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Abstract

Recent results have shown that feedback can significantly increase the capacity of interference networks. This paper considers
the impact of noise on the gain due to feedback. Specifically, this paper considers the two-user linear deterministic interference
channel with partial feedback, as a stepping stone in order to characterize the capacity region for the two-user Gaussian
interference channel with noisy feedback. The capacity region for the symmetric linear deterministic interference channel with
partial feedback has been obtained. Partial feedback has been shown to increase the capacity region if and only if the amount
of feedback level l is greater than a certain threshold l∗, and it is found that l∗ is equal to the per-user symmetric capacity
without feedback. One of the key ideas is a novel converse outer bound on weighted sum rates 2R1 + R2 and R1 + 2R2.
The novel outer bounds are tightened by specially defined auxiliary random variables. It has been illustrated through numerous
examples, that the outer bounds on the sum rate R1 + R2 alone are not sufficient to characterize the capacity region, and
2R1 + R2 and R1 + 2R2 bounds are also necessary. The result and the techniques developed for this linear deterministic
model are then applied to characterize inner bounds and outer bounds for the symmetric Gaussian IC with noisy feedback.
The outer bounds have been shown to be at most 11.7 bits/s/Hz away from the achievable rate region. As a corollary, the
generalized-degree-of-freedom region, which approximates the capacity region of the symmetric Gaussian IC at high SNR, is
found.

I. INTRODUCTION

One of the most important issues for communication networks is that of interference management. Characterizing the
capacity region of the two-user Gaussian interference channel (GIC) remains one of the fundamental unresolved problems
in information theory. Recent breakthroughs in dealing with the capacity characterization of the GIC have made use of the
linear deterministic interference channel (LD-IC) model [1], [2]. The main idea behind these works is that an appropriately
defined LD model can serve as a good approximation to the Gaussian channel. By gaining valuable insights from studying the
LD-IC, the proof techniques and ideas can be lifted over to the GIC. The capacity region of the GIC has been characterized
to within 1-bit in [3].

There are many techniques to manage interference, such as treatment of interference as noise, interference alignment
[4], and usage of feedback [5]. In this work, we focus on interference management via feedback. It is well known that,
while feedback does not increase the capacity of the discrete memoryless point-to-point channel, it does enlarge the capacity
region of multi-user channels. The fact that feedback enlarges the capacity region of the discrete memoryless multiple-access
channel (MAC) was shown by Gaarder and Wolf [6]. Afterwards, Ozarow [7] found the capacity region of the two-user
Gaussian MAC with noiseless feedback. Recently, Suh and Tse [5] obtained an interesting result that noiseless feedback
can provide significant capacity gains for the GIC. To understand the usefulness of feedback for the interference channel,
consider the very strong interference regime, in which the direct links are weaker than the cross (interference) links. In such
a scenario, feedback can provide a substantial capacity gain by using the alternate path of Tx1 → Rx2 → Tx2 → Rx1,
i.e., the information intended from Tx1 first reaches Rx2, which is then received as feedback at Tx2, which uses the strong
cross (interference) link to reach the eventual destination at Rx1. The approximate capacity region of the GIC with noiseless
channel output feedback has been characterized [5] to within 2-bits. The results in [5] have been generalized to the case of
the fully connected K-user IC [8], and the cyclic K-user IC [9].
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Full and noiseless feedback is too much to ask for when the feedback link is not reliable. Vahid et al. considered an
interesting generalization of [5] by studying the two-user GIC with rate-limited feedback [10]. Rate-limited feedback refers
to a setting in which the receiver can utilize all the information it has received so far and feed back information over an
orthogonal channel of finite capacity (bit-pipe). Several interesting results for the GIC with rate-limited feedback are obtained
in [10].

While rate-limited feedback may be useful in scenarios in which the feedback links have good coding schemes to protect
feedback signals from error, it places much complexity on the receiver’s side. As a result, this model is not appropriate
when the complexity of the feedback design is a concern. In order to take some of these issues into account, this paper
aims to investigate the model in which the feedback at transmitter j is a scaled and noisy (additive white Gaussian noise
corrupted) version of the channel output at receiver j, for j = 1, 2. In particular, if the channel output at receiver j is Yj ,
then the feedback to transmitter j is YFj

= gjYj + Z̃j , for j = 1, 2 (see Figure 1). With the eventual goal of understanding
the capacity region of the GIC with noisy feedback, we present a linear deterministic model with partial feedback. We show
that the LD-IC with partial feedback serves as a good approximation to the GIC with noisy feedback. First, we consider the
linear deterministic interference channel with partial feedback. Subsequently, we consider the Gaussian interference channel
with noisy feedback, based on the insights that we gain from the linear deterministic model.

The main contributions of this paper are
• To characterize the capacity region for the symmetric LD-IC with partial feedback. To illustrate through numerous

examples, that the sum-rate bounds derived in [11] alone are not sufficient to characterize the capacity region, and
2R1 + R2 and R1 + 2R2 bounds are also necessary. Note that outer bounds are tightened with the help of specially
defined auxiliary random variables. To show that partial feedback increases the capacity region if and only if the amount
of feedback level l is greater than a certain threshold l∗, and that l∗ is equal to the per-user symmetric capacity without
feedback.

• Based on results for the symmetric LD-IC with partial feedback, we derive inner bounds and outer bounds for the
symmetric Gaussian interference channel with noisy feedback. The outer bounds are shown to be at most 11.7 bits/s/Hz
from the achievable rate region. As a corollary of this result, we also obtain a generalized-degree-of-freedom region
for the symmetric Gaussian IC with noisy feedback.

