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Abstract

Super-resolution fluorescence microscopy has become a powerful tool to resolve structural information that is not
accessible to traditional diffraction-limited imaging techniques such as confocal microscopy. Stochastic optical
reconstruction microscopy (STORM) and photoactivation localization microscopy (PALM) are promising super-resolution
techniques due to their relative ease of implementation and instrumentation on standard microscopes. However, the
application of STORM is critically limited by its long sampling time. Several recent works have been focused on improving
the STORM imaging speed by making use of the information from emitters with overlapping point spread functions (PSF). In
this work, we present a fast and efficient algorithm that takes into account the blinking statistics of independent
fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging. Our method
is insensitive to background and can be applied to different types of fluorescence sources, including but not limited to the
organic dyes and quantum dots that we demonstrate in this work.
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Introduction

The information provided by fluorescence imaging is essentially

limited by the resolution, defined as the finest structure that the

imaging technique is able to resolve. The resolution is critically

limited by the diffraction of the objective aperture, which places

physical challenges to obtaining information from the acquired

images. Recently, several novel imaging techniques has been

developed aiming to break the diffraction limit, namely super-

resolution imaging. These techniques can be categorized into three

different types. The first type utilizes a spatially or temporally

engineered illumination pattern to either reduce the volume of the

detected target in a controllable way, as in stimulated emission

depletion (STED) microscopy [1–3] which uses reversible,

saturable optical fluorescence transitions (RESOLFT) [4], or

encodes high-frequency spatial information into low-frequency

signals such as in saturated structural illumination microscopy

(SSIM) where angular or temporal responses of the fluorophore

are used as spatial information carriers [5]. These types of imaging

techniques usually require much higher excitation or switching

power than conventional epi- or confocal fluorescence microscopy,

and may cause phototoxicity and photodamage in certain

biological systems. The instrumentation complexity and cost are

considerations that also limit the applicability of these methods.

The second group of methods resolves the distribution of

fluorescent sources based on single particle localization. Stochastic

optical reconstruction microscopy (STORM) [6] and photo-

activated localization microscopy (PALM) [7,8] achieve a resolu-

tion of 10 nm by sequentially activate single emitters and precisely

localizing them to better than the diffraction limit [9]. However,

the limitation of STORM/PALM lies in the fact that the resolving

ability is based critically on the spatial and temporal separation of

emitters, thus the number of emitters resolved in each frame is

small compared with the required amount for good image

reconstruction. A reconstructed image typically requires 103 to

104 images, or minutes of imaging time [10], for reasonable

quality. Recently, sub-minute acquisition times have been

achieved for relative large structures with a similar number of

frames [11]. The time required for imaging disqualifies the use of

these approaches in most live-cell imaging applications. Aiming to

obtain high information density by looking at more densely

distributed bright emitters, Holden et al. used a software package

from astronomy research to separate closely located Gaussians in a

technique called DAOSTORM [12]. Compressed sensing

STORM (CSSTORM) and deconSTORM also address the

overlapping PSF problem and are able to work with slightly a

overlapping density of active emitters [13,14]. Higher emitter

density still remains challenging for these essentially single emitter

localization based methods. Furthermore, the computational costs

of these sophisticated algorithms often outweigh the improvements

of the quality, making them less desirable as routine super-

resolution imaging methods.

Instead of resolving the localization of emitters based on single

switching events, a third group of approaches extracts localization

information from the statistics of pixel intensity fluctuations. In
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these approaches, overlapping emitters are actually preferred since

a higher density of provides higher intensity variance. Many

different kinds of emitters including fluorescent proteins, organic

dyes [10] and nano crystals [15,16] have particular temporal

intensity fluctuation patterns, or fluorescence intermittency (FI).

Based on the independence of the emitter intensity fluctuations

from each molecule, super-resolution optical fluctuation imaging

(SOFI) was developed to effectively reduced the PSF width by

taking the simple temporal cumulant of the pixel intensities [17].

SOFI was later improved by including spatial cross-cumulants of

the intensity fluctuations [18]. Following these same principles,

Lidke et al. resolved the localization of densely distributed

individual quantum dots from the spatial covariance of the pixel

intensity fluctuations using independent component analysis (ICA)

[19,20]. This method was shown to be applicable to a small

number of sources but becomes intractable if the number of

emitter reaches 10 or more, and thus is not applicable to resolving

continuous structures. A realistic model that optimizes the location

and blinking of emitters was built by Cox et al. to yield super-

resolution images at a greatly improved temporal resolution of

seconds [21]. The computational complexity of this global

optimization is however extremely high, making it difficult to

implement. These statistical methods reach a resolution of

,100 nm that can not match the single particle localization

techniques, but with a far smaller number number of time frames

(typically in the hundreds), and thus better temporal resolution.

