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Abstract— The solutions offered to-date for end-user privacy in
smart meter measurements, a well-known challenge in the smart
grid, have been tied to specific technologies such as batteries
or assumptions on data usage without quantifying the loss of
benefit (utility) that results from any such approach. Using tools
from information theory and a hidden Markov model for the
measurements, a new framework is presented that abstracts
both the privacy and the utility requirements of smart meter
data. This leads to a novel privacy-utility tradeoff problem with
minimal assumptions that is tractable. For a stationary Gaussian
model of the electricity load, it is shown that for a desired mean-
square distortion (utility) measure between the measured and
revealed data, the optimal privacy-preserving solution i) exploits
the presence of high-power but less private appliance spectra as
implicit distortion noise, and ii) filters out frequency components
with lower power relative to a distortion threshold; this approach
appears to encompass most of the proposed privacy approaches.

Index Terms— smart meter, privacy, utility, rate-distortion,
inference, leakage.

I. INTRODUCTION

One of the hallmarks of the smart grid is a vastly expanded

information collection and monitoring system using smart

meters and other new technologies. But the information that

is collected and harnessed to create a more efficient grid may

potentially be used for other purposes, thereby raising the

question of privacy, especially of the residential consumer

whose smart meter data is being collected [1], [2].

Privacy of smart meter data has become a popular topic

of research. A common proposed model of privacy loss is

related to the possibility of inferring appliance usage from load

data with the help of load signature libraries. Equivalently,

a common proposed solution is the use of energy storage

devices (such as a large rechargeable battery) to “flatten” these

signatures [3], [4]. Proposals for privacy protection in smart

meter data have also used aggregation along dimensions of

space (using neighborhood gateways, e.g. [5]) or precision

(by noise addition, e.g. [6]). However, these approaches lack

a formal model of privacy and thus cannot answer some

pertinent questions such as (i) is detection of appliance usage

patterns the only means of losing privacy?; (ii) how much
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privacy is lost in such methods and to what extent do the

proposed solutions staunch the loss; and (iii) how much

sensitive information can and should be left in the data so

that it is still useful? In other words, current approaches to

privacy only provide privacy assurances, but cannot provide

any guarantees.

We present a formal model for the time-series smart meter

data and metrics for utility and privacy of the data. Observing

that the meter data is a cumulative load consumed by the

appliances that are on in an observation time window, we

propose a hidden Markov model for the measurements where

the underlying appliance states (on or off) determine the

load measurements, which in turn are modeled as real valued

correlated Gaussian random variables.

We argue that the model of privacy should be abstract and

oblivious of the extraction technology since: i) a technology-

specific solution that works now may not provide the same

privacy assurance in the future; ii) time series meter data

analysis is in its infancy and one can expect that in the

future, data from smart meters may be mined to infer personal

information in ways that are unknown to us presently [7]. To

this end, we choose mutual information as our privacy metric.

By the same token, it is likely that consumers may want to

share data with third parties in some measured manner to

derive some benefits (e.g. energy consumption optimization).

Thus, it is essential to guarantee a measure of utility of the

revealed meter data. In line with the Gaussian real value model

for measurements, we quantify the utility of the distorted data

by constraining the mean squared error (distortion energy)

between the original and revealed signals.

Our design goal is to provide a framework to accommodate

both legitimate objectives, sharing and hiding, in a fair manner

without completely sacrificing either. Such an overarching

framework that both quantifies privacy and provides a means

for measuring the tradeoff between sharing (utility) and hiding

(privacy) has not yet been presented. Our privacy focus is

to decouple the revealed/collected meter data as much as

possible from the personal actions of a consumer. This insight

is based on the observation that irregular (intermittent) activity

such as kettles or lights turned on manually are much more

revealing of personal actions than regular (continuous) activity

such as refrigerators or lights on timers. Consequently, our

approach to privacy preservation is to distort the data to

minimize the presence of intermittent activity in the data.

We use the theory of rate distortion to precisely quantify

the tradeoff between the utility (mean square distortion) and

privacy (information leakage) for our proposed model. We

show that the privacy-utility tradeoffs on the total load are

achievable using an interference-aware reverse waterfilling
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solution, which intuitively translates to suppressing low energy

components.

The paper is organized as follows. In Section II, we outline

current approaches to smart meter privacy. In Section III, we

develop our model, metrics, and the privacy-utility tradeoff

framework. We illustrate our results in Section IV and con-

clude in Section V.

II. RELATED WORK

The advantages and usefulness of smart meters in general is

examined in a number of papers; see for example [8] and the

references therein. [3] presents a pioneering view of privacy

of smart meter information: the authors identify the need

for privacy in a home’s load signature as being an inference

violation (resulting from load signatures of home appliances)

rather than an identity violation (i.e. loss of anonymity).

