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Abstract: The field of topological insulators (TI) was sparked by the prediction of the quantum 

spin Hall effect (QSHE) in time reversal invariant systems, such as spin-orbit coupled monolayer 

graphene. Ever since, a variety of monolayer crystals have been proposed as two-dimensional 

(2D) TIs exhibiting the QSHE, possibly even at high temperatures. However, conclusive 

evidence for a monolayer QSHE is still lacking, and systems based on semiconductor 

heterostructures operate at temperatures close to liquid helium. Here we report the observation of 

the QSHE in monolayer WTe2 at temperatures up to 100 Kelvin. The monolayer exhibits the 

hallmark quantized transport conductance, ~ e2/h per edge, in the short edge limit. Moreover, a 

magnetic field suppresses the conductance, and the observed Zeeman-type gap indicates the 

existence of a Kramers degenerate point, demonstrating the importance of time reversal 

symmetry for protection from elastic backscattering. Our results establish the high-temperature 

QSHE and open a new realm for the discovery of topological phases based on 2D crystals. 

 

Text – A time-reversal (TR) invariant topological insulator (TI) in two dimensions (2D), also 

known as a quantum spin Hall (QSH) insulator, can be identified by its unique helical edge 

modes (1–4). So far, evidence for the helical edge mode in 2D TIs, particularly quantized 

transport, has been limited to very low temperatures (i.e. near liquid helium temperature) in 

HgTe and InAs/GaSb quantum wells (5, 6). In the search for high temperature TIs, substantial 

efforts have focused on a variety of atomically thin materials (7–14), which have the additional 

promise of advancing the field of topological physics using the tools developed for 2D crystals. 

However, experimental observation of the quantum spin Hall effect (QSHE) in monolayer 

systems is challenging, often due to structural or chemical instabilities (9, 15–17). Indications of 

a high temperature QSH phase in bulk-attached bismuth bilayers have been reported (7, 18, 19), 

but a conclusive demonstration is still lacking. 

 

Among the proposals for atomically thin TIs are monolayer transition metal dichalcogenides 

(TMDs), materials that are either 2D semiconductors or semimetals depending on their structural 

phase (9). Calculations suggest that an inverted band gap can develop in 1T’ TMD monolayers, 

resulting in a nontrivial Z2 topological phase (9, 20). Recent experiments have shown promising 

results (12–14), including that 1T’ monolayer WTe2 exhibits a ground state with an insulating 
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interior and conducting edges associated with a zero-bias anomaly (12), distinct from its 

multilayer counterparts (12, 21). However, the QSHE, the hallmark of a 2D TI, has yet to be 

observed, and hence its topological nature is far from conclusive. Here we observe the QSHE in 

WTe2 monolayers and identify this 2D material as an atomically layered TI with conductance ~ 

e2/h per edge at high-temperatures. 

 

QSH transport through a 2D TR-invariant TI should exhibit the following characteristics: (a) 

helical edge modes, characterized by an edge conductance that is approximately the quantum 

value of e2/h per edge (5); (b) saturation to the conductance quantum in the short edge limit (22); 

and (c) suppression of conductance quantization upon application of a magnetic field, due to the 

loss of protection by TR symmetry (5, 23, 24). Signatures of a Zeeman gap should be seen if the 

Kramer’s degeneracy (Dirac point) is located inside the bulk bandgap. To date, simultaneous 

observation of the above criteria in existing 2D TI systems is still lacking (5, 6, 22, 23, 25), 

prompting the search for new QSH materials. 

