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Experiments on the acoustic vibrations of elastic nanostructures in fluid media have

been used to study the mechanical properties of materials, as well as for mechani-

cal and biological sensing. The medium surrounding the nanostructure is typically

modeled as a Newtonian fluid. A recent experiment however suggested that high-

frequency longitudinal vibration of bipyramidal nanoparticles could trigger a vis-

coelastic response in water-glycerol mixtures [M. Pelton et al., “Viscoelastic flows

in simple liquids generated by vibrating nanostructures,” Phys. Rev. Lett. 111,

244502 (2013)]. Motivated by these experimental studies, we first revisit a classical

continuum mechanics problem of the purely radial vibration of an elastic sphere,

also called the breathing mode, in a compressible viscous fluid, and then extend our

analysis to a viscoelastic medium using the Maxwell fluid model. The effects of fluid

compressibility and viscoelasticity are discussed. Although in the case of longitudinal

vibration of bipyramidal nanoparticles, the effects of fluid compressibility were shown

to be negligible, we demonstrate that it plays a significant role in the breathing mode

of an elastic sphere. On the other hand, despite the different vibration modes, the

breathing mode of a sphere triggers a viscoelastic response in water-glycerol mixtures

similar to that triggered by the longitudinal vibration of bipyramidal nanoparticles.

We also comment on the effect of fluid viscoelasticity on the idea of destroying virus

particles by acoustic resonance.
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I. INTRODUCTION

Studies on the vibration of elastic nanoparticles embedded in fluid media have attracted

considerable attention recently, due to potential applications, for example, as an alternative

nondestructive tool for characterizing material properties1 and designing mechanical and

biological sensors.2–4 Low damping, i.e., a high quality factor, is desirable in these appli-

cations for high detection sensitivity. It is therefore of interest to investigate the damping

mechanisms due to energy dissipation or energy transfer to the surrounding media. In ad-

dition, biological nanoparticles such as viruses have also been modeled as elastic spheres

in the studies of their vibration characteristics in different media, motivated by the idea of

destroying viruses in a living host with ultrasound waves via resonance.5–9

The resonant frequencies and damping characteristics of mechanical nanostructures with

various shapes have been measured by a variety of experimental techniques.10–12 From the

modeling perspective, acoustic vibrations of elastic bodies are classical problems in con-

tinuum mechanics. For example, Lamb13 studied theoretically the vibrations of an elastic

sphere in vacuum. Subsequent works considered the vibration modes of elastic structures

with different geometries, which are summarized briefly in Table I. In addition, the effect of

different surrounding environments, including an elastic solid matrix,14 and inviscid15 and

viscous16,17 fluid media, were also considered in later studies (Table I). As a remark, for a

nanoparticle with a typical size of tens of nanometers, the atomic spacing is usually suffi-

ciently small that a continuum description is valid.16,17 Such a continuum approach was also

shown to be successful in predicting the resonant frequency (on the order of tens of GHz) of

a gold nanoparticle vibrating in water.17

Recently, an experiment on the vibration of a bipyramidal gold nanoparticle (in the

shape of a pair of truncated cones) in water-glycerol mixtures suggested that the high-

frequency (20 GHz) vibration could trigger viscoelastic responses in the mixture, even in

small molecule liquids.18 The bipyramidal nanoparticle was excited to vibrate longitudinally

along its major axis in a water-glycerol mixture. When increasing the glycerol mass fraction,

the quality factor of the vibration displayed non-monotonic variations not explained by a

Newtonian fluid model; a viscoelastic fluid model (linear Maxwell model) however captured

the behavior. In contrast to the longitudinal vibrations of bipyramidal nanoparticles, the

breathing mode, which refers to purely radial vibrations, is mainly excited for spherical
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Elastic Structure
Surrounding Medium

Vibration Modes
Viscosity Compressibility Rheology

Lamb13 (1882) Sphere Vacuum Torsional & spheroidal

Kheisin15 (1967) Sphere Inviscid Compressible Newtonian fluid Breathing

Dubrovskiy &

Morochnik14 (1981)
Sphere Elastic solid matrix Torsional & spheroidal

Saviot et al.16

(2007)
Sphere Viscous Compressible Newtonian fluid Torsional & spheroidal

Chakraborty et al.17

(2013)

Circular cylinder

Conical cylinder

Bipyramid

Viscous Incompressible Newtonian fluid
Longitudinal vibrations

along the major axis

Pelton et al.
18

(2013)
Bipyramid Viscous

Compressible &

incompressible

Viscoelastic fluid

(Maxwell model)

Longitudinal vibrations

along the major axis

This work Sphere Viscous
Compressible &

incompressible

Viscoelastic fluid

(Maxwell model)
Breathing

TABLE I: Some theoretical studies of the vibrations of elastic structures in different media.

nanoparticles,11 whose behavior in a viscoelastic fluid medium remains unexplored. In this

paper, we first revisit the classical problem of the breathing mode of a vibrating elastic

sphere in a Newtonian fluid, and then extend our studies to complex fluid media.