In this work, we introduce a new image reconstruction

algorithm belonging to the third category named spatial covari-

ance reconstructive (SCORE) algorithm. We start from the

fluorescent intensity covariance between pixels of a stack of

images, combine the prior knowledge of the shape of the PSF to

map the distribution probability of individual emitters. Our

method builds upon the common advantages of the statistical

approaches: insensitivity to background, no upper limit to the

fluorescent emitter on-time, far higher information density per

frame, low requirements on the number of frames, and ease of

implementation from standard epi-fluorescence instruments.

Through principal component data compression, we only consider

components that have significant contribution to the variance of

pixel intensities, and thus this method reduces image noise and

computational cost. We quantitatively compare the results of

STORM and SCORE using simulated data, where the quality is

defined as the Kullback-Leibler divergence from the known

ground truth to the resulted images. As demonstrations, we

applied SCORE to images of microtubules in HeLa cells labeled

with either organic dyes and quantum dots. In both cases, we are

able to achieve sub-diffraction resolution of better than 135 nm

and 90 nm, respectively, within a few seconds of imaging. The

resolution is limited by our labeling quality, and better imaging

resolution can be obtained by using fluorophores that have more

robust intensity fluctuations.

Results

We consider M fluorescent emitters located at positions xm in a

2D plane. Here we do not place constraints on the spatial

distribution of xm, so that the emitters can be arbitrarily dense.

Each emitter undergoes statistically independent fluctuations in

intensity over time governed by the photochemistry of the

particular molecules used. We record a sequence of T images of

these emitters, whose images are governed by the instantaneous

intensity of each emitter sm,t where t~1,2, . . . ,T . The indepen-

dence condition of different emitters requires that

P(sm,t,sm’,t)~P(sm,t)P(sm’,t) for m=m’. Each emitter is imaged

as a diffraction limited spot described by the PSF. The size of the

PSF depends on the imaging wavelength, the numerical aperture

of the objective and the axial distance of the emitter from the focal

point. In our model, we assume that the PSFs are spatially

homogeneous. Let the individual PSF be given by f (xi{xm)

which describes the the intensity value of the ith pixel at location xi

of a 2D PSF centered at the mth source location xm. The temporal

sequence of image pixel intensities in the absence of noise is

It(xi)~
P

m f (xi{xm)sm,t. The convolution can be rewritten in

vector notation Ii,t~fT s, where f ~(f (xi{x1),f (xi{x2),

. . . ,f (xi{xM ))T , and s~(s1,t,s2,t, . . . ,sM,t)
T .

The problem of image reconstruction is to find the best estimate

for the emitter positions xm from the observed time series. The

PSF f is usually well approximated by a Gaussian function in two-

dimensional cases, and sm,t is assumed to follow mutually

independent and identical statistics (Fig. 1). The difficulty of

globally optimizing the emitter locations and intensity sequences

lies in the fact that the number of emitters, M, is unknown and the

parameter space is extremely high-dimensional. It helps to reduce

the dimensionality of the problem by truncating the principal

components of the data set above the noise level as suggested in

reference [19]. Rather than seeking the solution in terms of the

locations, we coarse-grain the set of center locations, xm, onto a

finite mesh grid with points located at xj , j~1,2,:::,J , which

represents an up-sampled mesh of the camera pixel array xi. In

reconstructing an image, we estimate the number of emitters, nj , at

each grid point.

The principal components can be obtained from the covariance

matrix between pixels in a time-series of images

Cii’~Ef(It(xi){EfIt(xi)gt)(It(xi’){EfIt(xi’)gt)gt ð1Þ

where Efgt takes the average over time index t. The normalized

eigenvectors of Cii’ form an orthonormal basis set that explains the

variations of pixels in groups, while the corresponding eigenvalues

are equal to the variance of the corresponding eigenmode

amplitudes. The total number of the eigenmodes, L, is the same

as the number of pixels. We label the corresponding eigenvectors

gl(xi),l~1,2, . . . L, or g in the vector notation, and the

eigenvalues ll .

Dimensional reduction in principal component analysis can be

achieved by eliminating those modes with less than a threshold

that retains meaningful signals while reducing noise. The

eigenvalue spectrum from a typical set of blinking emitter images

shows a kink that can be used to separate signal from background

noise (Fig. 1(c)). We determine the position of the critical threshold

by fitting the variances with a double exponential function, and

take the intersection of the two functions at l~l0 as the threshold

between signal and noise (see online supporting material for

details). The truncated set of eigenmodes is a compressed

representation of the original pixel intensity covariance. Con-

versely, the individual fluctuating PSFs span a subspace close to

the eigen-subspace of the data, but are corrupted by noise and

pixelation.

