
1INFORM: Inverse Design Methodology for
Constrained Multi-objective Optimization

Prerit Terway, and Niraj K. Jha, Fellow, IEEE

Abstract—Many system design methods use population-based
optimization or a surrogate model for solving constrained multi-
objective optimization. When designing a system with multiple
objectives and constraints, the designer may first be interested in
understanding the trade-offs among different objectives from a
small number of simulations. In the next step, the designer may
focus on specific regions of interest in the design space near a set
of non-dominated solutions to further improve performance on
the targeted objectives. This may help make the search process
sample-efficient. We propose INFORM: a two-step approach for
sample-efficient constrained multi-objective optimization of real-
world nonlinear systems. In the first step, we modify a genetic
algorithm (GA) to make the design process sample-efficient. We
inject candidate solutions into the GA population using inverse
design methods instead of determining the candidate solutions
for the next generation using only crossover and mutation, as
is done in standard GA. We present three types of inverse
design techniques based on a (i) neural network verifier, (ii)
neural network, and (iii) Gaussian mixture model. The candidate
solutions for the next generation are thus a mix of those generated
using crossover/mutation and solutions generated using inverse
design. At the end of the first step, we obtain a set of non-
dominated solutions. In the second step, we choose the regions of
interest around the non-dominated solutions to further improve
the objective function values using inverse design methods.
We demonstrate the efficacy of INFORM through synthesis of
nonlinear systems and analog circuits. The experimental results
show that INFORM reduces synthesis time by up to 29× and
improves the value of the objective function by up to 33%
compared to a state-of-the-art baseline design methodology.

Index Terms—Active learning; constrained multi-objective
optimization; evolutionary algorithm; Gaussian mixture model;
inverse design; mixed-integer linear program; neural networks;
sample efficiency; system synthesis.

I. INTRODUCTION

System design involves selecting system configuration(s)
from a design space to solve a constrained multi-objective
optimization (CMOO) problem. Using CMOO, we aim to
obtain designs that achieve the best value of the objective
functions (e.g., power, energy, fuel cost, etc.) while satisfying
all constraints on system configuration (e.g., component values)
and simulation outputs (e.g., noise, gain, peaking, etc.). Current
design techniques often rely on evolutionary algorithms (EAs)
to solve CMOO problems. EAs evaluate a diverse set of
candidate solutions over multiple generations to avoid local
minima. However, EAs are sample-inefficient and require
numerous runs to find the best solution to the CMOO problem.
Bayesian optimization (BO) is another widely used sample-
efficient system design technique. It uses a surrogate model
to actively learn the next candidate solution(s) for simulation.
Although BO is sample-efficient, the surrogate model building

This work was done under a contract from the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Laboratory (AFRL).
The views, opinions and/or findings expressed are those of the authors and
should not be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government. Prerit Terway and Niraj K.
Jha are with the Department of Electrical and Computer Engineering, Princeton
University, Princeton, NJ 08544, USA, e-mail:{pterway, jha}@princeton.edu.

complexity is O(N3), where N denotes the number of samples.
Furthermore, most existing methods try to find the entire
Pareto front [1] (which is typically unknown for a real-world
system) rather than focus on specific regions near the set of
non-dominated solutions that may be of most interest to the
designer. A solution is non-dominated if no other design is
better in at least one and better or equal in all other objectives
with respect to the given solution.

We propose INFORM (Inverse Design Methodology for
Constrained Multi-objective Optimization), a two-step sample-
efficient synthesis methodology for solving CMOO problems.
In Step 1, we modify a genetic algorithm (GA) to generate
candidate solutions for the next generation using inverse
design methodologies, in addition to solutions generated using
crossover and mutation. Inverse design methodologies use a
surrogate model to generate candidate solution(s) based on the
desired system objectives and constraints. This contrasts with
the typical use of a surrogate model in the literature. Typically,
surrogate models evaluate multiple candidate solutions to select
the most promising ones for simulation. Injection of candidate
solutions using surrogate models exploits system response from
all past simulations, rather than just using information from the
previous generation of solutions, as done in a GA. We use three
types of inverse design techniques: (i) neural network (NN)
verifier, (ii) NN, and (iii) Gaussian mixture model (GMM),
and their various combinations, resulting in a total of seven
inverse design methods. The NN-Verifier (NN-Ver.) converts
an NN surrogate model with ReLU activation to a mixed-
integer linear program (MILP). NN-based inverse design uses
a surrogate model to map the simulation outputs (e.g., system
objectives/constraints) to the simulation inputs (e.g., system
component values). GMM uses the joint probability distribution
of simulation inputs and corresponding simulation outputs
to generate candidate solutions. We dynamically determine
the number of mixture components and the weight of each
component using previous simulations. GMM-based candidate
solutions correspond to the expected value of the conditional
distribution of the component values, given the desired objec-
tives/constraints. We use inverse designs to enhance system
objectives and constraints with the aim of obtaining solutions
that are better or are non-dominated with respect to solutions
obtained through past simulations. We terminate Step 1 upon
meeting some stopping criteria and obtaining a set of non-
dominated solutions.

In Step 2, we harness the benefits of inverse designs to
focus only on specific regions of interest around the set of non-
dominated solutions obtained in Step 1. This enables targeted
simulations, making the design process sample-efficient. We
use the same inverse design methodologies that are used in Step
1 to generate solutions that dominate the solution(s) selected in
Step 1. We aim to continuously obtain better solutions until we
arrive at stopping criteria that terminate Step 2. The designer

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3217422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Princeton University. Downloaded on April 14,2023 at 19:10:59 UTC from IEEE Xplore. Restrictions apply.

2

can choose the number of candidate solutions that should be
generated in each iteration of Step 2 to balance the time to
generate solutions and the simulation cost.

We summarize the main contributions of INFORM next.
• Its Step 1 achieves a higher hypervolume compared to

population-based optimization using the well-known GA
algorithm: NSGA-II [2]. Hypervolume measures the size
of the dominated space bounded by a reference point [3].

• Its Step 2 enables easy adaptation to different designer
preferences by focusing on the specific regions of interest
around the set of non-dominated solutions obtained in
Step 1. Using Step 2 can also drive an existing solution
towards another solution with different specifications, thus
avoiding search from scratch.

• Use of inverse designs enables it to directly handle multi-
ple objective/constraints on simulation inputs and outputs
instead of using a pseudometric like entropy or expected
hypervolume improvement (EHVI) [4]. Note that the
computational complexity of obtaining the hypervolume
increases with an increase in the number of objectives.

• It generates multiple candidates solutions (like NSGA-II),
thus enabling the use of multiple cores for simulation.

• Its sample-efficient and lightweight design methodology
does not require graphical processing units (GPUs), thus
reduces optimization cost.

The rest of the article is organized as follows. In Section
II, we discuss related work. Section III provides the necessary
background, followed by a simple motivational example in Sec-
tion IV. In Section V, we present the sample-efficient CMOO
methodology. We evaluate the system synthesis methodology
in Section VI. We discuss the highlights and limitations of
INFORM in Section VII. Section VIII concludes the article.

II. RELATED WORK

Next, we review prior work on solving CMOO problems.
We cover weighted sum-based techniques, e.g., reinforcement
learning (RL) and BO, that convert the CMOO problem into a
weighted sum of objectives and constraints. We also discuss
optimization methods like EA and recent versions of BO that
return a Pareto front as the solution to CMOO.

A. Weighted-sum Optimization

RL uses the notion of reward to determine the appropriate
action in each state using a policy to solve the optimization
problem. Most RL methods require formulating the reward
as a weighted sum of objectives and constraints. Wang et al.
[5] use deep deterministic policy gradient (DDPG) with an
encoder-decoder framework for the actor to synthesize analog
circuits. AutoCkt [6] uses deep RL to learn the trade-offs among
different objectives across the design space when designing
electrical circuits. RL in conjunction with graph NN is used to
reduce the synthesis time for chip floorplanning in [7]. Circuit-
GNN [8] uses a graph NN to address forward and inverse
design problems for circuit design across different topologies.

BO is another widely used technique for solving black-
box optimization problems. It uses a surrogate model to learn
the system response using past data. An acquisition function
determines the candidate solution using the surrogate model.

The acquisition function balances exploration of a new region
with exploitation of past knowledge when generating the
candidate solution. Lyu et al. [9] exploit disagreement between
different acquisition functions to propose a batch of candidate
solutions at each iteration to synthesize amplifiers.

B. Multi-objective Optimization (MOO)

MOO handles the objective(s) and constraint(s) separately.
Solving CMOO results in solutions that represent the best
trade-off among the outputs. The solutions satisfy the design
constraints and optimize the output objectives. EA is a widely
used technique that evolves a set of initial candidate solutions
across generations to return the Pareto front, indicating the best
trade-off among the objectives. NSGA-II [2], a prominent EA,
uses fast non-dominated sorting to reduce the computational
complexity by an order of magnitude. Deb et al. [10] propose
a reference point-based many-objective EA called NSGA-III
to place emphasis on non-dominated population members to
solve CMOO problems.

Recent works modify the BO engine to solve MOO problems.
Daulton et al. [4] present a parallel version of EHVI to derive
multiple candidate solutions at each iteration to solve CMOO
problems. Lyu et al. [11] use Gaussian process as the surrogate
model for multiple objectives. The acquisition function is
derived using the Pareto front of the lower confidence bound of
the multiple objectives. A Bayesian NN is combined with BO
to obtain candidate solutions based on a “pseudo” Pareto front
in [12]. However, Refs. [11] and [12] do not handle constraints
on the output. WATSON [13] combines multiobjective genetic
optimization and multivariate regression to obtain the Pareto
front in analog circuit design. ENSGA [14] uses variable
population size in a GA and Monte Carlo simulations to
assess the sensitivity of the solutions on the Pareto front to
process variations in the synthesis of amplifier and oscillators.
CNMA [15] and ASSENT [16] use inverse designs to generate
candidate solutions to solve optimization problems with a single
objective and multiple constraints.

