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S1. DERIVATION OF ELECTRON-PHONON COUPLING AT MAGIC ANGLE

In this section we first briefly recall the continuum model in momentum space formulated in Ref. [I], and then use
it to derive the coupling between electrons and interlayer phonons is derived.

Fig. illustrates the real space configuration of two graphene layers which have a relative twist angle . We denote
agj ) and a(QJ ), and the reciprocal lattice vectors of layer j as ng ) and ng ),
(4)

)

the lattice vectors of layer j (j = 1,2) as

which satisfy G,(lj ) ~al(7j ) = 2md4p- The norms of the lattice vectors a;’’ are equal to the lattice constant ag = 0.246nm.

Each layer j consists of two sublattice positions A and B, which are located at ng ) and ‘rg ) in the unit cell of layer
j. Without loss of generality, we can choose sublattice A in layer j as the origin of the unit cell of layer j, so that
Tﬁlj ) =0, and 71(3] ) = 79 as shown in Fig. The vectors a} and a? are rotated by 6 from one another, and so do

71 and 7(®). More explicitly, the above vectors in components are given by
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which are the rotation matrices of angle +6/2, respectively.

The interlayer hopping ¢(r) between two atoms in different layers is generically a function of their in-plane distance
r. When transformed into momentum space, the electron hopping from momentum p’ and sublattice 8 in layer 2 to
momentum k and sublattice « in layer 1 takes the form
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where «, 8 = A, B are sublattice indices, k and p’ are measured from T' point of the graphene Brillouin zone (BZ),
Q = V/3a2/2 is the area of graphene unit cell, #j is the Fourier transform of #(r), and Gg,j)m = nng) + mGéj) runs
over all n,m € Z reciprocal lattices in layer j.

We first consider the low energy physics near the K points of the graphene BZs of the two layers (see main text
Fig. 2), namely, k and p’ near the Dirac point momenta Kg) = —(Ggl) + Ggl))/3 and K(D2) = —(ng) + Gé2))/3,
respectively. It is shown that the hopping ¢ decays exponentially with respect to |k| [I], so a good approximation

is to keep only the 3 leading nearest hopping terms ¢ with |k + G%lzn\ around the magnitude \Kg)|, and

k+G{,

approximate them to ¢ ).
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FIG. S1: a. Tllustration of the real space TBG lattice, where the twist angle is § = 10°. b. The graphene lattice
vectors and reciprocal vectors in each layer. c. The graphene BZs of the two layers.

We then define the three vectors
a =K K, @=Cra=K) +c" K} -al", q=0hq =K +G K} -G,

where Cf, is the 3-fold rotation about z axis. Explicitly, q; in components are

T
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where kg = |q;| = (8m/3ap)sin(d/2). Under the above nearest hopping approximation, an electron state with
momentum p’ in layer 2 can hop to an electron state with momentum k in layer 1 if k — p’ = q;.

Since we are interested in the low energy band structure near the graphene BZ K (or K') point, hereafter we
set the origin of k and p’ at K (or K’) point of each layer. The effective Hamiltonian of each layer is given by
hE (k) = v(ky0, — kyo,) = hve* -k at K point of each layer, and h*’ (k) = —hvo -k at K’ point of each layer (related
to h (k) via the time reversal transformation 7), where v is the fermi velocity, and o, . are the Pauli matrices for
sublattice indices. Note that the Dirac fermions at graphene valleys K and K’ have opposite helicities. Therefore,
to the lowest order, the TBG Hamiltonian at K point in the vicinity of layer 1 momentum k = 0 (which is the K},
point of the Moiré BZ) truncated at the nearest hoppings is [I]

hé?z (k) ’U.)Tl U)TQ ’U)T:_),
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wT, 0 hfe/z(k—qg) 0
wTy 0 0 hE, (k= qs)

where the basis is (wak, wfk, ngk, ngk)T, and 9ok and ¥,k (j = 1,2,3) are the 2-component column spinors in the
AB sublattice index basis at momentum k in layer 1 and momentum k — q; in layer 2, respectively. hi{e /Q(k) is
h¥ (k) rotated by a £60/2 angle, and w = tK(l) /€2 is the interlayer hopping which can be chosen as real. The hopping

O O RTCTC R L .
matrix T; are defined by (Tj)ag =€ G jm; G o Te (which is nothing but the phase factor part of Eq. ),
where (ny,m;) = (0 0), (ng,mg) (1,0) and (n3,m3) = (0,1), and G(Zm in layer i is defined below Eq. . They
satisfy |K( W10 S | = |K | = 4w /3ay, thus correspond to the nearest interlayer hoppings in the momentum space.

Explicitly, T} are given by

1 V3 1 V3
T1:1+Ux7 T2:1—§0'1—70'y, T3:1—§O'w+70'y.

Since the twist angle 6 is small, to the lowest order, we shall ignore the 4-6/2 rotation of h o /2(k) in Eq. 1)
Under this approximation, the system has a particle-hole symmetry, and the low energy eigenstates are given by
Yk ~ —whj_lTijoJ( (j = 1,2,3), where h; is short hand for h¥(—q;). The low energy Hamiltonian is a 2 x 2
Hamiltonian in the ¢y space [I]:
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HS K (k) =
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where o = w/hvkg. The first magic angle § = 1.05° is given by a? = 1/3, where the Dirac velocity of the above
effective Hamiltonian vanishes. Note that HX K (k) depends on the momenta qi, q2 and g3 (which implicitly appear
in h;), so we shall also denote it as HE Ky (k,q1,4d2,q3) later to emphasize its dependence on q;.

We note that the Dirac Hamiltonian HX - (k) in Eq. around layer 1 momentum k = 0 is at the K}, point
of the Moiré BZ (MBZ) (see Fig. 2 of the main text), and comes from the K point of both layer 1 and layer 2 of
TBG. Similarly, there is also a Dirac Hamiltonian around layer 2 momentum p’ = 0 coming from the K point of
both layer 1 and layer 2 of TBG, which is at the Kj; point of the MBZ. In total, there are eight Dirac fermions
labeled by graphene BZ valley K, K’ (which is the same for both layers, no coupling between K and K’ exists in the
Hamiltonian of Eq. )7 Moiré valley Ky, K}, and spin 1,] indices. The band structure obtained in the above
model is thus 4-fold degenerate everywhere in the MBZ with respect to graphene valley K, K’ and spin 1, ], and has
4 Dirac fermions at Moiré valley K); and another 4 Dirac fermions at Moiré valley K. In particular, the helicity of
the Dirac fermions only depends on whether they come from graphene valley K or K'.

When small distortions are added to the graphene lattices, the above effective Hamiltonian will change. Since
distortions can be expressed using phonon fields, the change in the effective Hamiltonian simply gives the low energy
electron-phonon coupling term. The leading contribution to the change of Hamiltonian is due to the distortion
of momentum vectors q;. In the main text we have argued that interlayer phonon waves change the Moiré pattern
dramatically. To prove this from microscopics requires some more calculations. This can be shown explicitly as follows.

) T .
Denote the in-plane displacement of atoms of layer j at r as ul)(r) = ( G )( ),uéj )(r)) . The displacement u?) is

nothing but the in-plane phonon field in layer j. In the continuum limit, the variation of the lattice vectors a(lj ) and
a(QJ) under the displacement field ul) are simply given by 5agj)(r) = (agj) -V)u(r) and 6a(])( )= (aé]) -V)ul)(r).
Explicitly, one has
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where the + signs are for b = 1 (lattice vector aj )) and b = 2 (lattice vector aéj )), respectively. Accordingly, to linear

order the distortion of reciprocal vectors of layer j satisfies 5ng) ~a£j) + ng) . 5a£j) =0 (a,b = 1,2), which has a

solution
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where the £ signs are for index a = 1 (reciprocal vector G! ‘)) and a = 2 (reciprocal vector G(j ))7 respectively. In

particular, since 70) = (agj) (J )/3, one has G .+ —&—GU -671) = 0, which implies ngg -7 = +27/3 remains
stf,),m'_ t(}z) ZGixl,-),nl,v (D

@

invariant, so the interlayer hopping matrix 7; = e
Only q; in the continuum model Hamiltonian change.

remains unchanged under the deformation.

With the expressions for §G((1j ), it is straightforward to derive the variation of q; from their definitions:
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a b
undistorted graphene lattice graphene lattice with relative shear
Exx=-Zyy=0.02 (2%)
C D2 d

D2+35D2

undistorted TBG superlattice TBG superlattlce wnth relative shear
Exx=-Zyy=0.02 (2%)

FIG. S2: a. Graphene lattice plaquettes of two layers of TBG (at AA stacking center) before deformation (plotted
for 8 = 5°). b. Graphene lattice plaquettes of two layers of TBG (at AA stacking center) with a relative shear
deformation X, = —Xyy = Ous — Oyuy = 0.02, while expansion and rotation deformations are zero. c¢. The Moiré
pattern superlattice of TBG before deformation. d. The Moiré pattern superlattice of TBG after the shear
deformation X,, = —¥,, = 0.02. One can see the superlattice is greatly affected, although the graphene lattices
only have a 2% shear deformation.

where we have defined v = [2tan(6/2)] 7, the relative displacement u = u(®) —u(®, and the center of mass displace-
ment u¢ = (u® + u(2))/2. For small angles 0, we have v ~ 1/0 > 1, so dq, is dominated by the relative displacement
phonon field u. We therefore will ignore the contribution of center of mass displacement u® hereafter.