The distance of an arbitrarily placed PSF to the eigen-subspace

depends on how close this PSF truly resembles a fluctuating

emitter. Quantitatively, we utilize this property to estimate the

likelihood of finding a PSF at a particular location xj on the

refined grid based on the Euclidean distance Dj from the PSF to

the eigen-subspace ĝg~fgl Dl~1,2, . . . l0g. We approximate a PSF

centered at xj by a Gaussian function with width s:

Gj(x; s)~exp({Dx{xj D2=(2s2))=(2ps2), so that the distance is

calculated via

SCORE Super-Resolution Microscopy
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Dj(ĝg)~
EGj{SGj ,ĝg

TTĝgE
EGjE

, ð2Þ

where SGj ,ĝg
TTĝg is the projection of the Gaussian-shaped PSF

centered at the refined grid position xj on the compressed

subspace ĝg, and E:E takes the L-2 norm. Note that it is possible to

extract emitter localization information on the refined grid xj

instead of the original image pixel grid, because the localization

information is encoded in the shape and variance of the eigen

modes.

The relationship between the emitter density and the Euclidean

distance is not readily obvious. Therefore, we take an approach

that approximates the probability density and then optimizes the

distribution so that it resembles the eigen-mode variances obtained

from the images. The distance distribution Dj is mapped onto the

emitter density by a simple exponential function:

nj~exp {
Dj(ĝg){min(Dj)

h

� �
, ð3Þ

where the maximum value of the image is normalized to 1, and h

is a parameter that determines the maximum gradient allowed in

the reconstructed image. This exponential form is empirically

selected. Because of the following optimization steps, the specific

form is not critical. Given

D+nj D~
D+Dj D

h
nj , ð4Þ

the sharpness parameter, h, can be implicitly solved numerically.

The maximum gradient of the reconstructed image can be selected

manually for desired sharpness, or it can be automatically

determined without human interference based on the image

signal to noise ratio, using the variances of the eigen modes and an

empirical relation (see online supporting material for details).

In matrix notation, we define the coordinates of a set of

normalized Gaussian functions f of the eigenvectors g as A~gfT .

The elements Alj~Sgl ,fjT represent the magnitude of the lth

eigenmode of the jth Gaussian function centered at xj . The

distance to the subspace, Dj(g), is
PL

l~l0
A2

lj due to the

orthogonality of g. Since f is normalized, we have
PL

l~1 A2
lj~1,

and thus D can be written as

Dj(g)~1{
X

l

A2
ljrl , and rl~

1, lvl0

0, l§l0

�
: ð5Þ

where rl is a set of profiling parameters.

Eq. 5 and Eq. 3 provide a simple and computationally efficient

estimate of the emitter number density from the covariance matrix

alone using the known shape of the PSF. From the reconstructed

image, nj , it is straightforward to compute the covariance matrix

assuming emitters have independent and identical fluctuation

statistics (derived in the supporting materials),

Cll’~
X

j

AljAl’jnj : ð6Þ

One can then optimize the reconstructed image by comparing the

covariance matrix of the reconstructed image in the basis of the

eigenvector space g with the covariance of the true images in the

same basis. Since the number of pixels in the refined reconstruc-

tion is higher than the original image, which has the same size of

the covariance matrix, directly optimizing emitter density nj on the

refined image is underdetermined. Instead of determining nj , we

optimize the profiling parameters, rl , for the significant compo-

nents l~1,2, . . . ,l0 and minimize the weighted error of the

covariance of the reconstructed image from the experimental

diagonal covariance matrix C ’ll’~ dll’ll ,

argmin
rl ,lƒl0

X
l,l’ƒl0

½(Cll’{ )wll’�2: ð7Þ

In practice, the weighting matrix is determined via

wll’~(llll’)
{1=2. With each set of rl , Dj is calculated from Eq. 5

while allowing rl to deviate from 1, and then nj is calculated using

Eq. 3 with h determined using Eq. 4. Eq. 6 is then used to calculate

covariance, and finally rl is optimized according to Eq. 7.