  

To check the above criteria in monolayer 1T’-WTe2, we fabricated devices with the structure 

depicted in Fig. 1A (see also Fig. S1, S2 and Materials & Methods). The goal of the design has 

three objectives: (1) ensure an atomically flat, chemically protected channel (no flake bending or 

exposure) by fully encapsulating the flake with hexagonal boron nitride (15, 21); (2) minimize 

the effect of contact resistance; and (3) enable a length-dependence study on a single device. Our 

devices generally consist of eight contact electrodes, a top graphite gate, and a series of in-

channel local bottom gates with width Lc varying from 50 nm to 900 nm. The monolayer flakes 

are carefully selected to have a long strip shape, typically a few μm wide and about ten μm long 

(Table S1). Fig. 1B shows a typical measurement of the four-probe conductance (in Device 1) 

across all the local gates (~ 8 μm long) as a function of top gate voltage, Vtg. A finite 

conductance plateau develops around Vtg = 0 V. This characteristic feature for monolayer WTe2 

is due to conduction along the edges (12). The measured value is highly sensitive to (typically 

poor) contact properties (12), which prevents observation of the intrinsic edge conductance. We 

overcome this obstacle in our devices through selective doping of the flake using a combination 

of global top and local bottom gates. A short transport channel with length Lc can be selectively 

defined by a local gate voltage Vc, while the rest of the flake is highly doped by Vtg to secure 

good contact to the electrodes (see Fig. S3 for dI/dV characteristics). Figure 1C maps out the 

resistance R in the same device as a function of Vtg and Vc (for a local gate with Lc =100 nm). 

The step structure indicates a transition from a bulk-metallic state (doped) to a bulk-insulating 

state (undoped) within the locally gated region. We define the offset resistance, ΔR = R(Vc) – 

R(Vc = -1V), as the resistance change from the value in the highly doped limit (Vc = -1V in this 

case). Figure 1D shows a ΔR trace (red curve) extracted from Fig 1C (dashed white line in Fig. 

1C), where Vtg is fixed at 3.5 V. The average value of ΔR at the plateau, which measures the step 

height, saturates when Vtg is high enough (Fig. 1D inset and Fig. S4-7).  

 

This saturated value, ΔRs, thus measures the resistance of the undoped channel, which can only 

originate from the edges, because the bulk is insulating (12, 14, 13). Notably, ΔRs is 

approximately equal to h/2e2 for both this 100 nm channel and the 60 nm and 70 nm channels on 

Device 2 (Fig. 1D). Fluctuations in the range of few kΩ, which may originate from residual 

disorder or correlation effects (12, 26, 27), are visible but decrease substantially above 4K. Given 

that the sample has two edges, the observed conductance per edge is therefore ~ e2/h, pointing to 



helical edge modes as the source of the conductance (5, 6). In order to confirm this scenario, one 

must rule out the possibility of trivial diffusive edge modes that happen to exhibit the quantized 

conductance value for some particular length (22). We thus performed a length dependence study 

utilizing a series of local gates with different Lc. Detailed analysis of measurements from 

representative devices and gates at ~ 4 K can be found in Figs. S3-5. In Fig. 2 we summarize the 

data by plotting the undoped channel resistance, ΔRs, as a function of Lc. For long edges the 

resistance generally decreases with decreasing length, which is arguably captured by a linear 

trend. The behavior, however, clearly deviates from the trend when Lc is reduced to 100 nm or 

less, where the resistance saturates to a value close to h/2e2. Such behavior is present in all three 

devices that enter this short-length regime, independent of the width of the monolayer flake 

(varying from 1 to 4 µm). These observations reveal the intrinsic conductance as e2/h per edge as 

per the abovementioned criteria (a) and (b) for the QSHE. 

 

To check criterion (c), regarding TR symmetry protection from elastic scattering, we performed 

magneto-conductance measurements. The data taken from the 100 nm long channel in Device 1 

in the QSHE regime (i.e. gate range on plateau) is shown in Fig. 3. We define Gs as 1/ΔRs,, which 

measures the conductance of the edges in the short channel limit. Gs is plotted as a function of Vc 

in Fig. 3A for a series of magnetic fields B applied perpendicular to the monolayer at 1.6 K. Gs 

decreases significantly once B is turned on, in contrast to the bulk state which is hardly affected 

(Fig. S8). For all Vc, Gs decreases rapidly for low magnetic fields (B < 2T). After this initial 

stage, two types of behavior are observed, depending on Vc, as shown in Fig. 3B. When Vc is 

near -6.44V, Gs decreases exponentially, without saturation up to 8 T. For other values of Vc, Gs 

saturates at high B. These behaviors are significantly different from the previous observations for 

resistive channels (12). 