Table I shows a comparison of INFORM with other synthesis
methodologies. We only consider the recent BO methods from
[17] that solve CMOO. EA is sample-inefficient and often
requires repeated simulations to obtain a system configuration
whose response meets the constraints and achieves the best
value of the objectives. Other methods are sample-efficient,
although the complexity of BO is cubic in the number of
evaluations. All methods except ASSENT can handle multiple
objectives and constraints. Step 2 of ASSENT uses an inverse
design methodology to perform targeted simulations, making
it amenable to varying designer specifications. INFORM uses
three new inverse design methodologies and their combination
to simultaneously generate multiple candidate solutions in
comparison to ASSENT that generates a single candidate
solution at each iteration.

III. BACKGROUND

This section discusses the preliminary material that our work
builds on. First, we discuss the formulation of system design
as a CMOO problem. We then provide a brief overview of GA
and its use in system optimization. Next, we discuss material
that forms the basis for our inverse system design methodology
using a GMM and NN-Ver.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3217422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Princeton University. Downloaded on April 14,2023 at 19:10:59 UTC from IEEE Xplore. Restrictions apply.

3

TABLE I: Comparison of synthesis methodologies with INFORM

BO EA ASSENT INFORM
Sample-
efficient ✓ × ✓ ✓

Multiple
objectives and

constraints
✓ ✓ × ✓

Inverse
design × × ✓ ✓

Multiple
candidate
solutions

✓ ✓ × ✓

Dynamic
specifications × × ✓ ✓

A. CMOO Formulation for System Design

System design requires choosing component values from
a constrained design space to find system configurations that
achieve the best objective values while satisfying the defined
constraints. Solutions to the CMOO problem constitute a set
of non-dominated solutions that lie on the Pareto front [1].
CMOO for system design can be formulated as follows:

minimize
x

fm(x), m = 1, 2, . . . ,M

subject to gj(x) ≥ 0, j = 1, 2, . . . , J

hk(x) = 0, k = 1, 2, . . . ,K

xL
i ≤ xi ≤ xU

i , i = 1, 2, . . . , n

(1)

where x is the design space over all possible component
values and fm(x) is the mth objective. The system must
satisfy J inequality constraints given by gj(x) and K equality
constraints given by hk(x). For example, when designing
a Lunar lander [18], the goal is to maximize the reward
determined by the position at which the module lands, minimize
the fuel consumption, subject to constraints on the time taken to
land, and a successful mission. The range of values of available
components constrains the design space. The lower (upper)
bound of value xi of component i is labeled as xL

i (xU
i).

B. Genetic Algorithm

GA helps explore a large design space and is better suited at
avoiding local minima than gradient-based optimization tech-
niques. A set of candidate solutions comprising a population
is evolved over multiple generations to improve the value of
the objective function. A chromosome represents a candidate
solution. It includes a sequence of genes that indicates the value
of each component. A simulator evaluates the chromosomes to
determine their objective values and if they meet the constraints.
A subset of the best-performing chromosomes is selected
to produce children that become candidate solutions for the
next generation. The children are generated using crossover
and mutation. The genes of two parents are exchanged at a
selected crossover point to produce children. The value of a
gene is changed with a given probability to effect mutation.
The best-performing solutions among the current generation
and the children are retained to form the next generation.
This procedure continues until stopping criteria are met. Upon
termination, the solution to the CMOO problem is the set of
non-dominated solutions.

C. Inverse Design Preliminaries

We present a brief outline of GMM and NN-Ver.: two of
the three inverse design methods used in INFORM.

1) GMM: A GMM assumes that the data probability
distribution can be approximated by a finite number of Gaussian
distributions. The probability density function (PDF) of a GMM
with M components is denoted by p(x):

p (x) =

M∑
m=1

πmN (x;µm,Σm). (2)

In Eq. (2), x represents the features, and πm, µm, and Σm

denote the weight, mean, and variance of the mth component,
respectively. In scenarios where some of the features of an
example are known, the unknown features can be estimated
using the following equations [19]:

p (xP) =

M∑
m=1

πmN (xP ;µm,P ,Σm,PP)

p (xM | xP) =

M∑
m=1

πm,M|PN
(
xM;µm,M|P ,Σm,M|P

)
πm,M|P = πmN (xP ;µm,P ,Σm,PP) /p (xP)

µm,M|P = µm,M +ΣT
m,PMΣ−1

m,PP (xP − µm,P)

Σm,M|P = Σm,MM −ΣT
m,PMΣ−1

m,PPΣm,PM

f (xP) = E {xM | xP} =

M∑
m=1

πm,M|P (xP)µm,M|P (xP) .

(3)
In Eq. (3), the present and missing features of an example

are denoted by xP and xM, respectively. µm,P and µm,M are
computed by indexing µm corresponding to the locations of
the present and missing features of the given example. Σm,PP ,
Σm,PM, and Σm,MM are computed analogously by indexing
on Σm. The PDFs of the present features and missing features
conditioned on the present features are denoted by p (xP)
and p (xM | xP), respectively. The estimated value of the
missing features, f (xP), is obtained from the expected value
of the missing features conditioned on the present features.
In the context of system design, xM corresponds to the
unknown component values and xP corresponds to desired
objectives/constraints.

2) NN-Verifier: An NN-Ver. determines whether there is
an input corresponding to a given output of an NN. We use
NSVerify [20], a framework for verifying an NN with ReLU
activation by representing the hidden neurons with constraints,
as follows:

Ci =
{
x̄
(i)
j ≥ W

(i)
j x̄(i−1) + b

(i)
j ,

x̄
(i)
j ≤ W

(i)
j x̄(i−1) + b

(i)
j +Qδ̄

(i)
j ,

x̄
(i)
j ≥ 0, x̄

(i)
j ≤ Q

(
1− δ̄

(i)
j

)
, j = 1, . . . , L(i)

}
.

(4)

In Eq. (4), ∀i, j, x̄(i)
j corresponds to the jth neuron in the ith

layer, L(i) is the number of neurons in the ith layer, W (i)
j

represents weights that determine the input to x̄
(i)
j , x̄(i−1)

represents outputs from the (i− 1)th layer, b(i)j is the bias for
neuron x̄

(i)
j , Q is larger than the largest possible magnitude of

W
(i)
j x̄(i−1) + b

(i)
j , and δ̄

(i)
j is defined as follows:

δ̄
(i)
j ≜

{
0 if x̄(i)

j > 0

1 otherwise
(5)

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3217422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Princeton University. Downloaded on April 14,2023 at 19:10:59 UTC from IEEE Xplore. Restrictions apply.

4

The union of Ci’s in Eq. (4) represents the constraints imposed
by the hidden neurons of the NN. CNMA [15] and ASSENT
[16] use the MILP formulation of an NN to synthesize systems
with a single objective and multiple constraints. INFORM can
handle CMOO problems and is, hence, more general.

Besides NN-Ver. and GMM, we also use an NN in INFORM.
Rather than optimizing an objective function through gradient-
based or gradient-free techniques, inverse design requires
specifying the desired system performance. Inverse mapping
enables a designer to drive the system to different performance
metrics without having to start the optimization from scratch
for each specification.

IV. MOTIVATION

We provide a preview of the working of INFORM through
the design of an inverted cartpole [18]. Sections V and VI
provide further details on the experimental setup. The goal
is to minimize the time (tupright) to make the pole upright
and minimize the maximum cart displacement (maxdisp) for a
fixed iterative linear quadratic regulator. The component values
that need to be determined are cart mass, pole length, and
magnitude of force applied to the cart.

A. Step 1: Obtaining Non-dominated Solutions

In Step 1, we obtain a non-dominated set of solutions by
injecting candidate solutions within GA using the following
inverse design approaches: (1) NN-Ver., (2) GMM, (3) NN,
and their combinations, resulting in seven inverse design
methods. We start injecting individuals using the inverse
design methodology upon observing no improvement in the
extreme values of the objective function for two consecutive
generations. We terminate Step 1 when (1) we do not observe
any improvement in the extreme values of the objective function
for 10 generations after the tenth generation, or (2) Step 1
has run for seven hours on an Intel Xeon processor with 64
GB of DRAM. Fig. 1(a) shows, using black circles, the non-
dominated front (NDF) obtained in Step 1 using NSGA-II
and the inverse design methods. The x-axis shows the time
taken to make the cartpole upright and the y-axis shows the
cart’s displacement. Injecting candidate solutions using the
inverse design method(s) in conjunction with GA yields better
solutions than the solutions obtained using NSGA-II alone.
Fig. 1(b) plots hypervolume vs. #generations. Inverse designs
obtained using NN-Ver.+GMM yield the highest hypervolume,
indicating the benefits of injecting candidate solutions using
inverse design methods.

B. Step 2: Dominating the Selected Solutions from Step 1

In Step 2, we select solutions from the Step 1 NDF to en-
hance their performance. Fig. 1(c) shows two selected solutions,
labeled (1) and (2), with objective values of (7.20s,0.579m)
and (11.25s,0.287m), respectively. We aim to lower the time
to make the cartpole upright while achieving a displacement
at least as good as that of the selected solution. First, we
generate and simulate 20 candidate solutions within ±10%
of the component values of the selected solution. We choose
100 simulations from Step 1 with performance closest to the
selected solution to train the inverse design surrogate models.

Fig. 2(a) shows ten desired objectives/constraints around the
solution selected in Step 1. We dynamically change the solution
around which we generate the desired objectives/constraints
upon observing an improvement in the time objective, as in
Fig. 2(b) that shows samples around the improved solution
(9.0s,0.166m).

V. SYNTHESIS METHODOLOGY

INFORM uses a two-step process to solve CMOO problems.
Its high-level view is shown in Fig. 3. In Step 1, we modify
a GA and inject candidate solutions using inverse design
methodologies. The designer selects a solution from the NDF
to further improve the value of the objective functions in Step
2. At the end of Step 2, INFORM produces solutions that
dominate the solution selected from Step 1.

