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Abstract

We study a large N tensor model with O(N)3 symmetry containing two flavors of Majorana
fermions, ψabc1 and ψabc2 . We also study its random counterpart consisting of two coupled
Sachdev-Ye-Kitaev models, each one containing NSYK Majorana fermions. In these models
we assume tetrahedral quartic Hamiltonians which depend on a real coupling parameter
α. We find a duality relation between two Hamiltonians with different values of α, which
allows us to restrict the model to the range of −1 ≤ α ≤ 1/3. The scaling dimension of
the fermion number operator Q = iψabc1 ψabc2 is complex and of the form 1/2 + if(α) in the
range −1 ≤ α < 0, indicating an instability of the conformal phase. Using Schwinger-Dyson
equations to solve for the Green functions, we show that in the true low-temperature phase
this operator acquires an expectation value. This demonstrates the breaking of an anti-
unitary particle-hole symmetry and other discrete symmetries. We also calculate spectra
of the coupled SYK models for values of NSYK where exact diagonalizations are possible.
For negative α we find a gap separating the two lowest energy states from the rest of the
spectrum; this leads to exponential decay of the zero-temperature correlation functions. For
NSYK divisible by 4, the two lowest states have a small splitting. They become degenerate
in the large NSYK limit, as expected from the spontaneous breaking of a Z2 symmetry.

ar
X

iv
:1

90
2.

02
28

7v
3 

 [
he

p-
th

] 
 3

0 
A

pr
 2

01
9



Contents

1 Introduction and Summary 1

2 Schwinger-Dyson Equations and Scaling Dimensions 4

2.1 Duality in the Two-Flavor Models . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Feynman rules and two-point functions . . . . . . . . . . . . . . . . . . . . . 7

2.3 Scaling dimensions of bilinear operators . . . . . . . . . . . . . . . . . . . . . 9

2.4 Complex scaling dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Symmetry Breaking 14

3.1 Schwinger-Dyson equations and the effective action . . . . . . . . . . . . . . 17

3.2 Solutions of Schwinger-Dyson equations and symmetry breaking . . . . . . . 18

3.3 Exact diagonalization for finite NSYK . . . . . . . . . . . . . . . . . . . . . . 25

A More on the discrete symmetries 31

B Zero-energy states in the bipartite model 33

1 Introduction and Summary

During the past several years there has been a flurry of activity on fermionic quantum me-

chanical models which are exactly solvable in the large N limit because they are dominated

by the so-called melonic Feynman diagrams. Work in this direction began with the Sachdev-

Ye-Kitaev (SYK) models [1–4], which have random couplings. More recently, the tensor

quantum mechanical models [5,6], which have continuous symmetry groups and no random-

ness, were constructed following the body of research on melonic large N tensor models in

d = 0 [7–13] (for reviews, see [14–17]). Both the random and non-random quantum mechani-

cal models are solvable via the melonic Schwinger-Dyson equations [4,18–21], which indicate

the existence of the nearly conformal phase which saturates the chaos bound. They shed

new light on the dynamics of two-dimensional black holes [22–25].
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These models may also have applications to a range of problems in condensed matter

physics, including the strange metals [3, 26–32]. With such applications in mind, it is inter-

esting to study various dynamical phenomena in the SYK and tensor models. For example,

phase transitions in such models have been studied in [33–35]. In this paper we identify a

simple setting where spontaneous symmetry breaking can occur: two SYK or tensor models

coupled via a quartic interaction. We take this interaction to be purely melonic (i.e. tetra-

hedral in the tensor model case), so that the symmetry breaking can be deduced from the

large N Schwinger-Dyson equations.

In the random case, we will study two coupled SYK models with the Hamiltonian

H =
1

4!
Jijkl

(
χi1χ

j
1χ

k
1χ

l
1 + χi2χ

j
2χ

k
2χ

l
2 + 6αχi1χ

j
1χ

k
2χ

l
2

)
, (1.1)

where, as usual, all repeated indices are summed over. The Majorana fermions are χi1 and

χi2 with i = 1, . . . , NSYK, and Jijkl is a fully anti-symmetric real tensor with a Gaussian

distribution.1 We will show that the real parameter α may be restricted to the range −1 ≤
α ≤ 1/3 by a duality symmetry. This quartic Hamiltonian, which couples 2NSYK Majorana

fermions, is invariant under an anti-unitary particle-hole symmetry [36–41] generated by

P ; see eq. (3.11). However, we will show that for −1 ≤ α < 0 this Z2 symmetry is

spontaneously broken when NSYK is divisible by 4 and taken to infinity.2 In this limit the

fermion number operator Q = iχj1χ
j
2 acquires an expectation value. This leads to a gapped

phase in two coupled SYK models similar to that found by Maldacena and Qi [42] (for further

results see [43]); however, instead of the quartic they assumed a quadratic coupling term µQ

which breaks the Z2 symmetry explicitly. This gapped phase was argued to be dual to a

traversable wormhole in two-dimensional gravity [44, 45], and our model (1.1) may have a

similar interpretation for −1 ≤ α < 0.

As we show in section 2.4, a sign of instability of the conformal phase for −1 ≤ α < 0

is the presence of a complex scaling dimensions of the form 1/2 + if(α). Appearance of

complex dimensions with real part equal to d/2 for some single-trace operators is a common

phenomenon in large N models [46–50]. Via the AdS/CFT correspondence [51–53], such

operators are related to scalar fields which violate the Breitenlohner-Freedman stability

1This model seems similar to a coupled SYK model introduced in [26], but there each of the three terms in
the Hamiltonian would have an independent random coupling. As a result, the Schwinger-Dyson equations
are different from those for theory (1.1). The complex scaling dimension and symmetry breaking, which we
describe in this paper, do not appear in the model of [26].

2When NSYK is finite and not divisible by 4, so that the total number of Majorana fermions is not divisible
by 8, the particle-hole symmetry is broken by a discrete anomaly [36–41].
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bound [54]. The fact that α = 0 is the lower edge of the conformal window is related to

appearance of the marginal double-trace operator Q2 there. For 0 < α ≤ 1/3 there are

actually two fixed points connected by the flow of the coefficient of Q2, but at α = 0 they

merge and annihilate, as explained for example in [55,56].

The complex scaling dimensions have been observed in bosonic tensor models [57, 58], as

well as in a complex fermionic model introduced in [6] following the work in [59]. This

fermionic model is often called “bipartite” because of the two types of interaction vertices

(black and white) arranged in an alternating fashion, since the propagator must connect

different vertices. The bipartite model was further studied in [17] and shown to possess a

complex scaling dimension of the operator ψ̄abcψabc. Here we generalize this tensor model to

one with a continuous parameter α in such a way that the bipartite model corresponds to

α = −1. This O(N)3 symmetric model for Majorana fermions ψabc1 and ψabc2 , with a, b, c =

1, . . . , N , has Hamiltonian

H = g
4

(
ψa1b1c11 ψa1b2c21 ψa2b1c21 ψa2b2c11 + ψa1b1c12 ψa1b2c22 ψa2b1c22 ψa2b2c12

)
(1.2)

+gα
2

(
ψa1b1c11 ψa1b2c21 ψa2b1c22 ψa2b2c12 + ψa1b1c11 ψa1b2c22 ψa2b1c21 ψa2b2c12 + ψa1b1c11 ψa1b2c22 ψa2b1c22 ψa2b2c11

)
.