 

Both types of behavior can be understood in the context of the QSHE. The 1D edge state of the 

QSH phase consists of two species: left and right movers associated with opposite spin 

polarization. The two linearly dispersing bands cross at the Kramers degeneracy point (Fig 3B, 

panel a). Magnetic fields applied nonparallel to the spin polarization are expected to open an 

energy gap at the Kramers point due to the Zeeman effect (28). For a homogenous chemical 

potential close to the degeneracy point (Fig 3B, panel b), one would expect an exponential decay 

of the conductance without saturation. To reveal the existence of the gap, we performed 

temperature dependence measurements of the magneto-conductance at Vc = -6.44V. The 

exponential decay of Gs persists up to high temperatures (measured up to 34 K, inset of Fig. 3C). 

Moreover, all the curves collapse onto a single universal trend when renormalized by plotting the 

dimensionless values –log(Gs/G0) vs μBB/kBT (Fig. 3C), where G0 is the zero-field conductance, 

μB is the Bohr magneton, kB is the Boltzmann constant, and T is the temperature. The slope of the 

trend yields an effective g-factor ~ 4.8 for the out-of-plane field in this device (i.e. the device 

conductance obeys Gs = G0 exp(-gμBB/2kBT)). This observation confirms a Zeeman-type gap 

opening in the edge bands.  

 

If the Fermi energy at the edge is gated away from the Kramers point (Fig 3B, panel c), the 

Zeeman gap will not be directly observed, and the magneto-conductance should be determined 

by the scattering mechanisms at the edge allowed by the TR symmetry breaking. For example, in 

our devices the presence of local charge puddles can be natural. According to theoretical 

calculations, the edge conductance will be reduced to αe2/h, where α is determined by the 



microscopic details of the edge (24, 29). Calculations show that at high magnetic fields an 

individual puddle can reduce transmission along an edge by 50% (24, 30), leading to a saturated 

α determined by the distribution of the puddles along the edges. We find the conductance 

saturation is consistent with this picture (Fig. S9). In addition to vertical magnetic fields, we have 

also found significantly reduced edge conductance when in-plane magnetic field is applied (Fig. 

S10). We expect that both in- and out-of-plane magnetic fields will suppress the conductance 

because breaking time reversal symmetry removes protection of the edge conduction and the 

edge mode spin polarization axis is not necessarily normal or parallel to the layer due to the lack 

of out-of-plane mirror symmetry in the monolayer. The exact spin polarization axis may be 

influenced by multiple factors, such as the direction of the crystallographic edge and the 

existence of displacement electric fields. The irregular edge of the exfoliated monolayer makes 

the situation more complex. Overall, the magneto-conductance behavior reveals the expected 

necessity of TR symmetry for the QSHE to be exhibited, and thus confirms criterion (c). 

Therefore, the QSHE is indeed observed in monolayer WTe2. 

 

Remarkably, the distinctive conductance value survives up to high temperatures. Figure 4A plots 

the temperature dependence of Gs at different Vc in the QSHE regime; Gs stays approximately 

constant and close to 2e2/h up to 100 K, indicating that the conductance is dominated by the 

QSHE up to this temperature. In terms of ΔR, the resistance plateau starts to drop at around 100 

K (Fig. 4A inset). We note that the it is not obvious a priori what the temperature dependence of 

the QSH edge conductance should be, and some proposed mechanisms indicate weak (31) or 

even negative temperature dependence (26). Above this temperature, the channel conductance 

increases rapidly with temperature, indicating the activation of bulk conduction channels. To 

reveal the transition more clearly, in Fig. 4B we plot the temperature dependence of the 

resistance R of the whole flake (i.e. entire length, which consists of locally gated region in series 

with the rest of the flake) when the Fermi energy in the local channel is placed in the metallic 

regime (Vc = -1V) and the QSH regime (Vc < -5.3V). A clear kink at 100 K can be seen in the 

QSH regime. The difference between the two curves yields the channel resistance which drops 

above the transition temperature.  