Fig. shows the graphene lattices and Moiré patterns for § = 5° before and after a relative shear deformation
Yoe = —3yy = 0.02, where X, = (Oup + Opua)/2 — (>, O1ur)dap/2 (a,b,l = 1,2) is the relative shear tensor. One
can see that a small relative deformation greatly affects the Moiré pattern.

With the deformed vectors q;, the electron—phonon coupling Hamiltonian is simply given by the variation of the

effective 2 x 2 Hamiltonian HXX™ in Eq. , namely, H, K = (k) = HE Ky (k,q1 + dqz1,)

Hg;’KM (k) = HS K (k,q1 + 991,92 + dq2,93 + dq3) — H Ky (k, Q17Q27 q3)

how? & 1 s g 3a? 1 + (S8)
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where we have defined h; = h®(—q;), and 6h; = h®(—q; — dq;) — h;. The first term and the second term in the

above result come from the variations 6(¥|HX- M |W) and §(¥|¥) of Eq. , respectively. Explicitly, one can show
that

5h_ y(hoke) H (Opupos + Oyuz0y) ,

1 3 3
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Oz + iayum + Zaxuy \{f(a Uug + 0 uy)] Uy} :

If we denote the above expression as 6h; ' = (hvke) ™" (04 A;j 2+0yA; ), we find w?T} hj_lo-*-kéhj_lTjT = —20°T} (ks Ajy+
kyA; ;). Besides, we note that hj_2 = (hw)~2|q,| 721> (where I is the 2 x 2 identity matrix), so one has 5(hj_2) =



(hv)~28|q;] 212, and one can show that
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Further, we set v in Eq. to be an eigenstate of o* - k (with eigenvalue either 4|k| or —|k|). With these results,
one then finds the electron-phonon coupling in Eq. to be

902(1 + 3a?)
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where the momentum k in the above electron-phonon coupling should be understood as the average momentum of
the electron before and after phonon emission (absorption), and explicitly one has Z - (6* x k) = 0k, + oyk,. Note
that the three terms

kg (Oyug + Optty) + ky(Optiy — Oyuy) , o* - k(Oyug — Ozuy) | z- (0" x k)(Opuy + Oyuy)

are contributed to by the relative shear tensor X,;, relative rotation R = 0,u, — Oyu,, and relative expansion
O = Jyuy + Oyuy, respectively. Since the shear tensor is a rank 2 tensor in the 2D space, the first term contributed
by shear (k times the shear tensor) is a rank 3 tensor. In particular, the first term can be rewritten as

ky(Oyus + Ogtiy) + ky(Opug — Oyuy) = Im|[(ky + tky) (05 + 10y) (ug + tuy)] .

Under a rotation of angle ¢ about z axis, each of the three terms k; + ik, 0, + i0y and u, + iu, gains a phase
factor e'. Therefore, this term is clearly only C3, rotationally invariant about z axis (i.e., ¢ = 27/3). In contrast,
both o* -k and Z - (6* x k) are 2D scalars, and both the relative rotation R and the relative expansion © are also
2D scalars, so the second and the third terms contributed by relative rotation and expansion are SO(2) rotationally
symmetric about z axis.

One may ask why we only have term Im[(k; +iky)(0z +10y ) (ug +iuy)] but not Re[(ky+ik,) (05 +10y) (uz+iuy)], both
of which respect Cs, symmetry. This is because the TBG also has a 2-fold rotation symmetry Cs, about the z axis.
Under Cy,, we have (0y,0y,) — (05, —0y) and (ky, ky) — (ks, —ky), while the relative displacement field transforms
differently as (ugz,u,) — (—us,u,) due to the exchange of two layers. Since Re[(ky + iky) (0 + 10y)(uy + iuy)]
flips sign under Cs,, it is forbidden in the TBG electron phonon coupling. Similarly, one can check that terms like
0" - k(0yug + Oyuy) and z - (o x k)(dyuy — Ozuy) are also forbidden by Co,.

When the TBG is at the magic angle, namely o? = 1/3, the second term in Eq. vanishes, and Eq. (S10)
becomes

: h
Hg;,KM (k) = _LSU [2k2 (Oyue + Opuy) + 2ky (O2tia — Oyuy) + 07 - K(Oyta — Opuy) + (0aky + oyke ) (Orue + Oyuy)] .

(S11)

In the same way one could obtain the electron-phonon couplings at other valley/Moiré valley/spin indices, which
we shall not repeat here. Instead, we give a symmetry analysis derivation of electron-phonon coupling at other
valley /Moiré valley/spin indices in the next section above Eq. . The results are as shown in Eq. as well
as in the main text Eq. (3).

S2. THE PHONON HAMILTONIAN AND PHONON MEDIATED ELECTRON-ELECTRON
INTERACTION

In this section, we first describe the Hamiltonian of the relative in-plane displacement phonon mode, and then
consider the phonon mediated electron-electron interaction.



A. Phonon Hamiltonian

In principle, the relative in-plane displacement phonons are optical phonons. However, if the two graphene lattices
twisted by angle # are not commensurate, a uniform relative in-plane displacement u does not cost energy, so these
phonons are still acoustic. In fact, since the interlayer Van der Waals interaction between atoms in two graphene layers
is much weaker than the intralayer atomic interaction, the in-plane polarized phonons of the two layers are nearly
decoupled, and thus the relative in-plane displacement phonons are almost acoustic [2]. As a good approximation,
we shall ignore the coupling between phonons in different layers. From elastic dynamics [3], we know the in-plane
deformation (i.e., in-plane phonon) energy of the TBG in the continuum limit can be expressed as a quadratic function

of the expansion scalar ©U) =3, alu/) and the traceless shear tensor Z = (0q ub )+ gpul )/2 - (> ﬁlulj)) Oab/2

of layer j = 1,2, where a,b,l = x,y. In particular, ©U) and Zab occupy the spin 0 and spin 2 representations of
the SO(2) rotation group about z axis, respectively (one can easily verify ¥,, £ ¢¥,, have spin £2 under SO(2),
respectively, where ¥;, and X, are the two independent components of ¥.;). Due to the Cg, rotation symmetry
of monolayer graphene, the symmetry allowed terms (scalars) in the deformation energy of layer j must occupy the
spin 0 (mod 6) representations of SO(2). Therefore, the only allowed quadratic terms (scalars) are ©U )? and Zfljb)Efljb)
which have spin 0 (there are no interlayer terms since we have approximated the two layers as decoupled). Therefore,
the Hamiltonian (to quadratic order) for in-plane displacement u?) (with two layers decoupled) can be written as

Hpp *Z/dz { ul?)? 4 Kel@(] + a3 B9 | (S12)

where M is the Carbon atom mass, 2 = \/ga% /2 is the graphene unit cell area, while K,; and p; are the bulk modulus
and shear modulus of monolayer graphene, respectively. The first term is the kinetic energy of the Carbon atoms
(note that there are 2 atoms in each graphene unit cell), while the second and the third terms are the elastic potential
energy. To separate the relative deformation u = u® —u® and the center-of-mass deformation u® = (u¥) + u®)/2,
we define the relative expansion scalar and shear tensor as © = ), ju; and Xqp = (Oqup + Optia)/2 — (3, O1u1)dan/2,
and the center-of-mass expansion and shear ©¢ =, Jjuf and X5, = (9,uj + Opug)/2 — (3, Q1uf)dap/2, respectively.

The phonon Hamiltonian can then be written as two parts Hy, = Hj;, + Hp,, where the relative phonon wave part is

M 1 Pl
"= | &r|—=(0u)? + K, 0%+ =2, %,
3 / r[29(tu)+4 ! 5 Sabab
M

Ko + K (513)
/ dr§ 2 0u)? + 2L 10,0,)2 4 (Byu)?] + L [(Opy)? + (Oy10)) + LBy, Oyuty b
2Q 4 4 2
and the center-of-mass phonon wave part is
2M
ph == /d2 |:Q(atuc)2 + K@l(ec)2 + 2M6l22b22b:| . (814)

Since the relative phonon wave dominates the electron-phonon coupling, we shall consider only the relative phonon
part H, in Eq. (S13). Explicitly, the equation of motion of H, is

% 2 Uy _ 1 Kelag =+ ,U'el(ag + 65) Kelaxay Uy o Kel @ 2
Qat (Uy> = 9 ( Kelazay Kela§+ﬂel(8%+a§) Uy = 9 V(VU)+ 9 V-u. (815)

Given the momentum —iV = p = (p,,py), there are two eigenvectors: up 1 o< p and up 7 x z x p, which satisfies
V(V-up ) = Viup and V(V - up ) = 0, respectively. Accordingly, their eigenfrequencies are wp 1, = cp and
wp, T = crp, respectively, where ¢j, = \/(Kel + per)U/2M and er = \/11e1€2/2M being the longitudinal sound speed
and transverse sound speed of monolayer graphene, and p = |p|.

