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Abstract 32 
 33 
 34 
 35 
This study is concerned with the connections between the large-scale environment and the seasonal 36 

occurrence of rapid intensification (RI) of North Atlantic tropical cyclones. Physically-motivated 37 

statistical analysis using observations and reanalysis products suggests that for tropical cyclones over 38 

the open tropical North Atlantic, the interannual variability of the probability of storms undergoing RI 39 

is influenced by seasonal large-scale atmospheric and oceanic variables, but not so for storms over the 40 

Gulf of Mexico and western Caribbean Sea. We suggest that this differentiated response is due to the 41 

former region exhibiting a strong negative correlation between the seasonal anomalies of vertical wind 42 

shear and potential intensity. Differences in the mean climatology and subseasonal variations of the 43 

large-scale environment in these regions appear to play an insignificant role in the distinctive seasonal 44 

environmental controls on RI. We suggest that the interannual correlation of vertical wind shear and 45 

potential intensity is an indicator of seasonal predictability of tropical cyclone activity (including RI) 46 

across the tropics. 47 

  48 
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1. Introduction 49 
 50 
Despite recent improvement in forecasting tropical cyclone (TC) genesis and tracks, prediction of their 51 

changes in intensity even on timescales of days has remained challenging (e.g. Elsberry et al. 2007, 52 

Rappaport et al. 2009, Elsberry 2014). Of particular scientific interest are those TCs that undergo rapid 53 

intensification (RI), owing to their widespread impacts on society and the relatively little lead time for 54 

preparation they may provide. Following existing literature (e.g. Kaplan and DeMaria 2003, Kaplan et 55 

al. 2010), an RI event is defined as a TC intensification of at least 30 knots (15.4 m/s) in 24 hours, 56 

separated by more than 24 hours from each other. Recently, Lee et al. (2016) suggested that the vast 57 

majority of global major storms rapidly intensified at least once during their lifetime, and highlighted 58 

their important role in the climatology of TCs. Moreover, the frequency of storms that intensify rapidly 59 

is projected to increase substantially in future climate (Emanuel 2017, Bhatia et al. 2018), and may 60 

have already increased in the North Atlantic (Bhatia et al. 2019), emphasizing the importance of 61 

improved predictions of rapidly intensifying TCs. 62 

 63 

There has been continuing research on rapidly intensifying TCs at the storm scale and at weather 64 

forecast timescales (e.g. Bosart et al. 2000, Kaplan and DeMaria 2003, Lin et al. 2009, Kaplan et al. 65 

2010, Shieh et al. 2013, Zhuge et al. 2015, Chen et al. 2017), while a few studies have attempted to 66 

study their predictability on seasonal timescales (e.g. Wang and Zhou 2008, Wang et al. 2017). Before 67 

the hurricane season starts, can the large-scale environment for the upcoming season be used to say 68 

something about the RI activity of TCs? The provision of seasonal predictions for RI events would 69 

serve to improve societal preparedness for rapidly intensifying tropical cyclones, complementing 70 

existing seasonal forecasts for TC frequency. Such examples include forecasts issued by the United 71 

States Climate Prediction Center (CPC), Geophysical Fluid Dynamics Laboratory (GFDL), Colorado 72 

State University (CSU), and the European Centre for Medium-Range Weather Forecasts (ECMWF), 73 

among others. To advance this goal, our approach here is to examine the relationship between seasonal 74 
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statistics of the occurrence of RI in the North Atlantic and the large-scale environment on seasonal 75 

timescales. Predictions of the seasonal environment from numerical models could then be used for 76 

predictions of RI activity. Besides, knowledge about seasonal environmental controls on RI can 77 

connect with those about the environmental footprints of different modes of climate variability, such as 78 

the El Niño-Southern Oscillation (e.g. Gray 1984, Shapiro 1987), the Atlantic Meridional Mode 79 

(Chiang and Vimont 2004) and the North Atlantic Oscillation (Hurrell et al. 2003), which have been 80 

shown to exhibit seasonal predictability (Barnston et al. 2012, Vimont 2012). 81 

 82 

A conceptual model for the large-scale environmental controls on intensity change of TCs, including 83 

RI, can be developed with the equation 84 

𝑑𝑑𝑑𝑑(𝑡𝑡)/𝑑𝑑𝑑𝑑 = 𝜏𝜏−1�𝐼𝐼∗ − 𝐼𝐼(𝑡𝑡)� = 𝑓𝑓�𝜏𝜏(𝑡𝑡), 𝐼𝐼∗(𝑡𝑡)�         − (1) 85 

(Lloyd et al. 2011), which considers how the time rate of change of TC intensity (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) is affected by 86 

the environmental potential intensity (𝐼𝐼∗) and other environmental parameters known to influence TC 87 

intensity, such as vertical wind shear and tropospheric humidity, through the relaxation timescale 𝜏𝜏. In 88 

this study, instead of considering the environment at each time instant 𝑡𝑡 following the TC, the function 89 

𝑓𝑓 is now a function of the seasonal-mean large-scale environment, so that we consider the effects of 90 

the seasonal environment on the time tendency of intensity: 91 

𝑑𝑑𝑑𝑑(𝑡𝑡)/𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) + 𝜖𝜖(𝑡𝑡)         − (2) 92 

where 𝜖𝜖(𝑡𝑡) concerns with subseasonal fluctuations such as intraseasonal oscillations and weather-scale 93 

variations. For all the TCs in each season with its corresponding seasonal-mean environment, a 94 

distribution of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 results from 𝜖𝜖(𝑡𝑡) at each time instant 𝑡𝑡 following the TCs. Then, the equivalent 95 

question is whether the seasonal environment can change the statistics of the 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 distribution, in 96 

particular the proportion of the distribution that exceeds the threshold for RI. 97 

  98 
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To study the variability of the annual counts of RI instances (which we denote by 𝑛𝑛(𝑅𝑅𝑅𝑅)), we first note 99 

that part of its variance comes from the variance of the number of tropical cyclones (which we denote 100 

by 𝑁𝑁). Absent other information, one would expect more RI to occur simply when there are more 101 

tropical cyclones in a given year, all other aspects being equal. As is shown below, the variance of 𝑁𝑁 102 

only explains part of the variance of 𝑛𝑛(𝑅𝑅𝑅𝑅), so that it is as important to understand the climate controls 103 

on the probability of each TC experiencing RI, i.e., 𝑝𝑝(𝑅𝑅𝑅𝑅) = 𝑛𝑛(𝑅𝑅𝑅𝑅)/𝑁𝑁 . In other words, 𝑛𝑛(𝑅𝑅𝑅𝑅)  is 104 

dependent on the total number of storms, which may in turn be determined by factors outside of those 105 

influencing TC intensification, and 𝑝𝑝(𝑅𝑅𝑅𝑅) can be considered as a ‘normalized’ measure of RI activity. 106 

For this reason, statistical relationships developed directly using the 𝑛𝑛(𝑅𝑅𝑅𝑅) metric may not genuinely 107 

reflect large-scale environmental controls on RI. For example, in Wang et al. (2017) the seasonal large-108 

scale atmospheric and oceanic conditions are linearly regressed to the RI number. A similar metric to 109 

𝑝𝑝(𝑅𝑅𝑅𝑅), the ‘RI ratio’, defined by the number of 24-hour intensity changes above 30 knots divided by 110 

total 24-hour intensity changes, was used in Bhatia et al. (2018) and Bhatia et al. (2019) for studying 111 

the response of RI to climate change and anthropogenic forcing. The month-to-month variations of RI 112 

ratio in the Northwest Pacific were also considered in Wang and Zhou (2008) and Ge et al. (2018), 113 

while Shu et al. (2012) described the variations of RI ratio with TC category in the Northwest Pacific. 114 

Since the statistical modeling for the number of tropical cyclones (𝑁𝑁) over the North Atlantic has been 115 

performed in previous studies (Villarini et al. 2010, Vecchi et al. 2011, Murakami et al. 2016b), our 116 

approach in this study is to examine climate variability of 𝑛𝑛(𝑅𝑅𝑅𝑅) through modeling the probability that 117 

a TC will experience RI. Any potential for prediction skill in RI probability can combine with existing 118 

seasonal outlooks of tropical cyclone frequency to provide additional information with regard to RI. 119 