We note here that the sum-capacity of the LD-IC with partial feedback was characterized in our previous works [11] [12],
and the capacity region for the symmetric LD-IC was partially presented in [13].

Other related work that studied multi-user channels with feedback includes [14]–[22]. [14] [15] found an achievable rate
region for interference channel with generalized feedback, and their model can be reduced to many well-known multi-user
channels, including ours. However, further optimization needs to be done to make the inner bound tight for our current
problem. In [16], Jiang et al. established an achievable rate region for the interference channel with full noiseless feedback.
[17] found outer bounds for interference channel with degraded noisy feedback. AWGN MAC with imperfect feedback
was studied in [18], which showed that the achievable rate region for MAC with even imperfect feedback is larger than
that without feedback. Tandon and Ulukus in [20] derived outer bounds for the Gaussian MAC with noisy feedback (a.k.a
user cooperation) and outer bounds for Gaussian interference channel with user cooperation. In [21], Tuninetti developed
outer bounds on R1 +R2 for interference with generalized feedback. Works done IC with source cooperation [23]–[27] are
different but also related to works done IC with feedback. Wang and Tse [23] characterized the capacity region, to within a
constant number of bits, of the two-user Gaussian interference channel with conferencing transmitters. In [24], interference
channel with source cooperation was studied. In that paper, the source nodes are allowed to transmit and receive in full
duplex mode, thus they can overhear information from the other source node. Even though the outer bounds on the sum
rate in [24] gives the same result as our outer bound in the linear deterministic IC, the two outer bounds differ in Gaussian
IC, especially at low SNR.

The structure of the paper is as follows. In section II, we introduce the system models for the discrete memoryless
interference channel with noisy feedback, the Gaussian interference channel with noisy feedback and the LD-IC with partial
feedback, then we formally state the problem. In section III, we present the results and discussion for the symmetric linear
deterministic interference channel with partial feedback. In the subsequent section, we present the results and discussion
for the symmetric Gaussian interference channel with noisy feedback. Finally, the paper ends with a conclusion and the
appendix, which contains proofs to results in the paper.

II. SYSTEM MODEL

A discrete memoryless interference channel with noisy feedback comprises two input alphabets X1 and X2, two output
alphabets Y1 and Y2, a channel transition probability PY1Y2|X1X2

(y1y2|x1x2), two feedback output alphabets YF1
and YF2

,
and two feedback channel transition probabilities PYFj

|Yj
(yFj
|yj), for j = 1, 2. The channels are discrete in the sense

that all the alphabet sets are finite. The channels are memoryless in the sense that the channel outputs in the current time
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slot are dependent on only the channel inputs in the current slot, and are independent of channel inputs in the previous
time slots, i.e., PY1iY2i|X1iX2i

(y1iy2i|x1ix2i) = PY1iY2i|Xi
1X

i
2
(y1iy2i|xi1xi2), and PYFji

|Yji
(yFji|yji) = PYFji

|Y i
j
(yFji|yij), for

i ∈ {1, 2, ..., T}.
The two-user Gaussian interference channel with noisy feedback (see Figure 1), is defined by the following input-output

relationships

Y1i = h11X1i + h21X2i + Z1i, (1)
Y2i = h12X1i + h22X2i + Z2i, (2)

YF1i = g1Y1i + Z̃1i, (3)

YF2i = g2Y2i + Z̃2i, (4)

where Xji denotes the signal sent by transmitter j, Yji denotes the output at receiver j, YFj ,i denotes the feedback received at
transmitter j, for j = 1, 2, at time i, for i ∈ {1, 2, ..., T}, and {Zji}Ti=1 and {Z̃ji}Ti=1 are independent, additive white Gaussian
noise processes with zero means and unit variances. The forward channel gains {h11, h21, h12, h22} and the feedback channel
gains {g1, g2} are assumed to be constant and known at all terminals. Average unit power constraints are imposed at each
transmitter. In other words, for a code of block length T , input sequences must satisfy 1

T E(
∑T
i=1 |Xji|2) ≤ 1, for j = 1, 2.

Transmitter Txj , for j = 1, 2, wishes to communicate a message mj ∈ {1, 2, ...,Mj} =Wj to receiver Rxj . It is assumed
that W1 and W2 are independent. An (M1,M2, T, Pe) feedback code for the interference channel (IC) with noisy feedback
consists of a sequence of encoding functions

f ij :Wj × {YFj1,YFj2, ...,YFj ,i−1} → Xji (5)

for j = 1, 2, and i = 1, 2, ..., T , and two decoding functions

djT : {Yj1,Yj2, ...,YjT } → Ŵj for j = 1, 2; (6)

such that max{Pe,1T , Pe,2T } ≤ Pe, where Pe,1T and Pe,2T denote the average decoding error probabilities, which are
computed as Pe,jT = E [P (ŵj 6= wj |(w1, w2) were sent)]. A rate pair (R1, R2) is achievable for the IC with noisy feedback
if there exists an (M1,M2, T, Pe)-feedback code such that Pe → 0 as T → ∞ and log(M1)

T ≤ R1 and log(M2)
T ≤ R2. The

capacity region of the IC with noisy feedback is defined as the closure of the set of all achievable rate pairs. With the
goal of understanding the capacity region of the GIC with noisy feedback as defined above, we next describe the linear
deterministic interference channel with partial feedback.