For α = 0 this describes two decoupled copies of the basic Majorana O(N)3 model with

the tetrahedral interaction [6]. The coupling term proportional to α preserves its discrete

symmetries and also has the tetrahedral structure, i.e. every two tensors have only one index

contraction, so that the model (1.2) is melonic. It is the tensor counterpart of the coupled

SYK model (1.1), and in the large N limit it is governed by the same Schwinger-Dyson

equations for the two-point and four-point functions.3

In section 2 we derive the Schwinger-Dyson equations and use them to study the scaling

dimensions of various O(N)3 invariant fermion bilinears. We also exhibit a duality symmetry

which allows us to restrict the model to the range −1 ≤ α ≤ 1/3. The nearly conformal

phase of the theory is stable for 0 ≤ α ≤ 1/3, but it is unstable for −1 ≤ α < 0 as signaled

by the complex scaling dimension of operator iψabc1 ψabc2 . The true behavior of the theory with

negative α is the spontaneous breaking of the particle-hole Z2 symmetry, as we demonstrate

in section 3. In section 3.1 and 3.2 we numerically study the large N Schwinger-Dyson

equations and exhibit the exponential decay of correlators at low temperature. We also

3In [28, 31] quartic interactions were added to SYK models, which have a “double-trace” structure and
contain an additional random tensor Cij . These interactions do not have a tensor counterpart because
ψabc1 ψabc1 is a c-number.
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ascertain the existence of second-order phase transitions by numerically computing the free

energy. In section 3.3 we study the numerical spectrum of the coupled SYK model (1.1)

via exact diagonalizations at finite NSYK. We observe that for −1 ≤ α < 0 there is a gap

separating the two lowest energy states from the rest of the spectrum. For NSYK divisible by

4 there is also a small gap between the two lowest states, consistent with the fact that the

ground state must be non-degenerate [36–41], but this gap decreases as NSYK is increased.

In the large NSYK limit, the two lowest states become degenerate and give rise to the two

inequivalent vacua, which are present due to the spontaneous breaking of the Z2 particle-hole

symmetry.

This means that the low-temperature entropy is large for 0 ≤ α ≤ 1/3 but vanishes

for −1 ≤ α < 0. It is tempting to suggest that the latter case is dual to a wormhole.

This senstivity to the sign of the interaction coupling two CFTs is like in [44], where the

traversable wormhole appears only for one of the signs.4

2 Schwinger-Dyson Equations and Scaling Dimensions

In this section we study the two-flavor tensor model with Hamiltonian (1.2).5 It can be

compactly written in the form

H =
1

4!
JIJKL

(
ψI1ψ

J
1ψ

K
1 ψ

L
1 + ψI2ψ

J
2ψ

K
2 ψ

L
2 + 6αψI1ψ

J
1ψ

K
2 ψ

L
2

)
, (2.1)

where the capital letters are a shorthand notation for three tensor indices: I = a1b1c1,

J = a2b2c2, etc, and the non-random tetrahedral tensor coupling consists of six terms

JIJKL = g
∑
σ∈S3

sgn(σ)δa1aσ(2)δb1bσ(3)δc1cσ(4)δbσ(2)bσ(4)δcσ(2)cσ(3)δaσ(3)aσ(4) . (2.2)

The tensor JIJKL is antisymmetric under permutation of indices I, J,K, L and has a tetra-

hedron topology as shown in figure 1. In the form (2.1) the tensor model Hamiltonian is

transparently similar to the SYK one (1.1). In terms of the complex tensors

ψI =
1√
2

(ψI1 + iψI2) , ψ̄I =
1√
2

(ψI1 − iψI2) (2.3)

4On the other hand, in the approach of [42], where the quadratic term µQ was added to couple the two
SYK models, the gap (and therefore the wormhole) appeared for either sign of µ.

5This section is based in part on J.K.’s Princeton University senior thesis [60].
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the Hamiltonian (2.1) assumes the form

H =
1

4!
JIJKL

(
1− 3α

2

(
ψIψJψKψL + ψ̄Iψ̄J ψ̄Kψ̄L

)
+ 3(1 + α)ψ̄Iψ̄JψKψL

)
. (2.4)

Figure 1: Pictorial representation of the antisymmetric tensor JIJKL.

The Hamiltonian (2.1) is invariant under the O(N)3 transformation

ψabci → Aaa′B
b
b′C

c
c′ψ

a′b′c′

i , (2.5)

where A, B, and C are orthogonal matrices. In addition, it has a particle-hole Z2 symmetry6

generated by [36–41],

P = K
∏
I

(ψI + ψ̄I) . (2.6)

where K is the anti-unitary operator which acts by

KiK = −i , KψIK = ψI , Kψ̄IK = ψ̄I . (2.7)

The fermion number operator

Q = iψI1ψ
I
2 =

1

2
[ψ̄I , ψI ] (2.8)

does not in general commute with H, but it is conserved mod 4. The particle-hole symmetry

is not anomalous only if the total number of fermions 2N3 is a multiple of 8, i.e. when N

is even [36–41]. Even in this case, we will argue that in the large N limit the symmetry is

spontaneously broken for −1 ≤ α < 0 because Q acquires an expectation value.

2.1 Duality in the Two-Flavor Models

In this section we show that the two-flavor models with different values of α can be equivalent.

We will demonstrate this explicitly in the tensor model case (2.1), but the SYK case (1.1)

6The Hamiltonian also has discrete symmetries which do not involve K, which combine into the dihedral
group D4. This is discussed in detail for the coupled SYK counterpart in section 3 and in the Appendix.
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works analogously. Let us perform the following transformation on the Majorana fermions:

ψI1 =
1√
2

(ψ̃I1 + ψ̃I2) , ψI2 =
1√
2

(ψ̃I1 − ψ̃I2) . (2.9)

It preserves the anticommutation relations, and turns the Hamiltonian (2.1) into 7

H =
1

4!
JIJKL

1 + 3α

2

(
ψ̃I1ψ̃

J
1 ψ̃

K
1 ψ̃

L
1 + ψ̃I2ψ̃

J
2 ψ̃

K
2 ψ̃

L
2 +

6(1− α)

1 + 3α
ψ̃I1ψ̃

J
1 ψ̃

K
2 ψ̃

L
2

)
. (2.10)

Thus the energy levels are symmetric under the duality transformation

J → 1 + 3α

2
J, α→ 1− α

1 + 3α
. (2.11)

Defining

α̃ =
1

2
(1 + 3α) , J̃ = J

√
|α̃| , (2.12)

we find that the duality transformation

α̃→ 1/α̃ , J̃ → J̃ (2.13)

acts on the rescaled Hamiltonian H̃ = H/
√
|α̃|:8

H̃ =
1

4!
J̃IJKL

(
ψ̃I1ψ̃

J
1 ψ̃

K
1 ψ̃

L
1 + ψ̃I2ψ̃

J
2 ψ̃

K
2 ψ̃

L
2 +

(
−2 +

4

α̃

)
ψ̃I1ψ̃

J
1 ψ̃

K
2 ψ̃

L
2

)
. (2.14)

This means that the fundamental domain is −1 ≤ α̃ ≤ 1. Thus, we may restrict α to the

domain

− 1 ≤ α ≤ 1

3
. (2.15)

The values of α outside of this domain are related to it by the duality. For α = −1 the

transformation (2.11) maps the theory into itself, but with H → −H.

In fact, the case α = −1 corresponds to the complex bipartite model [17, 59]:

Hα=−1 = 2
1

4!
JIJKL

(
ψIψJψKψL + ψ̄Iψ̄J ψ̄Kψ̄L

)
, (2.16)

7Using antisymmetry of the tensor JIJKL one can operate with Majorana fermions as commuting variables
but keeping order of I, J,K,L indices fixed.

8For the original Hamiltonian (2.14 this transformation rescales the energy levels. Therefore, our results
for dimensionful quantities, like energy levels and Green functions, will not respect the duality under (2.13).
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where we introduced the complex tensor ψI = 1√
2
(ψI1 + iψI2).

The theory with α = 1/3 is mapped into itself by (2.11). In this case the Hamiltonian is

Hα= 1
3

= 4
1

4!
JIJKLψ̄

Iψ̄JψKψL , (2.17)

which has O(N)3 × U(1) symmetry. In the three-index notation

Hα= 1
3

=
g

3

(
ψ̄a1b1c1ψ̄a1b2c2ψa2b1c2ψa2b2c1 − ψ̄a1b1c1ψ̄a2b1c2ψa1b2c2ψa2b2c1 + ψ̄a1b1c1ψ̄a2b2c1ψa1b2c2ψa2b1c2

)
.