We organize the paper by first presenting a continuum mechanics formulation in Sec. II for

the elasticity problem of a radially vibrating sphere (Sec. IIA) and the propagation of acous-

tic waves in the fluid medium (Sec. II B). The two problems are then coupled by matching

the velocities and stresses at the interface of the solid (Sec. IIC). An analytical eigenvalue

equation determining the vibration frequencies of an elastic sphere in a compressible, viscous,

Newtonian fluid medium is obtained in Sec. III. The results are validated against previous

theoretical and experimental studies of a vibrating gold nanosphere in water (Sec. IIIA),

followed by parametric studies of the quality factor (Sec. III B). The calculations are then

extended to the viscoelastic case in Sec. IIIC, with results and remarks discussed in Sec. IV.

II. FORMULATION

We consider the purely radial vibration of an elastic sphere of radius R in a compressible

viscous fluid. This spherically symmetric motion is also called the breathing mode (see

Fig. 1 for a schematic representation of the problem). The displacement field of the elastic

3



Breathing mode

ρs, cℓ, ct

Elastic sphere

ρf , c, η,κ

Fluid medium

FIG. 1: Schematic representation of the breathing mode (purely radial vibration) of an

elastic sphere (density ρs, longitudinal wave speed cℓ, and transverse wave speed ct) in a

fluid medium (density ρf , wave speed c, shear viscosity η, and bulk viscosity κ).

sphere, u, is governed by the Navier equation in elasticity

ρs
∂2u

∂t2
= µ∇2u+ (µ+ λ)∇(∇ · u), (1)

where ρs is the density of the solid, and µ and λ are the Lamé elastic parameters. We consider

small-amplitude acoustic waves in the fluid, and hence the velocity field, v, is governed by

the linearized Navier-Stokes equation for compressible flows

ρf
∂v

∂t
= −∇p + η∇2v +

(

κ+
η

3

)

∇(∇ · v), (2)

where ρf is the density of the fluid, η is the shear viscosity, κ is the bulk viscosity, and p is

the thermodynamic pressure.

Since the vibration is purely radial, we utilize a spherical coordinate system located at

the center of the sphere. The displacement field of the elastic sphere, u(r, t) = u(r, t)er,

and the velocity field of the fluid, v(r, t) = v(r, t)er, have only radial components that are

functions of the distance from the origin r and time t. With this geometrical symmetry, the

identity ∇2a ≡ ∇(∇ · a) holds for a vector field a, which simplifies (1) and (2), respectively,

to

ρs
∂2u

∂t2
= (2µ+ λ)∇2u, (3a)

ρf
∂v

∂t
= −∇p + β∇2v, (3b)

where β = κ+ 4η/3.

4



A. Elasticity: radial vibration of an elastic sphere

We take the divergence of (3a) and define the scalar function φ = ∇ · u to obtain

∂2φ

∂t2
= c2ℓ∇2φ, (4)

where cℓ =
√

(2µ+ λ)/ρs, which physically represents the velocity of longitudinal waves in

an elastic material. We find time-periodic solutions of the form φ(r, t) = Φ(r)e−iωt for the

breathing mode. By separation of variables we obtain

φ(r, t) =

∞
∑

n=1

An
sin(ks,nr)

r
e−iωnt, (5)

where An are arbitrary constants, and ks,n = ωn/cℓ are the unknown eigenvalues. The

displacement field of the elastic sphere can then be determined by direct integration using

the definition φ = ∇ · u = (1/r2)∂(r2u)/∂r, which results in

u(r, t) =
∞
∑

n=1

An

[

sin(ks,nr)

k2
s,nr

2
− cos(ks,nr)

ks,nr

]

e−iωnt. (6)

B. Fluid dynamics: propagation of acoustic waves

We now turn to the propagation of small-amplitude acoustic waves in the fluid surround-

ing the vibrating sphere. The linearized continuity equation for a compressible fluid is given

by

∂ρ′

∂t
+ ρf∇ · v = 0, (7)

where ρ′(r, t) represents the density fluctuation; | ρ′ |≪ ρf . Together with the equation of

state, p = c2ρ′, where c is the speed of sound in the fluid, (7) can be combined with (3b) to

arrive at an equation for the density fluctuations

∂2ρ′

∂t2
= c2∇2ρ′ +

β

ρf
∇2∂ρ

′

∂t
· (8)