A. Step 1: Obtaining Non-dominated Solutions
In Step 1, we initialize the first generation of GA within

the design search space of the component values. Then, we
evolve these candidate solutions using a GA until saturation.
After that, we inject candidate solutions using inverse design
methodologies and include the solutions in the GA pool along
with the candidate solutions generated using crossover and
mutation. We evolve these solutions until we meet termination
criteria. Finally, we return the set of non-dominated solutions.

Algorithm 1 describes Step 1 in detail. We initialize the
first GA generation with P candidate solutions using Latin
hypercube sampling (LHS) [21] based on points within the
design space R of component values. The initial phase of
Step 1 is the same as that in NSGA-II [2]. Note that any
CMOO exploration tool like NSGA-III [10] could also be
used instead of NSGA-II. We simulate all individuals in the
generation to compute the corresponding objective values. We
store the simulation inputs and the corresponding outputs in a
buffer B. We use the buffer as a lookup table when repeating a
simulation to minimize the total number of simulations. We use
NSGA-II to rank the individuals in a generation. Next, we use
tournament selection to create a mating pool of size P. We then
use crossover and mutation with a probability of cross and mut,
respectively, to create P children. We use NSGA-II to select
P individuals from the 2P individuals for the next generation.
If the evolution saturates (indicated by the switchGA flag),
we begin injecting candidate solutions using one of the seven
inverse design methods invDesignMethod. We set the switchGA
flag to True when the extreme values of the objective function
do not change for a few generations. Using extreme values helps
discover the approximate range for each objective value. We
train the surrogate models used for inverse designs after each
generation using past simulations. We generate numInvDesign
candidate solutions using invDesignMethod and add them to
the P candidate solutions generated using GA. At each iteration,
we select numInvDesign randomly. Random selection helps
generate more diverse individuals, thus avoiding or delaying
performance saturation. We only retain feasible solutions of the
MILP when using an NN-Ver. for inverse design. We use all the
candidate solutions generated using the inverse design method
and some candidate solutions generated using crossover and
mutation to obtain P candidate solutions for the next generation.
We terminate Step 1 when we meet the stopping criteria stop.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3217422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Princeton University. Downloaded on April 14,2023 at 19:10:59 UTC from IEEE Xplore. Restrictions apply.

5

(a) (b) (c)

Fig. 1: Cartpole optimization: (a) NDFs obtained using NSGA-II and the seven inverse design methods. Dashed grey line shows the NDF of the union of all
solutions obtained in Step 1. (b) Comparison of hypervolume using the eight methods in Step 1. (c) Objective value improvement using Step 2 by dominating
two solutions (labeled (1) and (2)) obtained in Step 1.

(a) (b)

Fig. 2: Generation of desired objectives/constraints around: (a) design
(11.25s,0.287m) selected after Step 1, and (b) after observing an improvement
in objective value to (9.0s,0.166m) in Step 2. Note that our target is to obtain
time and displacement that are at least as good as the solution chosen from
Step 1. Therefore, we clip the displacement if it exceeds the displacement of
the solution from Step 1.

Fig. 3: Overview of the two-step optimization process used in INFORM.

Algorithm 2 shows the procedure for generating desired
objectives/constraints around design D. In CMOO problems,
D depicts solutions that meet the constraints and attain the top
ranks as determined by NSGA-II. If none (or fewer than the
cardinality of D) of the solutions satisfy the constraints, we
use the solutions with minimum constraint violation computed
using Eq. (6).∑

i

|obsi − coni |
coni

1{obsi≶coni}, (6)

where coni is the ith constraint, obsi is the observed value for
the ith constraint, and 1{obsi≶coni} is an indicator function that
takes the value 1 in case of coni violation (note that obsi can
be greater or less than coni) and 0 otherwise. We determine the
percentage improvement fr to be targeted in the objective values
around the solution in D by generating a random number (fr) in
the [lb per,ub per] range. Small values of fr lead to exploitation
near the best solution. Higher values lead to exploration. We
generate N desired objectives/constraints (des obj ctr) per

Algorithm 1 Step 1: Discovering non-dominated solutions

Input: P: population size; comp range: range of each input
component; stop: stopping criteria; switchGA: switching cri-
terion for GA+inverse design; B: buffer to store simulations;
mut: mutation probability; cross: crossover probability;
invDesignMethod: inverse design choice(s): (1) NN-Ver.,
(2) GMM, (3) NN, (4) NN-Ver.+GMM, (5) NN-Ver.+NN,
(6) NN+GMM, (7) NN-Ver.+NN+GMM; numInvDesign:
#inverse designs injected per generation.
- Initialize 1st generation with P LHS solutions within
comp range
while not stop do

- Compute objectives for all P
- Store simulation inputs/outputs in B
- Rank P using NSGA-II
- Use tournament selection to create mating population
of size P
- Use reproduction based on crossover and mutation to
create P children
if switchGA then

- Update the surrogate used in invDesignMethod
- Generate numInvDesign using invDesignMethod
- Append numInvDesign candidate solutions to the
ones generated using crossover and mutation
- Discard some candidate solutions generated using
crossover and mutation to retain only P candidate
solutions

end if
- Select P from 2P members using NSGA-II

end while
Output: All non-dominated solutions and buffer B

solution from D. At each successive call to Algorithm 2,
we alternate between Sobol and LHS point type to generate
des obj ctr around the candidate in D. Sobol samples are
distributed uniformly over a unit hypercube [22]. Alternating
between Sobol sampling and LHS to generate des obj ctr and
using a random value for fr helps avoid performance saturation.
We clip des obj ctr to satisfy all constraints (des obj ctr clp).
The content of des obj ctr clp is stored in the des obj ctr list
list.

Algorithm 3 shows NN-Ver.-based inverse design. We select

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3217422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Princeton University. Downloaded on April 14,2023 at 19:10:59 UTC from IEEE Xplore. Restrictions apply.

6

Algorithm 2 Generation of desired objectives/constraints

Input: D: solutions around which desired objec-
tives/constraints des obj ctr are generated; lb per,
ub per: lower and upper bound percent for generating
des obj ctr; N: number of des obj ctr per design from
D; point type: LHS or Sobol samples.
fr = random number in the [lb per,ub per] range
des obj ctr list = []
for candidate in D do

des obj ctr = Generate N point type samples within fr
around candidate solution
des obj ctr clp = clip des obj ctr clp to satisfy the
constraints
Append des obj ctr clp to des obj ctr list

end for
Output: des obj ctr list

the top solutions (top sols) from buffer B to train the NN
surrogate model. We select all (num train) the solutions that
meet the constraints to train the surrogate model. If the number
of solutions that meet the constraints is large, we clip num train
to lie in [lb train, ub train]. We scale component values and
the corresponding desired objectives/constraints to [0,1]. We
select the best NN architecture (best arch) from the NN archs
choices for different NN architectures. Next, we use Eq. (4) to
convert best arch into its corresponding MILP using the desired
objectives and constraints from des obj ctr list generated using
Algorithm 2. Since we have a different MILP for each desired
des obj ctr, we use multiple cores to solve the MILP. Finally,
we return can sols NN, which is the list of all feasible solutions
obtained by solving the MILP.

Algorithm 3 NN-Verifier-based inverse design

Input: des obj ctr list: list of desired objectives and con-
straints; B: stored buffer with simulation inputs and outputs;
lb train, ub train: lower and upper bound on the number of
solutions to train the surrogate model; NN archs: search
space of NN architectures; comp range: range of each
input component.
num train = random number in [lb train,ub train]
num train = min(num train, buffer size B)
top sols = select the best num train solutions from B
best arch = best NN architecture among NN archs trained
on top sols
can sols NN = []
for des obj ctr in des obj ctr list do

Use Eq. (4) to convert best arch into corresponding
MILP
Set output constraint of the MILP to des obj ctr and
input constraint to comp range
sol milp = MILP solution to determine the inputs
if sol milp is feasible then

append sol milp to can sols NN
end if

end for
Output: can sols NN

Fig. 4(a) shows the data used to train the NN surrogate model
for NN-Ver.-based inverse design. The illustration assumes that
each design has four components, three objectives/constraints,
and num train = N . Each row represents a training example.
Xij represents the jth component of the ith training instance.
Similarly, Yij represents the jth objective/constraint of the
ith training instance. Fig. 4(b) depicts des obj ctr using Ŷij ,
where i is the output number and j is the jth component of
the ith des obj ctr. The unknown value of the components
for each des obj ctr is depicted by a ‘?’. We generate M
candidate solutions using Algorithm 2.

(a) (b)

Fig. 4: Inverse design using NN-Ver.: (a) training dataset for the surrogate
model, and (b) generating candidate solutions using des obj ctr.

Algorithm 4 shows GMM-based inverse design. The training
setup is similar to that in Algorithm 3. We create the training
dataset X Y for GMM by concatenating the simulation inputs
(i.e., component values) and its corresponding outputs (objec-
tives/constraints). We determine the best GMM (best gmm)
from mix space by varying the number of mixtures used for
training. We use the GMM with the lowest Akaike information
criterion (AIC) [23] score. We use f (xP) from Eq. (3) to
determine the candidate solutions for each des obj ctr from
des obj ctr list. We clip the solutions to lie within the range
of each component (com range). We return the list of all the
candidate solutions denoted by can sols gmm.

Fig. 5(a) illustrates how training is done with the GMM. In
contrast to an NN-Ver.-based inverse design that treats the input
components and corresponding objectives/constraints separately,
we concatenate the two using past simulations to train the
GMM. Fig. 5(b) shows how candidate solutions are generated.
We use the expected value of the conditional distribution of the
input, given des obj ctr, to determine the unknown component
values shown by ‘?’.