(2.18)

This is different from the SU(N)2 ×O(N)× U(1) symmetric complex tensor model [6]; the

latter involves taking only the first term in this Hamiltonian.

2.2 Feynman rules and two-point functions

At first we list the Feynman rules which follow from the Hamiltonian (1.2). In figures

(2) and (3) we define propagators and interaction vertices for the given two-flavour tensor

model. Since the interaction terms have a tetrahedral tensor structure the melonic Feynman

Figure 2: Bare propagators for the Majorana tensor fields. Each thick black solid or dashed
line caries three tensor indices a, b, c.

Figure 3: Interaction vertices.

diagrams dominate in the large N limit. Let us define bare two-point functions

G11(τ12) =
1

N3
〈TψI1(τ1)ψI1(τ2)〉0, G22(τ12) =

1

N3
〈TψI2(τ1)ψI2(τ2)〉0 , (2.19)

where the sum over indices I is assumed. The leading melonic correction to the full two-point

function G11 is represented in figure 4. Using that

7



Figure 4: The leading melonic correction to the full two-point function G11.

JIJKLJIJKL = g2(6N6 − 18N4 + 12N3) (2.20)

we find

G11(τ12) = G11(τ12) + g2N3

∫
dτ3dτ4G11(τ13)

(
G11(τ34)3 + 3α2G11(τ34)G22(τ34)2

)
G11(τ42) + . . . .

(2.21)

A similar expression can be derived for G22. Since there is a symmetry ψ1 ↔ ψ2 we can

assume that G11 = G22 = G and obtain a Schwinger-Dyson equation for the full two-point

function (see figure 5)

G(τ12) = G(τ12) + (1 + 3α2)g2N3

∫
dτ3dτ4G(τ13)G(τ34)3G(τ42) , (2.22)

where G(τ) = 1
2
sgn(τ) is the bare propagator.

Figure 5: Schwinger-Dyson equation for the full two-point function G(τ12).

In writing this Schwinger-Dyson equation we implicitly made an important assumption

that the two-point functions

G12(τ12) =
1

N3
〈TψI1(τ1)ψI2(τ2)〉, G21(τ12) =

1

N3
〈TψI2(τ1)ψI1(τ2)〉 , (2.23)

are zero G12(τ) = G21(τ) = 0. This follows from the Z2 symmetry ψ2 → −ψ2. As we will

see below, the Z2 symmetry can be spontaneously broken for some range of parameter α

and dimensionless coupling βJ , where β = 1/T is the inverse temperature and J2 = g2N3 is

effective coupling constant.

Let us first assume that Z2 symmetry is not broken and analyze the SD equation (2.22).

8



At large coupling constant βJ and intermediate distances 1/J � τ � β the solution to this

equation is given by

G(τ) =

(
1

4π(1 + 3α2)

) 1
4 sgn(τ)

|Jτ |1/2
. (2.24)

2.3 Scaling dimensions of bilinear operators

We can use the large N Schwinger-Dyson equations for the three-point functions to deduce

the scaling dimensions of four families of bilinear operators:

O2n+1
1 = ψ1∂

2n+1
τ ψ1 + ψ2∂

2n+1
τ ψ2 , O2n+1

2 = ψ1∂
2n+1
τ ψ1 − ψ2∂

2n+1
τ ψ2 ,

O2n+1
3 = ψ1∂

2n+1
τ ψ2 + ψ2∂

2n+1
τ ψ1 , O2n

4 = ψ1∂
2n
τ ψ2 − ψ2∂

2n
τ ψ1 ,

(2.25)

where n = 0, 1, 2, . . . , and the sum over tensor indices is assumed.9 Each of these operators

is invariant under the O(N)3 symmetry, but they are distinguished by their transformations

to discrete symmetry.

We take some operator O(τ) and consider two three-point functions of the form

v11(τ1, τ2, τ0) = 〈ψI1(τ1)ψI1(τ2)O(τ0)〉, v22(τ1, τ2, τ0) = 〈ψI2(τ1)ψI2(τ2)O(τ0)〉 , (2.26)

where we assume summation over the index I. In the large N limit the functions (2.26)

obey the melonic Bethe-Salpeter equations. They are schematically represented in figure 6.

In the conformal limit one can ignore the first diagram on the right and obtain

Figure 6: The Bethe-Salpeter equations for the three-point functions v11 and v22.

9In the coupled SYK model (1.1) the same expressions for bilinear operators are applicable after replace-
ment of ψIA by χiA, with A = 1, 2.
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(
v11

v22

)
=

(
K11,11 K11,22

K22,11 K22,22

)
∗

(
v11

v22

)
, (2.27)

where assuming that G11 = G22 = G we find

K11,11 = K22,22 =
1 + α2

1 + 3α2
Kc, K11,22 = K22,11 =

2α2

1 + 3α2
Kc , (2.28)

and Kc is the kernel of the SYK model, defined in conformal limit as

Kc(τ1, τ2; τ3, τ4) = − 3

4π

sgn(τ13)sgn(τ24)

|τ13|2∆|τ24|2∆|τ34|2−4∆
, ∆ =

1

4
. (2.29)

An arbitrary conformal three-point function of the form (2.26) with an operator of scaling

dimension h has the form

vh(τ1, τ2, τ0) =
c sgn(τ12)

|τ01|h|τ02|h|τ12|2∆−h , (2.30)

and obviously must be antisymmetric under τ1 ↔ τ2. This three-point function is an eigen-

vector of the kernel Kc with the eigenvalue g(h):10

g(h)

∫
dτ3dτ4Kc(τ1, τ2; τ3, τ4)vh(τ3, τ4, τ0) = vh(τ1, τ2, τ0) . (2.31)

To solve (2.27) one has to find eigenvalues of the matrix and equate them to unity. This

gives an equation for possible scaling dimensions. It easy to see that this matrix acquires

diagonal form in the basis of vectors v11 + v22 and v11 − v22 and we find two equations for

the scaling dimensions

gA(h) = 1,
1− α2

1 + 3α2
gA(h) = 1, gA(h) = −3

2

tan(π
2
(h− 1

2
))

h− 1/2
. (2.32)

The scaling dimensions of the operator O2n+1
1 = ψ1∂

2n+1
τ ψ1+ψ2∂

2n+1
τ ψ2 satisfy gA(h) = 1 and

are independent of α. They are given by the well-known series h = 2.00, 3.77, 5.68, 7.63, 9.60, . . .

which approaches 2n+ 3
2
. These are the same scaling dimensions as in the basic O(N)3 ten-

sor model [6] and the SYK model. On the other hand, the scaling dimensions of operators

O2n+1
2 = ψ1∂

2n+1
τ ψ1 − ψ2∂

2n+1
τ ψ2 are given by 1−α2

1+3α2 gA(h) = 1 and depend on α. As a check

we note that for α = 0 the spectra of O2 and O1 are the same; this is as expected since the

10To take the integrals one should use star-triangle identities twice [4].
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two flavors are decoupled.

Now consider the last possible three-point function

v12(τ1, τ2, τ0) = 〈ψI1(τ1)ψI2(τ2)O(τ0)〉 . (2.33)

The melonic Bethe-Salpeter equation for this three-point function is represented in figure 7

and in the conformal limit, neglecting the first diagram on the right we get

Figure 7: The Bethe-Salpeter equations for the three-point functions v12.

v12(τ1, τ2, τ0) =

∫
dτ3dτ4

2

1 + 3α2
(αKc(τ1, τ2; τ3, τ4)− α2Kc(τ1, τ2; τ4, τ3))v12(τ3, τ4, τ0) .