We again seek time-periodic solutions with the same vibration frequencies of the elastic

sphere. Then, (8) can be solved by separation of variables to yield

ρ′(r, t) = ρf

∞
∑

n=1

Ãn
ei(kf,nr−ωnt)

r
, (9)
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where Ãn are arbitrary constants and kf,n = ωn

c
√

1−iωnβ/ρf c2
. The corresponding velocity field

can then be obtained from the continuity equation (7) as

v(r, t) =

∞
∑

n=1

Ãniωn
(1− ikf,nr)

k2
f,nr

2
ei(kf,nr−ωnt). (10)

C. Elastohydrodynamics: coupling the radial vibration of an elastic sphere to

the surrounding fluid

We couple the vibration of the elastic sphere to the fluid by matching the velocities and

normal stresses at the boundary between the fluid and the vibrating sphere. Since small

amplitude vibrations are considered, we use domain perturbation and expand the velocities

and stresses at the boundary about the equilibrium radius of the sphere, R, a constant,

keeping only the leading-order terms. For continuity of velocity, we compute the time

derivative of the displacement field of the elastic sphere (6) and equate it to the velocity

field in the fluid (10) evaluated at r = R, which results in

−An

[

sin(ks,nR)

k2
s,nR

2
− cos(ks,nR)

ks,nR

]

= Ãn
(1− ikf,nR)

k2
f,nR

2
eikf,nR. (11)

The stress tensor in the solid is given by

σ
s = λ(∇ · u)I+ 2µγ, (12)

where γ = 1
2
(∇u+(∇u)T ) is the strain tensor. For the spherically symmetric case considered

here, the only non-zero component of the stress tensor is

σs
rr(r, t) =

∞
∑

n=1

An

{

λ+ 2µ

r
sin(ks,nr)−

4µ

r

(

sin(ks,nr)

k2
s,nr

2
− cos(ks,nr)

ks,nr

)}

e−iωnt. (13)

The stress tensor in the fluid is given by

σ
f = (−p + κ tr(γ̇)) I+ 2η

(

γ̇ − tr(γ̇)

3
I

)

, (14)

where tr(γ̇) = ∇ ·v, and γ̇ = 1
2
(∇v+ (∇v)T ) represents the rate-of-strain tensor. The only

non-zero component of the stress tensor is

σf
rr(r, t) =

∞
∑

n=1

Ãn
ei(kf,nr−ωnt)

r

(

−ρfc
2 + iβωn − 4ηiωn

(1− ikf,nr)

k2
f,nr

2

)

, (15)

6



where the equation of state and the continuity equation have been used.

Evaluating and matching the stresses in the solid (13) and fluid (15) at r = R leads to

An

(

(λ+ 2µ) sin(ks,nR)− 4µ

[

sin(ks,nR)

k2
s,nR

2
− cos(ks,nR)

ks,nR

])

= Ãn

(

−ρfc
2 + iβωn − 4ηiωn

(1− ikf,nR)

k2
f,nR

2

)

eikf,nR. (16)

III. RESULTS

For non-trivial solutions to the system of equations formed by equations (11) and (16),

we require the determinant of the matrix representing this system to vanish, which leads to

the eigenvalue equation for the natural frequencies ωn

k2
s,nR

2

[

ρf
ρs(1− ikf,nR)

+

(

ks,nR

tan(ks,nR)
− 1

)

−1]

+
4iηks,n
ρscℓ

+ 4

(

ct
cℓ

)2

= 0. (17)

We note that (17) is a transcendental equation to be solved numerically. Here ct =
√

µ/ρs

represents the velocity of transverse elastic waves. We calculate only the results for the

fundamental mode (n = 1) here, since it is mainly the mode detected in experimental

measurements;11 higher order modes can be obtained by finding other roots of the same

equation. Hereafter, for simplicity we denote ω = ω1, ks = ks,1 = ω/cℓ, and kf = kf,1 =

ω

c
√

1−iωβ/ρf c2
.

For an inviscid flow (κ = η = 0), the eigenvalue condition (17) for ω reduces to

ρf
ρs

=

[

4

k2
sR

2

(

ct
cℓ

)2

+

(

ksR

tan(ksR)
− 1

)

−1
]

(iωR/c− 1), (18)

which was previously obtained by Kheisin.15 The case ρf = 0 corresponds to an elastic

sphere vibrating in a vacuum,13 where the eigenvalue condition further simplifies to

ksR

tan(ksR)
= 1− k2

sR
2

4

(

cℓ
ct

)2

. (19)

Dubrovsky and Morochnik14 considered the breathing mode of an elastic sphere surrounded

by another elastic medium. The eigenvalue conditions (17)–(19) can be alternatively ob-

tained from the inviscid results of Dubrovsky and Morochnik by modifying the constitutive

relation to include the viscous contribution from the fluid.16

For the case of vacuum surrounding the vibrating sphere, the frequencies determined

from (19) are real because there is no damping outside the sphere. When the vacuum is