Finally, we describe NN-based inverse design. We invert NN
architectures used in NN-Ver. to determine the search space of
the NNs. For example, if we use NN with [(40,20,8)] neurons
in the hidden layers when using NN-Ver.-based inverse design,
we replace this architecture with [(8,20,40)]. The inverted
architecture maps the simulation outputs to the corresponding
inputs. We use num train data instances to determine the best
NN architecture and use the NN to predict the component
values for each des obj ctr. Like GMM-based inverse design,
we clip the candidate solutions to lie within the range of each
component (comp range). We then return the list of all the
candidate solutions.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3217422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Princeton University. Downloaded on April 14,2023 at 19:10:59 UTC from IEEE Xplore. Restrictions apply.

7

Algorithm 4 GMM-based inverse design

Input: des obj ctr list: list of desired objectives and con-
straints; B: stored buffer of simulation inputs and outputs;
lb train, ub train: lower and upper bound on the number
of samples to train the surrogate model; mix space:
search space for number of mixtures to train the GMM;
comp range: range of each input component.
num train = random number in [lb train,ub train]
num train = min(num train, buffer size B)
top sols = select the best num train solutions from B
X Y = [X;Y], concatenate input and output columns of
top sols
best gmm = best GMM from the mix space trained on
X Y
can sols gmm = []
for des obj ctr in des obj ctr list do

sol gmm = use Eq. (3) to determine the expected value
of the unknown input component f (xP) after setting
the objective and constraint (xP) to des obj ctr list
sol gmm clip = clip sol gmm to lie within comp range
append sol gmm clip to can sols gmm

end for
Output: can sols gmm

(a) (b)

Fig. 5: Inverse design using GMM: (a) training the GMM with concatenated
input and output data, and (b) generating candidate solutions using des obj ctr.

B. Step 2: Dominating Selected Solutions from Step 1

In Step 2, we use the inverse design method to improve the
solution from Step 1. Fig. 6 shows the fine-tuning procedure.
We generate and simulate N init Step2 LHS samples within
config sam pr1 % around the component values (config sel)
corresponding to the solution chosen in Step 1. Note that
in the case of costly simulations, an alternative approach
would be to use some logged simulations from the buffer
(B) in Step 1 to pre-train the surrogate model used for inverse
design, as illustrated in the motivational example. We use the
simulation inputs (i.e., component values) and corresponding
outputs (i.e., objectives/constraints) to train the surrogate model
used for inverse design. We use Algorithm 2 to generate
N inv des obj ctr with the aim of improving the value of
the objective function by up to pr%. We generate candidate
solutions (can sols) using the same inverse design methods as
in Step 1. We simulate can sols and update the component
values (best config) corresponding to the best objective value
(best obj ctr) on observing a better solution. We use pr1 as the

improvement percentage whenever we observe an improvement
in the value of the objective function. If we do not observe
an improvement after sam th1 iterations of the above steps,
we lower the improvement percent for des obj ctr to pr2. If
no improvement is observed even after sam th2 iterations,
we generate and simulate N invSat LHS samples within
±config sam pr2 % of best config. We repeat this process
until we meet the stopping criteria (stop step2) for Step 2.
Finally, we return the NDF of the solutions that dominate the
solution chosen from Step 1.

Fig. 6: Fine-tuning using Step 2

VI. EXPERIMENTAL RESULTS

In this section, we use INFORM for component selection
for Lunar Lander [18] and transimpedance amplifiers [5]. We
implement INFORM using Keras [24], Scikit-learn [25], Gurobi
[26], and PyGMO [27]. The simulations are performed on an
Intel Xeon processor with 64 GB of DRAM.

A. Lunar Lander

We use the Lunar Lander benchmark from OpenAI/Gym
[18] with the same setup as in [15]. The goal is to design
the controller, determine the module’s initial position, and
optimize for two objectives subject to two constraints. The two
objectives are: (1) maximize the reward, and (2) minimize the
fuel used. The two constraints are (1) the time taken to land
≤ 10 units, and (2) the mission must be successful. We use
the following objectives in GA:

• Fuel used in the mission.
• Time taken to land. If the time is less than or equal to 10

units, we set this objective value to 0 as we only need to
satisfy the time constraint.

• Flag indicating whether a mission is successful. As we
solve a minimization problem with GA, we flip the flag
to take the value of 0 for success and 1 otherwise.

• Reward achieved in the mission. We negate the reward
sign and convert it into a minimization problem.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3217422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Princeton University. Downloaded on April 14,2023 at 19:10:59 UTC from IEEE Xplore. Restrictions apply.

8

In the event of a failed mission, we set the fuel, time, and
reward objectives to a large number to indicate failure.

We run Step 1 for about seven hours (allowing the last
generation to complete even if it exceeds the allotted time
slightly) or until performance saturation. Lunar lander simula-
tions are fast. Hence, the saturation criterion generally leads to
the termination of Step 1. We start injecting candidates into GA
using inverse designs if the extreme values of the objectives do
not improve for two consecutive generations after the second
generation. We assume saturation if the extreme value of the
objective function remains unchanged for ten generations after
the tenth generation. This saturation criterion worked well for
all designs considered in this article.

We use a tournament size of 10, a mutation rate of 0.1,
and a crossover probability of 0.9 for the GA. We run Step 1
using NSGA-II alone, and NSGA-II with injections using the
seven inverse design methods. When using NN-Ver., we select
an NN with one of the following architectures (NN archs):
[(40,20,8), (30), (15), (100), (50), (200), (20,20,8), (300), (400),
(500), (600)] (same as in Step 2 of ASSENT [16]), where the
tuples represent the number of neurons in the hidden layer(s).
When using NN, we invert the NN architectures choices from
that used in NN-Ver.: [(8,20,40), (30), (15), (100), (50), (200),
(8,20,20), (300), (400), (500), (600)]. We use GMM and a
Multi-Layer Perceptron Regressor from the Scikit-learn [25]
package, an initial learning rate of 0.0001, adaptive learning,
and a maximum iteration count of 100,000 to train the NN. We
set other parameters to their default values. When using GMM,
we vary #mixtures in the [1,min(200,length(train))] range in
steps of 2. Here, length(train) denotes the number of training
data instances. We limit the maximum number of mixtures
and skip alternate component choices to speed up training.
We update the choice of the surrogate model (GMM and NN)
after each generation. We randomly select num train training
instances in the [1000,2000] range to train the surrogate model.
When using only GMM, NN-Ver. or NN, we randomly inject
inverse design candidates in the α = [10,96] range. When
using NN-Ver.+GMM, NN-Ver.+NN, or NN+GMM, we set α
= [10,48], and when using NN-Ver.+NN+GMM, we set α =
[10,32] for each inverse design method. We randomly select top
candidates in the D = [2,λ] range, where λ = min(α/2, 10).
We inject the same number of candidates (N = ⌊α/D)⌋) around
each selected candidate. We randomly select the percentage
improvement required (fr) from the [1,10]% range. We clip
des obj ctr in case of a constraint violation. For example, if
des obj ctr is [8,11,1,400], we change it to [8,10,1,400] to
meet the constraint on the time taken. The items included in
des obj ctr are fuel used, time taken, success, and reward,
respectively.

Fig. 7(a) shows the Step 1 NDF for the eight cases. We
notice that using GA in conjunction with inverse design
yields better performance. We attribute the improvement in
performance to targeted candidate solutions generated using
inverse designs. Fig. 7(b) plots hypervolume vs. #generations.
We scale the two objectives to lie within [0,1] and use (1.1,
1.1) as the reference point. Hypervolume computation is done
using the setup given in the PyMOO [28] documentation. We
normalize the hypervolume to the maximum hypervolume

obtained across the eight methods. We observe that injecting
solutions based on inverse designs in conjunction with GA
yields better hypervolume in comparison to NSGA-II alone,
with NN-Ver.+NN having the highest hypervolume. For a fair
comparison, we run NSGA-II until the maximum #generations
attained with injections among the seven inverse designs meth-
ods (NN+GMM in this case). The number of simulations and
time (sim. + algorithm) needed for each synthesis methodology
are as follows: (1) GA: 8,132 sim., 293+90s; (2) NN-Ver.:
3,608 sim., 682+6,172s; (3) GMM: 4,887 sim., 180+586s; (4)
NN: 2,631 sim., 99+30,600s; (5) NN-Ver.+GMM: 4,543 sim.,
409+6,648s; (6) NN-Ver.+NN: 7,439sim., 962+13,899s; (7)
NN+GMM: 7,829 sim., 294+10,545s; (8) NN-Ver.+NN+GMM:
4,724 sim., 494+7,158s. GA takes the least time as crossover
and mutation are fast operations. Solving MILP makes NN-
Ver.-based inverse design slow. Training the GMM surrogate
and solving Eq. (2) is a relatively fast operation.

In Step 2, we improve a solution from the NDF corre-
sponding to the highest reward obtained with NN-Ver.+GMM
injections in Step 1. When generating des obj ctr, we try
to improve the value of the reward and set the fuel used
corresponding to the selected solution as a constraint. Note that
we only apply the fuel constraint when des obj ctr (generated
by sampling within pr% of the selected solution) exceeds
the fuel consumed by the Step 1 solution. We keep the other
constraints the same as in Step 1. We use the seven inverse
design techniques to obtain solutions that dominate the Step
1 solution. We use the same search space for the surrogate
models, that is, NN architecture choices and number of GMM
mixtures used in Step 1. As the lunar lander simulations are
fast, we only use the simulations that meet all the constraints
to train the surrogate model.