 120 

In this study, we will also investigate how RI activity varies within the North Atlantic basin. Previous 121 

studies on RI have focused on statistics for the entire basin or the Main Development Region (MDR). 122 
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For instance, linear regressions in Wang et al. (2017) were performed between the seasonal large-scale 123 

environment and RI number in the entire North Atlantic basin, and they suggested that certain 124 

variables in certain regions could be used to predict basinwide RI frequency. On the other hand, 125 

Klotzbach (2012) suggested that the number of RI occurrences is significantly higher during the La 126 

Niña phase and certain phases of the Madden-Julian Oscillation, for both the North Atlantic and MDR. 127 

However, few studies have considered sub-basin variability of RI activity, including those outside of 128 

the MDR. As the skill of seasonal TC forecasts has been shown to vary within the North Atlantic basin 129 

(Vecchi et al. 2014, Murakami et al. 2016a, Liu et al. 2018) and across the tropics (DeMaria et al. 130 

2007, Vecchi et al. 2014, Zhang et al. 2016b), we will examine how the statistics of sub-basin RI 131 

probability and its variability are related to regional large-scale atmospheric and oceanic conditions on 132 

seasonal timescales. 133 

 134 

This paper is structured as follows. Section 2 describes the data and methods employed in this study, 135 

while Section 3 analyzes the statistics of RI and its relationship with large-scale atmospheric and 136 

oceanic conditions. Sections 4 and 5 discuss sub-basin differences in this relationship, followed by 137 

some concluding remarks in Section 6. 138 

  139 
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2. Data & Methods 140 
 141 
Sub-basin classification of RI activity in the North Atlantic is determined by a cluster analysis of 142 

tropical cyclone tracks, while the large-scale environmental controls on RI in each cluster are 143 

examined by statistical regression of large-scale climate variables on RI statistics. This section 144 

describes the datasets and climate reanalysis products studied, the cluster analysis and regression 145 

methods employed, and the methods to analyze subseasonal variations of certain variables. 146 

 147 

2a. Tropical Cyclones and Large-Scale Variables 148 

 149 

North Atlantic tropical cyclone data is obtained from the Atlantic Hurricane Database (HURDAT2, 150 

Landsea and Franklin 2013, version updated on April 11, 2017). HURDAT2 provides best-track 151 

positions, maximum sustained surface wind speed, minimum central pressure and wind radii of North 152 

Atlantic tropical cyclones at 6-hourly time intervals. Extratropical cyclones, tropical depressions and 153 

disturbances are removed prior to analysis. HURDAT2 data between 1979-2015 is studied (the satellite 154 

era, e.g. Rienecker et al. 2011, Truchelut et al. 2013). 155 

 156 

Large-scale atmospheric and oceanic variables are obtained from various climate reanalysis products 157 

and observational datasets. Monthly-mean values of atmospheric variables including relative humidity, 158 

temperature and winds at various tropospheric levels are taken from MERRA (Rienecker et al. 2011) 159 

and the Japanese 55-year Reanalysis (JRA-55, Kobayashi et al. 2015), following, for example, Vimont 160 

and Kossin (2007), Hendricks et al. (2010), Vecchi et al. (2013), Wing et al. (2015), Zhang et al. 161 

(2016a), and Wang et al. (2017). Sea-surface temperature (SST) is taken from HadISST (Rayner et al. 162 

2003) and the NOAA OISST Version 2 High Resolution Dataset (Reynolds et al. 2007), from which 163 

we calculate the relative sea-surface temperature (RELSST) defined as the difference between local 164 

SST and the tropical-mean SST (Vecchi and Soden, 2007). From MERRA and JRA-55, the vertical 165 
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wind shear (VWS) is calculated as the magnitude of the vector difference between 200hPa and 850hPa 166 

winds. Potential intensity (PI) is calculated from the atmospheric profile in MERRA and JRA-55 167 

following Bister and Emanuel (1998, 2002). PI is defined as 𝑃𝑃𝐼𝐼2 = 𝐶𝐶𝐾𝐾/𝐶𝐶𝐷𝐷  𝑇𝑇𝑆𝑆/𝑇𝑇0  (𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸∗ −168 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)|𝑚𝑚, where 𝐶𝐶𝐾𝐾 is the exchange coefficient for enthalpy, 𝐶𝐶𝐷𝐷 is the drag coefficient, 𝑇𝑇𝑆𝑆 is the sea 169 

surface temperature, 𝑇𝑇0 is the mean outflow temperature, 𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸∗ is the convective available potential 170 

energy of air lifted from saturation at sea level in reference to the environmental sounding, and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 171 

is that of boundary layer air. Both 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 terms are evaluated near the radius of maximum winds of the 172 

TC. Saturation deficit (SDEF), which provides a measure of the moist entropy deficit of the middle 173 

troposphere, is calculated as 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (𝑠𝑠𝑏𝑏 − 𝑠𝑠𝑚𝑚)/(𝑠𝑠0∗ − 𝑠𝑠𝑏𝑏), where 𝑠𝑠𝑚𝑚, 𝑠𝑠𝑏𝑏, 𝑠𝑠0∗ are respectively the moist 174 

entropies of the middle troposphere, boundary layer (taken as 750hPa and 900hPa respectively, 175 

determined by a separate analysis of the tropical moist entropy profile), and the saturation moist 176 

entropy of the sea surface (Emanuel 2010). Tropical cyclone heat potential (TCHP) is calculated from 177 

the NCEP Global Ocean Data Assimilation System reanalysis (GODAS, Behringer et al. 1998), as the 178 

vertical integral of temperature from the sea surface to the depth of the 26oC isotherm. We considered 179 

these variables as candidates for large-scale environmental controls on RI, since they have been 180 

suggested to influence TC activity and development in a number of studies, e.g. Ryan et al. (1992), 181 

Watterson et al. (1995), Bister and Emanuel (1998), Bister and Emanuel (2002), Wong and Chan 182 

(2004), Camargo et al. (2007), Vecchi and Soden (2007), and Tang and Emanuel (2012). Data for 183 

VWS, PI, SDEF, RELSST and TCHP in the period of 1980-2015 are studied. 184 

 185 

2b. Cluster Analysis 186 

 187 

To consider sub-basin variability of RI statistics within the North Atlantic, we performed a K-means 188 

cluster analysis on the HURDAT2 data, based on the location of genesis, lysis and maximum intensity 189 
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of each TC, with the number of clusters (K) to be determined. A similar K-means clustering approach 190 

was used in Elsner (2003), Elsner and Liu (2003) and Ramsay et al. (2012), for TCs in the North 191 

Atlantic, Northwest Pacific and Southern Hemisphere basins respectively. In these studies, various TC 192 

statistics for each cluster were calculated, but not specifically related to RI events. TC genesis (lysis) is 193 

defined as the first (last) 6-hourly position with sustained wind speed above 34 knots (i.e. above 194 

tropical storm intensity), following, for example, Murakami et al. (2015) and Murakami et al. (2016b). 195 

 196 

Based on the within-cluster spread (inertia) for each choice of K (not shown), we subjectively decided 197 

to choose 𝐾𝐾 ≥ 4 , since the 𝐾𝐾 = 2, 3  cases provide high marginal improvement in cluster spread. 198 

Meanwhile, there is an inherit upper bound to K since the number of data in each cluster decreases 199 

with K, which in turn increases noise when considering interannual variability and seasonal 200 

environmental controls on RI in the later sections. Thus, a value of K between 4 and 5 seems to be 201 

desirable. In deciding between these values, a cluster analysis is performed for both values, with the 202 

latter case further separating the cluster in the subtropics (not shown). Considering the relatively small 203 

number of RI instances in the subtropics, we decided to treat this as one cluster, hence performing the 204 

K-means cluster analysis with four clusters. The results of this cluster analysis are shown in Section 3a. 205 