 

This high temperature QSHE is consistent with the prediction of a large inverted bandgap (~100 

meV) in monolayer WTe2 (20) as well as recent experiments that observe a ~45 meV bulk 

bandgap in spectroscopy (13, 14) and a similar onset temperature for bulk conduction (12). We 

suspect the 100 K transition temperature may not be an intrinsic limit. Improvements in device 

quality may enable observation of the QSHE at even higher temperatures and for longer edges. 

 

Our observations have confirmed the nontrivial TR invariant topological phase in monolayer 

1T’-WTe2 and have demonstrated the QSHE at high temperatures for the first time in an isolated 

2D monolayer device. The exploration of 2D topological physics and device performance above 

liquid nitrogen temperatures has therefore become possible. Distinct from quantum well systems, 

the exposed nature of isolated monolayers may allow to engineer topological phases in 

unprecedented ways. In particular, WTe2 can be readily combined with other 2D materials to 

form novel van der Waals heterostructures, a promising platform for studying the proximity 

effect between a QSH system and superconductors or magnets (3, 4) at the atomic scale.  
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Fig. 1. Device structure and resistance near h/2e2. (A) Schematic of the device structure. (B) 

Four probe conductance measurement at 4 K of Device 1 as a function of Vtg across all the local 

gates, which are floating. Inset: the optical image of Device 1 (left) and the corresponding 

monolayer WTe2 flake before fabrication (right). (C) Color map of the flake resistance tuned by 

Vtg and the 100nm-wide local gate Vc at 4K. Two regions are separated by a step in the resistance 

distinguishing the doped and undoped local channel, as depicted by the inset schematics. (D) ΔR 

versus Vc for the 100 nm wide gate on Device 1 at Vtg = 3.5V, and the 60 and 70 nm wide gates 

on Device 2 at Vtg = 4.1V (taken at 5 K).  For clarity, the two curves from Device 2 are offset by 

+3 V along the x axis. Inset: the average step height <ΔR>, extracted from (C), as a function of 

Vtg, showing a clear saturation towards h/2e2 for large Vtg. 

 



 

 

Fig. 2. Length dependence of the undoped channel resistance. Data taken at 4 K from 5 

different devices (Table S1), each denoted by a different color and symbol. The device numbers 

and associated colors are: 1, Black; 2, green; 3, purple; 4, red; 5, blue. The ΔRs values approach a 

minimum of h/2e2 in the short-channel limit, confirming a total conductance of 2e2/h for the 

undoped channel, i.e. a conductance of e2/h per edge in the device, in agreement with QSHE. 

Detailed analysis of raw data can be found in Fig. S4-7.  

 

 



 

Fig. 3. Time reversal symmetry breaking by a magnetic field and Zeeman-like gap at the 

Dirac point. (A) The evolution of the edges conductance Gs versus gate under the application of 

a perpendicular magnetic field, B (from 0T, thick blue curve, to 8T, thick red curve) at 1.8K, for 

Device 1, 100 nm channel. (B) Traces of Gs vs. B for a few selected local gate voltages Vc 

showing two types of behavior: saturation and non-saturation, associated with whether or not the 

Fermi energy is in the Zeeman gap, as depicted in the band schematics a. (linear bands at zero B, 

EF at Dirac point), b. (gapped bands at finite B, EF at Dirac point), and c. (gapped bands at finite 

B, EF away from Dirac point). (C) Inset: temperature dependence of Gs vs. B for the non-

saturating curves (Vc = -6.44V). Main: All the curves in the inset collapse to a single trend in the 

normalized plot of –log(Gs/G0) vs μBB/kBT. The black line is a linear fit. Additional inspection of 

the temperature- and magnetic-field dependence is shown in Fig. S9-11.  