We first generate N init Step2 = 100 candidate solutions
using LHS within config sam pr1 % = ±10% of the com-
ponent values of the configuration (config sel) selected from
Step 1. We use these simulation inputs and the corresponding
outputs to train the surrogate model. We stop (stop step2)
Step 2 if: (1) there is no improvement in the value of the
objective function (reward in this case) for 25 iterations, or
(2) Step 2 has run for 7 hours. The (best config, best obj ctr)
corresponds to the solution with the highest reward and a fuel
consumption that is at least as good as the solution chosen
in Step 1. Here, best config refers to the component values
of the configuration that yields the best value of the objective
function. In each iteration of Step 2, we randomly generate
candidate solutions in the N inv = [10,50] range for each inverse
design technique. In the first iteration of Step 2, we set pr =
pr init to (5,10)%. We change pr = pr1 to (1,5)% if we do not
observe an improvement in the value of the objective function,
and further change pr = pr2 to (1,2)% if we do not observe
an improvement for sam th1 = 5 iterations of Step 2. Upon
observing an improvement, we reset pr = pr1 to (1,5)%. If we
do not observe an improvement for sam th2 = 10 iterations, we
generate N invSat=100 LHS samples within config sam pr2 %
= 1% of the best system configuration (best config). A lower
value of pr helps in exploitation, while a higher value helps
in exploration to rapidly improve the value of the objective
function. Unless otherwise specified, we use the same setup

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3217422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Princeton University. Downloaded on April 14,2023 at 19:10:59 UTC from IEEE Xplore. Restrictions apply.

9

(a) (b) (c)

Fig. 7: Lunar Lander optimization: (a) NDFs obtained in Step 1. (b) Comparison of hypervolume using the eight methods in Step 1. (c) Dominating the Step 1
(top) and ASSENT solution (bottom) shown in black. Dashed-line shows the combined NDF obtained using the different synthesis methodologies.

for Step 1 and Step 2 in all experiments.
The top row of Fig. 7(c) shows the solution selected from

Step 1 in black. We obtain solutions that dominate the selected
solutions using all inverse design techniques. We observe that
the highest reward (482.4) is obtained using NN-Ver.+NN-
based inverse design. The time and number of simulations
required in Step 2 corresponding to the selected solution from
Step 1 are (1) NN-Ver.: 5,689 sim., 9.3+276.3 min; (2) GMM:
12,767 sim., 5.5+415.9 min; (3) NN: 6,132 sim., 2.9+350.9
min; (4) NN-Ver.+GMM: 9,890 sim., 8.3+415.5 min; (5) NN-
Ver.+NN: 3,378 sim., 1.73+155.9 min; (6) NN+GMM: 3,846
sim., 1.9+125.5 min; (7) NN-Ver.+NN +GMM: 7,862sim.,
21.8+405.9 min. Next, we illustrate Step 2’s flexibility by
improving an intermediate (not from the NDF) solution from
Step 1 obtained using NN-Ver.+NN-based injections. We aim
to enhance its performance while ensuring that it dominates
the ASSENT [16] solution. We modify the time constraint
to 3.5 from 10.0 to obtain solutions with lower time than
that obtained using ASSENT. We show the ASSENT solution
using a black ‘+’ in the bottom row of Fig. 7(c). The time and
number of simulations required in Step 2 in this case are (1)
NN-Ver.: 6,687 sim., 9.3+286.1 min; (2) GMM: 6,977 sim.,
5.5+176.3 min; (3) NN: 3,155 sim., 2.0+154.8 min; (4) NN-
Ver.+GMM: 4,120 sim., 3.2+128.3 min; (5) NN-Ver.+NN: 6,259
sim., 10.1+277.7 min; (6) NN+GMM: 8,808 sim., 7.6+332.5
min; (7) NN-Ver.+NN+GMM: 7,890 sim., 8.5+280.1 min.

Table II compares results from INFORM with results from
ASSENT [16] for Lunar Lander. The top half of the table shows
a solution obtained using NN-Ver.+GMM injections in Step
1. Using NN-Ver.+NN-based inverse design in Step 2 yields
solutions that dominate the Step 1 solution in two different
runs. The bottom half of the table shows results of using Step
2 to enhance the Step 1 solution so that it further dominates
the ASSENT [16] solution. NN-Ver.+NN+GMM-based inverse
design yields a solution that consumes 6× lower fuel and
a comparable performance in other metrics. NN-Ver.+GMM-
based inverse design yields a solution that has 2× lower fuel
and a 1.2% higher reward than the ASSENT solution.
B. Two-stage Transimpedance Amplifier

We design a two-stage transimpedance amplifier using the
topology from [5]. The designer needs to determine the width
of all MOSFETs and the two resistors shown in Fig. 8(a).
The search space for the width of each MOSFET is in the

TABLE II: Comparing results from INFORM (two runs separated by a ‘/’)
with those from ASSENT for Lunar Lander.

Method # Sim. sim.+alg. time fuel time ≤ 10 reward
ASSENT [16] 1,983 54,042s 47.09 3.50 475.7
Step 1(NN-
Ver.+GMM) 4,543 409+6,648s 40.73 3.44 472.9

Step 2(NN-Ver.
+NN)

3,378/
6,780

104+9,353/
870+21,633s

32.90/
32.80

3.54/
3.12

482.4/
480.8

Step 1(NN-
Ver.+NN) 7,439 962+13,899s 22.0 3.26 477.4

Step 2(NN-Ver.
+NN+GMM) 7,890 507+16,804s 8.10 2.32 479.0

Step 2(NN
-Ver.+GMM)

4,120/
7,532

190+7,700/
684+13,653s

22.44/
23.93

3.34/
3.22

481.6/
480.8

[0.18, 80] µm and the resistor in the [50, 5k] Ω range. When
running GA, we use the same three objectives as used in
ASSENT [16]. The three objectives are:

1) Bandwidth: We capture all the metrics (gain, peaking,
and bandwidth) corresponding to the frequency response
into one objective. In addition, we include the operating
mode of the MOSFET in this objective as well. We obtain
the objectives corresponding to the frequency response as
follows. (1) We set the target gain to 60 dB with a cutoff
frequency of 6.1 GHz. We define the first sub-objective
as the difference in the target response and the observed
response. In order to focus more on the response in the
passband, we add an additional term to the difference.
This additional term is 40 times the difference between
the target and the observed response in the passband [16].
(2) We penalize the gain by α = 15 determined by the
fractional deviation of the difference in gain below 58.1
dBΩ, achieved by the RL-synthesized circuit in [5]. (3)
We add a penalty of 15 based on the fractional deviation
in peaking above 0.963 (RL circuit in [5]). (4) Similarly,
we add a penalty of 15 if the observed bandwidth is
below 5.81 GHz [16]. We also penalize the frequency
response based on the operating region of the MOSFET.
We give a reward of 1 for each MOSFET operating in
the saturation region. We penalize by 2 (3) an operation
in the linear (cutoff) region. We sum the rewards and
penalties and divide by the number of MOSFETs in the
circuit. We use these rewards and penalties to encourage
MOSFETs to operate in the saturation region for the
circuit to behave as an amplifier. We sum all the sub-
objectives for the frequency response and scale it by the
objective value of the human-designed circuit in [5].

2) Noise: We define the noise objective as the ratio of the

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3217422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Princeton University. Downloaded on April 14,2023 at 19:10:59 UTC from IEEE Xplore. Restrictions apply.

10

(a) (b) (c)
Fig. 8: Two-stage transimpedence amplifier optimization: (a) Schematic adapted from [5]. We determine component values for devices within the orange box.
(b) Non-dominated solutions for bandwidth vs. power. (c) Comparison of the hypervolume using the eight methods in Step 1.

measured noise and the noise corresponding to the RL
circuit in [5] (19.2 pA/

√
Hz). If the measured noise

is above 19.2 pA/
√
Hz, we apply a penalty of 15

determined by the fractional deviation above this value.
3) Power: We define the objective corresponding to power as

the ratio of the measured power and the power achieved
by the RL circuit in [5] (3.18 mW).

If the simulation is unsuccessful, we set the objective
values to a very large number to indicate this fact. We use
prior knowledge and assume a design is invalid if the power
consumption is less than 0.1 µW .

As inverse design methods can handle multiple objectives
and constraints, we consider all objectives and constraints
independently, instead of clubbing them together. The goal of
the inverse design is to meet the three constraints and optimize
the three objectives. The constraints are: noise ≤ 19.3 pA/

√
Hz,

gain ≥ 57.6 dB Ω, and peaking ≤ 1 dB. The objectives are:
minimize power, minimize area, and maximize bandwidth.
We clip des obj ctr corresponding to the objectives of the
solution around which we generate samples to ensure that we
improve all objective values simultaneously and satisfy the
constraints. For example, if we sample around an objective and
constraint with a value of [19.2 pA/

√
Hz, 57.7 dBΩ, 0.95 dB,

6.0 mW, 20 µm2, 6.1 GHz] and generate a des obj ctr [19.3
pA/

√
Hz, 57.7 dBΩ, 0.98 dB, 6.2 mW, 19.5µm2, 6.12GHz],

we clip des obj ctr to [19.3 pA/
√
Hz, 57.7 dBΩ, 0.98 dB,

6.0 mW, 19.5µm2, 6.12GHz]. Note that des obj ctr satisfies
all constraints and is better or the same (power) in all objective
values than the solution around which we generate the desired
objectives and constraints. We found that clipping the objective
values worked well on both the electrical circuit examples.

We select an NN with one of the following architectures:
[(15), (30), (40,20,8)]. Fig. 8(b) shows the NDF for bandwidth
vs. power obtained in Step 1. To enhance readability, we only
plot the NDF of the union of all simulations obtained from
the eight methods in Step 1. Injecting GA with candidate
solutions using inverse designs leads to most of the solutions
on the NDF. Fig. 8(c) plots hypervolume vs. #generations.
We observe that inverse design injections using GMM and
NN-Ver.+GMM achieve similar hypervolume, with the latter
converging the fastest. The number of simulations and time
(sim.+alg.) needed for each synthesis methodology are as
follows: (1) GA: 7,873 sim., 58.5+0.8 min; (2) NN-Ver.:3,798
sim., 24.8+69.9 min; (3) GMM: 7,139 sim., 45.3+53.2 min;

(4) NN: 5,637 sim., 36.4+31.6 min; (5) NN-Ver.+GMM: 5,745
sim., 37.1+135.7 min; (6) NN-Ver.+NN: 9,326 sim., 61.7+226.1
min; (7) NN+GMM: 5,353 sim., 34.4+60.3 min; (8) NN-
Ver.+NN+GMM: 5,162 sim., 32.9+61.5 min.