Using the deterministic model in [1], a non-negative integer nkj is used to represent the channel gain from transmitter
Txk to receiver Rxj and it is given by nkj = dlog h2kje

+. Note that the effect of the Gaussian noise is captured by these
representative numbers. Let q denote the maximum channel gains in the interference channel, i.e., q = max(nkj). Thus,
the transmitted signal from transmitter k at the time i will have a maximum of q bits visible to any receiver. Denote
Xki = [X1

ki, ..., X
q
ki]
T ∈ F q2 , for k = 1, 2, where the leftmost bit is the most significant bit and the rightmost bit is the

least significant bit. In this linear model, the effect of interference between various signals is captured as the superposition
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of those signals. At the time i, the outputs at the receivers are given as

Y1i = Sq−n11X1i ⊕ Sq−n21X2i, (7)
Y2i = Sq−n12X1i ⊕ Sq−n22X2i, (8)

where S is the a square shift matrix of size q given by

S :=




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
...

. . .
...

0 ... 0 1 0




(9)

and the operation is modulo 2 addition in F2.
Next, we analyze the feedback links in the Gaussian interference channel. The feedback links are effectively equivalent

to

YF1i = g1Y1i + Z̃1i (10)

= gF1

Y1i√
h211 + h221 + 2h11h21 + 1

+ Z̃1i, (11)

YF2i = g2Y2i + Z̃2i (12)

= gF2

Y2i√
h212 + h222 + 2h12h22 + 1

+ Z̃2i. (13)

Using equations (10-13), we now model the corresponding feedback in the LD-IC model. The channel gains gFj
for

the feedback links can be represented by lj , for j = 1, 2, where lj = dlog g2Fj
e+, and hence the feedback signals at the

transmitters are given as

YF1i = Sq−l1Y1i, YF2i = Sq−l2Y2i. (14)

Effectively, via the feedback links, the transmitter j sees only the top lj bits of the received signals Rji (see Figure 2) .
The paper focuses on the symmetric LD-IC in which m = n12 = n21, n = n11 = n22, and l = l1 = l2, and the symmetric

Gaussian IC with noisy feedback. Define

SNR := h211 = h222, (15)

INR := h221 = h212, (16)

SNRF := g2F1
= g21 · var(Y1) = g2F2

= g22 · var(Y2). (17)

III. SYMMETRIC DETERMINISTIC IC WITH PARTIAL FEEDBACK

As a stepping stone towards approximating the capacity region for the Gaussian IC with noisy feedback, we first consider
the associated symmetric linear deterministic model.

A. Capacity region

Given a triple (n,m, l), we denote the capacity region for symmetric LD-IC with partial feedback by CP−FB(n,m, l),
which is the set of all achievable rate pairs (R1, R2) with partial feedback. We find it useful to define forward and feedback
interference parameters respectively as follows

α :=
m

n
, β :=

l

n
. (18)

The forward interference parameter α measures the normalized interference, whereas the feedback interference parameter β
measures the normalized feedback. For the purpose of comparison with related work, we also define the normalized rates,
with respect to n, as R∗j :=

Rj

n , for j = 1, 2. Equivalent to CP−FB(n,m, l), the normalized capacity region CP−FB(α, β) is
the set of all achievable normalized rate pairs (R∗1, R

∗
2) with partial feedback.

The capacity region for the symmetric LD-IC with partial feedback is given by the following theorem.



5

Theorem 1. The normalized capacity region CP−FB(α, β) of the symmetric linear deterministic interference channel with
partial feedback, is the set of non-negative normalized rate pairs (R∗1, R

∗
2) that satisfy

R∗1 ≤ max(1, α), (19)
R∗2 ≤ max(1, α), (20)
R∗1 ≤ 1 + (β − 1)+, (21)
R∗2 ≤ 1 + (β − 1)+, (22)

R∗1 +R∗2 ≤ (1− α)+ +max(1, α), (23)
R∗1 +R∗2 ≤ 2max[(1− α)+, α] + 2min[(1− α)+, (β −max(α, (1− α)+))+], (24)

2R∗1 +R∗2 ≤ (1− α)+ +max(1, α) + max[α, (1− α)+] + min[(1− α)+, (β −max(α, (1− α)+))+], (25)
R∗1 + 2R∗2 ≤ (1− α)+ +max(1, α) + max[α, (1− α)+] + min[(1− α)+, (β −max(α, (1− α)+))+]. (26)

where (α)+ := max(0, α).

Proof: We will present the forward proof in section VI-B. A system with partial feedback can perform no better than
a system with full feedback. Thus, any outer bound that is applicable to the full feedback model, is also applicable to the
partial feedback model. Thus, for the proof of outer bounds for equations (19), (20) and (23), please refer to [5]. The outer
bound for the equation (21) is a simple cut-set bound [28], that follows from the outer bound

R1 ≤ H(Y1, YF2
|X2), (27)

which can be proved easily. Nevertheless, there is an alternative way to prove this outer bound. In the regime where α < 1,
this outer bound is inactive due to outer bound in (19); in the strong and very strong interference regimes, i.e. α ≥ 1, this
outer bound follows from an interesting observation. The observation is that, when β ≤ 1, feedback YF2 does not help as the
feedback is a composition of X2 and the top n bits of X1, and when β > 1, feedback starts to help but there is some overlap
as the top n of X1 in this case is a mixture of YF2

and X2. Thus, we will present, in the appendix, an alternative, slightly
more complicated, proof, which might be of interest to some readers, based on this simple, but intriguing, observation. The
outer bound on the equation (22) is proved similarly. In addition, we will present the rest of the converse proof for Theorem
1 in section VI-A.

Next, we will compare the result for the partial feedback model with related results for the no feedback model, the
rate-limited feedback model and the full feedback model.