 206 

2c. Statistical Regressions 207 

 208 

To explore statistical connections between the seasonal large-scale variables and regional RI 209 

probability for each TC cluster, we performed linear least-squares regressions between RI activity in 210 

each JJASON season between 1980-2015, and the 36-year time series of JJASON-mean atmospheric 211 

and oceanic variables, and calculated Spearman’s correlation coefficients. In addition, to test the 212 

robustness of the linear least-squares regression, a linear median of pairwise slopes fit (Lanzante 1996) 213 

was also performed between the RI statistics and large-scale variables. The choice of the JJASON 214 
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season follows from our analysis of HURDAT2 data that in the North Atlantic, all RI events in the 215 

period of 1980-2015 occurred between the months of June and November. This regression 216 

methodology is similar to that in Wang et al. (2017), in which they explored the relationship between 217 

the large-scale environment and RI number in the entire North Atlantic basin; here the correlations are 218 

also calculated for the 𝑝𝑝(𝑅𝑅𝑅𝑅) metric and for the individual clusters. The significance of the Spearman 219 

correlations is determined by a bootstrap test with 1000 samples, using a two-sided 90% or 95% 220 

significance level. 221 

 222 

Limitations are inherent in the assumptions underlying the above linear least-squares regression, which 223 

encourages the application of other generalized linear models in studying RI occurrence. In particular, 224 

the predicted value of 𝑝𝑝(𝑅𝑅𝑅𝑅) from explanatory variables should inherently take values between 0 and 1. 225 

As this is not guaranteed by the linear regression model, and since RI is by its nature a binary process, 226 

we adopt the binary logistic regression, which assumes that 𝑛𝑛(𝑅𝑅𝑅𝑅) follows a binomial distribution 227 

𝐵𝐵�𝑁𝑁,𝑝𝑝(𝑅𝑅𝑅𝑅)� . The logistic regression uses the large-scale environmental variables as exogenous 228 

regressors (explanatory variables), with the endogenous (response) variable being 𝑛𝑛∗  (number of 229 

successes) and 𝑁𝑁 − 𝑛𝑛∗ (number of failures) for each year, where 𝑛𝑛∗(𝑅𝑅𝑅𝑅) represents the number of RI 230 

instances which considers multiple RI instances of the same tropical cyclone as one. The metric 𝑛𝑛∗(𝑅𝑅𝑅𝑅) 231 

is introduced because by virtue of the definition of RI, a TC can experience more than one RI instance 232 

if the RI occurrences are separated by more than 24 hours, so that 𝑝𝑝(𝑅𝑅𝑅𝑅) can exceed unity (but rarely 233 

do so). The statistical package ‘statsmodels’ (Skipper and Perktold, 2010), with the binomial model 234 

family and the logit link function, performs the logistic regression using the iteratively reweighted 235 

least-squares (IRLS) method. The logit link function takes the form 236 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝) = ln �
𝑝𝑝

1 − 𝑝𝑝�
= 𝛽𝛽0 + 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖         − (3) 237 

so that 238 
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𝑝𝑝 =
1

1 + exp(−𝛽𝛽0 − 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖)
∈ [0, 1]         − (4) 239 

where positive values of 𝛽𝛽𝑖𝑖 represent 𝑝𝑝(𝑅𝑅𝑅𝑅) increases with the exogenous regressor 𝑥𝑥𝑖𝑖. 240 

 241 

In the statistical modeling of 𝑛𝑛(𝑅𝑅𝑅𝑅), given the nature of the data (counts), a Poisson regression model 242 

is adopted (Villarini et al. 2010), so that the expected value of 𝑛𝑛(𝑅𝑅𝑅𝑅) is given by exp(𝛽𝛽0 + 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖) ∈243 

[0,∞). Similar to above, the statistical significance of the Spearman correlations between observed and 244 

predicted values is determined by a bootstrap test, while the skill of the regression models relative to 245 

climatology is calculated as 246 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �1 −
𝑀𝑀𝑀𝑀𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑀𝑀𝑀𝑀𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� × 100% = �1 −
∑ �𝑛𝑛𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑛𝑛𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜�

22015
𝑖𝑖=1980

∑ �𝑛𝑛𝚤𝚤,𝑜𝑜𝑜𝑜𝑜𝑜������� − 𝑛𝑛𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜�
22015

𝑖𝑖=1980

� × 100%        − (5) 247 

where 𝑛𝑛𝚤𝚤,𝑜𝑜𝑜𝑜𝑜𝑜������� = 1
36
∑ 𝑛𝑛𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜2015
𝑖𝑖=1980 . Positive (negative) values represent predictions with skill above 248 

(below) climatology.   249 

 250 

2d. Decomposition of Daily Variations 251 

 252 

Daily data is used to examine the control of the seasonal environment on RI (Section 5). In particular, 253 

daily tropospheric profiles are obtained from MERRA reanalysis, for the period 1980-2015, from 254 

which VWS and PI (shown in Section 3b to significantly influence RI) are calculated. We decompose 255 

the daily values of VWS and PI as follows: 256 

𝑋𝑋(𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑋𝑋� + 〈𝑋𝑋〉 + 𝑋𝑋′ = 𝑋𝑋� + 𝑋𝑋𝑆𝑆𝑆𝑆 + 〈𝑋𝑋〉 + 𝑋𝑋′, 𝑋𝑋 = 𝑉𝑉𝑉𝑉𝑉𝑉,𝑃𝑃𝑃𝑃        − (6) 257 

where 𝑋𝑋� = 𝑋𝑋�(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ) represents the 1980-2015 JJASON climatological seasonal cycle, and can be 258 

further separated into a scalar climatological mean (𝑋𝑋�) and average seasonal cycle anomalies given by 259 
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𝑋𝑋𝑆𝑆𝑆𝑆 = 𝑋𝑋𝑆𝑆𝑆𝑆(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ). The interannual variability of the large-scale environment 〈𝑋𝑋〉 = 〈𝑋𝑋〉(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) is 260 

given by 261 

〈𝑋𝑋〉(𝑡𝑡𝑖𝑖) = �
1

𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑
� 𝑋𝑋

𝑁𝑁𝑁𝑁𝑁𝑁 30,𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑖𝑖

𝐽𝐽𝑢𝑢𝑢𝑢𝑢𝑢 1,𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑖𝑖

� − 𝑋𝑋�    ∀𝑖𝑖 ∈ [1980, 2015]         − (7) 262 

with 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 = 183 (number of days in each season), representing the JJASON-mean departure from 263 

climatology in each season. 𝑋𝑋′ = 𝑋𝑋′(𝑑𝑑𝑑𝑑𝑑𝑑)  represents subseasonal variations of the large-scale 264 

environment. 265 

 266 

This decomposition enables us to distinguish between the large-scale environmental variations on 267 

seasonal and subseasonal (including weather) timescales. The difference between 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑋𝑋� + 𝑋𝑋′ and 268 

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 + 〈𝑋𝑋〉 = 𝑋𝑋� + 〈𝑋𝑋〉 + 𝑋𝑋′ indicates the role of interannual variability 〈𝑋𝑋〉. By construction, 269 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠 has the same JJASON seasonal-mean for each year, and has the same climatological mean as 270 

𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡.  271 

 272 

We then consider the VWS-PI phase space and compute the two-dimensional probability density 273 

function (PDF) of subseasonal (𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠) and total (𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡) VWS and PI values, denoted by 𝑃𝑃𝑃𝑃𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 and 274 

𝑃𝑃𝑃𝑃𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡  respectively. 𝑃𝑃𝑃𝑃𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠  and 𝑃𝑃𝑃𝑃𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡  are calculated using 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠  and 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡  values respectively, for 275 

each season and as area-averages for each TC cluster. These calculations involve Gaussian kernel 276 

density estimation, which is provided by the gaussian_kde function of the SciPy Python-based package 277 

(Jones at al. 2001), with the estimator bandwidth determined using Scott’s Rule. In other words, we 278 

calculate 279 

𝑃𝑃𝑃𝑃𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑃𝑃𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) = 𝑝𝑝(𝑉𝑉𝑉𝑉𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠,𝑃𝑃𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠|𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽)         − (8𝑎𝑎) 280 

𝑃𝑃𝑃𝑃𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑃𝑃𝑃𝑃𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) = 𝑝𝑝(𝑉𝑉𝑉𝑉𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡,𝑃𝑃𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡|𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽)         − (8𝑏𝑏) 281 

which represent the average large-scale environment in each cluster, for each season. 282 
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 283 

As will be discussed in Section 5, we consider the typical environment in which an RI event occurs. 284 

We calculate the PDF of VWS and PI values averaged over a 10ox10o box, centered at the storm on the 285 

day an RI event occurs, for all RI occurrences in the period 1980-2015. The PDF is denoted as 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅. 286 