The optimized solution is obtained through a gradient descent

method, and we name this optimization process to refine the

intensity distribution estimate as ‘‘variance shaping’’. Simulations

suggest that variance shaping indeed provides more accurate

estimates than the simple SCORE at the cost of slight increase in

computation time. Practically, for large image sizes, because the

Figure 1. The SCORE technique illustrated using simulated
data. (a) Two emitters produce a Gaussian shaped point spread
function f (x), associated with a temporal blinking sequence st that is
independent one another. The product of the spatial profiles and
temporal sequences is the observable images, which can be
transformed into a set of orthonormal eigen modes g(x) and associated
mixed and thus correlated fluctuation sequences yt. The distribution of
the emitters can be found by measuring the distance between a
Gaussian point spread function and the subspace span by the eigen
modes that have significant variation above noise. (b) First 6 eigen
modes of flickering emitters distributed evenly on a sub-diffraction
sized ellipse indicated by the red oval. (c) The sorted variances of all the
64 eigenmodes.
doi:10.1371/journal.pone.0094807.g001
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intensity fluctuation correlation between pixels is localized to single

PSFs, large images are sliced into small overlapping regions,

typically with a width of 6–10 times of the PSF size and processed

independently in parallel. The individual regions are stitched

together into the large image weighted by the total variance of

each region.

Quantitative evaluation of SCORE and comparison with
STORM

The quality of single-emitter based methods such as STORM

and PALM is determined by many factors including emitter

brightness, switching duty cycle, and the number of frames that

can be acquired. In addition, the localization precision for a single

emitter scales with the width of the PSF and inversely with the

square root of the number of photons received by the camera.

Further reductions in precision occur in the presence of camera

noise and ambient light collection. The on-off duty cycle of the

emitters places an upper bound on the allowed emitter labeling

density to achieve single emitter localization in a diffraction-

limited area, which in turn defines the maximum spatial frequency

of resolvable features according to the Nyquist criterion for a finite

number of images collected. However, the actual density of

localized emitters in the reconstructed image is proportional to the

number of frames and the emitter duty cycle. It has been shown

experimentally that image reconstruction quality can limited by

either the localization precision or the emitter density, depending

on the choice of the specific fluorophore [10]. In conventional

single-frame based image reconstruction algorithms, the two

factors independently limit the image quality. For instance,

harvesting more photons in one switch-on event does not increase

the allowed emitter density, and for a fixed emitter brightness,

accumulating more frames does not improve localization preci-

sion. In contrast, by making use of the pixel intensity covariance,

SCORE breaks the limits of the emitter density upper bound for

each frame. Regardless of the amount of overlap between emitter

PSFs, more switching events result in higher variance for a given

emitter brightness and consequently higher signal-to-noise ratios

(SNR) in the covariance matrix. Accumulating more frames

provides better statistics of the pixel covariance, thus improving

the ability to resolve smaller features.

To demonstrate the ability of SCORE to achieve super-

resolution imaging using highly overlapping emitter PSFs, we first

analyzed a series of simulated images. In the simulations, the width

of the PSF, s, is set to 1 pixel, similar to typical cases where the

pixel size is in the range of 100–150 nm (Fig. 2a). We place 100

emitters equally spaced on a sub-diffraction-sized ellipse with the

long axis equal to s and the short axis equal to 0:8s (red oval in

Fig. 2a). The number of photons detected in each frame follows an

exponential distribution with an average value of 1000 photons to

simulate the variability of photons emitted during each switching

event. Switching obeys two-state kinetics with a fixed off rate,

poff ~ 0:9, and on-rate, pon . Gaussian white noise with a

standard deviation of 5 is added to the simulated images to

emulate read-out noise typical of EMCCD cameras. A set of

reconstructed images using STORM and SCORE are then

generated using values for pon from 0.0005 to 0.5 and the total

number of frames varying from 102 to 104.

To quantify the quality of the reconstructed images, we

interpret each image as a probability distribution of emitter

density, and use the Kullback-Leibler (KL) divergence to describe

the distance between the ground truth and the images. The KL

divergence is defined as

DKL(PDQ)~
X

k

Pk ln
Pk

Qk

� �
, ð8Þ

where Pk and Qk represent the emitter positions and the STORM

or SCORE images respectively. Since the simulated emitters

reside at a discrete set of locations, we convolve the emitter

distribution with a Gaussian function whose width is equal to the

size of an up-sampled grid spacing to reduce aliasing.