(2.34)

In this case there are two general possibilities for conformal three-point function, namely

anti-symmetric and symmetric cases

vAh (τ1, τ2, τ0) =
c sgn(τ12)

|τ01|h|τ02|h|τ12|2∆−h , vSh (τ1, τ2, τ0) =
c sgn(τ01)sgn(τ02)

|τ01|h|τ02|h|τ12|2∆−h . (2.35)

Therefore, we find equations which determine spectra of antisymmetric and symmetric op-

erators

2(α + α2)

1 + 3α2
gA(h) = 1,

6(α− α2)

1 + 3α2
gS(h) = 1, gS(h) = −1

2

tan(π
2
(h+ 1

2
))

h− 1/2
. (2.36)

The scaling dimensions of operators O2n+1
3 satisfy the first equation above and O2n

4 the

second. We can check this result by comparing with the results for the complex bipartite

fermion model (2.16). It was found [17] that the scaling dimensons of O2n
4 are determined

by

gsym(h) =
3

2

tan(π
2
(h+ 1

2
))

h− 1/2
= 1 , (2.37)

and indeed for α = −1 we get 6(α−α2)
1+3α2 gS(h) = gsym(h).

To summarize, we have found that scaling dimensions of the operators (2.25) can be

11



obtained by solving equations gi(h) = 1, where

(g1(h), g2(h), g3(h), g4(h)) =

(
gA(h),

1− α2

1 + 3α2
gA(h),

2α(1 + α)

1 + 3α2
gA(h),

6α(1− α)

1 + 3α2
gS(h)

)
.

(2.38)

The duality relation (2.11) is reflected in the behavior of functions gi(h), which define scaling

dimensions of the operators Oi. Using (2.38) and (2.11) one finds

(g1(h), g2(h), g3(h), g4(h))→ (g1(h), g3(h), g2(h), g4(h)) . (2.39)

Indeed, under ψ → ψ̃ the operators Oi transform as (O1, O2, O3, O4)→ (O1, O3, O2, O4).

2.4 Complex scaling dimensions

In this section, we examine if there exist any complex solutions of the equations gi(h) = 1

defined in (2.38). If such a complex root exists, then a conformal primary has a complex

scaling dimension, which leads to a destabilization of the model. Indeed, a complex scaling

dimension of the form 1
2
± if corresponds to a scalar fields in AdS2 whose m2 is below the

Breitenlohner-Freedman bound m2
BF = −1

4
. Since ∆ = 1

2
±
√

1
4

+m2 [51–53],

m2 = −1

4
− f 2 < m2

BF . (2.40)

In such a case one may expect “tachyon condensation” in AdS space. In the dual CFT the

operator dual to the tachyon acquires an expectation value, leading to symmetry breaking.

We will obtain some support to this picture.

First of all we notice that the functions gA(h) and gS(h) are real only if h is real or

h = 1
2

+ if for real f . Next it is easy to check that

− 3π

4
≤ gA(1/2 + if) < 0, −∞ ≤ gS(1/2 + if) < 0 . (2.41)

Using the fact that −1
3
≤ 1−α2

1+3α2 ≤ 1 (and the same for 2α(1+α)
1+3α2 due to duality) we conclude

that equations gi(1/2 + if) = 1 for i = 1, 2, 3 do not have solutions, thus scaling dimensions

of the operators O1, O2 and O3 are always real.

On the other hand, since 6α(1−α)
1+3α2 < 0 for negative α, the equation g4(h) = 1 has solutions

12



Figure 8: Imaginary part of the scaling dimension of the fermion number operator Q. At
α = −1 it reaches its maximum value ≈ 1.5251.

h = 1/2± if(α), where f(α) can be found from the equation

f tanh(πf/2) = −3α(1− α)

1 + 3α2
. (2.42)

The plot of f(α) is shown in figure 8. For slightly negative α we find

f(α) =

√
−6α

π
(1 +O(α)) , (2.43)

while f(−1) ≈ 1.5251 in agreement with the result for the bipartite model found in [17].

Thus, for−1 ≤ α < 0 there is an operator with the complex scaling dimension h = 1/2+if(α)

or its complex conjugate: the fermion number operator Q = iO0
4. This makes the conformal

large N limit unstable.

For 0 ≤ α ≤ 1/3 there are no complex solutions of g4(h) = 1. The two lowest positive

real solutions, h±(α), satisfy h+ + h− = 1. These two roots are the scaling dimensions of

operator Q in two different large N CFTs [61], as we explain below. We find

h+(α) = 1/2 +

√
6α

π
+ . . . (2.44)

when α is small and positive, and h+(1/3) = 1. The fact that α = 0 is the lower edge of the

conformal window is related to the behavior of the scaling dimension of the “double-trace”

operator Q2. In the large N limit, ∆Q2 = 2∆Q. In one of the CFTs, ∆Q = h+, so that

∆Q2 > 1. Since the operator Q2 is irrelevant, this CFT is stable. There is RG flow leading

to it, which originates from another large N fixed point where Q2 is relevant [62, 63]. At

this UV fixed point, ∆Q = h−. When α = 0 the two fixed points merge and annihilate, as

13



in various other theories, for example [46,47,55,56]. For −1 ≤ α < 0 there are two different

theories containing complex dimension ∆Q = 1/2 + if(α) or its complex conjugate. They

may be formally regarded as “complex CFTs” [50], but we will see in the next section that

their true physics includes symmetry breaking, which leads to a gap in the energy spectrum.

3 Symmetry Breaking

In section 2.4, we showed that for the coupled tensor model (1.2) in the range −1 ≤ α < 0

the fermion number operator Q = iψI1ψ
I
2 has a complex scaling dimension, signaling an

instability of the conformal phase of the model. In this section we show that this operator

acquires a vacuum expectation value (VEV) in the true low-temperature phase of the large

N model. Based on this, it is tempting to make the following conjecture.

Conjecture. If the assumption of conformal invariance in a large N theory leads to a single-

trace operator with a complex scaling dimension of the form d/2 + if , then in the true low-

temperature phase this operator acquires a VEV.

In our case, the O(N)3 symmetry implies that

〈iψI1ψJ2 〉 = δIJA, (3.1)

where we used the short-handed notation I = abc, and A is of order 1 in the large N limit.

This leads to an exponential decay of correlation functions and signifies a gap in the

energy spectrum. Furthermore, the VEV (3.1) implies that various discrete symmetries,

including the particle-hole symmetry (2.6), the interchange symmetry between ψ1, ψ2, and

the reflection symmetry ψ2 → −ψ2, are spontaneously broken. Therefore, one should expect

a second-order phase transition between the broken and unbroken symmetry phases. In

addition, the spontaneously broken symmetry also implies a ground state degeneracy in the

large N energy spectrum. 11

In this section we extensively analyze the phenomenon of symmetry breaking, sometimes

using the SYK counterpart (1.1) of the O(N)3 tensor model (1.2). The two models have many

similarities at large N : they share the same Schwinger-Dyson equations, and the spectra of

11Due to a technicality we only expect a two-fold degeneracy although multiple Z2 have been broken. We
will comment on this issue below.
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bilinear operators. The SYK formulation, however, is advantageous for the purpose of exact

numerical diagonalizations: we can study cases where the integer NSYK is not the cube of an

integer.