B. Comparison with other feedback models

We recall here the capacity regions for the no feedback model, the rate-limited feedback model and the full feedback
model. The normalized capacity region CNo−FB(α) of the symmetric linear deterministic channel with no feedback model
[2], in which β = 0, is given the set of non-negative rate pairs (R∗1, R

∗
2) that satisfy

R∗1 ≤ 1,

R∗2 ≤ 1,

R∗1 +R∗2 ≤ (1− α)+ +max(1, α),

R∗1 +R∗2 ≤ 2max[(1− α)+, α],
2R∗1 +R∗2 ≤ (1− α)+ +max(1, α) + max[α, (1− α)+],
R∗1 + 2R∗2 ≤ (1− α)+ +max(1, α) + max[α, (1− α)+]. (28)

The normalized capacity region CFull−FB(α) of the full feedback model [5], in which β = 1, is given the set of non-
negative normalized rate pairs (R∗1, R

∗
2) that satisfy

R∗1 ≤ max(1, α),

R∗2 ≤ max(1, α),

R∗1 +R∗2 ≤ (1− α)+ +max(1, α). (29)

The normalized capacity region CRL−FB(α, β′) of the rate-limited feedback model found in [10], is equivalent to the set
of non-negative normalized rate pairs (R∗1, R

∗
2) that satisfy
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R∗1 ≤ max(1, α),

R∗2 ≤ max(1, α),

R∗1 ≤ 1 + β′,

R∗2 ≤ 1 + β′,

R∗1 +R∗2 ≤ (1− α)+ +max(1, α),

R∗1 +R∗2 ≤ 2max[(1− α)+, α] + 2min[(1− α)+, β′],
2R∗1 +R∗2 ≤ (1− α)+ +max(1, α) + max[α, (1− α)+] + min[(1− α)+, β′],
R∗1 + 2R∗2 ≤ (1− α)+ +max(1, α) + max[α, (1− α)+] + min[(1− α)+, β′]. (30)

In constrast to that in the partial-feedback model, the receivers in a rate-limited feedback model, with feedback rate β′,
can feed back to the transmitters any function of the received outputs, even though β′ in the rate-limited feedback model
is also a normalized rate of feedback just like β in the partial-feedback model. Clearly, such encoding functions include
sending back the top nβ′ bits; and hence the capacity of our model is in general contained within the capacity region with
the same amount of rate-limited feedback. Thus, when β = β′, the capacity regions for these four models always satisfy
the following rule

CNo−FB(α) ⊆ CP−FB(α, β) ⊆ CRL−FB(α, β′) ⊆ CFull−FB(α). (31)

The set inclusions here can be strict. We illustrate the results through examples.

Example 1. Consider a channel in which n = 6,m = 2 and l = 5. Figure 3 shows the capacity regions with no feedback,
with full feedback, with rate-limited feedback of l = 5 bits, and with partial feedback of l = 5 bits. Several interesting
observations are worth making:
• The capacity region with full feedback coincides with that of rate-limited feedback of l = 5 bits.
• The sum capacity is 10 bits/channel-use for full, rate-limited and partial feedback settings.
• Most importantly, the capacity region with partial feedback is strictly contained in the capacity region with full feedback

and rate-limited feedback. Previously, the capacity region for the model with full feedback did not require the bounds
on 2R1 + R2 and R1 + 2R2. On the other hand, it is here that we can clearly see the necessity of 2R1 + R2 and
R1 + 2R2 bounds in characterizing the exact capacity region when the feedback links are noisy.

Example 2. Consider another channel in which n = 1,m = 7 and l = 2. Figure 4 shows the capacity regions with no
feedback, with full feedback, with rate-limited feedback of l = 2 bits, and with partial feedback of l = 2 bits. Several
interesting observations are worth making:
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• All the set inclusions in (31) are strict. In other words, the capacity regions of the no feedback model, the partial
feedback model and the rate-limited feedback model are strictly included in that of the partial feedback model, the
rate-limited feedback model, and the full feedback model respectively.

• When l = 2, the capacity region of the partial feedback model is strictly larger than that of the no feedback model. In
fact, this holds as long as l > 1. Thus, we can partially observe the role the partial feedback link plays in enlarging the
capacity region. The capacity region of the partial feedback model are characterized by not only the direct link strength
n and the cross interference link strength m, but also the feedback link strength l.

As a direct result of Theorem 1, we have the following corollary.

Corollary 1. The normalized sum rate R∗1 +R∗2 of the partial feedback model is the same as that of the no feedback model
when β ≤ β∗1 , where

β∗1 =

{
max(α, (1− α)+) if α ≤ 1,

1 if 1 < α.
(32)

The normalized sum rate R∗1+R
∗
2 of the partial feedback model is the same as that of the full feedback model when β ≥ β∗2 ,

where

β∗2 =

{
1− α

2 if α ≤ 1,
α
2 if 1 < α.

(33)

The normalized sum rate R∗1 +R∗2 as a function of β, for a fixed value of α, in different regimes, is illustrated in Figures
5, 6, 7, and 8. The normalized sum rate R∗1 + R∗2 of the partial feedback model is the same as that of the no feedback
model when β ≤ β∗1 , which is defined in Corollary 1. Notice that β∗1 is the per-user symmetric capacity for the no feedback
model. The normalized sum rate R∗1 + R∗2 of the partial feedback model is strictly smaller than that of the rate-limited
feedback model. The normalized sum rate R∗1 +R

∗
2 for the partial feedback model reaches saturation and achieves the same

performance as that of the full feedback model when β ≥ β∗2 . Notice that β∗2 is the per-user symmetric capacity of the full
feedback model.

Note that the normalized sum rate R∗1+R
∗
2 is not increased by any amount of feedback in the moderately strong interference

regime, where 2
3 ≤ α ≤ 1, and the strong interference regime, where 1 ≤ α ≤ 2.

As a direct result of Theorem 1, we have another corollary.