7



replaced by an inviscid fluid medium, the frequencies determined from the roots of (18)

become complex, which implies that the free oscillation of the elastic sphere in a fluid takes

the form of a sinusoid attenuating exponentially.15

A. Breathing mode of a gold nanosphere in a Newtonian fluid

Here we first consider the experimental setup of Ruijgrok et al.,11 where the breathing

mode of a single gold nanosphere of 40 nm radius in water was measured. We denote the

complex frequency ω = ωr + iωi, where ωr and ωi are, respectively, the real and imaginary

parts of the frequency. In this paper we define the quality factor as Q = −
√

ω2
r + ω2

i /(2ωi),

which is the same as the definition adopted in Pelton et al.18 Note that Ruijgrok et al.11

defined the quality factor differently as Q′ = −ωr/(2ωi), which gives only small quantitative

differences for the vibrations with low damping (ωi/ωr ≪ 1) considered in this section.

With the material constants of water given in Table II,19 in the inviscid limit a quality

factor Q = 53.7 is obtained using (18).11 Note that the attenuation in oscillation is not

due to viscous dissipation in the fluid since an inviscid medium is considered. Instead,

the attenuation comes from the propagation of energy into the surrounding medium away

from the vibrating sphere. Compressibility in the fluid provides a mechanism for energy

to propagate away from the vibrating sphere through acoustic waves. When the shear and

bulk viscosities of water are taken into account, (17) gives a slightly reduced quality factor

of Q = 52.6, as reported by Ruijgrok et al.11

Although the modification of the quality factor by the viscous effects is relatively minor in

this case, a more significant reduction in the quality factor can occur when water is replaced

by a water-glycerol mixture, which is the fluid medium considered by Pelton et al.18 The

quality factor drops from Q = 40.6 (inviscid) to Q = 33.4 (viscous) for the vibration of the

same gold nanosphere in a water-glycerol mixture with the glycerol mass fraction χ = 0.56,

where the mixture is modeled as a Newtonian fluid. The parameter values and quality

factors of these theoretical predictions are summarized in Table II. The viscous effects are

discussed in terms of dimensionless variables in Sec. III B.

The natural frequency of an elastic sphere oscillating in an incompressible flow can be

obtained by using the corresponding continuity equation, ∇·v = 0 (see Appendix A), or by

simply taking the wave speed in the fluid to infinity (c → ∞) in (17), which leads to

8



Gold nanoparticle Surrounding medium
Predicted quality factor, Q

Inviscid Viscous Viscoelastic

Water:

ρf = 1000 kg/m3, c = 1510 m/s 53.7 52.6 52.2

ρs = 19700 kg/m3 η = 0.000894 Pa·s, κ = 0.00286 Pa·s (f = 37.9 GHz) (f = 37.8 GHz) (f = 37.8 GHz)

cℓ = 3240 m/s λ = 0.647 ps (for viscoelastic case)

ct = 1200 m/s Water-glycerol mixture (χ = 0.56):

ρf = 1140 kg/m3, c = 1760 m/s 40.6 33.4 34.5

η = 0.00527 Pa·s, κ = 0.0116 Pa·s (f = 37.9 GHz) (f = 37.6 GHz) (f = 37.7 GHz)

λ = 3.51 ps (for viscoelastic case)

TABLE II: Theoretical predictions of the quality factor Q and vibration frequency

f = ωr/(2π) of the breathing mode of a single gold nanosphere with 40 nm radius

vibrating in inviscid, viscous, and viscoelastic fluid media. Refer to Appendix B for the

details of the material constants.

k2
sR

2

[

ρf
ρs

+

(

ksR

tan(ksR)
− 1

)

−1]

+
4iηks
ρscℓ

+ 4

(

ct
cℓ

)2

= 0. (20)

Using the material constants of water from Table II, we obtain a quality factor Q = 841

for the incompressible viscous case, which is significantly larger than the quality factor when

compressibility is taken into account (Q = 52.6). Although Pelton et al.18 showed numer-

ically that the effect of compressibility is insignificant for the longitudinal oscillations of

a bipyramidal gold nanoparticle (with 25 nm base diameter and 90 nm total height), we

demonstrate here an example of the breathing mode of nanospheres where fluid compress-

ibility should be considered to obtain a reasonable prediction of the quality factor.