Accordingly, they propose home electrical power routing using

rechargeable batteries and alternate power sources to moderate

the effects of load signatures. They also propose three different

privacy metrics: relative entropy, clustering classification, and

a correlation/regression metric. However they do not propose

any formal utility metrics to quantify the utility-privacy trade-

off.

Recently, [9] proposes additional protection through the

use of a trusted escrow service, along with randomized time

intervals between the setup of attributable and anonymous data

profiles at the smart meter. [2] shows, somewhat surprisingly,

that even without a priori knowledge of household activities or

prior training it is possible to extract complex usage patterns

from smart meter data such as residential occupancy and

social activities very accurately using off-the-shelf statistical

methods. [5] and [2] propose privacy-enhancing designs using

neighborhood-level aggregation and cryptographic protocols to

communicate with the energy supplier without compromising

the privacy of individual homes. However, escrow services and

neighborhood gateways support only restricted query types and

do not completely solve the problem of trustworthiness. [4]

presents a formal state transition diagram-based analysis of the

privacy afforded by the rechargeable battery model proposed

in [3]. However, [4] does not offer a comparable model of

utility to compare the risks of information leakage with the

benefits of the information transmitted.

In, [6] the authors present a method of providing differential

privacy over aggregate queries modeling smart meter measure-

ments as time-series data from multiple sources containing

temporal correlations. While their approach has some similar-

ity to ours in terms of time-series data treatment, their method

does not seem generalizable to arbitrary query types. On the

other hand, [10] introduces the notion of partial information

hiding by introducing uncertainty about individual values in a

time series by perturbing them. Our method is a more general

approach to time series data perturbation that guarantees that

the perturbation cannot be eliminated by averaging.

III. OUR CONTRIBUTIONS

The primary challenge in characterizing the privacy-utility

tradeoffs for smart meter data is creating the right abstraction

– we need a principled approach that provides quantitative

measures of both the amount of information leaked as well as

the utility retained, does not rely on any assumptions of data

mining algorithms, and provides a basis for a negotiated level

of benefit for both consumer and supplier [11]. [4] provides

the beginnings of such a model – they assume that in every

sampling time instant, the net load is either 0 or 1 power unit

represented by the smart meter readings Xk, k = 1, 2, ..., are

a discrete-time sequence of binary independent and identically

distributed values. They model the battery-based filter of [3]

as a stochastic transfer function that outputs a binary sequence

X̂k that tells the electricity provider whether the home is

drawing power or not at any given moment. The amount

of information leaked by the transfer function is defined to

be the mutual information rate I(X; X̂) between the random

variables X and X̂ . By modeling the battery charging policy

as a 2-state stochastic transition machine, they show that there

exist battery policies that result in less information leakage

than from the deterministic charging policy of [3]. Though

[4] does not provide a general utility function to go with the

chosen privacy function and the modeling assumptions are

extremely simplistic, it nevertheless provides a good starting

point for our framework.

In our model, we assume that the load measurements are

sampled (at an appropriate frequency) from a smart meter,

that they are real-valued, and can be correlated (models

the temporal memory of both appliances and human usage

patterns). Rather than assume any specific transfer function,

we assume an abstract transfer function which maps the input

load measurements X into an output sequence X̂ . As in [4],

we assume a mutual information rate as a metric for privacy

leakage; however, we allow for the fact that a large space of

(unknown to us) inferences can be made from the meter data –

we model the inferred data as a random variable Y correlated

with the measurement variable X . Thus, the privacy leakage

is the mutual information between Y and X̂ . We also provide

an abstract utility function which measures the fidelity of the

output sequence X̂ by limiting the Euclidean distance (mean

square error) between X and X̂ . Using these abstractions

and tools from the theory of rate distortion we are able to

meet all our requirements for a general but tractable privacy-

utility framework: the privacy and utility requirements provide

opposing constraints that expose a spectrum of choices for

trading off privacy for utility and vice-versa. adversary too

A. Notation

Before proceeding, we summarize the notation used in

the sequel. Random variables (e.g. Hk,j) are denoted with

uppercase letters and their realizations (e.g. hk,j) with the

corresponding lowercase letters. X denotes an n-length vector

while bold font X denotes a matrix. I denotes the identity ma-

trix. N (µn,Σ) denotes a n-variable real Gaussian distribution

with mean µn and covariance Σ. E (·) denotes expectation;

(x)
+

denotes max(x, 0); I(·; ·) denotes mutual information;

h (·) denotes differential entropy. Finally, in the sequel we

use the term reverse waterfilling solution to denote the rate

and leakage minimizing source coding solution for Gaussian

sources with memory [12, Chap. 4].
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B. Model

We write xt, t = 1, 2, . . . , n, to denote the sampled load

measurements from a smart meter. In general, xt are complex

valued corresponding to the real and reactive measurements

and are typically vectors for multi-phase systems [13]. For

simplicity and ease of presentation, we model the meter mea-

surements as a sequence of real-valued scalars (for example,

such a model applies to two-phase 120 V appliances for which

one of the two phase components is zero).