Corollary 2. The capacity region of the partial feedback model is increased by the partial feedback if and only if β ≥ β∗1 ,
where β∗1 is defined as in Corollary 1.

In the following sub-section, we present discussion on ideas of the achievability proof and the converse proof for Theorem
1.

C. Achievability

In the classical interference channel without feedback, the HK encoding scheme currently gives the best achievable rate
region [29] [30]. It was proved in [3] [2] that the HK encoding scheme can achieve the capacity region of the linear
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deterministic interference channel with no feedback. In the HK encoding scheme, messages are split into two parts: common
information and private information. However, splitting messages into two parts is not sufficient to account for the effect of
feedback links on the capacity region of the interference channel with noisy feedback. Previous works have made used of
more-than-two message splitting [14] [15] [10] [24]. Tuninetti [14] in 2007 developed an achievability scheme for a very
generic model: IC with generalized feedback. It is true that IC with noisy feedback is a special case of IC with generalized
feedback. Thus, any achievable scheme developed for IC with generalized feedback is also applicable for IC with noisy
feedback. We are going to prove that this achievable scheme for IC with generalized feedback is optimal for IC with noisy
feedback. The remaining question is which choice of auxiliary random variables will obtain the optimal achievable rate
region. Before answering this question, we will consider an example.

Example 3. Consider an example, in which n = 7,m = 4 and l = 5. In this example, we show an encoding scheme to
achieve the point (R1, R2) = (5, 5) in the achievable rate region. Without feedback, the maximum achievable sum rate is
8 bits per channe use. Here, we manage to obtain a sum rate of 10 bits per channel use through feedback. The encoding
scheme is shown in Figure 9.
In the first time slot t = 1, each transmitter sends 5 fresh information bits as shown in the figure. With a feedback channel
gain l = 4, Tx1 sees only the top 5 bits, which are a1, a2,−, b1, a3 ⊕ b2, and hence it can recover b2. In the second time
slot i = 2, transmitter Tx1 sends 5 new fresh information bits again and encodes b2 at the third topmost signal level as
shown in the figure. The third topmost signal level is chosen to ensure that the resolving signal bit b2 is received cleanly
at Tx1. With the help of b2, Rx1 can resolve the interference in the previous time slot and decode a3 successfully. Due
to symmetry, the same encoding operation is carried out at Tx2 and Rx2. We can repeat this encoding scheme again for a
duration of B time slots. It is easy to see that this scheme asymptotically achieves a sum rate R1 + R2 = 10 bits/channel
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use. Thus, the bound R1 +R2 ≤ 2m+2(l−m)+ is active in this example and the encoding scheme has achieved the sum
capacity in this regime.
A careful observation suggests, in each channel use, the message bits from a transmitter is categorized into three parts. For
example, transmitter 1, in the second time slot when t = 2, has 3 private bits a8, a9, a10, 2 cooperative common bit (b1,−),
and the remaining 2 bits as non-cooperative common bits. This example suggests the size of the cooperate common message
in general to be (l− (n−m)+)+ and the position of the cooperative common message to be within the top m bits of each
transmitter.

A detailed choice of auxiliary random variables are shown in the proof in section VI-B.
Remark 1. Apart from the generic achievable scheme shown in section VI-B, we developed an alternative, more elementary
achievable scheme, which was presented in [13]. That alternative scheme gives certain alternative points of view, which are
not captured by the generic achievable scheme here.

D. Outer bounds

Consider the same example in Figure 9. Notice that for l ≤ 4, the feedback link does not show any advantage over
the situation without feedback. For example, in the first slot t = 1 when l = 4, even though transmitter 1 sees 4 bits
(a1, a2,−, b1) via the feedback link, the knowledge of b1 is redundant as no interference has appeared at receiver 1 yet.
However, when l = 5, there is interference at a3 ⊕ b2. Thus, we start to see the benefit of the feedback link. Notice that
transmitter 1 always knows the top n−m = 3 bits of receiver 1. However, the benefit of feedback does not occur when l
exceeds n−m. It only occurs when l exceeds m. This motivates us to define Xtop1 and Xtop2 in the converse. For more
details, please refer to section VI-A.
Remark 2. The equation (24) can be proved using the equation (1) of Theorem 1 in the paper [24]. Even though our outer
bound for equation (24) and the outer bound for that equation (1) give the same result for the linear deterministic model,
they give different results for the Gaussian IC at low SNR.

IV. SYMMETRIC GAUSSIAN INTERFERENCE CHANNEL WITH NOISY FEEDBACK

With the results and techniques developed for the symmetric linear deterministic model, we are one step closer to
approximating the capacity region for the symmetric Gaussian IC with noisy feedback. First, we derive the outer bounds,
next we derive the inner bounds. Then, we show that the gap between the outer bounds and the inner bounds is a constant.

A. Outer bounds

Define

αG :=
log INR

log SNR
. (34)

The outer bounds for the symmetric Gaussian interference channel with noisy feedback is given by the following theorem.