In Step 2, we use inverse designs to dominate the solution
selected from the NDF in Step 1. We also generate a solution
that is better or the same in all objectives and constraints
compared to the solution obtained using ASSENT. We run Step
2 for a maximum of 10 (15) hours when generating a solution
to dominate the Step 1 (ASSENT) solution. We improve the
bandwidth value and restrict the area and power to the values of
the solution chosen in Step 1. The top row of Fig. 9(a)-(c) shows
the NDF of the solutions that dominate the Step 1 solution,
depicted with a black circle. The number of simulations and
the time (sim.+alg.) required in Step 2 corresponding to the
solution from Step 1 are as follows: (1) NN-Ver.: 4,754sim.,
36+565 min; (2) GMM: 8,018 sim., 53+548 min; (3) NN:
14,383 sim., 93+245 min; (4) NN-Ver.+GMM: 7,679 sim.,
50+553 min; (5) NN-Ver.+NN: 9,989 sim., 80+523 min; (6)
NN+GMM: 9,758 sim., 62+539 min; (7) NN-Ver.+NN+GMM:
7,315 sim., 59+551 min. Note that all inverse design methods
yield solutions that dominate the Step 1 solution. However, the
inverse design solutions using the five inverse design methods
shown in the top row of Fig. 9 dominate the solutions obtained
using the remaining two inverse design methods. Therefore, we
do not plot the solutions obtained using all the seven methods.

In the second experiment, we demonstrate INFORM’s
flexibility by searching around the same solution selected
in Step 1, but changing our goal to obtain solutions that
dominate the solution obtained using ASSENT in all objectives
and constraints. We set noise, gain, peaking, power, and area
to constraints corresponding to the solution obtained using
ASSENT and improve the bandwidth value. The bottom row
of Fig. 9(a)-(c) shows the ASSENT solution using a black ‘+’
sign.

In Table III1, we compare the solution obtained using
INFORM for two different runs with the solutions using other
methodologies. We show the first solution that dominates the
ASSENT solution in parentheses. The number outside the
parentheses shows the solution obtained at the end of Step 2.
INFORM achieves a speed-up of up to 24× (GMM second

1Gate area is shown only for designs for which this information is available.
There was a problem in area calculation in [5] that was confirmed after
contacting the authors.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3217422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Princeton University. Downloaded on April 14,2023 at 19:10:59 UTC from IEEE Xplore. Restrictions apply.

11

(a) (b) (c)
Fig. 9: Dominating the Step 1 (top) and ASSENT solution (bottom) shown in black for the two-stage transimpedance amplifier: (a) area vs. power, (b)
bandwidth vs. power, and (c) bandwidth vs. area.

run) in synthesizing a solution with 3.4% lower area and
a similar performance in other objectives/constraints as the
ASSENT solution. In the bottom half of the table, we only
use Step 2 to drive the human solution from [5] to further
enhance its performance (objectives+constraints). INFORM
yields solutions that have a higher bandwidth and are better or
the same in other performance metrics.
C. Three-stage Transimpedance Amplifier

Let us now see how we can select the component values of
the three-stage transimpedance amplifier shown in Fig. 10 [5].
The subcircuits in the blue and green dotted boxes are mirror
images of each other. Hence, we select the component values
of one subcircuit and mirror them to the other. We determine
the values of 19 components: width/length of nine MOSFETs
and a resistor Rb. The search space for the MOSFET’s width
is in the [2, 30] µm, length in the [1, 2.2] µm, and resistor in
the [50k, 500k] Ω range [16]. As the technology permits length
to be an integer multiple of 0.2 µm, we round the length to
the nearest 0.2 units.

We use the following objectives for the GA [16]:
1) Bandwidth: As in Sec. VI-B, we capture the metrics cor-

responding to the frequency response into one objective.
We set the target gain for the half circuit to be 85 dB
with a cutoff frequency of 90 MHz. We use the same
technique (with the modified gain and cutoff frequency),
as used in Sec. VI-B, to compute the first sub-objective
to capture the frequency response. We also use the same
method to compute the sub-objective corresponding to
the operating region of the MOSFET, except using a
penalty of 5 (7) for MOSFET operation in linear (cutoff)
region [16]. The third sub-objective is a penalty of 15
for fractional deviation in gain below 80 dB for the half
circuit in Fig. 10.

2) Area: We take the ratio of the area of the circuit
synthesized in Step 1 using GA and the area of the
human-synthesized circuit from [5].

3) Power: We take the ratio of the measured power to
the power consumed by the human-synthesized circuit
(1.37 mW) from [5]. We use a penalty of 15 for fractional
deviation in power above 1.37 mW.

We generate candidate solutions using the inverse design
methods by setting des obj ctr to maximize bandwidth, mini-

mize power, and minimize area subject to the constraint on
gain being greater than 80 dB.

Fig. 10: Three-stage differential transimpedance amplifier topology [5].

Fig. 11(a)-(c) show the NDFs related to power, bandwidth,
and area in Step 1. Note that some of the solutions have large
area, as shown in Fig. 11(b). However, they have a better
power or bandwidth and lie on the NDF. Fig. 11(d) shows
the hypervolume obtained using the eight methods in Step 1.
The number of simulations and time (sim.+alg.) needed for
each synthesis methodology are as follows: (1) GA: 11,415
sim., 78.1+0.9 min; (2) NN-Ver.: 7,496 sim., 56.6+122.0 min;
(3) GMM: 11,804 sim., 76+62.5 min; (4) NN: 11,189 sim.,
69.9+95.3min; (5) NN-Ver.+GMM: 9,510 sim., 59.5+103.4 min;
(6) NN-Ver.+NN: 8,696 sim.,54.5+115.1 min; (7) NN+GMM:
10,104 sim.,71.0+116.7 min; (8) NN-Ver.+NN+GMM: 7,778
sim., 55.2+145.9 min.

The top row of Fig. 12 depicts the Step 1 solution with
a black circle. This is dominated using the inverse design
methods in Step 2. The number of simulations and the time
(sim.+alg.) required in Step 2 are as follows: (1) NN-Ver.: 6,667
sim., 2,446+10,697s; (2) GMM: 8,980 sim., 3,609+18,499s;
(3) NN: 15,785 sim., 5,578+30,549s; (4) NN-Ver.+GMM:
9,563 sim., 3,716+32,773s; (5) NN-Ver.+NN: 14,910 sim.,
5,430+30,737s; (6) NN+GMM: 6,650 sim., 2,409+9,338s; (7)
NN-Ver.+NN+GMM: 11,024 sim., 4,130+32,322s. The bottom
row of Fig. 12 shows the solution from ASSENT using a
‘+’ sign. We observe that several inverse design solutions lie
on the NDF. In the top part of Table IV, we compare the
solution obtained using INFORM with the solutions using other
methodologies. We observe that INFORM achieves a speedup
of up to 29× (GMM first run in Step 2) for synthesis of a
design comparable to ASSENT. NN-Ver.+NN+GMM generates
a solution with 5.2% lower area and a similar power, gain,

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3217422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Princeton University. Downloaded on April 14,2023 at 19:10:59 UTC from IEEE Xplore. Restrictions apply.

12

TABLE III: Comparison of INFORM designs that dominate ASSENT [16] and human design [5] for the two-stage transimpedance amplifier. Parenthesis
entries indicate the objective values when we first obtain a solution using INFORM that dominates the ASSENT or human [5] solution. Results shown for two
different runs separated by a ‘/’. The hard constraint violation is encircled.

#Samples Time Noise (pA/
√
Hz) Gain (dB Ω) Peaking (dB) Power (mW) Gate area (µm2) Bandwidth (GHz)

Spec - ≤ 19.3 ≥ 57.6 ≤ 1 min min max
Human Design [5] 1,289,618 months 18.6 57.7 0.927 8.11 23.11 5.95

DDPG [5] 50,000 30 GPU hrs 19.2 58.1 0.963 3.18 - 5.78
Bayesian Opt. [5] 880 30 hrs 19.6 58.6 0.629 4.24 - 5.16

ASSENT [16] 7,853 77 hrs 19.2 57.6 0.949 5.60 18.15 6.12
INFORM

(Step 1 - GMM) 7,139 0.75+0.89 hrs 19.2 58.3 0.804 5.76 18.02 5.95

INFORM
(Step 2 - NN-Ver.)

9,224/
10,845

0.99+14.06/
1.03+13.99hrs

19.2/
19.2

57.8/
57.8

0.944/
0.948

5.34/
5.36

17.44/
16.95

6.08/
6.08

INFORM
(Step 2 - GMM)

13,572(7,922)/
5,659(2,571)

1.42+13.63(0.84+4.76)/
0.59+2.95(0.27+1.23) hrs

19.2(19.2)/
19.2(19.2)

57.6(57.6)/
57.6(57.6)

0.948(0.947)/
0.947(0.941)

5.46(5.24)/
5.47(5.50)

17.56(17.20)/
17.42(17.53)

6.13(6.12)/
6.13(6.13)

INFORM
(Step 2 - NN)

14,004(11665)/
14,324(12,015)

1.37+5.29(1.13+4.77)/
1.49+5.69(1.25+5.10) hrs

19.2(19.2)/
19.2(19.2)

57.6(57.6)/
57.6(57.6)

0.948(0.948)/
0.949(0.949)

5.55(5.55)/
5.57(5.57)

17.5(17.5)/
18.1(18.1)

6.12(6.12)/
6.12(6.12)

INFORM
(Step 2 - NN-Ver.+GMM)

9,186(6,629)
10,681(7,444)

1.02+14.0(0.73+10.52)/
1.16+13.88(0.81+10.12) hrs

19.2(19.2)/
19.2(19.2)

57.6(57.6)/
57.6(57.7)

0.948(0.906)/
0.947(0.949)

5.60(5.59)/
5.50(5.46)

17.85(17.87)/
17.57(17.55)

6.14(6.12)
6.13(6.12)

INFORM
(Step 2 - NN-Ver.+NN)

14,690(11,504)/
12,775(10,376)

1.56+13.47(1.23+10.86)/
1.65+13.37(1.36+10.92) hrs

19.2(19.2)/
19.2(19.2)

57.6(57.6)/
57.6(57.6)

0.943(0.946)/
0.947(0.940)

5.57(5.49)/
5.47(5.46)

17.60(17.67)/
17.57(17.52)

6.13(6.12)/
6.13(6.12)

INFORM
(Step 2 - NN+GMM)

7,982(5,455)/
8,307(7,227)

0.90+9.13(0.61+6.61)/
0.92+9.11(0.80+8.09) hrs

19.2(19.2)/
19.2(19.2)

57.6(57.6)/
57.6(57.6)

0.948(0.943)/
0.944(0.944)

5.55(5.55)
5.53(5.53)

17.56(17.49)/
17.73(17.73)

6.12(6.12)/
6.12(6.12)

INFORM
(Step 2 - NN-Ver.+NN+GMM)

9,532(3,843)/
13,606(6,998)

1.0+8.5(0.40+2.79)/
1.47+13.15(0.75+6.86) hrs

19.2(19.2)/
19.2(19.2)

57.6(57.6)/
57.6(57.6)

0.947(0.948)/
0.946(0.943)

5.54(5.57)/
5.54(5.47)

17.72(17.66)/
17.52(17.38)

6.13(6.13)/
6.13(6.12)

INFORM (dominate Human)
(Step 2 - NN-Ver.)