At any time, the load measurements are determined by

the appliances actively in use. In general, there is a finite

time window during which an appliance is used and the

meter measurements during that time are correlated with the

specific appliance used. Furthermore, the statistics of the load

measurements changes as the appliances used change, i.e.,

the measurement data can be viewed as being generated by

a quasi-stationary source.

Let M denote the total number of appliances at a residence;

since each appliance can be either on or off in any window

of time, we have 2M possible appliance states. In general, the

appliance state at any time is an instantiation of a random

process that is highly correlated with the personal habits of

members of a household. We denote this state process by

{S(k)} such that S(k) ∈
{

0, 1, . . . , 2M−1
}

is the random state

variable in the kth time instant. Associated with this state, is

the meter measurement variable X(k) in the same time instant.

Formally, we model the joint probability distribution of the

states S = {S(k)}n

k=1 and measurements X = {X(k)}n

k=1

over n time instants as

P (S,X) =
∏n

k=1P (S(k)|Sk−1)P (X(k)|S(k)) (1)

=
∏n

k=1P (S(k)|Sk−1)P (X(k)|S(k)) (2)

where (1) results from the fact that conditioned on the state, the

measurements are independent of each other and (2) follows

from the fact that states are related in a causal and sequential

manner, i.e., we have the Markov chain relationship, Sk −
Sk−1 − Sk−2 for all k.

Remark 1: A rechargeable battery can be viewed as the

state S = 0 in which no appliance, as viewed by the smart

meter, is on.

A hidden Markov model (HMM) (see Fig. 1) such as in (1)

and (2) is typically characterized by three parameters: i) the

initial state distribution; ii) a state transition matrix; and iii)

and a conditional distribution, assumed Gaussian here, which

captures the probability density function of a measurement

x conditioned on a state s. For a stationary HMM process,

the state transition matrix is the same at each time instant,

and therefore, the time duration of the different states are the

same on average. While in general, the duration of usage of the

different appliance states may be different, for simplicity and

tractability, we assume the state is held and the underlying

probability distribution is stationary in a block of n>>1
measurements.

We now present an explicit probability model for the state

and the measurements. Our model is based on the following

two observations: i) a state S remains unchanged for a con-

tinuous period of time, assumed here to be n; ii) in that time,

1S

1
X

2S 3S n
S

2
X

3
X

n
X

Appliance State

Load Measurements

Fig. 1. A hidden Markov model for the meter measurements.

each appliance which is on in that state generates a sequence

of random (assumed Gaussian distributed) measurements char-

acteristic of the appliance signature consumption pattern (see

for e.g., [14], [13]). The assumption of randomness models the

variability in appliance manufacturers and voltage fluctuations.

Furthermore, the assumption of normal distribution for total

load is a simplification from empirical observations [15] that

the power consumption pattern of a typical appliance in the

on state is approximately Gaussian.

In general, appliances can be classified as being either on

almost all the time such as air conditioners, computers, and

refrigerators or as those that come on intermittently such as

ovens, toasters, and kettles. Without loss of generality, we

consider a state S = (sc, si) in which both a continual

appliance sc and an intermittent appliance si are on. Note

that sc and si can be viewed as states where only the said

appliance is on while the remaining M − 1 appliances are

off (see Fig. 2). Let Gn
c (sc) and Gn

i (si) denote the length n
Gaussian distributed time sequences for the states sc and si,

respectively. While the transition between states is given by a

Markov model, for any state, since a sequence is unique (in

autocorrelation and spectral characteristics) for each appliance,

we assume that Gn
c (sc) and Gn

i (si) are independent of each

other. Note, however, that the entries of each Gn
(·)

(

s(·)

)

are

correlated due to memory effects. We assume that the length

n is chosen such that the memory effects of each state

are contained within the sequence. We henceforth model the

memory via a length ma < n for state sa such that each entry

in a window of length n is affected by ma adjacent entries.

Writing the measurements in (n-length) vector notation, we

have

Xn (S) = Gn
c (Sc) + Gn

i (Si) + Zn (3)

where Gn
c (Sc) ∼ N (µc,RGc

) and Gn
i (Si) ∼ N (µi,RGi

)
are independent of each other and independent of the indepen-

dent and identically distributed (i.i.d.) Gaussian noise vector

Zn ∼ N
(

0, σ2
I
)

and the summation in (3) is a vector (entry-

by-entry) summation.

Remark 2: Since the entries of Gn
c (Sc) (resp. Gn

i (Si)) are

correlated with each other, in general, each entry of Gn
c (Sc)

can be written as a function of its past and future entries

and a term independent of them, such as, for example, an

autoregression model. For a more general analysis, however,

we do not restrict ourselves to any specific correlation model.