B. Parametric studies

We study the effects of different physical parameters on the quality factor by nondimen-

sionalizing (17) to identify the dimensionless groups in our problem:

s =
ωR

cℓ
, ρ̃ =

ρf
ρs

, c̃t =
ct
cℓ
, c̃ =

c

cℓ
, R̃ =

ρfcR

η
, α =

κ

η
. (21)

The dimensionless form of the eigenvalue equation (17) is

s2

[

ρ̃

1− ik̃f
+
( s

tan s
− 1
)

−1
]

+
4isc̃ρ̃

R̃
+ 4c̃2t = 0, (22)

9



where

k̃f(s) =
s/c̃

√

1− i
(

α + 4
3

)

s/(R̃c̃)
· (23)

We first examine the relative importance of the viscous dissipation mechanism com-

pared with the damping caused by the propagation of acoustic waves away from the elastic

nanosphere at different values of R̃ = ρfcR/η. The relative importance is characterized by

comparing the quality factor when viscous effects are considered Qvisc, to the quality factor

when the fluid medium is assumed to be inviscid Qinv (hence, all damping is due to the prop-

agation of acoustic waves away from the source). The ratio Qvisc/Qinv should approach unity

when viscous effects are negligible and decrease as the viscous effects become significant.

10
1

10
2

10
3

0.6

0.8

1

R̃

Q
v
is
c
/
Q
in
v

FIG. 2: Parametric study of the ratio Qvisc/Qinv for different values of R̃ using the

Newtonian fluid model. The symbols represent the vibrations of a gold nanosphere with 40

nm radius in pure water (blue dot) and water-glycerol mixture (glycerol mass fraction

χ = 0.56, red square). The blue solid (red dotted) line is obtained by varying R̃ with all

other dimensionless parameters (ρ̃, c̃t, c̃ and α) kept the same as those represented by the

blue dot (red square). The dimensionless parameters (see equation (21)) are obtained from

the material constants presented in Table II.

For the case of a gold nanosphere with 40 nm radius vibrating in water, we obtain the

corresponding values of R̃ = 67.6 and the ratio Qvisc/Qinv ≈ 0.98 (blue dot, Fig. 2). Viscous

dissipation is therefore negligible as reported by Ruijgrok et al.11 However, the viscous effects

become more significant for the same vibration in a water-glycerol mixture with glycerol mass

fraction χ = 0.56. (see Table II for the properties of the mixture20). The corresponding value

of R̃ = 15.2, which results in Qvisc/Qinv ≈ 0.82 (red square, Fig. 2). The blue solid line (red

10



dotted line) is obtained by varying R̃ while keeping all other dimensionless parameters (ρ̃,

c̃t, c̃ and α) the same as those represented by the blue dot (red square). The dimensionless

parameters are obtained from the material constants presented in Table II. In both cases

(blue solid and red dotted lines), we see the general trend that the viscous effects become

significant when the dimensionless parameter R̃ decreases. As the densities and sound speeds

do not change significantly for different fluids, the value of R̃ is mainly determined by the

radius R of the vibrating particle and the shear viscosity η. As expected, the viscous effects

therefore become significant typically when the vibrating structure decreases in size or when

the shear viscosity of the fluid increases.

We also investigate the effect of the viscosity ratio α = κ/η in a compressible flow on the

quality factor. Intuitively, the quality factor may decrease with a larger viscosity of the fluid

because of the increased viscous dissipation. Such is the case for an incompressible flow.

However, for the compressible flow considered here interesting variations are observed. In

Fig. 3, we vary the viscosity ratio α at different values of R̃ = 10, 50, 100 (Fig. 3), keeping

all other parameters fixed. As α increases, the quality factor can monotonically decrease

(Fig. 3a), increase (Fig. 3c) or vary non-monotonically (Fig. 3b), depending on the value

of R̃. This indicates that fluid compressibility provides a mechanism through which non-

monotonic behaviors as a function of fluid viscosities are possible.

FIG. 3: Parametric study of the quality factor Q as a function of α for varying values of R̃.

Dimensionless parameters ρ̃, c̃t and c̃ are obtained from material constants in Table II. (a)

R̃ = 10. (b) R̃ = 50. (c) R̃ = 100.

11



C. Breathing mode of a gold nanosphere in a Maxwell fluid

The quality factor of high-frequency longitudinal oscillations of a single bipyramidal gold

nanoparticle along its major axis in a water-glycerol mixture was recently measured by Pel-

ton et al.18 A non-monotonic dependence of the quality factor on the glycerol mass fraction

χ in the mixture was observed: the quality factor first decreased as the glycerol mass frac-

tion increased, reaching a minimum before increasing again. The longitudinal oscillation

of the bipyramidal nanoparticle was modeled by dividing the bipyramid into infinitesimal

sections along its major axis and approximating each section by a circular cylinder, where

the solution for a longitudinally oscillating circular cylinder could be applied.17,18 By con-

sidering an incompressible flow and increasing glycerol mass fraction (hence, increasing the

shear viscosity), a Newtonian fluid model predicted a monotonically decreasing relation-

ship between the quality factor and the glycerol mass fraction, failing to account for the

observed experimental dependence. A Maxwell fluid model on the other hand captured

the non-monotonic behavior. It was therefore concluded that the non-monotonic variation

manifested the intrinsic viscoelastic properties of simple liquids.