7,648(140)/
7,505(1,993)

0.86+9.20(0.02+0.02)/
0.83+9.20(0.22+1.04) hrs

18.6(18.6)/
18.6(18.6)

57.7(57.7)/
57.7(57.7)

0.927(0.878)/
0.925(0.926)

7.20(7.55)/
7.74(7.94)

22.35(22.27)/
23.03(22.92)

6.05(5.96)/
6.03(5.95)

INFORM (dominate Human)
(Step 2 - NN-Ver.+NN+GMM)

10,295(4,310)/
10,172(3,069)

1.01+9.03(0.42+1.69)/
1.01+9.03(0.30+0.86) hrs

18.6(18.6)/
18.6(18.5)

57.7(57.7)/
57.7(57.8)

0.924(0.901)/
0.926(0.915)

7.50(7.86)/
7.64(8.01)

22.93(23.04)/
22.77(23.00)

6.04(5.97)/
6.04(5.99)

(a) (b) (c) (d)
Fig. 11: Three-stage transimpedance amplifier optimization. NDFs for (a) power vs. bandwidth, (b) area vs. bandwidth, (c) area vs. power, and (d) comparison
of hypervolume using the eight methods in Step 1.

and bandwidth compared to the ASSENT solution, however,
at a reduced speed-up of 6×. We also use Step 2 of INFORM
to drive the Step 1 (human) solution to be better in all the
performance metrics (objectives+constraints) than the DDPG
(human) solution in [5]. When synthesizing the solution that
dominates the human design, we change the search space to
lie within ±50% of the human design. The solution obtained
using INFORM has about 19% (33%) lower area, and similar
performance in other metrics in comparison to the DDPG
(human) design.

Next we use Step 2 to drive one solution to another solution.
The bottom half of Table IV shows results when the first
INFORM solution generated by GMM that dominates the
ASSENT solution is driven to another solution. We aim to
decrease (increase) power (bandwidth) while setting other
constraints to match that of the ASSENT solution. We show
the additional samples/time required with respect to the GMM
solution obtained in Step 2. We observe that power (bandwidth)
is 14.7% (5.3%) lower (higher) than the ASSENT solution.

VII. DISCUSSION AND LIMITATIONS

Next, we discuss the main highlights of INFORM and its
limitations. A designer may be interested in fine-tuning an
existing solution with the goal of either improving the value of

the objective function or satisfying a different set of constraints.
In such scenarios, the designer can search around the solution
by simply using Step 2 as illustrated in the experiment section.
INFORM generates multiple candidate solutions in parallel,
thus allowing the use of multiple CPU cores for simulation.
The designer can easily trade off sample efficiency with
total synthesis time by increasing the number of candidate
solutions generated using inverse design. It continuously learns
to improve the value of the objective function, as opposed to
using episodes that require frequent resets in RL. We only use
the CPU for optimization, thus presenting a cheaper alternative
to contemporary optimization techniques that rely on GPUs to
solve an RL or a BO problem.

We use an NN to model the complex nonlinear system
objectives and NN-Ver. for inverse design to help achieve
sample efficiency. Note that any NN-Ver., e.g., Marabou [29],
could also have been used instead of NSVerify [20]. GMM
provides a distribution over the output space instead of just a
point estimate as in an NN, thus providing a new dimension
to inverse design. Finally, NN-based inverse design is a simple
technique that maps the objectives/constraints to the component
values. We also note that NN (in NN-based inverse design)
can be replaced by any other optimizer such as Xgboost [30].

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3217422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Princeton University. Downloaded on April 14,2023 at 19:10:59 UTC from IEEE Xplore. Restrictions apply.

13

(a) (b) (c)
Fig. 12: Dominating the Step 1 (top) and ASSENT solution (bottom) shown in black for the three-stage transimpedance amplifier: (a) power vs. bandwidth, (b)
area vs. bandwidth, and (c) area vs. power.

TABLE IV: Comparison of designs synthesized using INFORM (for two different runs separated by a ’/‘) with those synthesized using ASSENT [16] and [5]
for the three-stage transimpedance amplifier (top part). The bottom part shows results for the case when the first solution, which dominates the ASSENT
solution, obtained using GMM is driven to another solution.

#Samples Time Bandwidth (MHz) Gain (dBΩ) Power (mW) Gate area (µm2)
Spec - - max ≥ 80 min min

Human Design [5] 10,000,000 months 90.1 80.09 1.37 211.0
DDPG [5] 40,000 40 GPU hrs 92.5 80.30 2.50 90.0

Bayesian Opt. [5] 1,160 40 hrs 72.5 80.47 4.25 130.0
ASSENT [16] 5,749 84.7 hrs 90.5 80.04 3.00 69.2

INFORM
(Step 1 - NN-Ver.+NN) 8,696 0.91+1.92 hrs 92.02 84.33 2.45 112.13

INFORM
(Step 2 - NN-Ver.)

5,730(1,735)/
6,931(4,017)

0.59+9.91(0.18+4.48)/
0.73+10.12(0.42+7.95) hrs

90.5(90.8)/
90.5(90.5)

80.05(80.47)/
80.05(80.05)

2.92(2.92)/
2.67(2.67)

67.2(68.4)/
69.0(69.2)

INFORM
(Step 2 - GMM)

11,640(565)/
6,147(2,159)

1.24+12.41(0.06+0.04)/
0.71+2.52(0.25+0.46) hrs

90.6(91.3)/
90.5(91.2)

80.05(80.28)/
80.05(80.25)

2.96(2.87)/
2.87(2.86)

66.6(68.6)/
66.9(68.8)

INFORM
(Step 2 - NN)

15,144(8,860)/
20,391

1.50+9.04(0.88+5.05)/
2.20+12.83 hrs

90.5(90.8)/
90.5

80.05(80.07)/
80.06

2.94(2.83) /
2.67

67.3(69.05)
70.0

INFORM
(Step 2 - NN-Ver.+GMM)

9,604(1,678)/
10,102(1,172)

1.13+9.35(0.19+0.70)/
1.18+7.41(0.14+0.84) hrs

90.6(90.9)/
90.5(90.5)

80.06(80.26)/
80.05(80.21)

2.97(2.88)/
2.98(2.96)

65.8(68.4)/
65.9(68.8)

INFORM
(Step 2 - NN-Ver.+NN)

20,600(8,848)/
23,416(4,334)

2.11+12.94(0.91+6.43)/
2.44+11.89(0.45+3.69) hrs

90.5(90.5)/
90.7(92.4)

80.06(80.06)/
80.07(80.17)

2.99(2.66)/
2.98(2.98)

65.8(69.1)/
66.4(68.9)

INFORM
(Step 2 - NN+GMM)

11,361(959)/
8,400(2,162)

1.15+5.96(0.10+0.22)/
0.86+3.62(0.22+0.56) hrs

90.5(91.3)/
90.6(91.0)

80.06(80.16)/
80.05(80.05)

2.90(2.80)/
2.89(2.85)

66.3(69.0)/
66.9(68.6)

INFORM
(Step 2 - NN-Ver.+NN+GMM)

15,365(1,757)/
16,364(2,646)

1.74+9.89(0.20+0.54)/
1.85+11.30(0.31+1.71) hrs

90.5(91.4)/
90.5(90.6)

80.05(80.26)/
80.06(80.24)

2.99(2.94)/
2.97(2.83)

65.6(68.9)/
65.6(68.8)

INFORM (dominate DDPG)
(Step 2- NN-Ver.+NN+GMM)

12,916(450)/
11,280(407)

1.48+9.65(0.05+0.07)/
1.17+6.80(0.04+0.05) hrs

92.5(95.3)/
92.5(93.1)

80.32(80.93)/
80.33(80.34)

2.50(2.37)/
2.50(2.10)

72.7(87.4)/
72.7(89.3)

INFORM (dominate Human)
(Step 2- NN-Ver.+NN+GMM)

13,493(1,319)/
13,212(689)

1.53+13.62(0.15+0.34)/
1.41+13.64(0.07+0.23) hrs

90.6(90.1)/
90.3(90.3)

80.16(80.09)/
80.10(80.17)

1.36(1.37)/
1.36(1.37)

141.7(211.0)/
144.6(208.5)

INFORM (Bandwidth max.)
(NN-Ver.+NN+GMM)

17,563/
7,027

1.93+13.11/
0.82+4.12 hrs

95.3/
94.7

80.05/
80.06

3.00/
2.98

69.2/
69.2

INFORM (Power min.)
(NN-Ver.+NN+GMM)

7,763/
5263

0.90+4.61/
0.61+2.67 hrs

90.5/
90.6

80.05/
80.06

2.56/
2.57

69.2/
69.2

A human expert in the loop of the design process can further
enhance the process. In Step 1, human knowledge can enable
focus only on the relevant range of the objective values. After
running Step 1 for the three-stage transimpedance amplifier,
we can see that many designs have a very low area and power
that are perhaps uninteresting. We observe similar phenomena
in the second electrical circuit example too.