 

 



Fig. 4. Quantum spin Hall effect up to 100 K. (A) Temperature dependence of the edges 

conductance at a few representative gate voltages for 100 nm channel in Device 1. The 

conductance is dominated by the QSHE up to about 100K. The schematics depict the increase of 

the conductance due to onset of conduction from bulk states. Inset: gate dependence of ΔR at 

various temperatures. (B) Temperature dependence of the resistance of the whole flake (full 

length), when the Fermi energy in the local channel is in the doped (Vc = -1V, red) and undoped 

(Vc = -5.7V, blue) regimes, at Vtg = 3.5V. The difference between the curves yields the 

temperature dependent channel resistance ΔRs (yellow). The vertical dashed line highlights the 

kink in the undoped regime at 100K, indicating the transition to the QSHE edge-dominated 

regime.  
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Materials and Methods 

General Fabrication Scheme 

 

The WTe2 bulk crystals were grown as described in (32). The gates and electrodes of our 

devices are fabricated prior to the exfoliation of WTe2. The detailed fabrication process is 

described below and illustrated in Fig. S1.  

 

1. Creation of Gate Electrodes (Fig. S1(a-c)) 

a. Dice Si++/SiO2 wafer into appropriately sized pieces, followed by spin-coating and 

baking a bilayer PMMA-based resist: 

i. 495A5, spun at 2000 rpm for 60 seconds, baked at 180C for 7 minutes 

ii. 950A5, spun at 3000 rpm for 60 seconds, baked at 180C for 3 minutes 

b. Electron beam lithography in an Elionix F125 system (acceleration voltage 125keV) 

to define gate electrodes with widths ranging from 50nm to 900nm.  

c. Develop resist in a cold water:IPA (1:3 by weight) mixture.  

d. Deposit Cr(3nm)/PdAu(30nm) in a thermal evaporator. 

e. Liftoff with successive baths of acetone and dichloromethane (DCM), followed by 

sonication in Remover PG, and final rinse in acetone and IPA. 

f. Heat clean at 300C for 3+ hours in forming gas (H2 + Ar).  

2. Transfer of bottom hBN (Fig. S1(d-f)) 

a. Exfoliate hBN onto cleaned Si/SiO2 wafer. 

b. Heat clean at 400C for 3+ hours in forming gas.  

c. AFM to ensure cleanliness of the flake.  

d. Pick up and transfer the flake onto the gates via standard dry transfer techniques using 

a polycarbonate/PDMS stamp.  

e. Remove the transfer polymer with chloroform. 

f. Heat clean at 300C for 3+ hours in forming gas. 

3. Creation of Contact Electrodes (Fig. S1(g-i)) 

a. Spin and bake of a PMMA-based bilayer resist recipe.  

b. Electron beam lithography to define contacts. 

c. Develop resist in a cold water:IPA (1:3 by weight) mixture.  

d. Deposit Ti(3nm)/PdAu(30nm) in a thermal evaporator. The height of the electrodes 

matches the local gates, to minimize the stressed (not fully encapsulated) region at the 

vicinity of the inner-most contacts. 

e. Liftoff with successive baths of acetone, DCM, and IPA.  

f. Tip clean surface of hBN with contact mode AFM.  

g. Mount chip into chip carrier and wire bond.  

4. Transfer of WTe2 and top gate electrode (Fig. S1(j,k)) 

a. Prepare appropriate hBN and graphite pieces as per steps 2(a-c).  

b. WTe2 flakes are exfoliated and identified in an argon glove box system with < 0.1 

ppm of both O2 and H2O. 

c. Also in the glove box, pick up a global top hBN, then graphite top-gate electrode, 

then hBN to serve as top gate dielectric, and finally the target WTe2 flake.  

d. Transfer entire stack onto pre-fabricated and pre-bonded gates and contacts.  

e. Remove transfer polymer with chloroform. 

f. Extract from glove box and immediately pump down in a cryostat. 



