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Table 3: Comparing R3P-Loc with state-of-the-art multi-label predictors using the eukaryotic dataset. “–” means the corresponding references do not provide the

related metrics.

Label Subcellular Location
Jackknife Test Locative Accuracy (LA)

Euk-mPLoc 2.0 [49] iLoc-Euk [51] mGOASVM [52] R3P-Loc

1 Acrosome 1/14 = 0.071 1/14 = 0.071 12/14 = 0.857 2/14 = 0.143

2 Cell membrane 452/697 = 0.649 561/697 = 0.805 643/697 = 0.923 525/697 = 0.753

3 Cell wall 6/49 = 0.122 8/49 = 0.163 46/49 = 0.939 45/49 = 0.918

4 Centrosome 22/96 = 0.229 67/96 = 0.698 87/96 = 0.906 65/96 = 0.677

5 Chloroplast 318/385 = 0.826 338/385 = 0.878 375/385 = 0.974 375/385 = 0.974

6 Cyanelle 47/79 = 0.595 51/79 = 0.646 79/79 = 1.000 79/79 = 1.000

7 Cytoplasm 1418/2186 = 0.649 1677/2186 = 0.767 2020/2186 = 0.924 1960/2186 = 0.897

8 Cytoskeleton 44/139 = 0.317 38/139 = 0.273 100/139 = 0.719 53/139 = 0.381

9 Endoplasmic reticulum 348/457 = 0.762 407/457 = 0.891 441/457 = 0.965 426/457 = 0.932

10 Endosome 2/41 = 0.049 3/41 = 0.073 28/41 = 0.683 12/41 = 0.293

11 Extracellular 858/1048 = 0.819 948/1048 = 0.905 1016/1048 = 0.970 969/1048 = 0.925

12 Golgi apparatus 56/254 = 0.221 161/254 = 0.634 231/254 = 0.909 208/254 = 0.819

13 Hydrogenosome 2/10 = 0.200 0/10 = 0.000 10/10 = 1.000 10/10 = 1.000

14 Lysosome 26/57 = 0.456 18/57 = 0.316 52/57 = 0.912 47/57 = 0.825

15 Melanosome 0/47 = 0.000 1/47 = 0.021 44/47 = 0.936 10/47 = 0.213

16 Microsome 1/13 = 0.077 0/13 = 0.000 7/13 = 0.539 1/13 = 0.077

17 Mitochondrion 427/610 = 0.700 470/610 = 0.771 594/610 = 0.974 576/610 = 0.944

18 Nucleus 1501/2320 = 0.647 2040/2320 = 0.879 2194/2320 = 0.946 2157/2320 = 0.930

19 Peroxisome 56/110 = 0.509 60/110 = 0.546 108/110 = 0.982 104/110 = 0.946

20 Spindle pole body 23/68 = 0.338 45/68 = 0.662 65/68 = 0.956 42/68 = 0.618

21 Synapse 0/47 = 0.000 18/47 = 0.383 40/47 = 0.851 26/47 = 0.553

22 Vacuole 101/170 = 0.594 122/170 = 0.718 166/170 = 0.977 156/170 = 0.918

Overall Actual Accuracy (OAA) – 5535/7766 = 0.713 6097/7766 = 0.785 6201/7766 = 0.799

Overall Locative Accuracy (OLA) 5709/8897 = 0.642 7034/8897 = 0.791 8358/8897 = 0.939 7848/8897 = 0.882

Accuracy – – 0.849 0.859

Precision – – 0.878 0.882

Recall – – 0.946 0.898

F1 – – 0.878 0.880

HL – – 0.014 0.013

False Positives (FP) – – 1702 1288

False Negatives (FN) – – 539 1049

label ridge regression classifiers for classification.

Comparing with existing multi-label predictors, R3P-Loc has

the following advantages: (1) it extracts GO feature vectors

from two compact databases (ProSeq and ProSeq-GO) which

are more efficient and easy-to-use than SwissProt and GOA

databases, respectively; (2) it reduces the dimensions of feature

vectors as much as seven folds while at the same time impres-

sively improves the classification performance.

Experimental results on two recent benchmark datasets

demonstrate that R3P-Loc performs significantly better than

existing state-of-the-art multi-label predictors specializing on

eukaryotic or plant proteins. It was also found that using

the created ProSeq and ProSeq-GO databases achieves equiv-

alent performance as using Swiss-Prot and GOA databases,

but with only 3% of the memory consumption. For read-

ers’ convenience, the R3P-Loc server is available online at

http://bioinfo.eie.polyu.edu.hk/R3PLocServer/.
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