When defining the day at which an RI event occurs, we consider the 6-hourly time evolution of TC 287 

intensity from HURDAT2, and compute the average date (𝑑̅𝑑, YY-MM-DD, where ⋅ ̅represents average 288 

over the variable ⋅), time (𝑡𝑡̅, UTC) and location (𝑙𝑙𝑙𝑙𝑙𝑙����, 𝑙𝑙𝑙𝑙𝑙𝑙����) of all 6-hourly positions at which TC 289 

intensity increases by over 30 knots in its subsequent 24-hour period. Since the environmental 290 

parameters are obtained from daily-resolution MERRA time series, VWS and PI values at date 𝑑̅𝑑, 291 

averaged over a 10ox10o box centered at (𝑙𝑙𝑙𝑙𝑙𝑙����, 𝑙𝑙𝑙𝑙𝑙𝑙����), is considered as a representation of the typical RI 292 

environment. The distribution of all such representations is used to construct 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅. 293 

 294 

Similarly, the typical environment in which a TC occurs (𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇) is computed using VWS and PI 295 

values averaged over a 10ox10o box, centered at every 6-hourly TC position, for all TC occurrences in 296 

the period 1980-2015. Since TC positions are obtained 6-hourly from HURDAT2, but VWS and PI 297 

values are at daily resolution, up to four TC positions may correspond to the same set of daily VWS 298 

and PI values from MERRA. In this case, however, this set of VWS and PI values is averaged over 299 

different 10ox10o boxes following the 6-hourly TC best track, and will therefore still lead to different 300 

environments used to compute 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇. In notation form, 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 could be written as: 301 

𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝐼𝐼 = 𝑝𝑝(𝑉𝑉𝑉𝑉𝑉𝑉,𝑃𝑃𝑃𝑃|10𝑜𝑜 × 10𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅, 1980 − 2015)         − (9𝑎𝑎) 302 

𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 = 𝑝𝑝(𝑉𝑉𝑉𝑉𝑉𝑉,𝑃𝑃𝑃𝑃|10𝑜𝑜 × 10𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇, 1980 − 2015)         − (9𝑏𝑏) 303 

Then, we calculate the convolution of 𝑃𝑃𝑃𝑃𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑃𝑃𝑃𝑃𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡with 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅, as a measure of how conducive 304 

the large-scale environment is to RI (how close the environment is to one in which RI occurs) in each 305 

season, i.e. we consider 306 
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𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) ≡ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑃𝑃𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦),𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅)         − (10𝑎𝑎) 307 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) ≡ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑃𝑃𝑃𝑃𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦),𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅)         − (10𝑏𝑏) 308 

The convolution framework is then extended from the North Atlantic to the Northeast Pacific and 309 

Northwest Pacific basins, to test the robustness of the statistical results. TC data for the Northeast 310 

Pacific, again for the period of 1980-2015, is obtained from the HURDAT2 dataset (Landsea and 311 

Franklin 2013), while that for the Northwest Pacific is obtained from best-track data compiled by the 312 

Joint Typhoon Warning Center, as part of the International Best Track Archive for Climate 313 

Stewardship dataset (IBTrACS, Knapp et al. 2010). 314 

 315 

To further study the statistical sensitivity of rapid intensification to VWS and PI, 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 is fitted to a 316 

two-dimensional hyperbolic tangent function of the form 317 

𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 = 𝑐𝑐1 ⋅ tanh(𝑐𝑐2𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑐𝑐3𝑃𝑃𝑃𝑃 + 𝑐𝑐4𝑉𝑉𝑉𝑉𝑉𝑉 ⋅ 𝑃𝑃𝑃𝑃 + 𝑐𝑐5) + 𝑐𝑐6         − (11) 318 

The motivations, assumptions and implications of this curve fitting are discussed in Section 5. The 319 

fitting is performed with the curve_fit function of SciPy, which adopts the Levenberg-Marquardt 320 

Algorithm for nonlinear least-squares curve fitting, optimizing the parameter values of the fitted 321 

function to minimize the sum of squared residuals between the fitted and actual data. 322 

  323 
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3. Seasonal Environmental Controls on RI 324 
 325 
This section presents the statistical analysis of the seasonal large-scale environmental controls on RI 326 

for each North Atlantic TC cluster. 327 

 328 

3a. Location and Statistics of Clusters 329 

 330 

A K-means cluster analysis is first performed on HURDAT2 with four clusters, as described in Section 331 

2b. These four clusters are plotted in Figure 1, indicating their regional distinction and hence potential 332 

insufficiency to categorize North Atlantic RI by entire-basin statistics. Cluster 0 is centered at the 333 

subtropics, while cluster 1 is centered at the Gulf of Mexico and western Caribbean Sea. Both clusters 334 

2 and 3 contain tropical cyclones that form in the open tropical Atlantic; the former cluster tends to 335 

move along the subtropical ridge and dissipate (or undergo extratropical transition) at higher latitudes, 336 

while the latter tends to dissipate within the tropics. While these two clusters are centered in the open 337 

North Atlantic, a significant portion of these TCs that experience RI do make landfall along the East 338 

Coast of the United States (Figure 2). Table 1 displays the basic statistics for each TC cluster, 339 

including the number of TCs, the number of TCs that experience RI, and the percentage of TCs that 340 

experience RI. Although Kossin et al. (2010) used a different clustering method which involved a 341 

mixture of quadratic regression models, and performed their computation with TC data from different 342 

time periods, their four clusters also include a subtropical cluster, and tropical storms that are zonally 343 

separated into a subset of Gulf of Mexico storms and those that span the MDR, as is the case here. 344 

 345 

3b. Sub-basin Environmental Controls 346 

 347 

(i) Linear Regression 348 

 349 
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As mentioned in the introduction, the variance of 𝑛𝑛(𝑅𝑅𝑅𝑅) is not entirely explained by that of 𝑁𝑁, so the 350 

potential predictability of 𝑝𝑝(𝑅𝑅𝑅𝑅)  is fundamental to the predictability of annual RI counts. Indeed, 351 

analysis of the basinwide annual RI counts gives a variance of 3.68, out of which 30% is from the 352 

variance of 𝑁𝑁, i.e., 𝑣𝑣𝑣𝑣𝑣𝑣(𝑁𝑁(𝑡𝑡) ⋅ 𝑝̅𝑝) = 1.11, where ⋅ ̅represents the time-average over the annual counts. 353 

On the other hand, over 58% of the variance is associated with the probability of RI, i.e., 𝑣𝑣𝑣𝑣𝑣𝑣(𝑝𝑝(𝑡𝑡) ⋅354 

𝑁𝑁�) = 2.15. Thus, we linearly regress the interannual variability of 𝑛𝑛(𝑅𝑅𝑅𝑅) and 𝑝𝑝(𝑅𝑅𝑅𝑅) in each cluster on 355 

the seasonal-mean large-scale atmospheric and oceanic variables, to study whether seasonal 356 

environmental anomalies have a significant role in controlling the statistics of seasonal RI occurrence.   357 

 358 

The annual 𝑛𝑛(𝑅𝑅𝑅𝑅) and 𝑝𝑝(𝑅𝑅𝑅𝑅) in clusters 0 and 3 is frequently zero, giving a weak signal and large 359 

noise, and both the least-squares and median of pairwise slopes regressions give a constant response of 360 

𝑝𝑝(𝑅𝑅𝑅𝑅) to the variables (i.e. the regression line has zero slope, not shown). For these two clusters, it 361 

appears that there are too few RI occurrences to perform statistically sound analysis. A longer record 362 

with reliable RI data could help mitigate this issue. In addition, the behavior of subtropical TC rapid 363 

intensifications (in cluster 0, hereafter C0) may be influenced by tropical-extratropical interactions and 364 

transient baroclinicity; Murakami et al. (2016a) obtained a lower level of seasonal predictability for 365 

subtropical TCs than tropical ones in the North Atlantic for the GFDL CM2.5-FLOR model. On the 366 

other hand, since both clusters 2 and 3 tropical cyclones form in the open tropical North Atlantic, 367 

distinguishing between these TC clusters near their time of genesis might be difficult from a practical 368 

viewpoint, hence it might be worthwhile to combine the statistics for these two clusters (and this gives 369 

more robust statistical results). Hence, for the remainder of this study we will focus on the RI 370 

properties of cluster 1 (hereafter C1) and clusters 2 and 3 combined (hereafter C23). 371 