The KL divergences between STORM or SCORE images and

the ground truth are shown in Figure 2b,c. Sample images

reconstructed from 300 frames or 3000 frames under various duty

cycles of the fluorophore switching are shown in Figure 2d along

with a comparison between SCORE and STORM. For large

numbers of frames (in the thousands) and low duty cycles (below a

critical value of 0.01 where less than one of the 100 emitters is

fluorescing at a time), STORM is able to reconstruct the ellipse

with good accuracy, and SCORE has lower accuracy due to low

emitter intensity variance at low duty cycles (Fig. 2e). Above the

critical duty cycle, STORM quickly fails to resolve the hollow

structure of the ellipse and the reconstructed image collapses to a

single point. deconSTORM has a better tolerance to overlapping

emitters but is still unable to resolve the ellipse if more than 3

emitters are active at a time (a duty cycle of 0.03). In contrast,

SCORE consistently performs better at higher duty cycles and

eventually reaches a KL divergence at 0.05, lower than the best

performance of STORM at 0.2 for any duty cycle. The KL

divergence of SCORE does not decrease further with duty cycle

due to the anti-alias filtering of the ground truth and our

automatic routine for determining the sharpness parameter h. For

a smaller number of images (300 frames), STORM and decon-

STORM exhibit the same trend as the duty cycle changes when

compared to the larger data set, but the reconstructed image

quality is lower because of low SNR. In this regime, SCORE

performs comparably to STORM, but the improvements of

quality proceed monotonically beyond the critical duty cycle of

0.1, resulting in a consistently smoother and more accurate result

(Fig. 2d,e).

Another factor limiting the quality of the reconstructed image is

the localization precision of each emitter, which is determined by

its brightness and the level of background noise [22]. In single-

emitter localization techniques, the uncertainty in determining

emitter location effectively blurs the emitter positions and this can

not be easily corrected by accumulating frames. To study the effect

of localization precision on imaging quality, we increase the

background noise in our simulation to a higher level, 15, and vary

the SNR ratio by tuning the number of photons received from a

emitter from 100 to 3000 per frame. The K-L divergence of

STORM and SCORE images from the ground truth is calculated

at their corresponding near-optimal duty cycle of 0.002 for

STORM and 0.05 for SCORE (Fig. 3a,b). For a fixed number of

frames, a higher number of photons increases the SNR, thus

improving the reconstructed quality of both STORM and

SCORE. To show the effect of accumulating frames, the K-L

divergence when 256 photons per frame per emitter are collected

is plotted in Figure 3c, and sample reconstructed images for

various number of accumulated frames are shown in Figure 3d.

Both in the K-L divergence and the sample images, SCORE

produces consistently better quality images than STORM.

However, STORM quality improves with an increasing number

of images whereas SCORE quality is insensitive to this because

determination of the sharpness parameter h is conservative for

high noise cases and thus limits the quality. One could include

SCORE Super-Resolution Microscopy
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knowledge of the number of frames to adjust the sharpness

parameter h and improve the accuracy of SCORE.

SCORE images of fluorescently labeled microtubules
As a demonstration, we applied SCORE imaging to fluorescentl

microtubules labeled with an organic Alexa dyes and quantum

dots (QDots). Microtubules from fixed HeLa cells were stained

with anti-tubulin antibodies conjugated to the Alexa Fluor 647

fluorescent dye and imaged with epi-fluorescence microscopy. A

50 mW, 647 nm solid-state red laser was kept on during the entire

image acquisition, yielding an estimated 1–10 kW/cm2. After a

brief, few-second, exposure to the red laser, the majority of the

fluorophores were switched off. We then added a millisecond laser

pulse of 405-nm wavelength to stochastically switch on fluorescent

molecules between camera acquisition cycles. After and initial 3–

5 s burst where many molecules become activated, the duty cycle

Figure 2. Comparisons of STORM and SCORE using simulated images from emitters evenly distributed on an sub-diffraction sized
ellipse. (a) A Typical image of an emitter yielding 1000 photons on average, with an Gaussian-shaped PSF of width s being 1 pixel. The size of the
elliptical arrangement of emitters is shown at the bottom right in red. (b,c) The Kullback-Leibler (K-L) divergence of reconstructed STORM (b) and
SCORE (c) images with the ground truth distribution at various duty cycle and number of frames in logarithm color scale. The values shown are the
median of 40 repeats with identical parameters. (d) K-L divergence of two methods at stack size of 300 and 3000 frames as a function of duty cycle. (e)
Sample images of STORM, deconSTORM and SCORE at various duty cycle and stack size.
doi:10.1371/journal.pone.0094807.g002

SCORE Super-Resolution Microscopy

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e94807



leveled of to a steady low value for minutes. Images were acquired

at 100 frames per second to capture the fast dynamics of

fluorophore switching.

We analyzed the first 5 seconds of data (from 500 frames) using

SCORE after the UV activation laser was turned on, when the

duty cycle was the highest (Fig. 4). From only 5 seconds of data,

SCORE is able to resolve sub-diffraction limited separation of

135 nm between adjacent microtubules, where the Gaussian-

approximated PSF width is 192 nm for deep red emission. For

comparison, at the high duty cycle STORM analysis rejects many

activated emitters, resulting in a low density of resolved centers

(Fig. 4(e,j,n)). The next 10,000 frames had low duty cycle and are

suitable for standard STORM analysis (Fig. 4f). Small details of

the SCORE and STORM images do not exactly match because

SCORE is sensitive to the blinking of the emitters, whereas

STORM is sensitive to the presence of the emitters. The

performance of organic dyes suffered from photobleaching after

several switching cycles, and we optimized our conditions for

STORM where intensity flickering is not fully promoted. It has

been reported that mixing both oxidizing and reducing com-

pounds with these dyes increases both switching-on and -off rates

[23]. In these conditions, we anticipate the faster and more robust

switching dynamics would yield better results using SCORE.