Let us first demonstrate the connection between the tensor model and the SYK counter-

part. For the one-flavor O(N)3 tensor model the analogous SYK model has the random

tensor Jijkl which is fully antisymmetric. The mixed term Aijklχ
i
1χ

j
1χ

k
2χ

l
2 has only the sym-

metries

Aijkl = −Ajikl = −Aijlk = Aklij , (3.2)

which are the same as for the Riemann tensor. However, the full interaction term following

from (1.2) is

Aijkl(χ
i
1χ

j
1χ

k
2χ

l
2 + χi1χ

j
2χ

k
1χ

l
2 + χi1χ

j
2χ

k
2χ

l
1) = (Aijkl + Ailjk + Aiklj)χ

i
1χ

j
1χ

k
2χ

l
2 . (3.3)

Since Aijkl + Ailjk + Aiklj is fully antisymmetric due to (3.2), the mixed term has a fully

antisymmetric random coupling. We will assume that it is proportional to the coupling in

the diagonal term of (1.2), and are thus led to the random model (1.1). This model is the

special M = 2 case of a periodic SYK chain model

Hchain =
1

4!
Jijkl

M∑
x=1

(
χixχ

j
xχ

k
xχ

l
x + 3αχixχ

j
xχ

k
x+1χ

l
x+1

)
, (3.4)

where the integer x labels the lattice site, and χiM+1 ≡ χi1. This can be obtained from the

model of [26] by identifying the separate random couplings up to a factor of α.

Introducing the complex combination ψj = 1√
2
(χj1 + iχj2), we may write the Hamiltonian

(1.1) as

H =
1

4!
Jijkl

(
1− 3α

2

(
ψiψjψkψl + ψ̄iψ̄jψ̄kψ̄l

)
+ 3(1 + α)ψ̄iψ̄jψkψl

)
. (3.5)

As usual, we will assume that each variable Jijkl has a gaussian distribution with variance

6J2N−3
SYK. We will typically state energies in units of J , or equivalently set J = 1.

The duality symmetry described in section 2.1 applies to the coupled SYK model (1.1),

and again allows us to restrict α to the range from −1 to 1/3. There are two interesting

limiting cases. For α = −1 the transformation (2.11) maps H → −H. This means that, for

any random choice of Jijkl the energy spectrum is exactly symmetric under E → −E. This
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can be seen in the histograms of the spectrum shown in fig. (18); in particular, there are

many states whose energy is exactly zero. For α = −1 the model is a random counterpart

of the complex bipartite model:

Hα=−1 =
2

4!
Jijkl

(
ψiψjψkψl + ψ̄iψ̄jψ̄kψ̄l

)
. (3.6)

The fermion number operator

Q = iχj1χ
j
2 =

1

2
[ψ̄j, ψj] (3.7)

does not in general commute with H, but it is conserved mod 4, just like in the Maldacena-Qi

model [43]. For α = 1/3, however, we find the Hamiltonian

Hα= 1
3

=
4

4!
Jijklψ̄

iψ̄jψkψl , [Q,Hα= 1
3
] = 0 . (3.8)

Thus, we have enhanced U(1) symmetry ψj → eiγψj.12 We note that, for α = 1/3 the

scaling dimension of operator Q = O0
4 is h = 1 consistent with charge conservation. Also,

here g2(h) = g3(h), so that the scaling dimensions of O2n+1
2 and O2n+1

3 are equal. This is

because

O2n+1
2 + iO2n+1

3 = 2ψj∂2n+1
t ψj . (3.9)

Furthermore, the transformation (2.11) maps Hα= 1
3

into itself, so the theory is selfdual.

For general α, the model (1.1) has multiple discrete symmetries, which are discussed in

more detail in the appendix. These discrete symmetries can be spontaneously broken due to

a VEV of Q if Q is not invariant under them. In the model (1.1), there are two symmetries

that are not broken by a VEV of Q: the anti-unitary time-reversal symmetry K, and a Z4

symmetry generated by π
2

rotation R in χ1, χ2.

Rχ1R
† = χ2 , Rχ2R

† = −χ1 . (3.10)

They both preserve Q. The model (1.1) also has multiple reflection symmetries that are

spontaneously broken by the VEV of Q, which we list in the appendix. In fact all unitary

discrete symmetries of the model (1.1) form the Dihedral group of order 8, D4. In our case,

any two broken symmetries that can be related by an unbroken symmetry do not produce

12This model is similar to the complex SYK model [3], but in (3.8) the coupling Jijkl is taken to be fully
antisymmetric.
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extra ground state degeneracy, and therefore it is enough to focus on one of them.

Let us focus on the particle-hole symmetry [36–41] generated by

P = K

NSYK∏
i=1

(ψi + ψ̄i) , P2 = (−1)NSYK(NSYK−1)/2 . (3.11)

It acts on the fermion number as

PQP = −P2Q . (3.12)

For NSYK not divisible by 4, there is a two-fold degeneracy of the ground state in section

3.3, due to an anomaly in the particle-hole symmetry [36–41]. For NSYK divisible by 4 this

symmetry is not anomalous, and we find a non-degenerate ground state, which is followed

by a nearby state when −1 ≤ α < 0. The two lowest states become degenerate in the large

NSYK limit, and they are separated by a gap from the remaining states. This leads to a

spontaneous symmetry breaking through the formation of an expectation value of Q. We

will demonstrate this effect by solving the large NSYK Schwinger-Dyson equations for the

Green functions, and with diagonalizations at finite NSYK.

3.1 Schwinger-Dyson equations and the effective action

In this section we derive the large NSYK effective action of GΣ type, and the Schwinger-Dyson

equations, for the coupled SYK model (1.1). Following [42], we introduce bi-local variables

Gab(τ, τ
′) =

1

NSYK

〈Tχia(τ)χib(τ
′)〉 , (3.13)

and the corresponding Lagrange multipliers Σab(τ, τ
′), where a, b = 1, 2. The effective action

is given by

− βSeff

NSYK

= log Pf(∂τδab − Σab)−
1

2

∫
dτdτ ′

(∑
a,b

Σab(τ, τ
′)Gab(τ, τ

′)− J2

4

(∑
a,b

G4
ab(τ, τ

′)

+ 6α(G2
12(τ, τ ′) +G2

21(τ, τ ′))(G2
11(τ, τ ′) +G2

22(τ, τ ′)) + 6α2
(
G2

11(τ, τ ′)G2
22(τ, τ ′)

+G2
12(τ, τ ′)G2

21(τ, τ ′) + 4G11(τ, τ ′)G22(τ, τ ′)G12(τ, τ ′)G21(τ, τ ′)
)))

.
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By translation invariance

Gab(τ, τ
′) = Gab(τ − τ ′) , Σab(τ, τ

′) = Σab(τ − τ ′) . (3.14)

We also have the general properties

G11(τ) = −G11(−τ) , G22(τ) = −G22(−τ) , G12(τ) = −G21(−τ) . (3.15)

The Schwinger Dyson (SD) equations for the two point functions assume the form13

∂τG11(τ)−
∫
dτ ′
(
Σ11(τ − τ ′)G11(τ ′) + Σ12(τ − τ ′)G21(τ ′)

)
= δ(τ) ,

∂τG12(τ)−
∫
dτ ′
(
Σ11(τ − τ ′)G12(τ ′) + Σ12(τ − τ ′)G22(τ ′)

)
= 0 ,

J−2Σ11 = G3
11 + 3αG11(G2

12 +G2
21) + 3α2G11G

2
22 + 6α2G22G12G21 ,

J−2Σ12 = G3
12 + 3αG12(G2

11 +G2
22) + 3α2G12G

2
21 + 6α2G11G22G21 , (3.16)

and similarly for 1↔ 2. These equations and the effective action are invariant under 1↔ 2

and G12 → −G12, G21 → −G21.

3.2 Solutions of Schwinger-Dyson equations and symmetry break-

ing

For 0 ≤ α ≤ 1/3 there are no operators with complex scaling dimensions, so it is consistent

to assume that the discrete symmetries are unbroken and set G12 = 0, and G11 = G22, to

obtain a nearly conformal solution in the low energy limit. However, the appearance of a

complex scaling dimension for −1 ≤ α < 0 shows that such a conformal phase is unstable.

We will show that, in this range of α the true phase of the theory exhibits spontaneous

symmetry breaking.