 372 
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Seasonal RI statistics of the open-ocean cluster (C23) are potentially predictable from some large-scale 373 

atmospheric and oceanic conditions. The median of pairwise slopes regression response of 𝑝𝑝(𝑅𝑅𝑅𝑅) to 374 

the large-scale environmental variables for the entire North Atlantic (all clusters combined) is shown in 375 

Figure 3, while that for C23 is shown in Figure 4. Similar results hold for least-squares regressions (not 376 

shown). Figure 3 can be compared to Figure 9 of Wang et al. (2017), which show statistical regressions 377 

of annual RI number, for data between 1950-2014; Figure 4 suggests that high 𝑝𝑝(𝑅𝑅𝑅𝑅) of C23 across 378 

seasons is associated with high seasonal PI, high RELSST and low VWS in the deep tropics, 379 

particularly below 20oN. These correlations are significant at the 95% level in certain regions, for 380 

MERRA, JRA-55, HadISST and NOAA OISST. Similar results hold for linear regressions with the 381 

𝑛𝑛(𝑅𝑅𝑅𝑅) metric and with ASO-mean composites (not shown). MERRA SDEF, 850hPa relative humidity 382 

and TCHP do not show statistically significant correlations to RI probability for C23. On the other 383 

hand, the Gulf of Mexico cluster (C1) does not exhibit a statistically significant response to the 384 

regional environmental anomalies. Some correlation exists at regions away from the typical TC 385 

locations in C1 (Figure 1), and we interpret this as a coincidental correlation between variables as 386 

opposed to any physical reasons connecting the non-local environment to RI in this cluster. From a 387 

large-scale perspective, regional atmospheric and oceanic conditions less significantly impact RI for 388 

C1 than C23; RI statistics in C23 vary interannually via the influence of regional sea-surface 389 

temperature, potential intensity and vertical wind shear, and less so from atmospheric humidity. 390 

 391 

(ii) Logistic Regression 392 

 393 

Logistic regressions on the large-scale variables for C23 are shown in Figure 5: RELSST, VWS and PI 394 

are significantly correlated with RI successes/failures in some portions of the deep tropical Atlantic, 395 

though less ubiquitous than in the linear regression (particularly for VWS).   396 



 18 

 397 

The interannual variability of RI counts and probability is modeled using Poisson regression and 398 

binary logistic regression, respectively, with PI and VWS as exogenous co-regressors, using the 399 

methodology outlined in Section 2c. The exogenous variables are averaged over 10oN-30oN, 100oW-400 

80oW for C1 (see magenta box in Figure 4a), and over 10oN-20oN, 80oW-20oW for C23 (considering 401 

that this is the region which exhibits high 𝑝𝑝(𝑅𝑅𝑅𝑅) correlation, see magenta box in Figure 4d). The results 402 

of the statistical modeling for C1 and C23 are shown in Figure 6. Logistic regression is unskillful 403 

relative to climatology in modeling RI probability of C1, while there is slight skill (14%) for C23. 404 

Poisson regression is able to provide some skill for annual RI counts in both clusters, with higher skill 405 

(27%) in C23. In addition, prediction of 𝑛𝑛∗(𝑅𝑅𝑅𝑅) through separate predictions of 𝑁𝑁 and 𝑝𝑝(𝑅𝑅𝑅𝑅) shows 406 

promise in both C1 and C23, since prediction for RI counts calculated as the product of predicted RI 407 

probability and predicted TC counts shows comparable skill to the direct Poisson regression (Figure 408 

6g-h). 409 

 410 

In summary, statistical regressions suggest that for the tropical open-ocean cluster (C23), the 411 

probability of storms experiencing RI in each season is correlated with seasonal regional 412 

environmental anomalies, in particular those of vertical wind shear (VWS), relative sea-surface 413 

temperature (RELSST) and potential intensity (PI). Thus, this cluster exhibits potential for RI seasonal 414 

predictability through the seasonal large-scale environment. On the other hand, for the cluster of 415 

tropical cyclones in the Gulf of Mexico and western Caribbean Sea (C1), the seasonal large-scale 416 

environment does not exert significant controls on RI. Yet, on the seasonal timescale, why do these 417 

TCs at similar latitudes of the North Atlantic exhibit such distinctive relationships to the large-scale 418 

environmental anomalies? What is so ‘special’ about the Gulf of Mexico region that leads to the 419 
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observed differences in RI environmental controls? We will explore into this question in the next 420 

section. 421 

  422 
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4. Hypotheses for Sub-basin Difference 423 
 424 
In Section 3, we showed that on seasonal timescales, the statistics of RI activity in terms of probability 425 

and annual counts are significantly influenced by seasonal VWS, PI and RELSST, for the TC cluster in 426 

the Central/Eastern tropical North Atlantic (C23), but not for the Gulf of Mexico/Western Caribbean 427 

cluster (C1). Such a difference is also depicted in Figure 9c of Wang et al. (2017); the physical reasons 428 

for which, however, was not explored in their study. Why does there exist a difference in the seasonal 429 

large-scale environmental controls on RI between these TC clusters? Given the result of the statistical 430 

regressions above, and following some existing literature as discussed in Section 2a, we will focus on 431 

two environmental parameters shown to influence RI activity, namely VWS and PI, so that the 432 

physical model (Section 1) simplifies to the form 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 𝜏𝜏−1(𝑃𝑃𝑃𝑃 − 𝐼𝐼), where 𝜏𝜏 = 𝜏𝜏(𝑉𝑉𝑉𝑉𝑉𝑉). 433 

 434 

We make the following hypotheses to explain the distinctive seasonal environmental controls on RI 435 

between C1 and C23: 436 

1. The weaker seasonal environmental control on RI in C1 than C23 results from the seasonal 437 

anomalies of VWS and PI being less ‘cooperative’ (less negatively correlated) in C1 than C23. 438 

2. We also hypothesize that there is a contribution from the climatology in C1 being overall more 439 

conducive to RI than C23, so that a larger magnitude of environmental changes is needed to 440 

influence seasonal variations of RI activity in C1. In other words, the seasonal RI statistics is less 441 

sensitive to seasonal environmental changes in C1 than C23, giving a weaker ‘signal’. In C23, the 442 

more cooperative nature of the seasonal anomalies of VWS and PI, superimposed on its less RI-443 

conducive climatology, is significant to influence RI activity on interannual timescales. 444 

3. Our final hypothesis is that the reduced seasonal reproducibility of RI activity in C1 is driven by 445 

larger subseasonal (weather and intraseasonal timescale) fluctuations (‘noise’), contributing to its 446 

weaker seasonal ‘signal’. Subseasonal variations are smaller in C23, so that its seasonal large-scale 447 

environment can significantly impact seasonal RI statistics. 448 
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 449 

In Section 5, we will discuss the framework to examine these hypotheses, and establish the validity of 450 

some of these hypotheses in each subsection. 451 

  452 
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5. Discussion of Sub-basin Difference 453 
 454 
This section examines each of the hypotheses presented in Section 4 by exploring the connections 455 

between the typical RI environment and variations of the large-scale environment in C1 and C23. 456 

 457 

5a. Framework for Exploring Variations of VWS and PI 458 

To examine the relationship between the seasonal large-scale environment and RI statistics, we study 459 

the variations of the large-scale environment in each cluster, again taking the average of 10oN-30oN, 460 

100oW-80oW for C1, and that of 10oN-20oN, 80oW-20oW for C23. In particular, as described in 461 

Section 2d, we study the daily VWS and PI variations (denoted by 𝑋𝑋 , where 𝑋𝑋 = 𝑉𝑉𝑉𝑉𝑉𝑉,𝑃𝑃𝑃𝑃 ) 462 

decomposed into a climatology 𝑋𝑋�, an interannual variability 〈𝑋𝑋〉, and a subseasonal 𝑋𝑋′ component, for 463 

C1 (hereafter denoted by the subscript W for C1 in Western North Atlantic) and C23 (subscript E for 464 