Another type of fluorescent source that is bright and has

intrinsic intensity fluctuations are QDots. In conventional imaging

applications, the variability in brightness of QDots are often

considered as negative factors. However, these intensity variations

are crucial for fluctuation-based super-resolution techniques such

as SCORE [18,19]. We decorated microtubules in fixed HeLa

cells with antibodies conjugated to QDots with an emission

spectrum peaked at 655 nm. A 20 mW, 532 nm wavelength laser

was used as the excitation source, and we imaged microtubules

using oblique illumination with a 1.49 NA objective. The power-

law distribution of the on- and off-times of QDots suggests that

there is no typical time scale for intenstiy fluctuations [16], thus we

chose to image at a fast frame rate of 135 frames per second.

Compared to Alexa Fluor 647 labeled microtubules, QDot

labeling was more heterogeneous and discontinuous along the

microtubules (Fig. 5a), presumably due to the larger size of the

QDots and our sample preparation quality. Figure 5a shows the

averaged image of 1000 frames (7.4 seconds of acquisition), and

the SCORE image is shown in panel b. The SCORE image

clearly shows the gap between labeled microtubule segments

(Fig. 5b), and is able to resolve a separation near the junctions of

two crossing microtubules with better than 90 nm resolution

(Fig. 5c).

Discussion

Super-resolution imaging is now achievable on a conventional

epi-fluorescence microscope with little to no modification to the

optical design. The fine structural information embedded in a

sequence of fluorescence images can be restored using single

particle localization as implemented in STORM and PALM, or

intensity fluctuation statistics as in SOFI, ICA and SCORE.

STORM/PALM and related localization-based methods have

become increasingly popular due to their outstanding spatial

resolution. The quality of the reconstructed images are limited by

essentially two factors: the localization precision, determined by

the emitter brightness and background noise, and the sampling

density, set by the fluorophore duty cycle, labeling density, and

acquisition time. Either factor can be the bottleneck of the final

Figure 3. Comparison of STORM and SCORE at lower SNR where the number of photons per frame from each activated emitter is
low and background noise is high. (a) The dependence of K-L divergence of STORM images on the number of accumulated frames and photons
from each activated emitter per frame at high level of background noise (s~15). The values shown are the median of 40 repeats with identical
parameters. (b) Same test as (a) on SCORE. (c) A slice of K-L divergence for STORM (red) and SCORE (blue) at 256 photons per frame, indicated as the
dashed lines in (a) and (b). (d) Samples of reconstructed images from the two methods at 256 photons per frame and selected numbers of frames.
doi:10.1371/journal.pone.0094807.g003

SCORE Super-Resolution Microscopy

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e94807



image quality. Moreover, the duty cycle of the emitters is usually

set much lower than the optimal value for experimentally practical

reasons. Therefore, STORM/PALM typically require thousands

of images to gain dense sampling due to the essential non-

overlapping condition. In contrast, by looking at the covariance

between the intensities of pixels statistically, SCORE is not limited

by the non-overlapping condition, and is able to reconstruct

images with comparable quality from far fewer frames that contain

denser information. In addition, any improvements in emitter

brightness and its variation, the number of frames acuired, higher

labeling density, and lowered background noise contribute to

better statistics, therefore the imaging quality is no longer limited

by a single bottleneck. In particular, a higher labeling density is

always preferred for SCORE. In the case of low emitter density,

single particle localization methods make use of information that

the statistical methods ignore, and are able to resolve probe

locations with better accuracy at the cost of a substantially longer

acquisition time.

SCORE is closely related, but different from existing statistical

methods such as SOFI [17,18] and ICA [19]. All three methods

share the common advantages of analyzing intensity statistics over

single particle localization methods as discussed above. SOFI and

its later improvement XC-SOFI primarily use the temporal

fluctuation of individual pixels. The spatial correlation (cross

cumulant) information is used to interpolate estimation between

pixels to achieve finer resolution. SCORE considers the covari-

ance between all pairs of pixels to estimate the distribution of

emitters, and by sorting and truncating the eigen modes, SCORE

efficiently resolves the emitter distribution from a reduced linear

subspace of principal components rather than the original image

pixel space that has much higher dimension. SCORE and XC-

SOFI share many common advantages over STORM/PALM,

and have similar limitations as well [24]. Lidke et al. resolved the

localization of a finite number of quantum dots from the temporal

sequence of the eigen modes using ICA, however the ability to

resolve individual emitters quickly becomes intractable if several

emitters are located in one PSF area. Instead of attempting to

resolve individual emitters with their explicit temporal blinking

sequences as ICA does, our method focuses on the total variance

and covariance derived from the ensemble average, and thus it is

capable of estimating a continuous distribution, and is not limited

to a small number of discrete points.