Thus, the covariance matrix RX has en-

tries {E [XjXk]}n

j,k=1 ≡ [RX (j, k)]
n

j,k=1 =

[RX (|j − k|mod n)]
n

j,k=1 of Xn(S) in (3) is a Toeplitz
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Fig. 2. Meter measurements obtained as a noisy sum of two Gaussian
processes, corresponding to the intermittent and continous appliances, respec-
tively over a time window of length n.

matrix with the autocorrelation entries

RX (|j − k|) =







RGc
(|j − k|) + RGi

(|j − k|) + σ2δ|j−k|,
|j − k| = 0, 1, 2, . . . ,m < n,

0, otherwise;
(4)

where RG(·)
(l) = 0, l ∈ {m(·)+1, ..., n}, m = max (mc,mi),

and δl is the Kronecker delta function which is non-zero only

for l = 0 and 0 otherwise. The circular n-block model for the

autocorrelation allows us to use the discrete Fourier transform

(DFT) to decompose an n-length correlated sequence into

n independent Gaussian measurements subject to the same

distortion and leakage constraints, i.e., the Fourier basis is the

eigen basis for each of the state sequences. Denoting the DFT

matrix by T, we have

Xn
F = TXn s.t. (5)

FX = E

[

TXn (Xn)
†
T

†
]

(6)

= TRXT
† (7)

i.e., FX is a unitary transformation of RX and has entries

FX (k), referred to as the power spectral density of the

Gaussian process {Xn}. Thus, the DFT Xn
F of Xn has entries

XF,k, k = 1, 2, . . . , n, that are independent but not identically

distributed Gaussian r.v.’s with variance FX (k) for the kth

entry.

For a unitary transform, the distance-based distortion and

mutual information based leakage constraints remain un-

changed [12, Chap. 4]. We will use this property in the sequel

to determine the minimal leakage fidelity-preserving mapping

of the measurement data. The aim of such a privacy-preserving

technique is to suppress the signatures of appliances used

intermittently as they significantly compromise the end-user

privacy relative to the continually running appliances [16].

C. Utility and Privacy Metrics

Since continuous amplitude sources cannot be transmitted

losslessly over finite capacity links, a sampled sequence of

n load measurements Xn is compressed before transmission.

In general, however, even if the sampled measurements were

quantized a priori, i.e., take values in a discrete alphabet, there

may be a need to perturb (distort) the data in some way to

guarantee a measure of privacy. However, such a perturbation

also needs to maintain a desired level of fidelity.

Intuitively, utility of the perturbed data is high if any

function computed on it yields results similar to those from

the original data; thus, the utility is highest when there is

no perturbation and goes to zero when the perturbed data is

completely unrelated to the original. Accordingly, our utility

metric is an appropriately chosen average ‘distance’ distortion

function between the original and the perturbed data.

Privacy, on the other hand, is maximized when the perturbed

data is completely independent of the original. The meter

measurements are a result of a specific choice of appliance

states which in turn are correlated with the personal habits

of the users. Our privacy metric measures the difficulty of

inferring private information leaked by the appliance state

via the meter measurements. More generally, any desired

private information of the data collector’s choice, defined as

a sequence {Yk} of r.v.’s Yk ∈ Y , -∞ < k < ∞, which

is correlated with the measurement sequence can be inferred

from the revealed data. The random sequence {Yk} for all

k along with the joint distribution pXnY n mathematically

captures the space of all inferences that can be made from

the measurements. We quantify the resulting privacy loss as a

result of revealing perturbed data via the mutual information

between the two data sequences.

Remark 3: While the space of Y n sequences can be poten-

tially large, in any time window, one can restrict the analysis

to a subset of inferences that are correlated with the appliance

state, and correspondingly, with the meter measurements for

that window. Since the appliance state determines the meter

measurements and also reveals private information of the con-

sumer, we have the following Markov chain: Y n −Sn −Xn,
i.e., the joint distribution of (Y n, Sn,Xn) can be written as

P (Y n, Sn,Xn) = P (Sn)P (Y n|Sn) P (Xn|Sn) . (8)

Remark 4: Our model of privacy is between a single user

(household) and the electricity provider. It does not consider

the leakage possibilities of comparing the perturbed data from

two or more different users. On the other hand our model

can be extended to address the availability of side-information

at the data collector such as income level of the user that

may cause further information leakage by incorporating the

statistical knowledge of the side information at the meter.

D. Privacy-Preserving Mapping

A smart meter can enable load consumption monitoring at

a fine-grained level such as over 15 minute intervals [16, p.

12]; this in turn determines the sampling rate and quantization

levels for the meter measurements. The resulting stream of

continuous valued discrete data has to be communicated over

a finite rate, such as a wireless, link. For efficient transmission,

one can exploit the correlations in a window of measurements

to compress efficiently. The quality of compression is deter-

mined by the fidelity desired of the output, i.e., the utility of

the revealed measurements as discussed earlier.