In order to exhibit it, we have to allow the possibility that G12(τ) 6= 0. The underlying Z2

symmetry of the Hamiltonian (1.1) implies that such solutions must come in pairs related

by G12(τ)→ −G12(τ) (in our numerical work we will typically exhibit only one of these two

solutions). They correspond to working around the two inequivalent vacua, which we will

call |0+〉 and |0−〉. They are distinguished by the sign of the expectation value of operator

13These equations are also valid in the two-flavor tensor model (1.2), where Gab(τ) = 1
N3 〈TψIa(τ)ψIb (0)〉.
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Q = iχi1χ
i
2:

〈0+|Q|0+〉 = ANSYK , 〈0−|Q|0−〉 = −ANSYK , 〈0−|Q|0+〉 = 0 . (3.17)

The unbroken symmetry R in (3.10) implies

G12(−τ) = −G21(τ) = G12(τ) , G22(τ) = G11(τ) , (3.18)

and similarly for Σab. Using these constraints, we obtain for the effective action

− βSeff

NSYK

= log Pf(δab∂τ − Σab)− β
∫ β

0

dτ
(

Σ11G11 + Σ12G12

− J2

4

(
(1 + 3α2)(G4

11 +G4
12) + 12α(1− α)G2

11G
2
12

))
. (3.19)

The Schwinger Dyson equations become

∂τG11(τ)−
∫
dτ ′
(
Σ11(τ − τ ′)G11(τ ′)− Σ12(τ − τ ′)G12(τ ′)

)
= δ(τ) ,

∂τG12(τ)−
∫
dτ ′
(
Σ11(τ − τ ′)G12(τ ′) + Σ12(τ − τ ′)G11(τ ′)

)
= 0 , (3.20)

and

J−2Σ11(τ) = (1 + 3α2)G3
11(τ) + 6α(1− α)G11(τ)G2

12(τ) ,

J−2Σ12(τ) = (1 + 3α2)G3
12(τ) + 6α(1− α)G2

11(τ)G12(τ) . (3.21)

(3.20) may be written in momentum space as

G11(ωn) =
−iωn − Σ11(ωn)

(−iωn − Σ11)2 + Σ2
12

, G12(ωn) =
Σ12(ωn)

(−iωn − Σ11)2 + Σ2
12

. (3.22)

These equations, together with (3.21), can be solved numerically using the method of

weighted iterations used in [19].14 To trigger the spontaneous symmetry breaking, we start

our iteration process with a tiny non-zero G12(τ) which is purely imaginary. If we are in the

unbroken phase, after the iterations G12 becomes zero; whereas if we are in the broken phase

we find a non-zero purely imaginary solution for G12.

14In this case we find it more convenient to use a slow decay rate on the weight x.
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Figure 9: Numerical solutions for α = −1,−0.5,−0.2 and various values of βJ .

Figure 10: The expectation value of Q/NSYK, i.e. |G12(0)|, as a function of βJ for α = −0.5.
The region near (βJ)crit is shown.

The plots of G11 and iG12 for different values of α and βJ are shown in fig. 9. For each

value of α between −1 and 0 there are two phases. In the low temperature phase (large

βJ), there are three distinct solutions: two solutions with non-vanishing iG12 related by

G12(τ) → −G12(τ) and the one where G12(τ) = 0. The solutions with non-vanishing iG12

are the ones with the lower free energy. As βJ decreases, |G12(τ)| decreases everywhere for
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the non-trivial solution (see figure 9, 10), and at the critical value becomes exactly zero. For

βJ < (βJ)crit the only possible solution is G12(τ) = 0. Thus, the Z2 symmetry is restored,

and this is a second-order phase transition. The plot of (βJ)crit vs. α is shown in figure 11;

it blows up as α approaches zero from below.15

Using the solutions of the Schwinger-Dyson equations we can numerically compute the

large N free energy

− βF

NSYK

= log 2 +
1

2

+∞∑
n=−∞

log

((
1 +

Σ11(ωn)

iωn

)2

− Σ2
12(ωn)

ω2
n

)

+
3

4

+∞∑
n=−∞

(
Σ11(ωn)G11(ωn)− Σ12(ωn)G12(ωn)

)
, (3.23)

where the sum
∑

n log(−iωn) is replaced by log(2). The energy can be computed with the

formula

E

NSYK

=
1

2β

+∞∑
n=−∞

(
Σ11(ωn)G11(ωn)− Σ12(ωn)G12(ωn)

)
(3.24)

and at low temperatures it should converge to the energy of the ground state E0 divided by

NSYK.

Symmetry broken phase

Figure 11: Critical value of βJ as a function of α.

Now one can compare the free energy in the symmetry broken phase, FG12 6=0 with that of

the symmetry unbroken phase, FG12=0. In particular, the free energy of the latter is simply

twice that of a single SYK with a rescaling J →
√

1 + 3α2J. It follows that in the “conformal

15We note that this function does not have a vanishing derivative at the self-dual value of α = −1. Had we
plotted the critical value of βJ̃ = βJ

√
|α̃|, this derivative would vanish but the plot would not be monotonic.

21



window” 0 ≤ α ≤ 1/3 the low-temperature limit of the entropy is

S0 = 2c0N , c0 =
1

8
log 2 +

K

2π
≈ 0.2324 , (3.25)

which is twice that of the single SYK model. The fact that this is independent of α means

that the g-theorem [64] is obeyed to leading order in N , even though the theory is not exactly

conformal due to the peculiarities of the h = 2 mode. As a further check, one can consider

a large q expansion [19,65],

βF
(q)
G12=0 = − log 2− 1

q2
2πν

(
tan

πν

2
− πν

4

)
− 1

q3
2πν

(
πν− 2 tanπν

(
1− π

2ν2

12

))
+ . . . , (3.26)

where βJ
√

(1 + 3α2)21−qq = πν
cos πν

2
. The free energy of the symmetry unbroken phase FG12=0

is seen to agree well numerically with F
(4)
G12=0.

In figure 12 we plot for α = −1 the free energy of the symmetry broken phase (3.23) as a

function of βJ and compare it with that of the unbroken phase, obtained by setting G12 = 0

in the SD equations (3.20) and (3.21). We also show the entropy as a function of βJ . The

plot shows a clear second order phase transition at (βJ)crit ≈ 2.87, and the derivative of the

entropy is discontinuous. We will systematically study the critical exponents in future work.

Figure 12: Large N free energies of the true numerical solution and the solution with G12 = 0
for α = −1, J = 1. The graph on the right shows the entropy; we can clearly see a second
order phase transition, as there is a discontinuity in its derivative near critical temperature.

We notice that at sufficiently large βJ , there is a range of τ where both iG12(τ) and G11(τ)

decay exponentially and share the same decay rate. To explain this fact, let us study the

T = 0 case and insert the complete set of states

G11(τ) = 〈0+|e−Hτχ1
1(0)eHτ |n〉〈n|χ1

1(0)|0+〉 . (3.27)
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Figure 13: Large N free energies at fixed β and J. We take β = 5, J = 1, and decrease α.
We observe also a second order phase transition.

For large τ the sum is dominated by the lowest excited state, and we find

G11(τ)→ e−(E1−E0)τ 〈0+|χ1
1(0)|1〉〈1|χ1

1(0)|0+〉 . (3.28)

Similarly, we find that the large τ behavior of G12 is

G12(τ)→ e−(E1−E0)τ 〈0+|χ1
1(0)|1〉〈1|χ1

2(0)|0+〉 . (3.29)

Thus the universal decay rate among correlators signifies a mass gap in the spectrum.

In the work of Maldacena and Qi [42] the functions G11 and G12 were also found to

be exponentially decreasing for sufficiently large βJ . In fig. 14 we exhibit superimposed

plots of the low temperature solutions to our system of equations and those from [42], with

parameters chosen so that the solutions are close to one another for most of the range.

We observe a difference in the behavior of iG12(τ) and iGLR(τ) at small τ : in our case

the function is smooth with a vanishing derivative at τ = 0, while in [42] its derivative is

discontinuous at τ = 0; this is due to the fact that their Hamiltonian includes a quadratic

term.