Theorem 2. The capacity region of the symmetric Gaussian interference channel with noisy feedback, is included by the
set of non-negative pairs (R1, R2), for some 0 ≤ ρ ≤ 1, satisfying

R1 ≤
1

2
log
(
SNR + INR + 2ρ

√
SNR · INR + 1

)
:= ψ1 (35)

R2 ≤
1

2
log
(
SNR + INR + 2ρ

√
SNR · INR + 1

)
(36)

R1 ≤
1

2
log (SNR + 1) +

1

2
log

(
SNRF

SNR + 1
+ 1

)
:= ψ2 (37)

R2 ≤
1

2
log (SNR + 1) +

1

2
log

(
SNRF

SNR + 1
+ 1

)
(38)

R1 +R2 ≤
1

2
log

(
SNR

INR + 1
+ 1

)
+

1

2
log
(
SNR + INR + 2ρ

√
SNR · INR + 1

)
:= ψ3 (39)

R1 +R2 ≤ ψ4 (40)
2R1 +R2 ≤ ψ5 (41)
R1 + 2R2 ≤ ψ5, (42)
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where

ψ4 :=





log
(

INR3+INR2

SNR(INR+1) + 1
)
+ log

(
SNRF

INR + 1
)
+ log

(
SNR
INR

)
+ log 3 if 1

2 ≤ αG < 1,

log
(

INR2+SNR+2INR+2ρ
√
SNR .INR+1

INR+1

)
+ log

(
SNRF (INR+1)
SNR+INR+1 + 1

)
otherwise,

(43)

ψ5 :=





1
2 log

(
INR3+INR2

SNR(INR+1) + 1
)
+ 1

2 log
(
SNRF

INR + 1
)
+ 1

2 log
(
SNR
INR

)
+ 1

2 log 3

+ 1
2 log

(
SNR

INR+1 + 1
)
+ 1

2 log
(
SNR + INR + 2ρ

√
SNR · INR + 1

)
if 1

2 ≤ αG < 1,

1
2 log

(
INR2+SNR+2INR+2ρ

√
SNR·INR+1

INR+1

)
+ 1

2 log
(

SNRF (INR+1)
SNR+INR+1 + 1

)

+ 1
2 log

(
SNR

INR+1 + 1
)
+ 1

2 log
(
SNR + INR + 2ρ

√
SNR · INR + 1

)
otherwise.

(44)

Proof: The bounds of (35),(36) and (39) were derived in [5]. Thus, it suffices to prove the bounds of (37),(40) and
(41). These bounds will be proved in Appendix, section VI-C. The proof of (38) and (42) follow by symmetry.
Remark 3. When SNRF →∞, the outer bounds of (37), (38), (41) and (42) are redundant. At high SNR, the outer bounds
here are equivalent to that in the full-feedback model [5]. At low SNR, the outer bounds here are slightly looser than that
in the full-feedback model as we do not include the following cut-set outer bound [5]

R1 ≤ h(Y2|X2)− h(Z2) + h(Y1|X2, S1)−H(Z1) (45)

≤ 1

2
log
(
1 + (1− ρ2)INR

)
+

1

2
log

(
1 +

(1− ρ2)SNR

1 + (1− ρ2)INR

)
. (46)

However, the absence of the bound (46) will not affect our constant-gap analysis much, so we do not consider it here.
Remark 4. The symmetric Gaussian IC with noisy feedback and the symmetric Gaussian IC with rate-limited feedback [10]
share the same bounds of (35), (36) and (39).
Remark 5. Theorem II.2 in the paper [21] gives a generic outer bound on the sum rate R1 + R2 for IC with generalized
feedback, that involves 6 auxiliary random variables. We are not sure whether this generic outer bound can be used to prove
our outer bound of (40), and we are not sure which realizations of auxiliary random variables will give us a tight outer
bound on the sum rate.
Remark 6. None of the outer bounds on the sum rate R1 +R2, for IC with source cooperation, in Theorem 2 of the paper
[24], is equivalent to our outer bound (40), especially at low SNR.

B. Inner bounds

The inner bounds for the symmetric Gaussian interference channel with noisy feedback is given by the following theorem.

Theorem 3. The capacity region of the two-user symmetric Gaussian interference channel with noisy feedback includes the
set of all non-negative pairs of (R1, R2) satisfying

R1 ≤ min(τ6, τ4 + τ1, τ1 + τ2 + τ3) (47)
R2 ≤ min(τ6, τ4 + τ1, τ1 + τ2 + τ3) (48)

R1 +R2 ≤ min(τ2 + τ6, 2τ1 + τ5 + τ2, 2τ1 + 2τ3) (49)
2R1 +R2 ≤ min(τ6 + τ2 + τ3 + τ1, 3τ1 + τ5 + τ2 + τ3) (50)
R1 + 2R2 ≤ min(τ6 + τ2 + τ3 + τ1, 3τ1 + τ5 + τ2 + τ3) (51)

where

τ6 :=
1

2
log

SNR + INR + 2ρ
√
SNR · INR + 1

INR · Pp + 1
(52)

τ5 :=
1

2
log

SNR(Pnc + Pp) + INR(Pnc + Pp) + 1

INR · Pp + 1
(53)

τ4 :=
1

2
log

SNR(Pnc + Pp) + INR · Pp + 1

INR · Pp + 1
(54)

τ3 :=
1

2
log

SNR · Pp + INR(Pnc + Pp) + 1

INR · Pp + 1
(55)
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τ2 :=
1

2
log

SNR · Pp + INR · Pp + 1

INR · Pp + 1
(56)

τ1 :=
1

2
log

τ1n
τ1d

(57)

τ1n :=
SNRF

SNR + INR + 2ρ
√
SNR · INR + 1

× [INR(Pcc + Pnc + Pp) + 1] + 1

τ1d :=
SNRF

SNR + INR + 2ρ
√
SNR · INR + 1

× [INR(Pnc + Pp) + 1] + 1,

for all power allocation schemes that satisfy

Pp + Pcc + Pnc = 1. (58)

Proof: Refer to section VI-E.