A privacy-preserving mapping also needs to ensure that

a minimal amount of information can be inferred about the

personal habits. We abstract the resulting problem to one

of mapping every meter data sequence to an appropriate

sequence that satisfies both the utility (fidelity) and privacy

(leakage) constraints. Formally, an (n,M,D,L) code involves

an encoder and a decoder described below:
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Encoding: In each time window, the meter collects n ≫ 1
measurements prior to communication. Recall that the corre-

sponding state in this time window is then Sk. The encoding

function is then a mapping of the resulting source sequence

Xn (Sk) = (X1 X2 X3 . . . Xn), for all k = 1, 2, . . . , n,
given by

FE : Xn (S) → M =
{

1, 2, . . . , 2nR
}

(9)

where FE maps the sequence Xn (S) to an index M ∈ M
which represents a quantized sequence.

Decoding: The decoder (at the data collector) computes an

output sequence X̂n =
(

X̂1 X̂2 X̂3 . . . X̂n

)

, X̂k ∈ R, for

all k, using the decoding function

FD : M → X̂n. (10)

The encoder is chosen such that the input and output sequences

achieve a desired utility given by an average distortion con-

straint

D =
1

n

n
∑

k=1

E

[

(

Xk − X̂k

)2
]

(11)

and a constraint on the information leakage about the desired

sequence {Yk} from the revealed sequence
{

X̂k

}

is quantified

via the leakage function

L =
1

n
I

(

Y n; X̂n
)

(12)

where E [·] denotes the expectation over the joint distribution

of Xn and X̂n given by p
XX̂

(xn, x̂n) = Pn
Xn (xn) pt(x̂

n|xn)
where pt(x̂

n|xn) is a conditional pdf on x̂n given xn. The

mean-square error (MSE) distortion function chosen in (11) is

typical for Gaussian distributed real-valued data as a measure

of the fidelity of the perturbation (encoding). Some examples

of the inference sequence Y n are the known signature se-

quences for specific appliances which typically leak the most

information about the personal habits of a consumer. Thus,

Y n can include the signature sequences for appliances such as

kettles, toasters, and appliances which come on at unexpected

times or are unusual in usage pattern.

Remark 5: The encoding scheme presented here, is inspired

by the theory of rate-distortion in which the focus is on

determining the minimal rate at which to compress a data

source for a desired fidelity (distortion) level. However, the

aim of the encoding here is to guarantee a minimal level of

leakage L for a desired fidelity (distortion) D. We formalize

this tradeoff below.

E. Utility-Privacy Tradeoff Region

Formally, the utility-privacy tradeoff region T is defined as

follows.

Definition 6: The smart meter utility-privacy tradeoff re-

gion T is the set of all (D,L) pairs for which there exists

a coding scheme given by (9) and (10) with parameters

(n,M,D+ ǫ, L+ ǫ) satisfying (11) and (12) for n sufficiently

large and ǫ > 0.

In classical rate-distortion theory, the constraint is on the

number M of encoded (quantized) sequences such that the rate

in bits per entry of the sequence is bounded as M ≤ 2n(R+ǫ).

The aim then is to determine the infimum of all rates R(D)
that is achievable for a desired distortion D. Here, we seek to

minimize the average number of bits per entry that is leaked

of the correlated sequence Y n that we wish to hide from the

revealed sequence X̂n; while minimizing R(D) is also be

desirable from a communication standpoint, minimizing both

via the coding scheme may, in general, not be feasible except

for specific cases, and therefore, we do not explicitly consider

the rate minimization. Formally, the minimal leakage λ (D)
for a desired fidelity D is defined as follows.

Definition 7: The minimal leakage λ (D) achievable for a

desired distortion D for a source with memory subject to

distortion and leakage constraints in (11) and (12) is given

by

λ(D) = lim
n→∞

inf
p(xn,yn)p(x̂n|xn)

1

n
I

(

Y n; X̂n
)

. (13)

The closure of the set of all achievable distortion-leakage

(D,L) pairs is the distortion-leakage region such that the

minimal leakage (boundary) is λ (D) for any D.

Remark 8: The Markov relationship Y n − Xn − X̂n

is captured via the set of all distributions in (13) which

minimize λ(D).

Remark 9: If an additional constraint on minimizing the

encoding rate is included, the minimal achievable rate for a

desired distortion is given by

R(D,L) = lim
n→∞

inf
p(xn,yn)p(x̂n|xn)

1

n
I

(

Xn; X̂n
)

(14)

For Yk = Xk, for all k, i.e., for the case in which the actual

measurements need to be private, λ(D) = R(D,L) = R(D)
where R(D) is the rate-distortion function for the source.

In general, the optimal distribution minimizing the leakage

subject to a distortion constraint depends on the joint distri-

bution of the state, measurement, and inference sequences.

Modeling this relationship is, in general, not straightforward

or known a priori. However, since the revealed measurements

leak information about the appliance state which in turn can

lead to a large set of inferences, we focus directly on the

problem of minimizing the leakage of specific states via the

revealed data.