INFORM is limited to optimization of a fixed system
architecture. Recent techniques such as GCN-RL [31] use
transfer learning across different electrical circuit topologies
and a weighted sum of different outputs during optimization.
INFORM can be extended similarly by using simulation data
from one system architecture to optimize another system
architecture to solve a CMOO problem.

VIII. CONCLUSION
This article proposed a framework called INFORM to solve

real-world CMOO problems. We enhanced a GA by injecting
candidate solutions using seven inverse design methods. The
inverse design method generates multiple candidate solutions
simultaneously, thus speeding up synthesis. We made the design
process sample-efficient by performing targeted simulations
in Step 2. Using INFORM, we demonstrated reduction in
synthesis time by 29× relative to ASSENT, a state-of-the-art
system synthesis method, while delivering similar or better
performance (up to 33%) compared to a human expert.
Acknowledgment: We would like to thank Kenza Hamidouche,
Hossein Valavi, Jaime Fernández Fisac, Brendon Englot, Sanjai
Narain, Kishore Pochiraju, Dana Chee, Sean Rooney, and
Emil J. Pitz for guidance and help with the setup for several

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3217422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Princeton University. Downloaded on April 14,2023 at 19:10:59 UTC from IEEE Xplore. Restrictions apply.

14

benchmarks used for evaluating INFORM. We also thank
Shrikanth Narayanan, Prasanta K. Ghosh, and the Indo-US
Science and Technology Forum - Viterbi program for providing
an internship at the University of Southern California, from
where we got the inspiration for GMM-based inverse design.
The simulations presented in this article were performed on
computational resources managed and supported by Princeton
Research Computing at Princeton University.

REFERENCES

[1] D. A. Van Veldhuizen and G. B. Lamont, “Evolutionary computation
and convergence to a Pareto front,” in Proc. Late-breaking Papers at the
Genetic Programming Conference, 1998, pp. 221–228.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. on Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[3] M. T. Emmerich and A. H. Deutz, “A tutorial on multiobjective opti-
mization: Fundamentals and evolutionary methods,” Natural Computing,
vol. 17, no. 3, pp. 585–609, 2018.

[4] S. Daulton, M. Balandat, and E. Bakshy, “Differentiable expected hyper-
volume improvement for parallel multi-objective Bayesian optimization,”
in Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33, 2020,
pp. 9851–9864.

[5] H. Wang, J. Yang, H.-S. Lee, and S. Han, “Learning to design circuits,”
in NeurIPS Machine Learning for Systems Workshop, 2018.

[6] K. Settaluri, A. Haj-Ali, Q. Huang, K. Hakhamaneshi, and B. Nikolic,
“AutoCkt: Deep reinforcement learning of analog circuit designs,” in
Proc. Design, Automation & Test in Europe Conference & Exhibition,
2020, pp. 1–6.

[7] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi et al., “A graph placement
methodology for fast chip design,” Nature, vol. 594, no. 7862, pp. 207–
212, 2021.

[8] G. Zhang, H. He, and D. Katabi, “Circuit-GNN: Graph neural networks
for distributed circuit design,” in Proc. Int. Conf. on Machine Learning,
ser. Proc. of Machine Learning Research, K. Chaudhuri and R. Salakhut-
dinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp. 7364–7373.

[9] W. Lyu, F. Yang, C. Yan, D. Zhou, and X. Zeng, “Batch Bayesian
optimization via multi-objective acquisition ensemble for automated
analog circuit design,” in Proc. Int. Conf. Machine Learning, 2018, pp.
3306–3314.

[10] K. Deb and H. Jain, “An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, Part
I: Solving problems with box constraints,” IEEE Trans. on Evolutionary
Computation, vol. 18, no. 4, pp. 577–601, 2014.

[11] W. Lyu, F. Yang, C. Yan, D. Zhou, and X. Zeng, “Multi-objective
Bayesian optimization for analog/RF circuit synthesis,” in Proc. Annual
Design Automation Conf., 2018, pp. 1–6.

[12] Z. Gao, J. Tao, F. Yang, Y. Su, D. Zhou, and X. Zeng, “Efficient
performance trade-off modeling for analog circuit based on Bayesian
neural network,” in Proc. IEEE/ACM Int. Conf. on Computer-Aided
Design, 2019, pp. 1–8.

[13] B. De Smedt and G. Gielen, “WATSON: Design space boundary
exploration and model generation for analog and RFIC design,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 22, no. 2, pp. 213–224, 2003.

[14] M. Chu and D. Allstot, “Elitist nondominated sorting genetic algorithm
based RF IC optimizer,” IEEE Trans. on Circuits and Systems I, vol. 52,
no. 3, pp. 535–545, 2005.

[15] S. Narain, E. Mak, D. Chee, B. Englot, K. Pochiraju, N. K. Jha, and
K. Narayan, “Fast design space exploration of nonlinear systems: Part
I,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 9, pp. 2970–2983, 2022.

[16] P. Terway, K. Hamidouche, and N. K. Jha, “Fast design space exploration
of nonlinear systems: Part II,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 41, no. 9, pp. 2984–2999,
2022.

[17] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G.
Wilson, and E. Bakshy, “BoTorch: A framework for efficient Monte-Carlo
Bayesian optimization,” in Advances in Neural Information Processing
Systems, vol. 33, 2020.

[18] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” 2016. [Online]. Available:
https://gym.openai.com

[19] C. Qin and M. A. Carreira-Perpinán, “Estimating missing data sequences
in X-ray microbeam recordings,” in Proc. Eleventh Annual Conf. Int.
Speech Communication Association, 2010.

[20] M. Akintunde, A. Lomuscio, L. Maganti, and E. Pirovano, “Reachability
analysis for neural agent-environment systems,” in Proc. Int. Conf.
Principles of Knowledge Representation and Reasoning, 2018.

[21] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of
three methods for selecting values of input variables in the analysis of
output from a computer code,” Technometrics, vol. 42, no. 1, pp. 55–61,
2000.

[22] S. Burhenne, D. Jacob, and G. P. Henze, “Sampling based on Sobol
sequences for Monte Carlo techniques applied to building simulations,”
in Proc. Int. Conf. Build. Simulation, 2011, pp. 1816–1823.

[23] S. I. Vrieze, “Model selection and psychological theory: A discussion of
the differences between the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC),” Psychological Methods, vol. 17,
no. 2, p. 228, 2012.

[24] F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/
fchollet/keras

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” J. Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[26] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2020.
[Online]. Available: http://www.gurobi.com

[27] D. Izzo, “PyGMO and PyKEP: Open source tools for massively parallel
optimization in astrodynamics (the case of interplanetary trajectory
optimization),” in Proc. Int. Conf. on Astrodynamics Tools and Techniques,
2012.

[28] J. Blank and K. Deb, “PyMOO: Multi-objective optimization in Python,”
IEEE Access, vol. 8, pp. 89 497–89 509, 2020.

[29] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić et al., “The Marabou framework for
verification and analysis of deep neural networks,” in Proc. Int. Conf.
on Computer-Aided Verification, 2019, pp. 443–452.

[30] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining,
2016, pp. 785–794.

[31] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H.-S. Lee, and S. Han,
“GCN-RL circuit designer: Transferable transistor sizing with graph
neural networks and reinforcement learning,” in Proc. ACM/IEEE Design
Automation Conference, 2020, pp. 1–6.

Prerit Terway received his M.S. degree from Uni-
versity of Michigan, Ann Arbor, and B.Tech. degree
from Indian Institute of Technology, Gandhinagar,
India, both in Electrical Engineering. He is currently
a Ph.D. candidate in Electrical and Computer Engi-
neering at Princeton University. His research interests
include machine learning, active learning, and cyber-
physical systems.

Niraj K. Jha received his B.Tech. degree in Elec-
tronics and Electrical Communication Engineering
from Indian Institute of Technology, Kharagpur, India
in 1981 and Ph.D. degree in Electrical Engineering
from University of Illinois at Urbana-Champaign,
IL in 1985. He has been a faculty member of the
Department of Electrical and Computer Engineering,
Princeton University, since 1987. He is a Fellow of
IEEE and ACM, and was given the Distinguished
Alumnus Award by I.I.T., Kharagpur, in 2014. He
has also received the Princeton Graduate Mentoring

Award. He has served as the Editor-in-Chief of IEEE Transactions on VLSI
Systems and as an Associate Editor of several other journals. He has co-
authored five books that are widely used. His research has won 20 best paper
awards or nominations. He has published more than 460 papers and received
23 patents. His research interests include smart healthcare, cybersecurity, and
machine learning. He has given several keynote speeches in the areas of
nanoelectronic design/test, smart healthcare, and cybersecurity.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3217422

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Princeton University. Downloaded on April 14,2023 at 19:10:59 UTC from IEEE Xplore. Restrictions apply.

https://gym.openai.com
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://www.gurobi.com

	Introduction
	Related Work
	Weighted-sum Optimization
	Multi-objective Optimization (MOO)

	Background
	CMOO Formulation for System Design
	Genetic Algorithm
	Inverse Design Preliminaries
	GMM
	NN-Verifier

	Motivation
	Step 1: Obtaining Non-dominated Solutions
	Step 2: Dominating the Selected Solutions from Step 1

	Synthesis Methodology
	Step 1: Obtaining Non-dominated Solutions
	Step 2: Dominating Selected Solutions from Step 1

	Experimental Results
	Lunar Lander
	Two-stage Transimpedance Amplifier
	Three-stage Transimpedance Amplifier

	Discussion and Limitations
	Conclusion
	References
	Biographies
	Prerit Terway
	Niraj K. Jha