The Hamiltonian of relative phonon waves can then be quantized following the standard canonical method. In
real space, the canonical momentum 7(r) = 4 d,u(r) satisfies [u,(r), 7 (r')] = ihdad(r — 1) (where a,b = z,y).

When transformed into the momentum space, the canonical momentum 7w, = f %e*ip'rﬂ'(r) and displacement

up = e~ PTu(r) satisfies [up 4, Tp’ 5] = iM04p0p, —p', Where Ay is the total area of the sample. We can decompose
Up = Up 1, + up 7 into a longitudinal part up 1, and a transverse part up r (which are perpendicular to each other),

and similarly we can also do so for the canonical momentum 7, = 7p 1 + 7p 7 (Which are also perpendicular to each



other, up 1 - up , = 0). One can then show the phonon Hamiltonian in the momentum space becomes

T Q K Hel
ph = Z {WWP "Tpt T(P “up)(pru_p)+ 7p2up "Up| = Z (ﬁwnLaL,LCLnL + hwpraL,TaRT) )
p P
(S16)

where ap ., al . are the phonon annihilation and creation operators with momentum p and polarization x satisfying

p.X
[ap,ys aLX] = 1. The relative displacement phonon field u in the Shrodinger picture is given by

u(I‘) = Z epr (zAu + iz X pu ) U = i(a + (ZT ) w o ﬂ(a i (],T )
B > VN:Qs Plip.L Pup.T), Up.L = 2Mwp p,L —p,L) s UpT = Mgt p,T —p,T) >
(S17)

where p = p/p is the unit vector along momentum p, while z is the unit vector along the out of plane direction (z x p
is the transverse direction), and for later convenience we have rewritten the total area of the sample As as N,Q, with
N, being the number of superlattice unit cells, and Q, = Q/[4sin?(8/2)] being the superlattice unit cell area. In the
Heisenberg picture, the phonon field u is time ¢ dependent, namely, u(r,t) = e/fentu(r)e~"Hon? | with u(r) defined in
Eq. above. Accordingly, one can obtain the canonical momentum as 7 (r,t) = %atu(r, t).

Since the interlayer phonon coupling is ignored, the phonon bands in the MBZ is simply obtained by folding p into
the superlattice MBZ. Among these phonon bands, the lowest two bands (one longitudinal and one transverse) are
acoustic (under the approximation that the two layers are decoupled) and cause the long wavelength deformation of
the Moiré pattern superlattice, while the higher bands are optical and mainly lead to short wavelength deformations
within each unit cell of the superlattice. Since our electron phonon coupling is derived in the long wavelength
deformation limit, for now we shall restrict ourselves to the lowest acoustic phonon band in the MBZ. We will briefly
discuss the contribution of optical phonon bands at the end of this supplementary section.

B. Electron-Phonon Coupling for other valley/Moiré valley/spin

For convenience, hereafter we define the graphene BZ valley K, K’ as index n = %1, the Moiré valley Ky, K}, as
index ¢ = +1, and the spin up and down as index s = 1. Since there is no spin-orbit coupling, the electron-phonon
coupling does not flip spin and is independent of spin index s. In last section we derived the electron-phonon coupling
for (n,¢) = (+1,—1). Now we use symmetry arguments to obtain the expression of electron-phonon coupling at other
indices (7, (). Identical results can be obtained by performing brute force calculations.

First, TBG has the time-reversal symmetry. A time-reversal transformation 7 changes (1, ¢, s) — (—n, —(, —s) and
k — —k. Since for spinless (no spin-orbit coupling) fermions the time reversal T is simply complex conjugation, one
finds the electron-phonon coupling at (—n, —() is given by

He =4 (k) = [HES (%)), (S18)

where we have found Hgf,’KM (k) in Eq. , and z* stands for the complex conjugate of z.

Secondly, TBG also has a Ca, symmetry, which is the 2-fold rotation about z axis (see Fig. for definitions of x
and y axes). From the main text Fig. 2a and supplementary Fig. one can see the Co, transformation interchanges
Moiré valley Kj; and K}, changes momentum (k,, k,) (measured from the K point) to (k;, —k,) (measured from
the K, point) in momentum space, interchanges layer 1 with layer 2, and interchanges sublattice indices A and
B. Meanwhile, the valley K or K’ remains invariant. Since the Pauli matrices in Eq. (and afterwards) are
in the sublattice basis, the interchange of sublattice indices A and B leads to a transformation of Pauli matrices
o — o,00; !, namely, (0,,0,) — (04, —0,). Therefore, the band Hamiltonian of the continuum model at Moiré
valley Kp; and valley K is given by

hi(a/2 (k) le ’ng ’LUT2
, wl]  hE,(k+q1) 0 0
K,Kn — K K _ —1 — 1 9/2
HR0 (k) = U | HS 5 (hy, — k)| U oI} 0 Hakta) o . (s19)
wTy 0 0 hgyo(k + az)

where HE K (k) is given by Eq. , and U = 0, ® I, is the transformation matrix for the interchange of sublattices
A and B under Cy, (ie., ¥jx — 049,k for each ¥,k (1 < j < 4) in the basis of Hamiltonian (1[’(?,1« z/;fb 1/)510 1/)3T,k)T,

recall that 1); x are defined in the 2D Hilbert space of sublattice A and B). If one approximate 6/2 = 0 in hi(e /2 (as we



have assumed in the first supplementary section), and interchanges electron basis 19 x <+ 93 k, one finds H% 5 (k) and
HE Ky (k) only differ by a sign flip q; =+ —q; (j = 1,2,3). From Eq. one sees the expression of electron-phonon

coupling HJE’KM (k) is quadratic in q; (thus invariant under q; — —q;), so we conclude Her’KM (k) = H(f}ivKM (k)

(where k of HJ;’K;” (k) and HL 5 (k) are measured from K}, and Ky, respectively), and H/L¢ (k) is invariant under

¢ — —(. Alternatively, one can achieve this conclusion by directly applying Cs, on H(g’KM (k) we derived in Eq.

|| In particular, Cs, changes the displacement field in layer j as (ug ),u?(f )) — (ugf ), fu?(f )), and interchanges
layer 1 with layer 2, so the relative displacement field u = u® — u® changes as (u., Uy) = (—Ugy,uy). Besides, it
changes (0, 0y) — (05, —0y). Therefore, one finds

= HE (k) (S20)

x

HEII(;KM(k) =0, {He];»K?w(kI?—ky) ] o
Oy ——0y, Uy —>—Usg
K,K;\/[ . . . . . . _ . K .
where Hep™ ™ (k) is given in Eq. 1) (obtained under the approximation §/2 = 0in hZ, /2 In the first supplementary

section). This indicates the electron-phonon coupling HQI;C(k) is also independent of the Moiré valley (. We can then
obtain the electron-phonon coupling Hamiltonian for all indices, which in the second quantized language takes the
form

HEo* = HE™ + HES G

h s - = . R T oA A = R s
TN p gt {[2kapuy + kg (B — 92)] up, + [2kyBuby — ko(B2 — 92)] upr} w1,

Jla
VL o (s21)

s hv R _ - _ _ .
Hg£’(2) = _\/ﬁ ];;p wﬁ’c’ f (920 (NO2ke — oyky) Up 1 + 930 (0yks + nosky) up, 1] l’(’;c’ ,

where the numerical factors are from Eq. (S10):

7,6,8 _
HCS -

902 (1 + 3a?) 9a? 3a?
Jla = (1 +6Oé2)2 ) 92a = (1 —|—6a2)2 ) 93a = 1 —|—6a2 ) (822)
while %Z;g,s is the electron annihilation operator at momentum k with 7, ¢, s indices, k — k' = p (the momentum
of the dyup terms), and we have defined k = (k + k’)/2 is the average electron momentum before and after phonon
emission (absorption), which comes from Eq. (S10]). Physically, this comes from the Fourier transformation of the
real space hopping amplitude ¢(r,r’")c’(r)c(r’), where ¢(r,r’) is induced by the displacement field u(r). In particular,
for the magic angle a? = 1/3, we have g1, = 2/3 and gao, = g3» = 1/3. Besides, as we have shown below Eq. ,
the term Hg’§’s is only C3, rotationally invariant, while the term Hgé’(;) is SO(2) rotationally invariant. Finally, we

note that H, géé is odd in K, K’ valley index 7, since the electron band Hamiltonian and thus the electron-phonon
coupling undergoes a sign flip and complex conjugate under n — —n.

The electron-phonon coupling HQI;QS we obtained is independent of the Moiré valley ¢ and the spin s. However,
we note that the independence of Moiré valley holds only under the approximation /2 = 0 in hfg /Q(k). If we do

not make this approximation, H, QI;C’S will be weakly ¢ dependent, where the ¢ dependent part will be of a factor O(8)
smaller than the ¢ independent part given in Eq. (S10). Since we are interested in small angles § ~ 1° ~ 0.02 rad, we
shall ignore the weak ¢ dependence of Hg’lf’s. Besides, since the continuum model of TBG has no coupling between
valleys K and K’, the electron-phonon coupling we obtained has a definite K, K’ valley index 7 (i.e., initial and final
states of the electron are in the same valley 7).