C23 in Central/Eastern North Atlantic), from which the subseasonal (𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠) and total (𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡) variations 465 

are calculated. We build a framework to consider the VWS-PI phase space, and compute the 466 

subseasonal (𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠) and total (𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡) cluster-average VWS and PI values (the average cluster 467 

environment in each season), and the distribution of VWS and PI during RI events (𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅, the typical 468 

RI environment). 469 

 470 

We then hypothesize that RI activity in each cluster is connected to how close the average cluster 471 

environment is to the typical RI environment, and compute 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) and 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦). As mentioned 472 

in Section 2d, these convolutions quantify the conduciveness of the seasonal large-scale environment 473 

in each cluster to RI. Indeed, comparing between 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 (Figure 7) suggests that during RI 474 

events, VWS (PI) is generally lower (higher) than the average TC environment. In other words, most 475 

RI occurs during the low-VWS and high-PI stages relative to the entire TC life cycle. Similar results 476 
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are obtained using 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 trained with RI and TC cases from the North Atlantic, Northeast 477 

Pacific and Northwest Pacific combined. 478 

 479 

5b. Role of Interannual Variability 〈𝑿𝑿〉 480 

We test our hypothesis by first comparing between the interannual variability terms 〈𝑋𝑋〉𝑊𝑊 and 〈𝑋𝑋〉𝐸𝐸. As 481 

can be seen in Figure 8, the seasonal anomalies of VWS and PI are more negatively correlated in C23 482 

(correlation = -0.7586) than C1 (correlation = -0.2260). That is, these two variables tend to reinforce 483 

each other in C23, for example by becoming more RI-conducive by decreasing VWS and increasing 484 

PI. This convergence can potentially bring the climate towards the typical RI environment (high 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 485 

region, lower right in the VWS-PI phase space, see Figure 7c) in some years, and away from it in 486 

others. 487 

 488 

Next, we test whether 〈𝑋𝑋〉 plays a significant role in affecting the interannual variability of RI statistics. 489 

As illustrated in Section 2d, the difference between 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) and 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) indicates the role of 490 

〈𝑋𝑋〉. Figure 9 suggests that for C23, 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡  is significantly correlated with 𝑛𝑛(𝑅𝑅𝑅𝑅) and 𝑝𝑝(𝑅𝑅𝑅𝑅) over the 491 

period of 1980-2015 (Spearman correlation = 0.60, 0.44 respectively). This supports our hypothesis 492 

that the convolution, being a measure of how close the average cluster environment is to the typical RI 493 

environment, could be used as a proxy for RI activity. However, when the interannual variability of the 494 

environment is excluded, 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠  now has no significant relationship with both RI metrics, and RI 495 

predictability is lost. Also, the variance of the convolution decreases by about 9.8 times, as opposed to 496 

about 3.3 times for C1. The larger difference between 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 and 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 in C23 than C1 indicates a larger 497 

role of the environmental interannual variability in shifting VWS and PI in and out of the region 498 

favorable for RI (in the VWS-PI space). Therefore, in C23, seasonal timescale fluctuations of the 499 

environment 〈𝑋𝑋〉  can explain the interannual variability of RI statistics: When the interannual 500 
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variability of the environment pushes climate into (away from) RI-conducive region, leading to high 501 

(low) convolution 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡, RI probability is high (low). Such results do not hold for C1; the correlation to 502 

RI metrics does not decrease from 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 to 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠.  503 

 504 

𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅  is averaged over 10ox10o boxes (see Section 2d), so the above calculation is repeated with 505 

𝑃𝑃𝑃𝑃𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠  and 𝑃𝑃𝑃𝑃𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡  computed using values averaged at consecutive 10ox10o boxes in each cluster 506 

(instead of averages over the entire cluster), to provide a more consistent comparison. In this case, 507 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠, 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡 and 〈𝑋𝑋〉 for C23 consist of VWS and PI values over six east-west oriented boxes, while 508 

those for C1 consist of four boxes. As in the previous calculation, VWS and PI are more negatively 509 

correlated in C23 than C1, and 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 is significantly correlated with both RI counts and RI probability in 510 

C23 (not shown). In addition, similar results hold when 𝑃𝑃𝑃𝑃𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑃𝑃𝑃𝑃𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡 are calculated using VWS, 511 

PI values weighted by RI density in each cluster (instead of using box averages, Figure 10), and also 512 

hold for 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅  trained with RI from the North Atlantic, Northeast Pacific and Northwest Pacific 513 

combined (yielding 768 cases in total, Figure 11). 514 

 515 

5c. Role of Mean Climatology 𝑿𝑿� 516 

We now test the hypothesis that different states of climatology between C1 and C23 may lead to 517 

different responses of RI statistics to seasonal environmental changes. A cluster environment that is 518 

very close to high 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 values will require larger changes in the environment to significantly affect 519 

the convolution, than one that lies away from the high 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅  values (e.g. lying at regimes where 520 

𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅  has a large gradient in the VWS-PI phase space). Figure 12 compares between the average 521 

cluster environments 𝑋𝑋�𝑊𝑊 and 𝑋𝑋�𝐸𝐸, and suggests that: (1) 𝑋𝑋�𝐸𝐸 has higher VWS and lower PI than 𝑋𝑋�𝑊𝑊; (2) 522 

𝑋𝑋�𝐸𝐸 has higher VWS and lower PI at a larger portion of the season than 𝑋𝑋�𝑊𝑊. Thus, the climatology is 523 

indeed different between C1 and C23, with the latter being on average further away from RI-conducive 524 
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values in the VWS-PI phase space, so that RI activity can potentially have a larger response to changes 525 

in the cluster environment. In other words, RI activity is potentially more sensitive to environmental 526 

changes in C23. 527 

  528 

However, is the larger sensitivity of RI activity to seasonal environmental changes in C23 significant 529 

to provide environmental controls on RI seasonal statistics? If this were true, it would mean that if C23 530 

had a lower sensitivity, just like in C1, then the interannual variability of RI statistics would be lost. In 531 

other words, if C23 had the less sensitive climatology of C1, does this different sensitivity change the 532 

significance of 〈𝑋𝑋〉 in determining RI? For this purpose, we switch between the climatology of C1 and 533 

C23, and compare between the convolutions calculated with the C23 environment 𝑋𝑋�𝐸𝐸 + 〈𝑋𝑋〉𝐸𝐸 + 𝑋𝑋𝐸𝐸′  and 534 

the hypothetical environment 𝑋𝑋�𝑊𝑊 + 〈𝑋𝑋〉𝐸𝐸 + 𝑋𝑋𝐸𝐸′ . 535 

 536 

Calculations indicate that switching between C1 and C23 climatology leads to very different 537 

convolutions (correlation = -0.36), and the hypothetical convolution has no correlation with 𝑛𝑛(𝑅𝑅𝑅𝑅) and 538 

𝑝𝑝(𝑅𝑅𝑅𝑅) (correlation = -0.15, -0.01 repsectively). However, considering 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 and 𝑃𝑃𝑃𝑃𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡 in the VWS-539 

PI phase space suggests that in the hypothetical situation where C23 now has the C1 climatology, the 540 

new 𝑃𝑃𝑃𝑃𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡 now lies in the phase space where 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 drops to zero at very high PI and low VWS 541 

values. We interpret this as an artifact of the limited number of RI samples observed (134 samples in 542 

the period of 1980-2015): Such RI has not been observed since it is rare for TCs to be existent when 543 

the environment attains such extreme VWS and PI values. While an RI event at such extreme values 544 

has not been observed, we posit that the decrease of 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 at these values is unphysical; 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 should 545 

monotonically increase with PI and decrease with VWS. To correct this sampling issue, 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 is fitted 546 

to a two-dimensional hyperbolic tangent function of VWS and PI (Figure 13), using the methodology 547 

described in Section 2d. The curve fitting as shown is performed using 𝑉𝑉𝑉𝑉𝑉𝑉 ∈ [0,40], 𝑃𝑃𝑃𝑃 ∈ [30, 81] 548 
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as the support; these bounds are chosen to be close to the observed environmental VWS and PI limits, 549 

and to minimize the variance of the parameter estimates. The choice of these bounds only affects the 550 

curve fitting parameters but not the results of the convolutions presented above. Other bounds give a 551 

similar shape to the fitted hyperbolic tangent curve as shown, though the values of the fitted PDF carry 552 

no physical meaning since the choice of the bounds is artificial. This curve fitting to the hyperbolic 553 

tangent function also assumes the following: (1) Favorability to RI monotonically increases with PI 554 

and decreases with VWS, less so at extreme values than others and remains bounded; (2) The 555 

simultaneous VWS decrease and PI increase is more conducive to RI than to changes in only one 556 

variable; (3) The 𝑐𝑐4 term is added to include any possible nonlinearities in the variation of RI statistics 557 

with VWS and PI. The convolutions of the fitted 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 with 𝑃𝑃𝑃𝑃𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑃𝑃𝑃𝑃𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡 behave similarly to 558 

those shown in Figure 9 (not shown), and the standard deviation of the parameter estimates amounts to 559 