 

Individual Device Details 

 

Five devices are investigated in this study. Device 1 is discussed in depth in the main text, 

and images from its fabrication are shown in Fig. S1. Table S1 displays important parameters for 

each device. 

Table S1. 

Table of device parameters. 

 

Device # 
Bottom hBN 

thickness 
Top hBN 
thickness 

Length between 
contacts 

WTe2 width 

1 13 nm 9 nm 7.2 µm 1 µm 

2 16 nm 9 nm 4.0 µm 3 µm 

3 10 nm 11 nm 4.0 µm 4 µm 

4 19 nm 10 nm 7.2 µm 7 µm 

5 15 nm 9 nm 2.7 µm 4 µm 

 

Raman Analysis 

  

 We show a typical Raman spectrum taken from our exfoliated monolayer in Fig. S2. The 

spectrum is consistent with the literature(12, 16, 33), verifying the 1T’ phase. The monolayer 

nature is also characterized by its transport behavior (18), as shown in Fig. 1B. 

 

Measurement Details 

 

Electronic transport measurements are conducted in a cryostat equipped with a 

superconducting magnet and a variable temperature 3He insert. The resistance is typically 

measured by applying a ~50µV low-frequency AC voltage source (~17Hz) using lock-in 

techniques. All the resistance data is measured under zero DC bias. DC bias almost has no effect 

on the resistance, as summarized in Fig. S3, indicating Ohmic contacts. 

 

Supplementary Text 

 

Extracting the Plateau Values 

 

As mentioned in Fig. 1 of the main text, we performed a careful analysis to extract the value 

of the resistance plateaus. Generically, when we sweep the local gate voltage Vc to negative 

values, we observe a resistance step in transition to the QSH plateau. This resistance step is 

measured as a function of the global top-gate voltage Vtg, as illustrated in Fig. S4. The onset of 

the step in Vc changes with top gate voltage because the doping level local region is determined 

coordinately by both gates. In general, as the bulk becomes more highly doped by the top gate, 

the resistance step decreases and then converges, indicating the improvement of the contact 

between the doped bulk regions and the edge modes. We consider the converged value at the 

highest gate voltage as the extracted edge resistance ΔRs, with an error given by the standard 



deviation of the step height at that top-gate voltage. We present figures displaying representative 

analysis of several cases (Fig. S4-7). 

 

We also notice a particular case shown in Fig. S7 (the 500 nm-wide gate in Device 1), in 

which the resistance trace displays a second step appearing at even more negative Vc. This 

second step is a feature that appears for some of the longer channels (some hints of it are also 

visible in Fig. S4). A natural explanation is that the local gate dopes the channel into the valence 

band, transitioning from a n-edge-n device configuration of the first plateau to an n-edge-p-edge-

n junction, as shown in the inset schematics. In this case, the second step would reflect the 

resistance change between the new n-edge-p-edge-n junction and n-edge-n junction. For 

example, the p-region may break the single edge mode into two edge modes in series, and may 

also scatter the carriers from one edge to the opposite. Therefore, a p region can reduce their 

transmission and result in an increase in resistance, as we observe. In our main analysis, we 

focus on the first step, which captures the resistance of just the edge mode with a length defined 

by the local gate. 

 

Bulk State Magnetic Field Dependence 

 

The magnetoresistance in the highly doped bulk regime is small and approximately linear 

with field, as shown in Fig. S8. This magnetoresistance is largely temperature independent, and 

its weakness (< 5% change up to 8T) shows that the strong magnetic field dependence displayed 

in the edge regime does not originate from bulk states  

 

Saturation Conductance in High Magnetic Field 

 