C. Phonon-Mediated Electron-Electron Interaction

We now calculate the phonon mediated electron-electron interaction near the Fermi surface. To be concrete, we
shall assume the Fermi surface is at |k| = kp in the hole Dirac bands (where superconductivity is observed), and
project the electron operators to the vicinity of the Fermi surface. Such a Fermi surface might not be very accurate
since the band is quite flat, but we shall simply model the Fermi surface by a circle with a large kr of a low velocity
2D Dirac fermion. The wave function ¢ of the Dirac hole band state |k, ¢ ) is assumed to be the negative eigenvalue

1-3a?

eigenstate of (nozk, — oyk,) (which is proportional to the Dirac Hamiltonian H"¢ (k) = Toazw(nocks — ayky)),

namely, ¢} = (1, —ne~"%)T /\/2 at valley 5, where ¢y = arg(k, + ik, ) is the polar angle of momentum k (we note




that for a? < 1/3 this is the valence band of the Dirac Hamiltonian, while for a? > 1/3 this in fact becomes the
conduction band of the Dirac Hamiltonian, and for a? = 1/3 the conduction or valence band becomes ill-defined
unless higher order terms in k are included. Here we shall ignore these complications and take the wave function ¢}).
One can then rewrite the Dirac annihilation and creation operators 1, 6 wﬁ’C’ST in Eq. as " 68 = = ¢l ckn.c.s
and ;" Gt — ﬁTcL Cos where ci ¢ s and ck are the electron annihilation and creatlon operators in the hole
Dirac band Wlth 1ndlces 1,(,s. The Dirac hole band Hamiltonian can then be written as

H™%(K) = &icl, ¢ Chenos

where &g = — %;ggz ho(|k| — kr) is the the band energy relative to the Fermi level.

We then make the approximation |k| ~ |k’| & kr, based on which we find the two terms in Hgé(;) are approximately

—oyky) | (0uky — oyky) k| |k'|
vhy) 5 Yy ¢71i/ _ ﬁT I ¢k, ~ kF¢£T¢n/ ,

- - no ke
ET (nawl% - Uyky) W = ﬁT l( 2 2

(nosky + oyks) N (nowki, + oyky,)
2 2

U (n0uky + 0yha) O, = sﬂ ]% = (K| — (K)o ~ 0.,

where we have used the definition (no k, — oyky) @) = —|k|¢k, and (nogky + oyky) ol = —io. (nogky — oyky) ¢ =
ilk|o. ¢y Besides, we note that the two terms in Hg3C  of Eq. 1)) satisfy
T oA A T A9 A2 _ /a A N2/T TN px-l-lpy - .7
- [2kypxpy - km’(pm _py)] +1 [kapxpy +k ( py)] = (pz + Zpy) (kr + Zky) =\ (kx + Zky)

B |k|6i""k o |k/|6iapk/ |k|6i‘pk + |k/|€i<pkl ~ kF eQigpk _ 62wk’
—\ klem ek — K/ |e~ivw x 2 T2 etk — i

(523)

where we have used p = k— k’ and k = (k+k’)/2. Therefore, they can be written as the real part and imaginary part
kp e? “’k ezw’k

projected in the Dirac hole band as

yhvkp Gla e2ipr _ o2l Gia e2iv _ p2ipw
HISS ~ — 72 Re | —————— o ————————
v TN, Zp{ [gm e <e—wk iy ) | Ut I o Jup L s

k,k’

of the complex quantity = respectively. This enables us to approximate the electron-phonon interaction

-
X oy, (bk’ck,ngs SRUNSER

In particular, under momentum reversal k, k’ — —k, —k’, the polar angles px — pr+7 and v — Y/ +7), S0 we have
2igy _ 2Py iy +2im _  2ipys +2im 2ipy _ 20y . . .

€ € € € — € €

P P s T Therefore, the terms in the projected electron-phonon coupling

contributed by H, g:fs (proportional to g14) and by H SIOC (‘;) (proportional to gas) are odd and even under momentum

reversal k k’ — —k, —k’, respectively, which will be useful in later calculations. We note that this odd/evenness
results from the projection of electron-phonon coupling onto a single band. In the original expression of Eq. ([S21])
before projection, one may thought both Hggcs and Hgoﬁ’@) are odd in k since they are both linear in k. However,
this naive expectation ignores the effect of the Dirac wave functions %”f’s in the expression of Eq. 1) thus is
incorrect.

One can then use the standard second order perturbation theory to calculate the phonon-mediated electron electron
interaction. We treat the electron energy H™%*(k) and the phonon energy Hp, as the unperturbed Hamiltonian,
and the electron-phonon interaction H/LS* as the perturbation. The electron electron interaction is then induced
by the emission and absorption of a phonon between two electrons. Consider the initial state |Uo) = |ki 1, ko /) =
0L1710L271,|O> of two electrons which have momenta k; and ks, respectively, where I = (n,(,s) and I' = (1, (', s') are
short hand for their Dirac cone indices, and |0) is the particle vacuum. The initial state energy is Fy = &k, + &k,-
Assume the final state is |U ;) = |ks , kq /), where the total momentum ks + k4 = ky + ks is conserved, and the final
state energy Fy = &, + &k, = Ep remains unchanged. There are two intermediate states with an emitted phonon
with polarization x: one is [¥1,) = |ks 1, ko1, Py) = CL3,ICL2,I'QL,X|O> where a phonon with momentum p and
polarization x is emitted from the first electron, while the other is |¥5,) = |ki 1,k4 1/, —P,y) where a phonon with
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momentum —p and polarization y is emitted from the second electron, with the momentum p = k; — k3 = ks — ko.
The energy of the two intermediate states are Fy , = &, + &k, + hwp y and Eo \ = &k, + &k, + hw_p,y, Tespectively,
where fwp  is the phonon energy. The phonon of the intermediate state is then absorbed by the other electron,
resulting in the final state |¥f). According to the second order perturbation theory, the interaction between the two
electrons is given by

Vieoks ks ke -y (U | HL W1 ) (W1 |HE | Wo) N (W HL W20 ) (Do |HL [ Wo)
NSQS EO - El,x EO - E2,X

(S25)

-y (W[ HL 90 (01| HL o) N (U | HL|W2) (Ua| HL W)
13" ks 5k1 - h‘*’p,x 5k4 - §k2 - hw*p,x )

X

where I = (n,(,s) and I' = (0, (', ") are notations for the Dirac cone indices of the two electrons. Since the electron
phonon interaction ng is independent of spin s, the above electron-electron interaction is independent of s and s’.
Besides, in the continuum model HeIp is also independent of Moiré valley ¢ (see Eq. (S21))). Since our goal is to
study the BCS superconductivity, we shall focus on the Cooper channel of the interaction, namely, we shall set the
momenta of the two electrons as opposite to each other, k1 = —ky; = k and k3 = —k4 = k’. The Cooper channel
electron-electron interaction is then

Lﬁ:}’ («) = Z [<k;7=<75’ — n §<8 s’lH i Ikn C,s0 _kn’,C’,s'vp,kaln,(,s» _kn’,C’,s’vp,x|Hgﬁ<’s|kn7C,sv —ky¢,7)
N hw — huwp
(S26)

<k;7 ¢80 —ki;/,g/,s/|H" 38 |k77 ¢,8s _kiy’,g",su _p7x><kn,C,87 _k;;’,c/,s’a —P.x |1T{77 < ‘kn (89 _kn’,C’,S’q

+ R

)

where w = (§ — &k)/h, and we have replaced w_p , by wp since they equal to each other. Accordingly, in the
second quantized language, the phonon-mediated electron-electron interaction in the Cooper channel is

(ph) ol
H”i N Z Z Z ZVIZI:]’ Ck’ 1,8 Gk ¢ Ok’ s Chyn s (S27)

S kK n (¢ s,

We now calculate V77 » using the projected electron-phonon Hamiltonian H7; ¢ which we obtained in Eq. 1.) By
Egs. 1} and , we find the matrix elements for intermediate states (deﬁned as [kr, k7, py) = CL ICL I,a 10)

with phonon polarlzatlone x =L and y =T are:
(K, 5o =Ky cr,5, P HES S (K oy =Ky o) = (K oo =Koy o0 o [HES Ky ¢ oo =Koy o0 o —P1)
yhokp hpQ

Jla e2i<pk _ e?zgok/
_\/NSQS ¢k 2o~ HTRQ e~ Pk — e~ ipKs ’

< ;;,4,37 _kn’ ¢’ 8’7P7L‘Hgf><7s UNSER _kn’,C’,S’> = <k;],C,s’ - 77 (£ls |H77 8 |k17 ¢s» _k;;',C',s'v _p,L>
yhokp hpQ 91 e2iPr — 2w

= ¢£ o x n7Im (| —————— |,
VNG, 2 ek — eI/

(S28)
<k7]1<75’ 7k,/,]/7<-/ s’ 7p7T|Hg]p’C i |k”]7C757 7k"7/,</75/> = < ;],475, - 77 C/ s/|H 7C S |l(,,7 C s 7kn’,(’,s/7p,T>

_ yhokp hpQ ¢n 't ¢n o+ nlgla e2ivK _ g2l
VNQs ' ¢ 2 e~k — e—ivK ’