For the bipyramidal geometry considered in Pelton et al.,18 the laser-induced excita-

tion mechanism mainly excited the longitudinal vibration mode of the bipyramid. For

nanospheres, the spherically symmetric fundamental breathing mode described in Sec. II

is excited instead.11 Motivated by the experiment in Pelton et al.,18 we investigate how

the quality factor of the breathing mode of an elastic sphere varies with the glycerol mass

fraction in water-glycerol mixtures. The spherically symmetric geometry allows exact and

analytical eigenvalue equations in both Newtonian (17) and viscoelastic fluid media.

With the same properties of water-glycerol mixtures at different mass fractions used

in Pelton et al.18,20 (refer to Appendix B for a summary of these material properties), we

compute the eigenfrequency predicted by the Newtonian fluid model using (17). A monotonic

decrease in the quality factor with the glycerol mass fraction χ is observed in Fig. 4 (blue

lines) for nanospheres with radii of 10, 20, and 40 nm.

We employ the Maxwell model to describe the viscoelasticity of the fluid medium and

take into account the effect of fluid compressibility in a similar fashion as Khismatullin and

12



Nadim.21 The total stress tensor σ in a compressible viscoelastic fluid can be written as

σ = (−p+ κ∇ · v) I+ τ , (24)

which represents the sum of the isotropic part and the deviatoric stress tensor τ that has

a vanishing trace for the linear viscoelastic case considered here.21 In a Maxwell fluid, the

viscoelastic behavior is modeled as a purely viscous damper and a purely elastic spring

connected in series. Due to the series connection, the total deviatoric stress in the viscoelastic

fluid τ is the same as the deviatoric stress in the viscous damper τD as well as that in the

elastic spring τ S, i.e.

τ = τD = τ S. (25)

However, the total rate of strain γ is a sum of the contributions from the damper γD and

elastic spring γS

γ = γD + γS. (26)

The shear stress in the viscous damper is given by a Newtonian constitutive equation

τD = 2ηD

(

γ̇D − tr(γ̇D)

3
I

)

, (27)

where ηD is the shear viscosity of the damper. The shear stress in the elastic spring is given

by

τ S = 2EγS, (28)

where E is the elastic modulus. We differentiate (26) with respect to time and use (27) and

(28) to obtain a constitutive equation for the total shear stress τ and total rate of strain γ̇

τ + λτ̇ = 2η

(

γ̇ − tr(γ̇)

3
I

)

, (29)

where λ = η/E is the relaxation time. In the derivation we have used that the total

deviatoric shear stress is traceless, tr(τ ) = 0, which implies tr(τ S) = 0 according to (25)

and therefore tr(γS) = 0 by (28). As a result, we have tr(γ̇D) = tr(γ̇) in (29). When the

relaxation time is zero, λ = 0, (29) reduces to the Newtonian constitutive equation (14).

Since harmonic solutions are sought for the velocity field, the total shear stress tensor τ

13



should also have the same temporal dependence, exp(−iωt). We can therefore rewrite (29),

with this time dependence assumed, as

τ =
2η

1− iλω

(

γ̇ − tr(γ̇)

3
I

)

. (30)

Comparing (30) with the Newtonian constitutive relation (14), we observe that the eigen-

value equation for the breathing mode of an elastic sphere in a Maxwell fluid can be obtained

simply by making the following transformation in (17),18

η → η

1− iλω
· (31)

FIG. 4: Quality factor Q of radial vibrations of a sphere with radius R as a function of

glycerol mass-fraction χ. (a) R = 40 nm. (b) R = 20 nm. (c) R = 10 nm. The red dotted

lines represent the Maxwell model; the blue solid lines represent the Newtonian model.

Now using the relaxation times of water-glycerol mixtures at different glycerol mass

fractions,20 with the other parameters the same as in the Newtonian case in Fig. 4 (blue

solid lines), we obtain the quality factor as a function of the glycerol mass fraction χ (Fig. 4,

red dotted lines) for different values of the nanosphere radius (Fig. 4a, b, c: 40 nm, 20 nm,