0.8-4% of the parameter values. 560 

 561 

Having attempted to correct the sampling issue, the hypothetical convolution (with East-West 562 

climatology switched) now looks like the before-switch convolution (correlation = 0.95), and is 563 

significantly correlated with 𝑛𝑛(𝑅𝑅𝑅𝑅) and 𝑝𝑝(𝑅𝑅𝑅𝑅) (correlation = 0.52, 0.40 respectively). This implies that 564 

even with C1 climatology, the negatively correlated 〈𝑋𝑋〉𝐸𝐸  can explain interannual variations in RI 565 

statistics in C23, indicating the importance of the interannual variability of VWS and PI over the 566 

climatology. On the other hand, while we previously showed that 〈𝑋𝑋〉𝑊𝑊 is not significant to explain RI 567 

interannual variability in C1, this also holds if C1 had a less conducive C23 climatology (comparing 568 

between 𝑋𝑋�𝑊𝑊 + 〈𝑋𝑋〉𝑊𝑊 + 𝑋𝑋𝑊𝑊′  and 𝑋𝑋�𝐸𝐸 + 〈𝑋𝑋〉𝑊𝑊 + 𝑋𝑋𝑊𝑊′ ), again indicating that the state of climatology plays 569 

a secondary role compared to the interannual variability of VWS and PI. The importance of 〈𝑋𝑋〉 only 570 

breaks down at very extreme climatological values, for example when 𝑃𝑃𝑃𝑃���𝐸𝐸 is increased by at least 30 571 

m/s (not shown), which is much larger than the projected PI increase over the 21st century (e.g. Vecchi 572 
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and Soden 2007, Yu et al. 2010, Camargo 2013, Knutson et al. 2013, Sobel et al. 2016, Vecchi et al. 573 

2019). 574 

 575 

5d. Role of Subseasonal Variations 𝑿𝑿′ 576 

Lastly, we study the impact of subseasonal environmental variability on the interannual variability of 577 

RI statistics, and test whether the significance of 〈𝑋𝑋〉𝐸𝐸 depends on 𝑋𝑋𝐸𝐸′ . For this purpose, we consider 578 

the hypothetical situation in which C23 had the subseasonal variation of C1, and compare between the 579 

convolutions calculated with 𝑋𝑋�𝐸𝐸 + 〈𝑋𝑋〉𝐸𝐸 + 𝑋𝑋𝐸𝐸′  and 𝑋𝑋�𝐸𝐸 + 〈𝑋𝑋〉𝐸𝐸 + 𝑋𝑋𝑊𝑊′  (i.e. switching between C1 and 580 

C23 subseasonal variations). These convolutions are very similar to each other (correlation = 0.92, 581 

Figure 14a), and the exclusion of 〈𝑋𝑋〉 from 𝑋𝑋� + 𝑋𝑋′  decreases variance of the convolution by 10.48 582 

times, similar to results shown previously. In addition, similar results hold when comparing the 583 

original convolution with that calculated with 𝑋𝑋�𝐸𝐸 + 〈𝑋𝑋〉𝐸𝐸 + 𝑋𝑋2010,𝐸𝐸
′  (using subseasonal variations in 584 

say year 2010 for all years, Figure 14b). This highlights the importance of the negatively correlated 〈𝑋𝑋〉 585 

in C23 over 𝑋𝑋′  (and the interannual variability of 𝑋𝑋′ ) in explaining interannual variations of RI 586 

statistics. 587 

 588 

In summary, the argument presented in this section suggests that the negatively correlated seasonal 589 

anomalies of VWS and PI are significant controls of seasonal RI statistics in C23, while the mean 590 

climatology and subseasonal variations of the large-scale environment are not important, at least for 591 

‘realistic’ magnitudes. Meanwhile, VWS and PI vary less consistently interannually in C1, so that 592 

〈𝑋𝑋〉𝑊𝑊 is not a significant control on the interannual variability of seasonal RI statistics. This results in a 593 

relatively larger importance of subseasonal variations of the environment or storm-scale dynamics in 594 

controlling RI in C1 than C23 – and, accordingly, lower seasonal predictability. This finding is 595 

consistent with that of Kossin et al. (2010), in which they suggested that TCs in the Gulf of Mexico are 596 
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strongly modulated by the Madden-Julian Oscillation, which is known to modulate TCs on subseasonal 597 

timescales (e.g. Maloney and Hartmann 2000). 598 

  599 
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6. Concluding Remarks 600 
 601 
This study is concerned with the large-scale environmental controls on the seasonal statistics of RI of 602 

North Atlantic TCs. Statistical analysis indicates that on interannual timescales, increased probability 603 

of TCs undergoing RI in the open tropical North Atlantic (C23) is significantly related to increased 604 

seasonal relative sea-surface temperature (RELSST), increased potential intensity (PI), and decreased 605 

vertical wind shear (VWS). However, tropical cyclones in the Gulf of Mexico and western Caribbean 606 

Sea (C1) and the Sargasso Sea (C0) do not exhibit such behavior. 607 

 608 

We demonstrated that the interannual variability of RI statistics in C23 is significantly controlled by 609 

the negatively correlated (‘cooperative’) interannual variability of VWS and PI, due to which seasonal 610 

anomalies of VWS and PI act constructively to change the probability that the environment will move 611 

in and out of the ‘RI-favorable’ space (region of high 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅  in the VWS-PI space). At least for 612 

‘realistic’ magnitudes, changes in the mean climatology, which we hypothesized might have lead to 613 

different sensitivities of RI activity to environmental changes, and changes in subseasonal variations of 614 

the large-scale environment are not significant to alter the seasonal environmental controls on RI. 615 

Making assumptions on the likelihood of RI at very extreme VWS and PI values beyond the currently 616 

observed range, the importance of the interannual variability of VWS and PI breaks down at extreme 617 

climatological values beyond future climate projections, which suggest that projected changes in 618 

climate may not affect RI seasonal predictability assuming small changes in the interannual variability 619 

of the large-scale environment. 620 

 621 

On the other hand, for the Gulf of Mexico cluster (C1), the seasonal anomalies of VWS and PI are 622 

weakly correlated and do not significantly control RI statistics on seasonal timescales, suggesting the 623 

potential importance of subseasonal environmental variability and storm-scale dynamics in controlling 624 
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RI. In the former sense, RI occurrences over this region could be mostly considered as ‘weather-625 

related’ events. 626 

 627 

This study provides a step towards RI seasonal predictability by exploring the statistical sensitivity of 628 

RI to large-scale environmental anomalies. Our statistical framework is developed using two climate 629 

predictors, while future study could include more RI predictors such as sea-surface height, high-630 

altitude divergence, and others used by Kaplan et al. (2010). In addition, the analysis presented in this 631 

study could be repeated with inclusion of the most recent hurricane seasons, as new data becomes 632 

available. The finding here that a significant seasonal environmental control on RI is determined by the 633 

negative correlation of VWS and PI seasonal anomalies, invites applications to other basins in which 634 

the distribution of RI activity could be compared to that of the correlation between seasonal VWS and 635 

PI in these basins. In addition, VWS and PI are among the factors discussed in Camargo et al. (2007) 636 

to influence genesis of tropical cyclones, while Tang and Emanuel (2012) modeled the probability of 637 

TC genesis as a function of the ventilation index (which depends on VWS, PI and entropy deficit). 638 

These suggest that the interannual correlation between VWS and PI may be extended to one involving 639 

other environmental anomalies to understand the seasonal predictability of TC activity across the 640 

tropics. Noting the significance of VWS and PI interannual variability in controlling RI in the 641 