(ky.¢.s5 _k%’ ¢,s' P, L|H77 s Kn,c,s5 =Ky ,¢r,s) = ( ;y,(,s’ - ;7’,(’ |H e |kn ¢80 —ky ¢, P.L)

vyhokp h Wt ;1o e2iPr — 2w
= ¢ L x I (e |
\/N [OD 2 e Wk — e~ WK
where we have used the fact that ¢_x = @k + 7, and recall that Q and Qg are the graphene unit cell area and
superlattice unit cell area, respectively. Since HQI;C’S is proportional to up\ x (ap + aip’x) (see Eq. )7 the
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amplitude of creating a phonon state |p ) is always the same as that of annihilating a phonon state | —p ) (when the
other quantum numbers are the same), so we have the above equal relations between every two matrix amplitudes.
To further simplify the result, we approximate c; = cp, both of which are of the order of magnitude 10*m/s, so
that wp 1 &~ wp,r = crp. Under this approximation, the prefactors of all the matrix elements in Eq. become

identical, i.e., 27}\5& = 2'}5&. By defining
1 — QK
D, = Gl BT 67\ = eI F) ) [ “05(2“ o) | (S29)

one can then show the interaction in Eq. (S26]) is

Vigd (w)  ~?h%v 2Qkawkk, ( 1 N 1 ) y

W — Wp,T —W — (J.)p7T

QS 2MCTQS

i _ 20 i _ 200 2 i _ 200 2
917(1 e 191a A N IS v e -ee
{ |:gza 77 R <e_i4pk - e_iﬂﬁk/ >:| |:g2(’ + T] 2 R (e_iﬁak - e_icpk/ >:| 7777 4 |:Im (e_iﬁak - e_icpk/ >:| }

Y2220k wkk, w2 p 2 L 91a92a( ' p)Re e2ivr _ g2ivw B N e 2
2M 2.0 w? —w? 92a g VT e~k — g~ i 4 |e ik — e~ivw '
p,T
(S30)
Therefore, the intra valley interaction with n =7’ is
Vi _ *PP0Qkiwll,  wpr { 9ia
= ’ 930 — 5 [1+ cos(px — 1))
A IR o1

— — Np(w)e x99 [1 1 cos(pc — i) {g a1 cos(p - sako]} 7

e2iPk 21y 2 _ 2—2cos2(pk—py’) __ —9

DRy eE—— [1 + cos(¢pk — ¢x’)], and we have defined

where

e 1Pk — e*iwkl

2 2,207.2 2
No(w) = 1\2:2 g K wzwp’T >, and used Eq. ll for the expression of wkk, We note that for low frequency processes
p,T
with |w| < Wp,T, We have the coefficient Mp(w) > 0. In a similar way, we find the inter valley interaction with
n=-n=1Iis
VEE 2R 0kiwll wpr G 2ok — 2w |?
QS N MC%QS w? — w12),T 92 2 e~k — g~ PK!/

532
gl Qitpk _ 62iapk/ ( )

920 —

= — No(w) [1 + cos(px — pw)] R ———

For 6 near magic angle a? ~ 1/3, one has g1, ~ 2/3 and g2, &~ 1/3, and the interaction takes the form shown in main
text Eq. (8).

In particular, for low frequencies |w| < wp r, one finds that the intervalley interaction is attractive, while the
intravalley interaction is repulsive. To see this, consider two electrons (near the Fermi surface) at valley n and 7/,
whose 2-body wave function (with total momentum zero assumed) can generically be written as

Y= D Bt i enl0)

€2 |k|=kp

where the physical meaning of [ € 7Z is the relative angular momentum between the two electrons. For two electrons
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in the same valley n = ' = K (with wave function |¥kk)), the intravalley interaction energy is given by
h d k d Kk’ VK,I< « . _il'ows
B = (Ui | HEV W) = / o / o S5 Bl et
lezrez. ¢

o d dipye X .
= —./\/‘()(W)el(ﬁak ‘Pk/) / on / Pk [1 + COS(('Dk — ng/)] {92a — %[1 + COS(S@k _ @k’)]} Bl Ble lpk—il @y

($33)
2
— i) | (3ot - gga) 8l + 1(gm 82) (1o + [Aof) + S (1o + |31

~ o) | 1842 + 5 (18-al? +10) + 5 (3 + 1607

where in the last line we have assumed 6 is near the first magic angle so that g1, =~ 2/3 and g2, =~ 1/3. For |w| < wp 7,
one has My(w) > 0, and one finds the intravalley interaction energy is in fact always positive, i.e., Ex kg > 0. Therefore,
two electrons in the same valley always repulse each other (Similarly one can show this for n =7’ = K').

In contrast, one notes that the intervalley interaction VXX in Eq. is always real and negative for |w| < wp 7,
i.e., Np(w) > 0. Therefore, if one considers two electrons in valley n = K and 7’ = K’, respectively, one has the
intervalley interaction energy

Exxr = (Wi |HED

int

Werr) <0, (S34)

which is attractive (for |w| < wp ). Therefore, we conclude the intervalley Cooper pairing will be favored.
Physically, the fact that the intervalley interaction is more attractive than intravalley interaction can be understood
as follows (see also the paragraph below main text Eq. (8)). Recall that the electron-phonon interaction project-

ed to the vicinity of the Fermi surface contains two parts, HZ¢*(k) = HES (k) + Hgé(‘;) (k), where H%S® and

H goc(;) are odd and even with respect to the electron momentum k (average momentum before and after phonon

emission/absorption), respectively. Now we consider an electron wave packet state with average momentum k as
kycs) = DBk — E)Cltm7<7s|0>’ where 3(k — k) is a wave packet function peaked at k. Under a certain lattice
deformation (i.e., given a nonzero configuration of the displacement field u(r)), the electron-phonon interaction will
generate a background lattice potential, which we assume is U, p = Ucsz + Uso(2) for an electron kg ¢ ) at valley K,

where Ups = (ki.c.s|[H53 K c.s), and Uso@) = (kk.c, S|HSO(2 kg cs). Since HLS® and Hgoc(‘;) are odd and even

with respect to k, an electron state | —k K.,¢,s) in the same valley K with opposite momentum would feel a background
lattice potential UC’p = —Ucz +Uso(2)- On the other hand, an electron state | _EK’,§,5> in the other valley K’ would

feel the same potential U, = Ucs + Uso(2) as that of the electron |EK,<,5>-

In general, if two electrons feel the same background potential due to deformed lattice, they will tend to get closer
in the space, thus leading to a phonon-mediated electron-electron attraction. In the above, we have shown that two
electrons [k ¢ ) and | —kg ) in opposite valleys K and K feel the same background potential Ucs + Usoy2), thus
an effective attraction will be produced between them. Instead, two electrons |k ¢ s) and | — kx ¢ s) in the same
valley feel different background potentials Ucs + Uso(2) and —Ucs + Uso(2), thus the effective attraction between
them will be weaker or even absent. Therefore, the intervalley interaction is more attractive than the intravalley
interaction.

By substituting the realistic system parameters v ~ 10° m/s, ¢z ~ 10* m/s, w = 110 meV, ag = 0.246 nm, and
6 =~ 1.05° into the phonon-induced inter valley interaction (Eq. ), and take krp =~ kg as an order of magnitude
estimation, we find the interaction contributed by the acoustic MBZ phonon bands near magic angle is

VKK (0) _4727121)2(2% N _4h202k§
Q, IMc2Q, — 9McZ

~ —1lmeV , (S35)

which is comparable to both the electron band width around the first magic angle (of order 1 ~ 10meV) and the band
width of the lowest acoustic MBZ phonon bands fwp ~ hcrky = 2meV. Therefore, the electron phonon coupling is
relatively strong.

Furthermore, when the optical phonon bands are taken into account, the total phonon induced attractive interaction
should be further enhanced. Since our electron phonon coupling Hy, is derived in the long wavelength phonon limit,
it does not apply for optical phonon bands. Nevertheless, here we give a very rough discussion of the optical phonon
band contributions to the electron-electron interaction. A very crude approximation is to assume the electron phonon
coupling matrix elements M, , of all optical phonon bands x are roughly the same as that of the lowest acoustic
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bands. As we have discussed, the optical phonon bands are obtained by folding the phonon bands in the graphene BZ
of the two layers into the MBZ. Equivalently, before folding, we can say that the lowest acoustic phonon bands are in
the first MBZ, while the post-folding optical phonon bands are in the second, third and higher MBZ. Since the n-th
MBZ is roughly nky away from I' point of the first MBZ, the energy of the optical phonon band in the n-th MBZ is
roughly nherkg. Besides, the number of n-th MBZs is roughly 27n (roughly speaking, all the n-th MBZs together
form a circle at radius nky), so there are roughly 27n transverse and longitudinal polarized optical phonon bands
with energy nhcrks. The upper limit of n is around 1/6, where nky reaches the boundary of the original graphene
BZ. The modified total electron-electron interaction will then be enhanced to

1/6
Vot |Mep,x|2 2mn |~/\/ler>,T|2 + |M6p,L|2 - 2m
kk’N§7N§ v ~ 7 Vkk! s
—hwp — N —herky 0
X ’ n=1

where x here denotes all the MBZ phonon bands (acoustic and optical), wp , is the eigenfrequency of phonon band ¥,
and V%, is the interaction contributed solely by the acoustic phonon bands we derived earlier in this section. Namely,
the optical phonon bands contribute an additional factor 27 /60 to the electron-electron interaction if all the optical
phonon bands contribute, which is a large number for small angles #. This is clearly an overestimation, since high
energy optical phonon bands are expected not to participate in the low energy superlattice physics. In practice, we
expect this factor of interaction enhancement by optical phonons to be much smaller than 27 /6 (but obviously greater
than 1).