F. Privacy-Preserving Spectral Waterfilling

In general, the problem of suppressing specific appliance

signatures requires detection of the appliance states at the

meter in a given window of time to determine the appliances

to suppress. To avoid dependence on any specific appliance

detection algorithm, we assume the existence of an external

algorithm that can detect (with perfect accuracy) in a given

window of time which appliances changed state from off to

on or vice versa. One can broadly describe the signal in any

such window as a noisy sum of signals from intermittently

(more revealing of personal details) and continuously (less

revealing) used appliances, with states si and sc, respectively,

as given by the model in (3). Thus, we henceforth focus on

the problem of suppressing the state si relative to the state sc

and the measurement noise.
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We consider the state and measurement model in (3) and

determine a lower bound on the leakage possible in each

window of n measurements. Specifically, we seek to hide

the intermittently used appliance by choosing the inference

sequence as Y n = Gn
i , and thus, our aim is to minimize the

leakage

L =
1

n
I

(

Gn
i ; X̂n

)

(15)

in a window of n measurements. Recalling that the DFT is a

unitary transformation that preserves Euclidean distance and

mutual information, we have

L =
1

n
I

(

Gn
i,F ; X̂n

F

)

(16)

=
1

n
h

(

Gn
i,F

)

−
1

n
h

(

Gn
F,i|X̂

n
F

)

(17)

=
1

n

∑n

k=1 log (2πeFGi
(k)) −

1

n
h

(

Gn
F,i − X̂n

F |X̂
n
F

)

(18)

≥
1

2n

∑n

k=1 log (2πeFGi
(k)) −

1

n
h

(

Gn
F,i − X̂n

F

)

(19)

≥
1

2n

∑n

k=1 log (2πeFGi
(k)) −

1

n
hG

(

Gn
F,i − X̂n

F

)

(20)

=
1

2n

∑n

k=1 log (2πeFGi
(k)) (21)

−
1

2n

∑n

k=1 log
(

2πe
(

FGc
(k) + ∆ (k) + σ2

))

=
1

2n

∑n

k=1

[

log

(

FGi
(k)

(FGc
(k) + ∆ (k) + σ2)

)]+

(22)

where (17) follows from the expansion of mutual informa-

tion, (18) follows from the fact that {XF,k} for all k are

independent Gaussian distributed r.v.’s, (19) follows from the

fact that conditioning does not increase mutual information,

(20) follows from the fact that for a fixed variance, Gaussian

r.v.’s have the maximal entropy (hG denotes the entropy of

a Gaussian r.v.), i.e., choosing X̂n
F as independent Gaussian

r.v.’s which implies from (11), we have

Xn
F = X̂n

F + Qn
F (23)

where Qn
F is a sequence of independent Gaussian r.v.’s (intu-

itively viewed as quantization noise) independent of X̂n
F , (21)

follows from (3), (23), and by setting ∆(k) ≡ |XF (k) −
X̂F (k) |2 such that

∑n

m=1∆(k) = D, and finally, (22)

follows from the positivity of the mutual information, i.e.,

h(Gn
F,i|X̂

n
F ) < min(h(Gn

F,i − X̂n
F ), h(Gn

F,i)). The optimiza-

tion in (21) results in the following distortion allocation

solution across the frequencies:

∆(k) = min
(

(

Fi (k) − Fc (k) − σ2
)+

,

(

λ − Fc (k) − σ2
)+

)

, k = 1, 2, . . . , n (24)

where the first term in the minimum in (24) comes from

the requirement that in (21), for non-negative leakage, the

denominator is upper bounded by the numerator and the

second term is a result of the optimization in which λ is the

Lagrangian variable satisfying the distortion constraint in (11).

One may view λ as a water-level across the frequencies such

that at each frequency only that portion of the spectrum is

revealed which is strictly above λ.

The resulting minimal leakage L ≡ Lλ (D) in the limit of

large n is given by

Lλ (D) ≥

∫

f :Fi(f)>λ>Fc(f)+σ2

1

2
log

(

Fi (f)

λ

)

df (25)

where f denotes real valued frequencies; the corresponding

distortion spectrum is given by

∆(f) =















0;
Fi (f) < Fc (f) + σ2; (or)

λ < Fc (f) + σ2 < Fi (f)
D1 (f) ; Fc (f) + σ2 < λ < Fi (f)
D2 (f) ; λ > Fi (f) > Fc (f) + σ2

(26)

where

D1 (f) =
(

λ − Fc (f) − σ2
)+

(27)

D2 (f) =
(

Fi (f) − Fc (f) − σ2
)+

. (28)

Note that the term inside the integral in (25) can be viewed

as the leakage at each frequency f for a distortion λ. While

(25) provides a lower bound on L, the bound can be achieved

by using an independent encoding scheme at each frequency

subject to an average distortion constraint. In practice, the

bound can be approached using techniques such as sub-band

coding as used in common audio and image compression

formats.