10 nm, respectively). The results for the Newtonian and viscoelastic models agree when the

glycerol mass fraction χ is smaller than a certain critical value, which depends on the ra-

dius of the nanosphere. More significantly, the viscoelastic model predicts a non-monotonic

variation as a function of χ, which is similar to the case of longitudinal vibration of bipyra-

midal gold nanoparticle reported in Pelton et al.,18 even though the vibration mechanism is

fundamentally different.
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In Fig. 4a (R = 40 nm), the Newtonian model predicts similar results as the viscoelastic

model when χ . 0.56 because the relaxation time of the mixture for these glycerol mass

fractions is not large enough for the elastic effect to be significant. From (31) we can see that

the elastic effects become significant if |λω| & 1, i.e. when the relaxation time scale of the

fluid λ is comparable with the vibration time scale 1/ωr. Given a vibration frequency, we

can therefore estimate the glycerol mass fraction beyond which the results of the viscoelastic

model would deviate significantly from the Newtonian model. For instance, the vibration

frequency (f = ωr/2π) of a gold nanosphere with R = 40 nm in vacuum is given by (19) as

f ≈ 38 GHz, and it can be verified that the real part of the vibration frequency depends

very weakly on the surrounding medium for low-damping vibrations considered here (see the

values for different media in Table II). The critical relaxation time such that |λcω| = 1 is

given by λc ≈ 4 ps, which occurs when χ ≈ 0.56 (refer to Table III for the relaxation times

of different water-glycerol mixtures). When the radius of the gold nanosphere decreases to

R = 20 nm, the vibration frequency increases to f ≈ 76 GHz by (19), and the corresponding

critical relaxation time decreases to λc ≈ 2 ps. Hence the results of the viscoelastic model

begin to deviate from that of the Newtonian model when χ ≈ 0.36 (Fig. 4b). Similarly, the

vibration frequency increases (f ≈ 152 GHz) when the nanosphere radius is reduced to 10

nm, which gives a smaller critical relaxation time (λc ≈ 1 ps), and hence a deviation from

the Newtonian results at a smaller χ (Fig. 4c).

IV. DISCUSSION AND CONCLUSION

In this paper, we have revisited a classical calculation of the natural frequencies of a

radially oscillating elastic sphere in simple and complex fluid media. We first considered

the Newtonian fluid model taking into account both shear and bulk viscosities, and demon-

strated that the fluid compressibility plays a significant role in the breathing mode of vibrat-

ing nanospheres. Should the limit of an incompressible flow be considered (see Appendix

A), the quality factor is significantly overestimated (Q = 841), compared with the case

of a compressible flow (Q = 52.6). Although Pelton et al.18 showed numerically that the

effect of compressibility is insignificant for the case of longitudinal vibration of bipyrami-

dal gold nanoparticles, we provide here an example where it is important to consider fluid

compressibility in order to reasonably estimate the quality factor of the breathing mode of
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a nanosphere. Physically, the longitudinal vibration of the bipyramidal nanoparticle propa-

gates through the shearing motion in the fluid, and hence the effect of fluid compressibility

is insignificant. In contrast, due to the spherical symmetry in the breathing mode of a

nanosphere, fluid compressibility plays a more significant role in propagating the energy

through acoustic waves.

A viscoelastic response in a fluid triggered by high-frequency vibrations was demonstrated

by Pelton et al.18 for a longitudinal vibration of bipyramidal gold nanoparticles, where they

observed non-monotonic variations of the quality factor as a function of glycerol mass fraction

that were not captured by a Newtonian fluid model. Motivated by these experimental

observations, we have extended the classical problem of a radially vibrating elastic sphere in a

Newtonian fluid to a viscoelastic fluid, modeled as a Maxwell fluid. Despite the fundamental

difference in the vibration mode, the breathing mode of a nanosphere, taking into account the

relaxation time, also predicts a non-monotonic variation of the quality factor as a function

of the glycerol mass fraction, similar to the response of longitudinal vibration of a gold

bipyramidal nanoparticle in a Maxwell fluid. A Newtonian fluid model fails to capture this

non-monotonic behavior. Due to the simplicity of the spherical geometry considered in this

work, the eigenvalue equation for the breathing mode in the viscoelastic fluid medium is

exact and analytical.

The relaxation time λ of water-glycerol mixtures is typically small, on the order of 1–

100 ps (Table III); the viscoelastic response is triggered only when the vibration frequency

is sufficiently high such that |λω| & 1. For the cases studied in this paper, the real part

of the vibration frequency can be effectively approximated by the vibration frequency of a

sphere in vacuum (19), where we solve for s = ksR for a given ratio of wave speeds in the

elastic solid cl/ct. One can rewrite the condition |λω| & 1 as |λcls/R| & 1, which leads to

the condition R . λcl|s|, a typical radius of the elastic structure smaller than which the

viscoelastic response in the fluid would be triggered. For gold, |s| ≈ 3 by (19), and hence

the viscoelastic effect has to be taken into account when the radius of the gold nanosphere

is smaller than R ≈ 35 nm for a water-glycerol mixture with χ = 0.56, according to the

material properties in Tables II and III.