In the main text, it was noted that the edge conductance saturates to a finite value at high 

magnetic field for most gate voltages in the QSH regime. In Fig. S9(a), we show the gate 

dependence of the edge conductance for magnetic fields between 5 and 8 Tesla. The device has 

little change of behavior in this field range for most gate voltages away from Dirac point, again 

demonstrating the saturation. Fig. S9(b) shows characteristic magnetic-field dependences at the 

same gate voltages as in the main text (Fig. 4B), but on a linear scale. A histogram of all 

conductance extrema along gate voltage traces (determined algorithmically in MATLAB) at 

magnetic fields between 5 and 8 T produces the plot shown in Fig. S9(c). Theoretical predictions 

suggest that a single ballistic helical edge mode with a single charge puddle is expected to 

exhibit a 50% reduction of transmission at high magnetic fields(24), or similarly a dephasing 

charge puddle can effectively “break” a single QSH mode into two in series(30). Extending this 

to two edges and multiple puddles leads to a high-field conductance of (1/(m+1) + 1/(n+1)) e2/h 

where m and n are integers that count the number of charge puddles coupled to each edge. The 

expected saturated values (0.5, 0.66, 0.83 and 1) e2/h for several cases of m and n are indicated in 

the plots. Our data is suggestive of the prediction, with the number of charge puddles varying 

with the local gate voltage but usually very few (< 3 per edge). Further investigation in both 

experiment and theory are necessary to fully understand the mechanism. 

 

In-Plane Magnetic Field 

 



We also find that in-plane magnetic fields degrade the edge conductance. In Fig. S10, we 

show the edge conductance as a function of local gate voltage for a 100nm-wide gate in Device 

2. In this case, we don’t see a clear Dirac point but rather a more uniform degradation of the edge 

conductance for all gate voltages. The absence of the Dirac point in this case requires future 

work to understand. Generally, the observation of a gap opening at the Dirac point requires a 

magnetic field non-parallel to the spin polarization axis of the edge modes as well as nearly 

identical conditions for both edges, which may include offset density, disorder strength, 

crystallographic orientation, and edge termination. Moreover, crystallographic orientation and 

edge termination may influence whether a Dirac point in the edge state exists inside the bulk gap. 

We currently do not have the fine control over these parameters to engage in a targeted study of 

this physics. Nonetheless, our observations encourage further studies of the Dirac point in 

monolayer TIs, both experimentally and theoretically. 

 

Temperature Dependence of the Edge Resistance in High Magnetic Field 

 

As shown in Fig. 3(c) of the main text, the edge resistance has temperature and magnetic 

field dependences that suggest a Zeeman-like gap in a narrow gate voltage range. All of the high-

resistance features that exist at low temperature are strongly suppressed with increasing 

temperature. In Fig. S11 we show the gate voltage dependence as a function of magnetic field for 

four representative temperatures, observing that sharp and tall features become broad and 

shallow as temperature is raised.  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Fig. S1 Images of fabrication steps. Optical microscopy (OM) images (upper row) and atomic 

force microscopy (AFM) images (middle row) taken at each key stage of the fabrication process. 

The images in the lower row are cross-sectional schematics to illustrate the structure.  



 

  

Fig. S2 Raman spectroscopy of monolayer WTe2. Raman spectrum of an exfoliated monolayer 

of WTe2 taken at room temperature with a 532nm excitation laser, consistent with the 1T’ phase 

of monolayer WTe2.  

 

 

 



 

Fig. S3 Ohmic contacts. dV/dI as a function of DC bias for Vtg = 3.5V on device 1 measured in 

four-terminal configuration at 4K. Blue and orange correspond to the bulk regime (Vc = 3V) and 

edge regime (Vc = -6V), respectively. The difference is in yellow. The flat dV/dI indicates linear 

ohmic contacts. 

  



 
 

Fig. S4 Analysis to extract the edge resistance – Device 1, 100nm gate, 4 K. (a) Total 

resistance as a function of top gate and local gate voltage (Vtg and Vc, respectively), for device 1 

with the 100nm-wide local gate. (b) The same data as (a) with the resistance at Vc = 3V 

subtracted away, which we designate ΔR. The space between the red dotted lines indicates the 

range of ΔR on the step that is averaged to extract the step height.  (c) Specific traces of total 

resistance vs Vc showing how the traces change progressively with increasing top-gate voltage. 