To better understand the solution, we now describe the

solution in detail starting from the simplest case of Fc (f) =
σ2 = 0:

• Case 1: Fc (f) = 0, for all f, and σ2 = 0 such that

Xn = Sn
i , i.e., the random sequence in a window of

time is a noiseless sequence resulting from having only

the appliance Si in the on state. For this case, since

Y n = Sn
i , we wish to reveal Xn subject to a fidelity

constraint in (11) and hide Xn subject to a leakage

constraint in (12). Let λ1 denote the water-level for this

case. From (24), the solution ∆(k) = λ1 for all k leads to

the reverse waterfilling level solution that minimizes the

rate for a desired distortion for Gaussian sources with

memory. This is because now the expressions for both

rate and leakage in (14) and (13) coincide. The privacy-

preserving rate-distortion optimal scheme thus reveals

only those frequency components with power above the

water-level λ. Furthermore, at every frequency only the

portion of the signal power which is above the water level

λ is preserved by the minimum-rate sequence from which

the source can be generated with an average distortion D.

• Case 2: Fc (f) = 0, for all f, such that Xn = Sn
i + Zn,

i.e., the random sequence in a window of time is a noisy

sequence resulting from having only the appliance Si

in the on state. Since measurement noise reduces the

fidelity of the appliance signature, we expect that the

average leakage to be lesser than that for Case 1. Let

λ2 denote the water-level for this case. The requirement

in (24) that ∆(f) =
(

λ2 − σ2
)+

implies that for a fixed

distortion D, λ2 > λ1 for σ2 > 0. Furthermore, since

∆(f) ≤
(

Fi (f) − σ2
)+

, in general, a smaller set of
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frequencies, relative to Case 1, are preserved for which

the signal power is above the noise power since otherwise

the noise suffices to hide the signal. Finally, the average

leakage in each preserved frequency, is log (Fi (k) /λ2)
< log (Fi (k) /λ1), i.e., the presence of noise can aid in

hiding the appliance signature we wish to not reveal.

• Case 3: The observations from Case 2 carry forth to this

case also since now Sn
c can also be viewed as noise except

with non-identical variances across the frequencies. Thus,

only those frequencies are revealed for which Fi (f) >
min

(

Fc (f) + σ2, λ
)

or Fc (f) < Fc (f) + σ2. In the

latter case, the power of the noise and the continuous

appliance signal suffices to suppress the signal to be

hidden and therefore, no additional distortion is needed.

On the other hand, in the former case, only the signal

above the distortion level of max
(

Fc (f) + σ2, λ
)

is

preserved.

Remark 10: For all three cases above, the minimal (com-

pression) rate R (D) required to achieve a distortion D also

results from a water-filling solution except the solution is dif-

ferent in the presence of noise and other appliance signatures

is R (D) =
∫

f :Fi(f)>λ
log (Q (f) /λ) /2df where for Q (f) is

Fi (f) , Fi (f) + σ2, or Fi (f) + Fc (f) + σ2 for cases 1, 2,

and 3, respectively where λ is chosen such that the distortion

spectrum is ∆(f) = Q (f) if Q (f) < λ and ∆(f) =
λ, otherwise. Thus, the optimal compression solution does

not distinguish between the different signatures or noise in

contrast to the reverse water-filling solution which minimizes

the leakage and therefore distorts all those frequencies in

which the energy (power) of the signal to be suppressed is

higher than the water-level.

Remark 11: From (26), we see that at those frequencies

in which the power of the state si to be suppressed is

dominated by the power of the noise and the state sc, the

distortion required is zero. While this suffices for minimizing

the leakage, transmitting the data at such frequencies may

require additional compression. More generally, this suggests

that the combined problem of rate and leakage minimization

has to be considered jointly.

Remark 12: While leakage-preserving distortion ensures

privacy, the utility in terms of average load consumption is

reduced by the distortion level D. However, the knowledge

of the distortion level suffices to estimate the average load

consumed at the provider end without any loss of privacy.

IV. ILLUSTRATION

We now illustrate our results with the following examples.

Specifically, we model the continuous and intermittent appli-

ance load sequences in (3) as (time-limited) Gauss-Markov

processes with an auto-correlation function given by

RG(l)
(k) =

{

P(l)ρ
−|k|
(l) , k = 0,±1,±2, . . . ,m(l),

0 k > m(l)

, l = i, c

(29)

where P(l) is the variance, ρ(l) is the correlation coeffi-

cient which falls geometrically with increasing difference in

measurement indices k, and m(l) is the memory of the lth
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Fig. 3. Signal PSDs, distortion spectrum, and waterlevel λ for D = 4.
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Fig. 4. Signal PSDs, distortion spectrum, and waterlevel λ for D = 6.

appliance type, l = i, c. The power spectral density (PSD) of

this process is given by

S(ω) =

∞
∑

k=−∞

P(l)ρ
−k
(l) exp(ikω), − π ≤ ω ≤ π. (30)

For the following discussion, we choose the parameters in

(29) as follows: Pi = 12, Pc = 8, ρi = 0.4, ρc = 0.8,
mi = 40, and mc = 120. These parameters model the

observation that the continuously used appliance (state sc) has

a longer memory and a larger correlation coefficient relative to

the intermittently used appliance (state si); furthermore, while

the overall power consumption of state sc is higher than that of

state si, the bursty usage pattern of state si is incorporated via

a larger value for Pi relative to Pc. We choose two different

values for the distortion D as 4 and 6.