S3. SCREENED COULOMB POTENTIAL AND BCS SUPERCONDUCTIVITY AT MAGIC ANGLE

The phonon-mediated electron-electron interaction can induce conventional BCS superconductivity. The density of
states of the lowest bands at magic angle is around Np > 1meV~!- Q7! for a 1 meV band width, which gives a BCS
coupling strength A ~ Np|Via (0)| 2 1, which is relatively strong.

To determine the superconductor critical temperature, we also need to estimate the screened Coulomb potential
between electrons. Here we shall simply adopt the Thomas-Fermi approximation in two dimensions (2D) for an order
of magnitude estimation, and do not discuss the accuracy of the approximation. The Coulomb potential without
screening is given by V.(r) = €2 /e;r, whose Fourier transform is V.(q) = 2me?/e;q, where g = |q| is the Fourier wave
vector, and €; =~ 2 ~ 10 is the dielectric constant of a charge neutral graphene. The 2D Poisson’s equation for the
bare Coulomb potential can then be written as

qerVe(q) = 2mp(q), (S36)

where p(q) is the bare charge density. In the presence of free electrons, a Coulomb potential V. will induce a local
charge density pf(r) ~ —e?(On./0p)V.(r), or in Fourier space pf(q) ~ —e?(On./Ou)Ve(q), where n. is the electron
number density, p is the chemical potential, and thus dn./0u is the density of states Np. One can then write the
charge density as p = ps + py, where p; is the screened charge. From the Poisson’s equation we have

27ps(q) = qerVe(q) — 2mps(q) = [qer + 2me? (One/Op)|Ve(q) = qe(q)Ve(q) , (S37)

so we find the screened dielectric function of the form

e(q) ~ e (1 + QTF) , (38

q

where grp = 2me?(0n./0u)/e; = 2me®>Np/er is the Thomas-Fermi screening momentum. Near the magic angle,
Np 2 1meV~!. Q71 which yields a grr = 50kg > ¢, so the screened Coulomb potential is approximately V. (q) ~
2me? Jerqrr ~ NBI, and the Coulomb coupling strength p. = NpV.(q) ~ 1. We note that due to large density of states
Np, the screened Coulomb potential is much smaller than the bare Coulomb potential. In particular, the screened
Coulomb potential is comparable to Vii. However, the phonon induced attraction Vi (w) is frequency w dependent

and large as w approaches wr p, while the screened Coulomb potential can be approximated as frequency independent.

This is because the 2D plasma frequency hwye = \/(47n.)/2e2ep /e; 2 20meV at the magic angle is much larger than
the Debye frequency fiwp = herkg = 2meV, where ep is the Fermi energy (of order 1 ~ 10meV around magic angle)
[4]. We then adopt the McMillan formula [5 6] to give a proper estimation of the BCS superconductivity critical
temperature taking into account both the phonon induced attraction and the Coulomb repulsion:

hwp 1.04(1 + )

kpT. = —— - ’
BLe = 145 P | TN T (1 + 0.62))

(S39)
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where p} = pc/[1 + pe In(wpe /wp)] is the reduced Coulomb coupling strength, and wpe/wp 2 10 around the magic
angle. If we take the BCS coupling strength A &~ Np|Via| ~ 1.5, and u. =~ 1, we find the superconductivity critical
temperature from the McMillan formula is T, ~ 0.9K, close to the experimentally measured value.

Next, we discuss the pairing amplitude of the inter valley pairing. The pairing amplitude is defined as

AP =NV (et ¢ O mGos) (540)
k/

where Vﬁ:],/ is as given in Eq. 1) At zero temperature, the BCS self-consistency gap equation is given by

s 1 va/Am/,CC’,SS’
nn (¢ ,sst kk’ 2Kk’
Ak 9 Z EIEdG ’ (841)

[€xr [<hwp

where EZ4¢ is the Bogoliubov-de Gennes (BAG) band energy, while & = hvp(|k| — kr) is the band energy with the
1-3a?
T 1+6a2

interaction (which is in fact repulsive as we have shown in Eq. ), and only keep the intervalley interaction kaf(, .

Furthermore, for simplicity we shall adopt the BCS approximation which assumes the electron-electron interaction is a

constant function of w for frequency |w| < wp and zero otherwise (wp is the Debye frequency), namely, we approximate
2

Fermi velocity vp = v. Since we have shown the intervalley pairing is favored, we shall ignore the intravalley

p,T

the frequency dependence factor w;idﬂ in Eq. 1} to —1 for |w| < wp, and 0 for |w| > wp. Qualitatively, this
p,T

does not affect the shape of the pairing function. We shall also assume 6 is near the magic angle, so that o ~ 1/3,
and accordingly g1, =~ 2/3 and g2, & 1/3. The intervalley interaction in Eq. (S32)) is then approximated as

eQigok _ eQigak/

/

KK’ ss' KK
View Vo @i R ——— .
42
1 _ 21k __ 210y ( )
_ vy | L cos(pk — ) | |, e e
-0 2 e—iPk _ o—ipwr |
2h2 Zka
where Vo ~ 5375F, and we have used Eq. (S29).
20,

With the 4-fold degeneracy from Moiré valley ¢ and spin s, the pairing can be either Moiré valley triplet spin
singlet, or Moiré valley singlet spin triplet. Here we shall simply assume the pairing is time-reversal invariant (which
is more robust than time-reversal violating pairings in the presence of disorder [7]). Since the time-reversal symmetry
T brings valley K — K', Moiré valley K, — K}, and spin s — —s (see Eq. ), a time reversal invariant pairing
will be between opposite spins and opposite Moiré valleys. Such a time reversal invariant intervalley pairing then
takes the form

A3 o5 BBy A(NK) (S43)

where A(k) satisfies

9 ~

_ hwp 27 d 1 _ 21Kk __ ,21py /
o [1+cos(on — )] |, €% — e A)
A(k) =N d 1— — :
) DVO/MD 5/0 2m [ 2 H e e A2 + 2
(S44)
_NpVi / i [14 cos(ow —pr)] | e TR e Pen
P om 2 e — e A

where in this case the BAG band energy is EBIC = /|A(K/)[2 + £2,.

Eq. (S44) can then be numerically solved by iteration. As an example, for NpVy = 0.5, we find the pairing
amplitude A(k) is real and has the shape as shown in the main text Fig. [3c]|. For generic values of NpVy > 0, we find
the pairing amplitude is always real and nodeless, thus is dominated by s-wave pairing and is topologically trivial.
Finally, we note that in the absence of disorders, the pairing is not necessarily time-reversal invariant, and the pairing
amplitude could be either Moiré valley singlet spin triplet or Moiré valley singlet spin triplet, which are degenerate.
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S4. NUMERICAL CALCULATION FOR OTHER ANGLES AND ELECTRON DENSITIES:
PREDICTION OF OTHER SUPERCONDUCTING ANGLES

The above calculations of electron-phonon coupling can be generically applied to any twist angle 6 and electron
density. We still adopt the continuum model with nearest hoppings [1], namely, an electron with momentum k in layer
1 can hop with an electron with momentum p’ in layer 2 iff k —p’ = q; (j = 1,2, 3). However, instead of truncating at
the smallest four momenta (k and k — q;) in Eq. , we truncate the momentum of the Hamiltonian to sufficiently
high momenta (momentum shells, i.e., second, third and higher MBZs), so that the band structure (which can be
solved numerically) is more accurate. Besides, in the calculation we do not approximate 6/2 in hfe /2(k) to zero,
and this leads to a small particle-hole asymmetry to the band structure [8]. Fig. and show two examples
of Moiré BZ band structure calculated from the continuum model for # = 1.05° and 6 = 1.20°, respectively. We can
then calculate the density of states Np from the band structure. In the main text Fig. [4a] we have shown Np at
6 = 1.05° as a function of number of electrons per superlattice unit cell n = n ;. Here in the upper panel of Fig.
[S4k, we show Np at § = 1.20° as another example. Fig. [S4d shows the Log;(Np-meV-(),) in a wide range of § and
n.
We then add small deformations to q; induced by d,up (a,b = z,y) (according to supplemental Eq. )7 and
numerically calculate the band structure under different deformations. To first order, the change of band energy of a
band E,, generically takes the form

5B (k) = by (k) <W> + bo(k) ((%ux;@yuy) + by (k) (W) 4 ba(k) (W) . (S45)

which is contributed by the band energy response to relative shear (first two terms), rotation and expansion between
the two layers, respectively. This is nothing but the electron-phonon coupling of band FE,, in the long wavelength
limit. The four coefficients b; (1 < j < 4) are real and can be numerically extracted out from band structure variation
under small deformations.