Because the covariance matrix does not depend on the basal

intensity at each pixel, SCORE will reject any temporally non-

drifting backgrounds such as an autofluorescence signal. This

property allows SCORE to analyze images with only a portion of

emitters fluctuating in a background of constantly fluorescing

molecules. Because the fluorescence intermittence takes place at

much faster time scale than the photobleaching, it is applicable to

temporally high-pass filter the intensity sequence at each pixel to

Figure 4. Microtubules in Hela cells labeled with Alexa Fluor 647 and analyzed with SCORE and STORM with various numbers of
frames. (a) An epi-fluorescence image of labeled microtubules before the majority of the dye was switched off. (c) The variance of 500 frames where
the 405 nm laser activated a high density of fluorophores with overlapping PSFs. (d) and (e) SCORE and STORM (using rapidSTORM) analysis of these
500 frames (5 seconds at 100 frames per second). (f) STORM analysis of 10,000 frames with a low density of switched-on emitters. (g) Intensity profile
of a line in the SCORE image indicated by the arrow and yellow line in (d). (h)–(o) Two zoomed-in portions of the variance, SCORE, 500-frame STORM
and 10,000-frame STORM indicated by the yellow box in (d). Scale bars: (a–e) 2 mm, (g–n) 500 nm.
doi:10.1371/journal.pone.0094807.g004

Figure 5. Quantum dot labeled microtubules in HeLa cells were
imaged and analyzed with SCORE. (a) An averaged image of 1000
frames (7.4 seconds) of quantum dot labeled microtubules. (b) SCORE
image of the same 1000 frames. STORM is not applicable due to the
high density of QDots. (c) Intensity line profile of he labeled portion of
the wide field image (indicated by the arrow in (b)) and SCORE image
(blue line). The line profiles were obtained from linear interpolation of
the original images. Scale bar: 1 mm.
doi:10.1371/journal.pone.0094807.g005
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remove the slowly varying background signal before calculating

the covariance. The out-of-focus light can be treated as

background light since the intensity correlation of defocused light

is also delocalized and spatially convolved into more uniform

signals in time. Thus the contribution to the covariance becomes

smaller as the emitter resides further from the focal plane.

Many different types of fluorescent sources undergo intensity

fluctuations on fast time scales, and thus can serve as potential

candidates for SCORE analysis. In this work, we used organic

dyes and quantum dots to demonstrate SCORE imaging. Organic

dyes can switch between bright and dark states in certain chemical

environments, but they have a limited number of switching cycles

before bleaching, and therefore limit the SCORE image [10]. For

quantum dots, the high brightness, robust fluorescence intermit-

tence and resistance to photobleaching are major advantages as

fluorescent sources for SCORE. In the past decade, a library of

fluorescent proteins have been reported to have stochastic or

controllable intensity fluctuations or switchablility in emission

spectra at fast time scales. These include mTFP0.7 [25], Dronpa

[26], rsCherry [27], IrisFP [28], and rsTagRFP [29]. Dedecker et

al. have successfully used SOFI to image Dronpa-labeled Lyn

kinase [30] and resolved structure at 100–200 nm spatial scale.

Their work demonstrated the feasibility to use fluorescent protein

with statistical super-resolution methods like SCORE. Because the

only two assumptions SCORE makes on the intensity fluctuation

statistics are identity and independency, it is insensitive to the

explicit fluctuation dynamics. This feature grants SCORE imaging

great flexibility for use with a large variety of different

fluorophores.

Even tough the computational complexity is often not

considered as a major factor in choosing algorithm-based methods

for super-resolution imaging, performance can become a practical

limitation in certain circumstances. Because SCORE is based on

analysis of the covariance of the entire image stack instead of a

frame-by-frame analysis as in deconSTORM and CSSTORM, its

speed is typically 103 to 104 times faster than deconSTORM

(Table 1). This performance is similar to STORM and PALM

where simple Gaussian fitting is implemented and where the

processing time for a 512|512|10000 image stack is minutes. In

practice, this improvement in speed allows one to iteratively

optimize SCORE for the best image quality. Bayesian localization

microscopy, on the other hand, achieves super-resolution in

remarkably short time [21] but its heavy optimization in high-

dimensional parameter space also requires significant computa-

tional resources such as cloud computing [31].