In Figs. 3 and 4, we plot the PSDs Fi (f) , Fc (f) + σ2,

and Fi (f) + Fc (f) + σ2 of the processes {Gi}, {Gc + Z},

and {X}, respectively, for the parameters described above.

Also plotted is the waterlevel λ and the distortion spectrum

∆(f). From both figures, we see that the distortion spectrum is

zero when the PSD of the noisy continuous process dominates

Fi (f) or the waterlevel λ leading to zero and minimal leakage,

respectively, for the two cases. The waterlevel λ determines
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Fig. 5. Time series autocorrelation for the original and distorted signals for
D = 4.
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Fig. 6. Time series autocorrelation for the original and distorted signals for
D = 6.

the distortion level otherwise.

In Figs. 5 (for D = 4) and 6 (for D = 6), we plot

the time series auto-correlation functions RX (k) , R
X̂

(k) ,

RGi
(k) , and RGc+Z (k) for the processes {X} , {X̂}, {Gi} ,

and {Gc + Z} , respectively. We note that the effect of the

distortion is captured in a reduction of the variance (k =
0 term) of the {X̂} process relative to the {X} process

by D. Furthermore, while the slope of the {X} process is

dominated by the auto-correlation of the state si as observed

by comparing the curves for RX (k) with RGi
(k) , the slope

of R
X̂

(k) matches that of RGc
(k) . Thus, the signal energy

remaining in X̂ is dominantly due to the noisy continuous

state sc process.

V. DISCUSSION AND CONCLUDING REMARKS

Preserving privacy in a measured and flexible way is a

paramount societal challenge for smart meter deployment.

At the same time, any privacy techniques that dramatically

alter the usefulness of smart meter data are not likely to be

adopted. The theoretical framework that we have developed

here allows us to precisely quantify the utility-privacy tradeoff

problem in smart meter data. Given a series of smart meter

measurements X , we have revealed a perturbation X̂ that

allows us to guarantee a measure of both privacy in X and

utility in X̂ . The privacy guarantee comes from the bound on

information leakage while the utility guarantee comes from

the upper bound on the MSE distance between X and X̂ .

Our information leakage model of privacy does not depend

on any assumptions about the inference mechanism (i.e. the

data mining algorithms); instead it presents the least possible

(on average) guarantee of information leakage about X , while

the utility is preserved in an application-agnostic manner. Our

framework is also agnostic about how the perturbation is

achieved; for example, it can be achieved using a filter such

as a battery or by adding noise or by some novel technique

yet to be discovered.

Our model captures the dynamic nature of the appliance

states and the smooth continual nature of the measurements

via a hidden Markov model and correlated Gaussian measure-

ments, respectively. We have extended classical results from

rate distortion theory to obtain tight bounds on the amount

of privacy that can be achieved for a given level of utility

and vice-versa. We have shown that the critical parameter

of choice in the tradeoff is the water level λ, which in turn

depends on the distortion bound D that is acceptable. In a

practical context, the choice of λ is dictated by the choice of

the privacy-utility tradeoff operating point which, in turn, has

to be negotiated between the energy provider and consumer.

Our distortion model can be viewed as a filter on the

load signal X that suppresses those appliance (intermittent)

signatures which reveal the most private information by: i)

filtering out all frequencies that have power below a cer-

tain threshold (determined directly by λ), and ii) exploiting

the presence of continually used appliances which reveal

less private information as a pre-existing distortion (noise)

at frequencies in which their spectral context is significant.

This indirectly exploits the fact that a common household

environment has a combination of appliances with various

profiles that mask each other and thus having a mixture of

appliances is better for privacy in the sense of masking human

activity.

Our privacy technique prioritizes the elimination of those

characteristics of the load signal that are more correlated with

human activity and therefore it is likely to be robust against

future data mining algorithms that may be brought to bear

on smart meter data. At the same time, our utility constraints

guarantee that most of the useful energy consumption informa-

tion is retained in the revealed load data. This holds out hope

that we can reveal significant energy consumption information

while at the same time protecting significant personal informa-

tion in a tunable tradeoff. Finding examples of operating points

that correspond to real-world trade-offs would be an interesting

avenue for further exploration. Another interesting avenue to

explore would be to apply and demonstrate the power of these

concepts in a practical context.
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