C. A constant gap between inner and outer bounds

Define

δR := δR1 := δR2 := min(ψ1, ψ2)−min(τ6, τ4 + τ1, τ1 + τ2 + τ3, τ) (59)
δ2R := δR1+R2 := min(ψ3, ψ4, 2ψ1, 2ψ2, ψ1 + ψ2)−min(τ2 + τ6, 2τ1 + τ2 + τ5, 2τ1 + 2τ3, 2τ) (60)
δ3R := δ2R1+R2 := δR1+2R2

:= min(ψ5, ψ1 + ψ3, ψ1 + ψ4, ψ2 + ψ3, ψ2 + ψ4, 3ψ1, 3ψ2)−min(τ1 + τ2 + τ3 + τ6, 3τ1 + τ2 + τ3 + τ5, 3τ). (61)
δ := max(δR, δ2R, δ3R) (62)

where τ is any achievable rate for any transmitter, using some achievability scheme. In words, δR, δ2R and δ3R are the
possible gaps between the minimum of the set of the derived outer bounds and and the minimum of the set of the derived
inner bounds for the individual rate, the sum rate R1+R2, and the weighted sum rates 2R1+R2 and R1+2R2 respectively.

This is the main result in this paper.

Theorem 4. Outer bounds in Theorem 2 are no more than 11.7 bits/s/Hz away from the achievable rate region. More
precisely, we have

δ ≤ 11.7 (63)

Proof: Refer to section VI-F.
Remark 7. Now we show how the Gaussian IC with noisy feedback is also related to the Gaussian IC with source cooperation.
Note

YF1i = g1Y1i + Z̃1i (64)

= g1h11X1i + g1h21X2i + g1Z1i + Z̃1i. (65)

Transmitter have access to its own codewords, so we will subtract the contribution from X1i, and define a scaled version of
the remaining part

Y ′F1i =
1√
g21 + 1

g1h21X2i +
1√
g21 + 1

(g1Z1i + Z̃1i). (66)

Thus, the Gaussian IC with noisy feedback is also closely related to the Gaussian IC with source cooperation considered by
Prabhakaran and Wiswanath [24] and others.
Remark 8. HK [29] scheme used two-message splitting, which was proved to be at most 1 bit/s/Hz away from the outer
bounds [3]. The achievability scheme here makes use of three-message splitting. Prabhakaran and Wiswanath [24] proposed
three different encoding schemes, which are based on three-message splitting (which is the same as ours here), four-
message splitting and mixture of these two schemes. Other advanced achievibility schemes developed in [15] for the IC with
generalized feedback is also applicable to our model. We are not sure if our current inner bounds are sufficiently strict so it
might be advantageous to use any alternative achievability schemes found in these related works to reduce the gap further.
The large gap may be also due to the outer bounds. It might be neccessary to use techniques similar to that in [3], and
to develop new techniques to tighten the outer bounds further. In addition, particular attention should be paid to the outer
bounds, such as the bounds of (37), (38), (40 - 42), which are functions of the feedback link strength SNRF . Furthermore,
the gap is estimated based on a crude estimation method. A more refined technique should be employed to reduce the gap



12

further. The work in [24] considered bounds for the symmetric Gaussian IC with source cooperation and obtained a gap
of 10 bits/s/Hz for the sum rate R1 + R2, for real random variables. From the proof of this theorem, our gap for the sum
rate only is δ2R = 9.3 bits/s/Hz. At high SNR, bounds in [24] and the bounds here will give the same result. However, at
low SNR, ignoring the differences in estimation of the gap, our outer bounds on the sum rate seem to be slightly better for
symmetric Gaussian IC with symmetric noisy feedback.

Define

βG :=
log SNRF

log SNR
. (67)

(68)

Next, define the generalized degrees of freedom as

d1(αG, βG) := lim
SNR→∞

R1(SNR, INR,SNRF)
1
2 log(1 + SNR)

, (69)

d2(αG, βG) := lim
SNR→∞

R2(SNR, INR,SNRF)
1
2 log(1 + SNR)

. (70)

As a result of Theorem 4, we obtain the following corollary, which gives the generalized-degree-of-freedom region of the
symmetric Gaussian interference channel with noisy feedback.

Corollary 3. For the symmetric Gaussian interference channel with noisy feedback, the generalized-degrees-of-freedom
region is the set of non-negative pairs (d1, d2) that satisfy

d1 ≤ max(1, αG), (71)
d2 ≤ max(1, αG), (72)
d1 ≤ max(1, βG), (73)
d2 ≤ max(1, βG), (74)

d1 + d2 ≤ max(1, αG) + (1− αG)+, (75)

d1 + d2 ≤ 2max(1− αG, αG) + 2(βG −max(1− αG, αG))+, (76)

2d1 + d2 ≤ (βG −max(1− αG, αG))+ +max(1− αG, αG) + (1− αG)+ +max(1, αG), (77)

d1 + 2d2 ≤ (βG −max(1− αG, αG))+ +max(1− αG, αG) + (1− αG)+ +max(1, αG). (78)

Remark 9. The generalized-degrees-of-freedom region for the symmetric Gaussian IC is similar to the capacity region for
the symmetric LD-IC. Therefore, any set of remarks and observations that are applicable to the symmetric LD-IC, also
applies directly to the generalized-degree-of-freedom region of the Gaussian IC.