Central/Eastern tropical North Atlantic, another application is to investigate whether coupled climate 642 

models could be used to predict VWS and PI seasonal anomalies in this region as a means of RI 643 

seasonal predictability, in both present and future climates. In particular, our findings highlight the 644 

importance of assessing future changes in the correlation between seasonal anomalies of VWS and PI, 645 

as opposed to changes in their absolute values, in speculating the potential of future RI seasonal 646 

predictability through climate change simulations. Lastly, work is underway to understand the physical 647 

mechanisms behind the observed strong (weak) negative correlation between VWS and PI in C23 648 
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(C1), and more generally to understand physical controls of the spatial distribution of such a 649 

correlation across global ocean basins. 650 

  651 

In light of the societal impact of rapidly intensifying TCs, this research is aimed at improving our 652 

understanding of their predictability on seasonal timescales through exploring their statistical 653 

connections with large-scale atmospheric and oceanic conditions. It is apparent that improved forecasts 654 

for the seasonal statistics of rapidly intensifying TCs that occur closer to land would be more beneficial 655 

to society than those further away. The results from this study show that on seasonal timescales, RI 656 

experienced by TCs furthest away from land (C23) are the most predictable, some of which indeed 657 

making landfall on the eastern sector of the Caribbean and North American region (Figure 2). The 658 

seasonal statistics of RI events that occur closer to the East Coast of the United States (C0), and those 659 

that affect population in Central America, Mexico and southern United States (C1), seem to be less 660 

predictable than their counterparts in the open tropical North Atlantic. 661 

  662 
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Tables 851 
 852 
Table 1: The number of TCs, the number of RI events, and the ratio between these two variables, in 853 
each TC cluster. Cluster analysis is performed with the K-means method, for HURDAT2 data between 854 
1979-2015 855 
 856 
 Number of TCs, 𝑁𝑁 Number of RI events, 𝑛𝑛(𝑅𝑅𝑅𝑅) 𝑝𝑝(𝑅𝑅𝑅𝑅) = 𝑛𝑛(𝑅𝑅𝑅𝑅)/𝑁𝑁  
Cluster 0 134 23 17% 
Cluster 1 158 59 37% 
Cluster 2 82 58 71% 
Cluster 3 79 21 27% 
  857 
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Figure Captions 858 
 859 
Fig. 1 TC density for each cluster, defined by the number of TC 6-hourly positions per year over a 860 

10ox10o box centered at each location. Also shown are the average locations of genesis, maximum 861 

intensity and lysis for each cluster 862 

 863 

Fig. 2 Tracks of TCs that experience RI, in each cluster in the North Atlantic. Crosses indicate landfall 864 

positions of these TCs, as indicated in the HURDAT2 dataset. The title in each subplot indicates the 865 

number of such landfalling RI TCs, and the percentage of landfall TCs that experience RI 866 

 867 

Fig. 3 Slope of the linear (median of pairwise slopes) regression of JJASON-mean MERRA PI, 868 

HadISST RELSST and MERRA VWS with RI probability, for all TCs in the North Atlantic. 869 

Regressions at 95% statistical significance are shaded in crosses, while those at 90% are shaded in dots 870 

 871 

Fig. 4 Slope of the linear (median of pairwise slopes) regression of JJASON-mean MERRA PI, 872 

HadISST RELSST and MERRA VWS with RI probability, for (a-c) C1 and (d-f) C23. The magenta 873 

boxes indicate areas over which averages for C1 and C23 are computed. (g-i) As in (d-f), but for PI, 874 

RELSST and VWS from JRA-55 and NOAA OISST. Regressions at 95% statistical significance are 875 

shaded in crosses, while those at 90% are shaded in dots 876 

 877 

Fig. 5 As in Figure 4d-f, but for logistic regression with the slope parameter 𝛽𝛽1 plotted 878 

 879 

Fig. 6 Observed and predicted (a-b) RI probability (𝑝𝑝∗(𝑅𝑅𝑅𝑅) , predicted with the binary logistic 880 

regression), (c-d) RI counts (𝑛𝑛∗(𝑅𝑅𝑅𝑅), predicted with the Poisson regression) and (e-f) TC counts (𝑁𝑁, 881 
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predicted with the Poisson regression), for C1 and C23. (g-h) Prediction for RI counts in C1 and C23 882 

calculated as the product of predicted RI probability and predicted TC counts 883 

 884 

Fig. 7 The typical large-scale environment in which RI and TCs exist. The green shading and contours 885 

show the two-dimensional probability density function (a) 𝑃𝑃𝑃𝑃𝐹𝐹𝑅𝑅𝑅𝑅, for all 134 RI occurrences in C1 and 886 

C23 during the period of 1980-2015, and (b) 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 , for all TCs in C1 and C23 during the same 887 

period. (c) The difference between 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇. (d-f) As in (a-c), but for all 768 RI occurrences 888 

and all TCs in the North Atlantic, Northeast Pacific and Northwest Pacific combined 889 

 890 

Fig. 8 Interannual variability 〈𝑋𝑋〉 of VWS and PI values in C1 (left) and C23 (right), where each dot 891 

represents one JJASON season. Seasonal anomalies of VWS and PI are more negatively correlated in 892 

C23 than C1 893 

 894 

Fig. 9 Reconstruction of RI seasonal statistics without and with interannual variability of the large-895 

scale environment, as given by 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 (blue) and 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 (red) respectively, for C1 (left) and C23 (right), 896 

over the 36-year period of 1980-2015. See text for a description of these convolutions. The tables 897 

below show the lag-zero Spearman correlation of 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠  and 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡  with seasonal 𝑝𝑝(𝑅𝑅𝑅𝑅)  and 𝑛𝑛(𝑅𝑅𝑅𝑅) 898 

statistics in each cluster. Statistical significance is computed with the Student’s t-test using 36-2=34 899 

degrees of freedom, as provided by the SciPy statistical package 900 

 901 

Fig. 10 As in Figures 8 and 9, but with 𝑃𝑃𝑃𝑃𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠  and 𝑃𝑃𝑃𝑃𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡  calculated using VWS and PI values 902 

weighted by RI density for each cluster, instead of box averages over the cluster region 903 

 904 
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Fig. 11 As in Figure 9, but with 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 calculated using all RI events in the North Atlantic, Northwest 905 

Pacific and Northeast Pacific combined (shown in Figure 7d) 906 

 907 

Fig. 12 Two-dimensional probability density function 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 (green contours, as in Figure 7a) in the 908 

VWS-PI space, superimposed by that of the 1980-2015 MERRA climatological JJASON seasonal 909 

cycle 𝑋𝑋� (blue) and scalar-mean JJASON climatology 𝑋𝑋� (red), where 𝑋𝑋 = 𝑉𝑉𝑉𝑉𝑉𝑉,𝑃𝑃𝑃𝑃, averaged for C1 910 

(left) and C23 (right) 911 

 912 

Fig. 13 Best fit of the North Atlantic 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 (shown in Figure 7a) to the hyberbolic tangent function in 913 

the VWS-PI space, as described in Section 2d 914 

 915 

Fig. 14 Impact of subseasonal environmental variability (𝑋𝑋′) on seasonal RI statistics in C23. (a) 916 

Convolution between 𝑃𝑃𝑃𝑃𝐹𝐹𝑅𝑅𝑅𝑅 and the two-dimensional PDF computed from 𝑋𝑋�𝐸𝐸 + 〈𝑋𝑋〉𝐸𝐸 + 𝑋𝑋𝐸𝐸′  (blue) or 917 

𝑋𝑋�𝐸𝐸 + 〈𝑋𝑋〉𝐸𝐸 + 𝑋𝑋𝑊𝑊′  (red), where 𝑋𝑋𝐸𝐸′  and 𝑋𝑋𝑊𝑊′  represents subseasonal variations in C23 and C1 918 

respectively. See text for a full explanation of these variables. (b) As in (a), but the red plot indicates 919 

the convolution computed using subseasonal variations in C23 in 2010 for all years (𝑋𝑋�𝐸𝐸 + 〈𝑋𝑋〉𝐸𝐸 +920 

𝑋𝑋2010,𝐸𝐸
′ ) 921 
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