We can also study what happens at low temperatures (large βJ) as a function of α. In figure

15 we plot iG12(0), which is the expectation value of the order parameter Q/NSYK, for a large

βJ . This quantity becomes small as α is increased towards zero. In figure 16 we plot the large

NSYK limit of the energy gap Egap divided by J , calculated from the exponential decay of the

Green functions. We also plot the ground state energy E0 divided by JNSYK calculated using

(3.24). Results from exact diagonalizations extrapolated to large NSYK, (3.33), are shown
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Figure 14: Plot of solutions GLL and iGLR for the model in [42] superimposed with G11 and
iG12. Parameters chosen so that the solutions are close for most of the range of θ.

Figure 15: The expectation value of Q/NSYK, i.e. |G12(0)|, as a function of α for βJ = 5000.

with dots and demonstrate very good agreement. The exact diagonalizations for finite NSYK

are discussed in the next section.

Figure 16: Right: the value of E0/(JNSYK) as a function of α. Both graphs are approximately
linear in α for α not too small. Results from exact diagonalizations, (3.33), are shown with
dots. Left: the large NSYK energy gap in the spectrum, computed from the exponential
decay of the Green functions.
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3.3 Exact diagonalization for finite NSYK

In this section we present numerical results for the spectra of two coupled SYK models with

Hamiltonian (1.1). We first check that the results from exact diagonalizations agree well

with expectations: the spectrum for α = 0 and NSYK = 30, and the ground state energy of

α = −1 for various NSYK concur well with analytical arguments, and with the results from

3.2. Then we present our results on the energy gap and broken symmetry.

Figure 17: Left: The energy spectrum for α = 0, i.e. for two decoupled SYK models, for a
single sampling of NSYK = 30. Right: The same spectrum magnified near the lower edge.

The biggest number we are able to access via exact diagonalization of the coupled SYK

models is NSYK = 16. In this case the discrete symmetry (3.11) is not anomalous, and the

ground state is non-degenerate. However, for −1 ≤ α < 0 we observe a nearby excited

state followed by a gap. We will interpret this as indication of approach to spontaneous

symmetry breaking, which takes place in the large NSYK limit. We will also present spectra

for NSYK = 15, where the discrete symmetry (A.5) is anomalous, so that the states are doubly

degenerate. There is again a gap in the spectrum present for −1 ≤ α < 0. Furthermore,

we will present numerical results on the VEV of operator iχi1χ
i
2 for NSYK = 14, which

demonstrates that it is non-vanishing for −1 ≤ α < 0.

First, let us consider α = 0, where we find the spectrum of two SYK model with the same

random couplings. The density of states for this model is simply given by the convolution

of that of the single SYK model:16

ρdouble(E) =

∫
deρ(e)ρ(E − e) (3.30)

This in particular helps us determine the behavior of ρdouble(E) near the ground state. Shift-

16We thank D. Stanford for a useful discussion about this.
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Figure 18: The spectrum for a single realization with NSYK = 15, 16 and α = −1, −0.5.
For α = −1, the spectrum exhibits a gap near E = 0 when NSYK is odd and a large number
of states with E = 0.

ing the energy so that the ground state is at zero, we know that ρ(E)→ A
√
E for small E.
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Figure 19: The spectrum for a single realization for NSYK = 16 and α = 1/3.

Therefore, for small E

ρdouble(E)→ A2

∫ E

0

de
√
e(E − e) =

πA2E2

8
. (3.31)

The numerical density of states, shown in figure 17 for NSYK = 30, is in good agreement

with the E2 dependence near the ground state.

Let us proceed to the spectra for non-vanishing values of α. In figs. 18, 19 we plot the

spectra of energy divided by J for α = −1,−1/2, 1/3 and different values of NSYK. These

energy distributions have interesting and unusual shapes. For the special values α = −1 and

1/3 we observe large numbers of states with E = 0; this creates the zero-energy peaks seen

in the graphs. For α = −1 and odd NSYK we find that the E = 0 peak is separated by gaps

from the remaining states, but for even NSYK it is not.

In order to clarify the peculiar shapes of the energy distributions in fig. 18, it is useful

to separate them into distinct Z4 symmetry sectors17 labeled by the eigenvalue of eπiQ/2, as

shown in fig. 20 for NSYK = 16. The sectors where eiπQ/2 = ±i, i.e. Q = ±1 mod 4, have

identical energy spectra which are shown on the right. They contain the symmetric bumps,

which produce the “rabbit ears” pattern in the overall distribution. For α = −1 these sectors

also contain large numbers of states with E = 0 (they are discussed in Appendix B). On

the left in fig. 20 we show the states with eiπQ/2 = ±1. For eiπQ/2 = −1 the distribution

is smooth and does not contain a sharp peak at E = 0. The Z4 invariant sector eiπQ/2 = 1

contains the two nearly degenerate lowest states separated by a very clear gap from the

remaining states. For α = −1 this sector also contains a large number of E = 0 states.18

17We are very grateful to J. Verbaarschot for raising a question about separation of the spectra into sectors.
18If we gauge the Z4 symmetry, then only the sector with eiπQ/2 = 1 will remain in the spectrum.
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Figure 20: The spectrum for a single realization of the coupled SYK model with NSYK = 16
and α = −1 separated into four Z4 symmetry sectors. In each of the sectors the spectrum
is symmetric under E → −E. The Z4 invariant sector shows two nearly degenerate lowest
states separated by a gap from the rest of the states.

For NSYK = 15, due to the anomaly in particle-hole symmetry, there are two degenerate

ground states, see fig. 18.19 In fact, each energy level is doubly degenerate. This is due

to the fact that the spectra in the sectors with charges Q = 1/2 mod 4, and with charges

Q = −1/2 mod 4 are identical; similarly, the spectra with Q = ±3/2 mod 4 are identical.

For −1 ≤ α < 0 we observe a gap between the lowest energy level and the next one, as

expected. The spectra for α = −1 separated into the four sectors are shown in fig. 21. On

the other hand, for NSYK = 16 there is no exact degeneracy of the ground state, but the first

gap is very small, indicating a tendency towards spontaneous symmetry breaking at large

NSYK. We show the NSYK = 16 spectra for α = −1 and α = −0.5 in fig. 18. In both cases,

for a typical sampling of the coupling constants Jijkl we observe two closely spaced states

followed by a visible gap. For large NSYK the energy gap between the two lowest states is

expected to decrease exponentially:

− log
E1 − E0

J
∼ NSYK . (3.32)

19If we instead adopt the Maldacena-Qi Hamiltonian with a quadratic coupling which breaks the particle-
hole symmetry explicitly, there is no such double degeneracy.
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For α ≥ 0 the low-lying spectrum is different – we observe many closely spaced low-lying

states without large gaps, similarly to the standard SYK spectrum.

Figure 21: The spectrum for a single realization of the coupled SYK model with NSYK = 15
and α = −1 separated into four Z4 symmetry sectors. In each of the sectors the spectrum
is symmetric under E → −E. The sectors with Q = ±1/2 mod 4 contain the ground state
separated by a gap from the rest of the states.

In fig. 22 we plot the ground state energy for α = −1 and α = −0.5 with NSYK =

10, . . . , 16. The plots, where J is set to 1, are approximately linear, and the fits give

Eα=−1
0 = −0.283NSYK + 0.373 , Eα=−0.5

0 = −0.179NSYK + 0.217 . (3.33)

The limiting values Eα=−1
0 /NSYK = −0.283 and Eα=−0.5

0 /NSYK = −0.179 are in good agree-

ment with the result found from Schwinger-Dyson equations; see fig. 16. In figure 22 we also

exhibit the energy gap between second and third states as a function of α. As α is increased

from −1 to 0, the gap decreases as expected.