We also comment on the idea of destroying virus particles by acoustic resonance (see

Introduction). The lifetime (or damping time, τD = −1/ωi) of the vibration was used in

the literature6–9 to assess the feasibility of the idea. A major obstacle is the short damping

16



time when the virus particle is embedded in a liquid.7,9 Assuming that the density and

elastic properties of viruses were close to that of protein crystals (lysozyme),22 the inviscid

model by Talati and Jha8 estimated that the damping time for a virus in liquid was of

the order of picoseconds.23 Specifically, for a virus particle of 50 nm radius, Talati and Jha

estimated a damping time of 17.3 ps for a virus-water configuration. A longer damping time

(34.4 ps) was estimated for a virus-glycerol configuration,8 leading to a conclusion that this

configuration was more favorable than the virus-water configuration for virus destruction.

Here we comment on the effect of fluid viscoelasticity on these estimations. For the virus-

water configuration, the relaxation time of water is small compared with the vibration time

scale (|λω| ≈ 0.06 in this case), and hence the effect of viscoelasticity is negligible. However,

the viscoelastic effect is significant for the virus-glycerol configuration because the relaxation

time of glycerol is comparable to the vibration time scale (|λω| ≈ 37). Our calculation shows

that the viscoelastic response triggered in glycerol significantly increases the damping time

to 111 ps, suggesting a better likelihood of destroying the virus compared with previous

estimations.

Finally, we note that experimental measurements of the quality factor of nanoparticles

are considerably lower than the theoretical predictions. Previous research attributed the

discrepancy to other dissipation mechanisms intrinsic to the particle that were not taken

into account in the theoretical model, for example, internal friction within the nanoparticle

and the dissipation in the capping layer surrounding the nanoparticle.11 Theoretical models

taking into account these damping mechanisms and other plausible effects, such as the

thermo-acoustic effect, are currently under investigation.
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Appendix A: Newtonian Incompressible Fluid

Consider small-amplitude waves in an incompressible viscous fluid described by the lin-

earized Navier-Stokes equation

∇ · v = 0, (A1)

ρf
∂v

∂t
= −∇p + η∇2v. (A2)

Note that due to the spherical symmetry of the problem the identity ∇2v = ∇(∇·v) = 0
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holds, and (A2) simplifies to

ρf
∂v

∂t
= −∇p. (A3)

Assuming time-periodic oscillations, the velocity field v = v(r, t)er can be obtained from

the continuity equation (A1) as

v(r, t) =
∞
∑

n=1

B̃n

r2
e−iωnt, (A4)

where B̃n are arbitrary constants, and ωn are the frequencies of normal modes. The pressure

field in the fluid can then be determined from (A3) as

p(r, t) = −
∞
∑

n=1

B̃n
iρfωn

r
e−iωnt. (A5)

While the stress in the solid (13) remains unchanged, the stress in the fluid becomes

σf
rr = −p + 2η

∂v

∂r
=

∞
∑

n=1

B̃n

(

iρfωn

r
− 4η

r3

)

e−iωnt. (A6)

We again couple the solid and fluid problems by matching the velocity and stress at the

boundary, r = R, and requiring the existence of a non-trivial solution, which leads to (20)

in the main text.

Appendix B: Material parameters of the water-glycerol mixture

The density, ρf , shear viscosity, η, bulk viscosity, κ, and speed of sound, c, of the water-

glycerol mixture for different mole fractions of glycerol, χν , were experimentally measured

by Slie et al.20 We obtain the parameter values for different mass fractions of glycerol, χ, by

using the relation χ = χν/(χν + (1 − χν)µw/µg), where µw = 18 g/mol and µg = 92 g/mol

are the molar masses of pure water and pure glycerol respectively. We use the relation

λ = η/G∞ and the measured values of the high frequency shear modulus, G∞, to find the

relaxation time, λ, of the water-glycerol mixture for different values of χ.18,20 Numerical

values of the parameters are summarized in Table III.
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χ ρf (kg/m3) η (Pa · s) κ (Pa · s) c (m/s) λ (ps)

0 1000 0.000894 0.00286 1510 0.647

0.36 1090 0.00270 0.00756 1662 1.87

0.56 1140 0.00527 0.0116 1760 3.51

0.71 1190 0.0200 0.0400 1830 12.7

0.8 1210 0.0447 0.0760 1885 27.1

0.85 1220 0.0923 0.120 1909 54.2

0.95 1250 0.452 0.407 1920 243

1 1260 0.988 0.790 1930 500

TABLE III: Values of fluid density (ρf), shear viscosity (η), bulk viscosity (κ), speed of

sound (c) and relaxation time (λ) for different glycerol mass fractions (χ).
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