Materials and Methods

Cell Culture and Immunostaining
Human HeLa cells were cultured as described in [32]. Cells

were fixed in formaldehyde followed by permeablization [32].

Fixed cells were washed in phosphate buffer saline (PBS) 3 times,

incubated with mouse anti-tubulin (Sigma-Alderich) for 24 hours

at 4uC, then washed with PBS 3 times, followed by an incubation

in 20 nM anti-mouse IgG labeled with Alexa Fluor 647 (Life

Technology) in PBS and 6% w/v BSA for 30 minutes. Stained

cells were washed in PBS and replaced with imaging buffer

containing 50 mM Tris at pH 8.0, 10 mM NaCl, 10% glucose w/

v, 5 mg/ml glucose oxidase, 100 ug/ml catalase and 100 mM

bme [10]. All chemicals were purchased from Sigma-Alderich

unless noted otherwise.

Quantum dot labeled HeLa cells were prepared and treated in

the same way described above. Cells incubated with primary

antibody were washed with PBS 3 times, and incubated with

20 nM anti-mouse IgG labeled with QDot 655 (Life Technology)

in PBS and 6% w/v BSA for 30 minutes. Stained cells were

washed in PBS and the slide was mounted on the microscope for

imaging.

Microscopy and Imaging
Alexa Fluor 647 labeled Microtubule in vivo images were taken

on a home-built microscope with on Olympus 606 1.4 NA oil-

immersion objective. A 50 mW 647 nm solid-state laser (Crys-

taLaser) was used as the excitation and deactivation source, and a

100 mW 405 solid-state laser (Coherent) was used as the activation

laser. Images were collected using an EMCCD camera (iXon+
897E, Andor Technology). Quantum dot labeled microtubule

images were taken on a Nikon TE-2000 inverted microscope. A

home-built 20 mW 532 nm diode laser was used as the excitation

source. The images were collected with an EMCCD camera

(iXon+ 897E, Andor Technology) controlled by LabVIEW

(National Instruments, Austin, TX).

Image Analysis
For SCORE analysis, image stacks of Alexa Fluor 647 labeled

microtubule were assumed to have a fixed background with a

smoothly decaying intensity. The decaying background was

estimated by fitting a single exponential as a function of time at

each pixel, and then subtracted from the raw images before

SCORE analysis. The image field is divided into overlapping

regions of interest with size of 8|8 pixels, processed by SCORE,

normalized by the variance of the ROIs, and stitched together

with pyramidal weight masks (2D equivalent of triangle window

function in 1D). The square masks are tiled with a small overlap so

that the corners reside on the centers of the other set of square

masks. Quantum dot images did not have observable photo-

bleaching, thus background correction was not necessary. The

whole image was divided into 10|10 overlapping regions of

interest and stitched in the same way described above.

STORM images in the simulations were reconstructed from the

Gaussian fit of the individual frames, since all emitters were located

with 1 PSF width, no separate or Gaussian mixture fit was possible

or necessary. The STORM images were generated and rendered

from the localization results, and each detected emitter is displayed

as a 2D Gaussian function whose width scales with the inverse

square root of the emitter intensity as described in [10]. Images of

Alexa dye was processed and the STORM images were rendered

using rapidSTORM [33]. All simulations, Gaussian fit in STORM

simulations, and STORM image rendering and SCORE analysis

were performed in MATLAB (The MathWorks, Matick, MA).

Table 1. Speed performances of various methods.

Method Calculation time scale (s)

Variance 10{3

SCORE 10{1

STORM 10{1

deconSTORM 103

3B 104

Typical time consumed by various methods to process a small sample image
stack is listed for comparison. The sample consists of a stack of 166166500
images. The benchmark is performed on an Intel Core i5-650 CPU. Estimated
time for the Bayesian localization microscopy (3B) is adopted from [34].
doi:10.1371/journal.pone.0094807.t001
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Supporting Information

File S1 Supporting material.
(PDF)

Figure S1 The principle of variance optimization in
SCORE. (a) The first 10 eigen modes of a 868 pixel portion of

500 frames from experimental data. (b) The variance of the 500

frames (upper panel) and the SCORE image (lower panel). (c) The

variances in the basis of eigen modes (diagonal elements of the

covariance matrix). The red squares are the experimental

variances, the blue line is the fit using a double-exponential

function, and the green solid circles are the calculated variances

from the reconstructed image. (d) The calculated covariance

matrix of the reconstructed image. The covariance matrix of the

experimental data is a diagonal matrix with diagonal elements

shown in (c).
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