Exact diagonalizations also provide support for the statement that the fermion number Q

acquires a vacuum expectation value for −1 ≤ α < 0. For NSYK not divisible by 4, there are

two ground states |0±〉 which map into each other under the symmetry generator P . This

can be viewed as anomalous breaking of the time-reversal Z2 symmetry (3.11) which occurs
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Figure 22: Left: The ground state energy for α = −0.5, −1 and NSYK = 10, 11, . . . , 16 (The
number of samples are: 250000, 120000, 50000, 5000, 5000, 2000, 500). The linear fit is shown
by dashed lines. Right: The energy gap between second and third states as a function of α
for a single realization of random couplings at NSYK = 16.

for a finite number of degrees of freedom [36–38,40,41]. In figure 23 the vacuum expectation

value as a function of α is plotted for NSYK = 14. This is the finite NSYK analogue of fig.

15, where the large NSYK limit of the condensate is plotted. We also note the qualitative

similarity of the plot 23 and that of the imaginary part of the scaling dimension of Q in fig.

8.

Figure 23: The expectation value 〈0+|Q |0+〉 as a function of α for a single realization of
random couplings at NSYK = 14.
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A More on the discrete symmetries

The model (1.1) has the anti-unitary particle-hole Z2 symmetry generated by (3.11). The

operator K is defined to take z → z̄, z ∈ C but acts as the identity on ψ or ψ̄. It may be

identified as a kind of time-reversal generator which satisfies K2 = 1 [36–38]. It acts by

KiK = −i , Kχi1K = χi1 , Kχi2K = −χi2 , (A.1)

and therefore, satisfies

[K,H] = [K,Q] = 0 . (A.2)

Note that although K can be anomalous, K is unbroken as it does not change the sign of

Q. Another unbroken symmetry is the π
2

rotation between χi1 and χi2.

R = (−1)NSYK/42−NSYK/2
∏
i

(1− 2χi1χ
i
2). (A.3)

It satisfies

RR† = 1 , Rχi1R
† = χi2 , Rχi2R

† = −χi1 , R4 = 1. (A.4)

Note R2 = (−1)F . There are also various reflection Z2 symmetries that are spontaneously
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broken by the VEV of Q. In particular, we have the reflection symmetry:

P =

(−1)NSYK(NSYK−1)/42NSYK/2
∏NSYK

i=1 χi1 if NSYK = 2k, k ∈ Z

(−1)NSYK(NSYK−1)/42NSYK/2
∏NSYK

i=1 χi2 if NSYK = 2k + 1, k ∈ Z,
(A.5)

such that

PP † = 1 , Pχi1P
† = −χi1 , Pχi2P

† = χi2 , P 2 = 1. (A.6)

In fact, R,P, and K are enough to generate all discrete symmetries of the model (1.1).

In particular, all the unitary discrete symmetries form D4, the dihedral group of order 8.

To see this, it’s enough to check that the group presentation: R4 = P 2 = (RP )2 = 1. The

remaining reflections can be identified with RP,R2P and R3P. For a given unitary symmetry

we can compose it with K to obtain an anti-unitary one.

In our case, when NSYK →∞, although multiple Z2 symmetries are spontaneously broken,

we only expect a two-fold ground state degeneracy. In fact, any two broken symmetries that

can be related by an unbroken symmetry do not produce any extra ground state degeneracy.

To see this, consider for example the reflection symmetry RP. Since R is unbroken, we may

assume R |0〉 = |0〉 without losing of generality. Then RP |0〉 = RPR |0〉 = P |0〉 .

At finite NSYK, however, certain discrete symmetry can be anomalous and is responsible

for an exact two fold degeneracy for certain NSYK. For example, the particle-hole symmetry

P ∼ KP acts on the fermions as

PψjP = ηψ̄j , Pψ̄jP = ηψj , η = (−1)(NSYK+2)(NSYK−1)/2 . (A.7)

The fermion number operator (3.7) is odd under this symmetry:

PQP = −P2Q . (A.8)

When NSYK is not divisble by 4, there are two degenerate ground states |0±〉, and the

symmetry generator P maps them into each other [36–41]:

P |0+〉 = (−1)NSYK(NSYK−1)/4 |0−〉 , P |0−〉 = (−1)NSYK(NSYK−1)/4 |0+〉 . (A.9)

In this case we can say that the particle-hole symmetry is anomalous.
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B Zero-energy states in the bipartite model

The bipartite model, which is the α = −1 case of the two-flavor tensor or SYK model, has

some additional symmetries which make it special. In general the spectrum of the two-flavor

SYK is not symmetric under E → −E for a given random coupling Jijkl. However, for

α = −1 the spectrum is exactly symmetric for any choice Jijkl due to the duality symmetry

(2.11). This symmetry acts by

ψj → 1 + i√
2
ψ̄j , ψ̄j → 1− i√

2
ψj , (B.1)

and for α = −1 this reverses the sign of the Hamiltonian of bipartite model, Hα=−1, which

is given in (3.6).

Furthermore, the model with α = −1 has a large number of zero-energy states. For the

SYK model, the sharp peak at E = 0 may be seen in fig. 18. For a generic choice of Jijkl

where they are all non-vanishing, the number of E = 0 states does not depend on their

values. In fact, it is not hard to calculate this number separately for each Z4 symmetry

sector. The separate sectors may be labeled by Q = Q̃ mod 4, where Q̃ = 0,±1, 2 when N is

even, and Q̃ = ±1/2,±3/2 when N is odd.20 The general formula for the number of E = 0

states in sector Q̃ is

NQ̃ =

[(N−2Q̃)/8]∑
m=−[(N+2Q̃)/8]

(−1)m
(

N
N
2

+ Q̃+ 4m

)
. (B.2)

This formula is applicable to “generic” bipartite Hamiltonians (3.6), where all Jijkl are non-

vanishing; in such cases, it does not depend on the specific choice of couplings. However,

if some couplings Jijkl vanish, then the number of E = 0 states may be higher than (B.2).

For example, in the O(N1) × O(N2) × O(N3) tensor bipartite models, where many quartic

couplings vanish [17], the number of E = 0 states is greater than that given by (B.2) with

N = N1N2N3.

To explain the origin of the formula (B.2), let us consider for example the Q̃ = 0 sector of a

model with even NSY K . In this sector the E = 0 states may be obtained from superpositions

20In this Appendix N denotes NSYK.
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Figure 24: This picture represents the counting of zero-energy states in the Q̃ = 0 sector.
They are superpositions of states with charges Q = 0 mod 8.

of states with Q = 0 mod 8.21 The dimension of Hilbert space in this sector is

d0mod8 =
∑
m

(
N

N
2

+ 8m

)
. (B.3)

When the Hamiltonian of bipartite model acts on such a state, it maps it to a superposition

of states with Q = 4 mod 8 (see fig. 24). The total number of such states is
∑

m

(
N

N
2

+4+8m

)
,

and this is the number of constraints from the requirement that Hα=−1 annihilates the zero-

energy states. Subtracting this number of constraints from d0mod8, we arrive at (B.2) for the

case Q̃ = 0. Analogous reasoning provides a derivation of (B.2) for other values of Q̃. We

have checked numerically that all the E = 0 wave functions are mixtures of only the states

with Q = Q̃ mod 8, and that their numbers for any random sampling of Jijkl are given by

(B.2).

For example, for N = 16 the number of states in the Q̃ = 0 sector is

N0 =

(
16

8

)
+ 2

(
16

16

)
− 2

(
16

4

)
= 9232 . (B.4)

The number of states in the Q̃ = ±1 sectors is

N1 = N−1 =

(
16

7

)
+

(
16

15

)
−
(

16

3

)
−
(

16

11

)
= 6528 . (B.5)

The number of states in the Q̃ = 2 sector vanishes for any even N .

21This may be interpreted as the fact that in the zero-energy sector there is symmetry enhancement from
Z4 to Z8.
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