1st MBZ 2nd MBZ 3rd MBZ

FIG. S3: A higher Moiré band state with Moiré momentum k in the 1st Moiré BZ (MBZ, black solid hexagon)
originates from the folding of the state with graphene momentum p¢ in the graphene BZ. Under the deformation
q; — q; + 0q;, the MBZ is deformed (into the red hexagon); accordingly, the graphene momentum p¢ will be folded
to a different Moiré momentum k + ék. This implies a redefinition of k in higher Moiré bands.

One effect we need to exclude in calculating 6 E,, (k) is the following: when one makes a change q; — q; + dq;,
the Moiré BZ is deformed, so the folding of the original graphene BZ momentum into the Moiré BZ is also changed
(Fig. [S3)). Therefore, for higher Moiré bands (which originates from folding of the graphene BZ), the definition of
momentum k in the Moiré BZ is changed under deformations. This additional change of electron momentum is simply
a redefinition and is unphysical, thus should be eliminated. To be precise, consider the electron state in the m-th
Moiré band (at graphene valley K) which takes a generic form

komy = D> > Wkt lgr +lags — (G — Daw); (546)
l1,l2€Z j=1,2

where k is the momentum in the Moiré BZ, j is the layer index, g1 = q2—qs and go = q3—q; are the reciprocal vectors
of the Moiré superlattice, and |p); is the basis of Dirac electron in layer j with an original graphene BZ momentum
p measured from graphene valley K. Besides, Wi, 1,,; denotes the coefficient of basis |k + 1191 + lag2 — (j — 1)qu1);.
Therefore, the state |k, m)ys carries an average graphene momentum

(pe) = (cmlpalims = 30 3 W (K + gy +1aga — G~ D) (5147
l1,l2€7Z j=1,2
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Upon the uniform deformation q; — q; + dq;, one should keep the electron’s graphene momentum (p¢) invariant
and then examine the energy variation, because the absorption or emission of a long wave length phonon should not
change the electron momentum. Namely, one need to shift the Moiré BZ momentum k to k + dk so that

0=d(pc) = dk+ > 3 (Wil 1, 1* (1691 + L2dga — (= Ve ) (548)
11,l,€Z j=1,2

where dg1 = d0qa — dqs3 and dgs = dqs — 0q; (see Fig. . Since the wave function Wil 15,5 can be calculated
numerically, we are able to compute dk. Accordingly, one should evaluate the energy variation in Eq. (S45) as (Fig.

S3)
SEm(K) = E! (k + 6k) — En(K) (549)

where E,,(k) and E/, (k) are the energy dispersion of the m-th band before and after deformation, respectively. We
note that in our analytical calculations of electron-phonon coupling near the Dirac points of the lowest two Moiré flat

bands (Eq. (S21))), one has dk ~ —%(5% + g2 + dq3) = 0, so we need not consider this momentum shift ok
problem there. For numerical calculations of higher bands, however, dk is in general nonzero.
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FIG. S4: a. TBG band structure at § = 1.05° from the continuum model. b. TBG band structure at § = 1.20° from
the continuum model. ¢. TBG band structure at # = 1.80° from the continuum model. d. Density of states Np and
BCS coupling strength A with respect to n calculated for § = 1.20°. In particular, the peaks in Np around |n| = 8
indicates a Van Hove singularity in the second or third conduction (valence) bands (the second band and third band
have a significant overlap in energy, as shown in panels a and b here, so |n| = 8 is not an in-gap filling factor). e.
Density of states Np and BCS coupling strength A with respect to n calculated for § = 1.80°. The shape of the Np
function agrees well with the STM measurement of large angle TBG [9]. f. Log,o(Np-meV-Q;) plotted as a function
of 6 and n, where one can clearly see Np is large at the magic angle, and is generically larger for smaller angles.

From Eq. 1D we have the displacement field after quantization u(r) = Zp N %, where p is the phonon

momentum, up , = ,/ﬁ(agx + aip )= 1/%@@% + atp ») for polarization y, and €, is the polarization
2 X ’ X ’
vector. The electron-phonon coupling in band F,, is then simply the expression of §E,, (k) in Eq. (S45) with the

displacement field u(r) expressed in terms of phonon operators (as above), which in the momentum space takes the
form

4
— - hQp
Hep(k) = D > Nin(®)bi(0) [ 5 o (e +alp,) (S50)
j=1x=L,T sEIsTE X
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where k should be understood as the average of initial momentum k and final momentum k’ of the electron,  and €,
are the graphene unit cell area and the superlattice unit cell area, and N , (p) are dimensionless coefficients dependlng
on the unit vector p = p/p (direction of phonon momentum) and are of order 1. These coefficients N, (p) can be
obtained by substituting the expression of u(r) in Eq. into Eq. , and then rewrite the results into the
form of Eq. .

The electron-electron interaction Vi (w) can then be estimated from Eq. . For zero frequency w = 0, the
interaction Vi can be crudely estimated as

ka/ hQp U
= 2 MPXQNQMCXZNJ,X BINGx (B)b; (k)b (K) ~ - MCQTQ ;b (s

x=L,T 33"

where for order of magnitude estimation we have simply approximated Nj , ~ 1 and ignored the cross terms between
bj(k) and b,/ (k). We also approximated c;, = cr. Given a Fermi energy ep, the BCS coupling strength A ~ Np| Vi |
can be numerlcally estimated as

1 d?k
A S /mkem@ eVl ($52)

where wp is the Debye frequency, and we have written Vi = V(E) for short. Note that A is well-defined in the limit
wp — 0.

The main text Fig. 4b shows the BCS coupling strength A we estimated for # = 1.05°, while the lower panels of
Fig. [S4d and Fig. [S4k here shows A for § = 1.20° and 6 = 1.80°, respectively. We find the BCS coupling strength X in
higher bands |n| > 4 can also be generically as large as order 1, although the density of states therein is much lower
(~ 0.05meV~1 - Q71). Here we give a heuristic understanding and estimation. First, for angles # near 1°, numerical
calculation shows the second and higher MBZ bands have band widths ~ 100 meV and this is determmed by the
two characteristic TBG energy scales which are of the same order: the interlayer hopping w = 110 meV and the
graphene kinetic energy hvky ~ 200 meV. Roughly speaking, the Moiré bands are obtained by folding the original
graphene band structure into the MBZ, while the interlayer hopping w couples different Moiré bands. If we treat w
as a perturbation, the energy of the m-th band E,,(k) in the 2nd perturbation theory is roughly

2

B (k) ~ hokl™ 4+ 2 (S53)
Ew

where k‘gn) is the original graphene momentum, z is a numerical factor, and Ey ~ 100 meV is the energy scale of
the band width as well as the energy separation between neighbouring bands. Since each Moiré band is coupled to
three other bands via q; (j = 1,2,3), we can estimate the numerical factor z as |z| ~ 3.

Under a lattice deformation, the three vectors q; changes to q;+4dq; (j = 1,2,3), where dq; ~ vkgOqup (a,b = z,y)
as given in Eq. . This changes the energy separation between neighbouring bands Ey by an amount ~ hvdq;.

Keeping the graphene momentum k(Gm) invariant in Eq. (S53) (which is the requirement of Eq. (S48))), we have the

energy variation of band FE,,(k) to be roughly

w2
0By (k) ~ z—5-hviq; ~ z hv’ykgé) Up (Sb4)
2

This gives an estimation of the coefficients in Eq. 1) as b;j(k) ~ Z%Fw’ykg. By Eq. 1) we then find the
phonon mediated interaction is of order
Vi 02292 (hokg)? w? 22wt

o W _E v S55
0, MEo, B CMEER (855)

where we have used hvkg ~ Ey, and 42 =~ Q,/Q (recall that v ~ 1/6, while Q and €2, are the graphene unit cell area
and the Moiré supercell area, respectively). On the other hand, the density of states Np also has a generical grow trend
as the Fermi energy increases (for electron densities [n| > 4), as can be seen in the upper panels of Fig. and .
This is because as the energy increases, there are more and more Moiré bands falling into the same energy interval.
This can also be understood in the w — 0 limit, in which case the TBG becomes two decoupled monolayer graphene,
and the density of state Np will be that of the graphene Dirac electrons, which grows as the energy increases. From
the numerical results of the upper panel of Fig. , we simply estimate Np as Np ~ BEI;} Q71 ~0.05 meV—L- Q!
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for second or higher bands near the magic angle. Therefore, if we take |z| &~ 3 (for the three nearest neighbour
couplings of momenta q;), we find the BCS coupling strength in higher bands to be around

Npz? w* 522 wt

AN—NV/N**N —_—
PR M2 B, T M ER,

~0.5. (S56)

The density of states Np could be higher near von Hove singularities, where the BCS coupling strength could be
higher. This estimation indicates that the electron-phonon coupling is generically enhanced by the Moiré pattern (by
the amplification factor 7), and does not necessarily require the presence of flat bands.

Based on A estimated in the above, we use the McMillan formula to estimate T, in a wide range of # and n, as is
shown in the main text Fig. 4c. Despite the fact that T, is estimated in a very rough way, the parameter space where
we predict superconductivity may occur at large |n| is stable.