(see SI text and Fig. S7 for explanation on signatures of second step). (d) A plot of the step 

resistance as a function of Vtg, showing the saturation at large Vtg. The error bars indicate a full 

standard deviation from the mean ΔR in the range given by the red dots in (b). 

 

 

 

 

 

 

 
 



 
 

Fig. S5 Analysis to extract the edge resistance – Device 4, 400nm gate, 4 K. Same as Fig.S4, 

but for the 400nm-wide gate in Device 4. The resistance of this long channel saturates to a 

resistance well above what is measured in the short-channel limit. In general, we have observed 

increased resistance with increasing length in long channel devices (Fig. 2). This increase of 

resistance can be understood by considering dephasing scatterers at the edges. The helical edge 

mode is equilibrated at the dephasing sites, which effectively break the long edge mode into 

multiple in series, resulting in a trend of increasing total resistance. Device-to-device variation 

for the same channel length can thus be attributed to differing disorder realizations for the 

different devices. 

 
 

 

 

 



 

Fig. S6 Analysis to extract the edge resistance – Device 2, 100 nm gate, 4 K. Same as Fig. S4, 

but for the 100nm-wide gate in Device 2, which shows a similar converged resistance step value 

as in Device 1.  

 

 

 

 



 
 

Fig. S7 Channel resistance with a second step. (a) ΔR as a function of both gate voltages and 

(b) a representative line-cut of ΔR vs. Vc at Vtg = 2.6 V for the 500nm-wide local gate in Device 1 

at 4 K. The second step exhibited here appears especially for a few of our longer channels. It 

could be related to the creation of an n-edge-p-edge-n junction as indicated by the schematics in 

panel (b). See supplementary text for details. The height of the first step is extracted as the 

channel resistance of the edge mode with length defined by the local gate. 

 
 

  



 

Fig. S8 Weak magnetoresistance in the bulk-doped regime. Magnetic field dependence of the 

resistance in the bulk-doped regime (Vtg = +3.5 V) at different temperatures. The weak 

magnetoresistance here shows that the strong magnetoresistance observed in the edge regime is 

unrelated to bulk states.  



 
 

Fig. S9 Saturation conductance of the edge modes at high magnetic fields. (a) Magnetic field 

dependence of the edge conductance from B = 5T to 8T, with three specific traces highlighted 

and all others in grey. The dotted lines indicate values (0.5, 0.66, 0.83, 1) expected from 

scenarios based on charge puddles (see supplemental text for details). (b) A few specific traces of 

the edge conductance as a function of magnetic field. In red is the exponential behavior near the 

Dirac point, and the other three traces show typical saturation behavior. Dotted lines are the same 

as in (a). (c) A histogram of all local conductance extrema along gate voltage traces (Ghigh field) 

from 5T to 8T, with dotted lines again highlighting the same values (see supplementary text for 

details). 

 
  



 
 

Fig. S10 In-plane magnetoresistance. (a) Edge conductance as a function of local gate voltage 

Vc for different in-plane, roughly perpendicular-to-edge, magnetic field strengths at 4 K for the 

100nm-wide gate of Device 2. (b) Line traces of resistance as a function of magnetic field for 

selected Vc. The conductance is clearly suppressed under in-plane magnetic fields. This device 

does not have a distinct Dirac point, but instead sees a uniform decrease in conductance, possibly 

due to a different edge configuration or non-uniform disorder strength at the edges compared to 

Device 1.  

  



 
 

Fig. S11 Magnetic field effect at different temperatures. Raw data for the temperature 

dependent magnetoresistance measurements for Device 1, 100 nm local channel. Resistance vs. 

local gate voltage Vc subjected to different magnetic fields for a representative set of 

temperatures: (a) 4 K, (b) 8.3 K, (c) 18K, and (d) 34 K. 

 

 