S5. AB INITIO CALCULATIONS

To verify the continuum model gives the correct order of magnitude of electron-phonon coupling, we also run
ab initio calculations of the variation of band structure of TBG under deformations where the lattices of the two
layers remain commensurate (which we shall explain below), and compare it with the spectrum calculated from the
continuum model. We performed ab initio calculations based on the density functional theory with the projector
augmented wave (PAW) method [I0] [T1] as implemented in VASP package [12] [13]. The local density approximation
(LDA) was adopted for the exchange-correlation functional [T4]. The kinetic energy cutoff of the plane wave basis was
set to 300 eV. Only the convergence of band energy at I" point in the MBZ is used as the criteria for the convergence
of self-consistent calculations.

FIG. S5: Tlustration of the commensurate Moiré pattern constructed from supercells, and the construction of
slightly deformed Moiré pattern. The numbers 1,2,3,4 and 1,2/, 3’ 4" label several particular sites (red solid points)
useful in defining the commensurate configuration.

Fig. illustrates a graphene lattice, where each site here denotes the center of a hexagon plaquette of graphene.
The primitive lattice vectors are denoted as a and b, and the lattice constant is set to be ag = 2.456 A. We define
the lattice vector R, , = ma + nb. Now assume this graphene lattice is the lattice of layer 1 of TBG. By stacking
the graphene lattice of layer 2 on top of it (which is not shown in Fig. , we arrive at a TBG. To construct a
commensurate TBG (undistorted), we first assume the lattices of layer 1 and layer 2 differ by a rotation of angle 6
about point o in Fig. (which we define as the origin), namely, the hexagon plaquette centers of layer 1 and layer
2 coincide at point 0. Now consider two lattice vectors A; = Rag;y1,;+1 and B; = Ro;41; away from the origin o
with ¢ > 0 being an integer, which correspond to points 1 and 2 as illustrated in Fig. The two vectors have equal
lengths

3(20+1)2+1

B ap .

|Ai] = |B;| = L =
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Similarly, the vectors A} = R_,_;,; and B, = R_; ;11 from the origin o correspond to points 1’ and 2’ in Fig.
which also have equal lengths and are related to A; and B; by a 27/3 rotation. We then assume the layer 2 lattice is
given by rotating the layer 1 lattice so that B; (B}) is rotated to A; (Al). Such a TBG then forms a commensurate

Moiré pattern superlattice which is periodic in real space. As shown in Ref. [I5], the twist angle § = 6, of such a

3i24+3i40.5

commensurate configuration satisfies cost; = *5772555>,

or equivalently,

1
0; = 2 arctan \/?:(22 ) .
The spacial periods, namely, the superlattice vectors, are then given by A; and A, and the superlattice unit cell
is the parallelogram with edges A; and A]. We call such a Moiré pattern the (11'22") configuration, of which the
definition involves the four points 1, 1’ and 2, 2'.

As an example, we consider the commensurate undistorted TBG configuration (11'22") with ¢ = 10, and calculate
the band structure with ab initio. The distance between the two layers is dy (~ 3.35 A). The electronic band structure
from ab initio for ¢ = 10 is shown as red solid lines in both Fig. and (identical between these two figures),
where the twist angle 6 = 619 = 3.15°, and the high symmetry points in the figure should be understood as those of
the MBZ.

To generate an example of deformed Moiré pattern, we consider two different lattice vectors C; = Ra;q1,i—2 and
D; = Ry;1+1,,—3 away from the origin o, which correspond to points 3 and 4 in Fig. respectively (The reason we
choose points 3 and 4 will be explained later). We also define another two vectors C, = R_;42,4+3 and D} = R_;43 44,
which are C; and D; rotated by 27/3, and correspond to points 3’ and 4’ respectively. We shall still assume the
lattice plotted in Fig. [SH is the lattice of layer 1. Next, we assume the lattice of layer 2 is rotated and deformed
relative to the lattice of layer 1, so that vector D; and D/ of layer 2 coincide with C; and C;] of layer 1, respectively.
This is again a commensurate configuration, and the superlattice unit cell are the parallelogram with edges C; and
C! in layer 1. (which coincide with the parallelogram with edges D; and D/ in layer 2, after layer 2 is rotated and
deformed). We call this configuration (33'44"). In particular, the lengths of vectors are

3(2t+1)% + 52
2

3(20+1)2 4+ 72

C;| =|Ci| = LE =
‘ | |’L| 1 2

a,  Di|=|Dj|=L7 =

agp ,
which are not equal, and the twist angle is now the angle between C; and D;, which is

, 7
0, = arctan ——————— — arctan

5
V3(2i +1) V3(2i+1)

Therefore, this configuration (33'44’) involves both a relative rotation 660 = 6} — 6; and a relative expansion © =~
2(LP — LE) /LY compared to the undistorted configuration (11’22’). The relative shear X, is, however, zero, since
the deformation in this case is isotropic. We can then write down the relative deformation field u for (33'44’) (compared
to the undistorted TBG configuration) as

LP_1¢
- - 01—0;
(2rne o) (2 00 s

Oyt Oyuy

We can also construct a configuration with nonzero relative shear. To do this, we can assume the lattice of layer 2
is rotated and deformed relative to the lattice of layer 1 so that vector D; and B) of layer 2 coincide with C; and A/
of layer 1, respectively, which we shall name as configuration (31'42’). The superlattice unit cell is then given by the
parallelogram with edges C; and A/ in layer 1 (which coincide with the parallelogram with edges D; and B} in layer
2 after relative deformation). This configuration then has relative rotation, shear and expansion, which can be seen
in the following calculation of relative displacement field u. The relative displacement field u of (31'42") relative to
the undistorted TBG (11/22') can be solved as follows: Define U(r) = u(r) + 6;r x 2, which the relative displacement
compared to the untwisted (AA stacking) bilayer graphene (The undistorted TBG (11'22’) has displacement 6;r x z
relative to the untwisted bilayer graphene). The deformation field U then satisfies (C; - V)U ~ D; — C,;, and
(A;-V)U =~ B; — A;. We then find the relative displacement field compared to undistorted TBG (11'22') for large ¢
is

(S58)

LP-Lf /

Optty Ozy \ __ L b; — 0;
~ C

Dyuy Oyuy LP—-LY  0:—0;

V3LY V3
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FIG. S6: Variation of band energies under two deformation configurations “3344” and “3142” at 6 = 3.15° from the
continuum model (a and b), and from commensurate TBG ab initio calculations (c and d). The energy variations
are comparable in order of magnitude in the continuum model and in ab initio (slightly larger in ab initio).

We now explain why we choose lattice points 3 and 4 (3’ and 4') to define the deformed TBG. In our ab initio
calculations, this is to ensure the K point of graphene BZ of layers 1 and 2 coincide with the K}, and Kjs points
of MBZ when folded into the deformed MBZ, respectively. This allows the band structure to be compared with that
of the continuum model (in which K point of two layers always coincide with K}, and Kjs). To see this, consider
a configuration that has superlattice vectors (which spans the superlattice unit cell parallelogram) Ry = mja + n1b
and Ry = moa + ngb, where a and b are the lattice vectors of the lattice of layer 1. The reciprocal vectors of the
superlattice g; (i = 1,2) satisfies g; - Rj = 276;;. On the other hand, the momentum of the K point of layer 1 is Kp
as we defined in the first section, which satisfies Kp - a = Kp - b = 27/3. Therefore, we find

KD~R1:27T(7TL1+7’L1)/3, KD-R2=27T(m2+n2)/3.

This shows Kp = [(m1 + n1)g1 + (m2 + n2)g2]/3. Note that K, point of the MBZ is located at momentum K}, =
—(g1+92)/3. Therefore, in order for K to coincide with K, point, one has to have mj+n; = ma+ng = —1 (mod 3)
(so that Kp and K}, differ by integer multiples of superlattice reciprocal vectors). One can easily see this is satisfied
for configuration (11’22") where R; = A; and Ry = AJ. In order to find another configuration satisfying this
condition, one has to change mj +n; and mg 4 ng by multiples of 3. The configurations (33'44") and (31'42’) are two
such configurations which have small deformations.

We then use ab initio to calculate the band structure for configurations (33'44") and (31'42’) with ¢ = 10 (see the
black dashed lines in Fig. [S6c and |[S6[), respectively, and compare with that of the undistorted configuration (11'22")
(the red solid lines in Fig. [S4 and [S4d). Accordingly, we calculate the deformation of TBG band structure from the
contlnuum model (at graphene valley K) for configurations (33’44’) and (31’42’) (using deformations in Eqgs. (S57)
and (S53)) at 0 = 010 = 3.15°, respectlvely, and the results are shown in Fig. and [S6b, where the red solid lines
are the original band structure, and the black dashed lines are the deformed band structure. In the figure, the high
symmetry points should be understood as those of the MBZ.
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First, we note the band structures before deformations match well between the continuum model and the ab initio.
The continuum model bands appear to be less in number than that of ab initio, which is because we have only plotted
the bands of continuum model at valley K. Besides, for both configurations, one can see that the deformed band
energies in the continuum model also have the same order of magnitude as that in ab initio. Therefore, our estimation
of electron-phonon coupling strength from the continuum model in the previous sections has the correct order of
magnitude.
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