D. Discussion on the asymmetric Gaussian interference channel with noisy feedback

The symmetric Gaussian interference channel with symmetric noisy feedback is only a special case of the asymmetric
Gaussian interference channel with asymmetric noisy feedback. To approximate the asymmetric Gaussian interference channel
with noisy feedback directly is a challenging task. Thus, it is beneficial to first find the capacity region for the asymmetric
LD-IC with asymmetric partial feedback. A keen reader would have noticed that the inner bounds and outer bounds developed
in the proof of Theorem 1 (sections VI-A and VI-B) are also applicable to the asymmetric LD-IC with asymmetric partial
feedback. However, in the outer bounds, we relied on carefully-defined auxiliary random variables Xtop1 and Xtop2 to
optimally tighten the outer bounds. Similarly, in the inner bounds, we relied on the carefully-chosen random variables U1

and U2, in terms of the size and the location of the bits assigned to these two random variables with respect to X1 and X2

respectively, so that we can optimally maximize the inner bounds to the extent that the inner bounds match the outer bounds
exactly. We are not sure if the current outer bounds and inner bounds are sufficient to determine the capacity region for
the asymmetric LD-IC with partial feedback. To choose optimal sets of random variables Xtopj , Uj , for j ∈ {1, 2}, which
enable us to determine the capacity region for asymmetric LD-IC with asymmetric partial feedback, for different values
of nij and lj , for i, j ∈ {1, 2}, is a non-trivial problem. Therefore, to approximate the capacity region for the asymmetric
Gaussian IC with asymmetric noisy feedback remains an open problem for now.
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Rx1

YF2

YF1

A1

B1

n

n

n ≤ m

m

Tx2

Rx2

Tx1

Fig. 10: Illustration of A1 and B1 when n ≤ m.

V. CONCLUSIONS

In this paper, we have obtained the capacity region for the symmetric linear deterministic interference channel with partial
feedback. We have shown that partial feedback increases the capacity region if and only if the amount of feedback level l
is greater than a certain threshold l∗, and it is found that l∗ is equal to the per-user symmetric capacity without feedback.
One of the key ideas is a novel converse proof which includes outer bound on weighted sum rates 2R1+R2 and R1+2R2.
Our novel outer bounds are tightened by specially defined auxiliary random variables. We have also illustrated through
numerous examples, that the outer bounds on the sum rate R1 +R2 derived in [11] alone are not sufficient to characterize
the capacity region, and 2R1 + R2 and R1 + 2R2 bounds are also necessary. The result and the techniques developed for
this linear deterministic model are then applied to characterize inner bounds and outer bounds for the symmetric Gaussian
IC with noisy feedback. The outer bounds are shown to be at most 11.7 bits/s/Hz away from the achievable rate region. As
a corollary, the generalized-degree-of-freedom region, which approximates the capacity region of the symmetric Gaussian
IC at high SNR, is found.

VI. APPENDIX

A. Converse proof

1) Bounds on R1 and R2: Now, the outer bounds of (21) and (22) on R1 and R2 respectively, are proved. When
0 ≤ m < n, we always have Rj ≤ n, for j = 1, 2, as proved above. Thus, we only need to consider the case n ≤ m.
Consider Figure 10. Let A1 denote the top n bits of transmitter 1, and let B1 denote the top n bits of transmitter 2.

We have

TR1 = H(W1)

(a)
= H(W1|W2)

= I(W1;A
T
1 , Y

T
F2
|W2) +H(W1|W2, A

T
1 , Y

T
F2
)

(b)
= I(W1;A

T
1 , Y

T
F2
|W2) +H(W1|W2, A

T
1 , Y

T
F2
, XT

2 , Y
T
1 )

(c)

≤ H(AT1 , Y
T
F2
|W2) +H(W1|Y T1 )

(d)

≤
T∑

i=1

H(A1i, YF2i|Ai−11 , Y i−1F2
,W2) + 1 + TPTe

(e)

≤
T∑

i=1

H(A1i, YF2i|X2i) + 1 + TPTe , (79)
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2m− n

Tx2

Tx1

Rx1

Rx2

n−m

n−m

SD1

m

n−m

Tx1

Tx2

Rx1

Rx2

0 ≤ α < 1
2

1
2 ≤ α < 2

3

Xtop,1
2m− n

m

m

n−m

SD2

Xtop,2

SD2

SD1

m

Fig. 11: Illustration of SDj
and Xtop,j .

where
(a) follows from the independence between W1 and W2;
(b) follows from the fact XT

2 is a function of (W2, Y
T
F2
), and Y T1 is a function of (AT1 , X

T
2 );

(c) follows from the facts that H(AT1 , Y
T
F2
|W2,W1) = 0 and that conditioning reduces the entropy;

(d) follows from Fano’s inequality; and
(e) follows from the fact that X2,i is a function of (W2, Y

i−1
F2

).
We next bound the term

∑T
i=1H(A1i, YF2i|X2i) in (79).

Case 1: 0 ≤ l ≤ n. For this case, YF2i is a function of (A1i, X2i). Thus, we have
T∑

i=1

H(A1i, YF2i|X2i) =

T∑

i=1

H(YF2i|X2i, A1i) +

T∑

i=1

H(A1i|X2i)

≤ 0 + nT. (80)

Case 2: n ≤ l ≤ m. In this case, A1,i is a function of (YF2,i, X2,i). We have
T∑

i=1

H(A1i, YF2i|X2i) =

T∑

i=1

H(YF2i|X2i) +

T∑

i=1

H(A1i|X2i, YF2i)

≤ lT + 0. (81)

From both these cases, we conclude that R1 ≤ n+ (l − n)+. The inequality for R2 can be proved in a similar manner.
2) Bound on R1 + R2: Let SD1 represent the top m bits of the first transmitter. When m < n, it will be the top m

bits out of n bits. When n < m, it will represent all the bits from the first transmitter. Intuitively, SD1
represents the m

information bits that are visible at both receivers. Similarly, let SD2
represent the top m bits for the second transmitter.

Furthermore, define Xtopj as the top min(m, (2m−n)+) bits of transmitter j. In other words, Xtopj is the top (2m−n)+
bits of transmitter j when n

2 ≤ m ≤ n, the top m bits when m ≥ n. No equivalent variable is defined in the case when
m ≤ n

2 . These two random variables mainly serve to explain the bounds in the weak interference regime and the moderately
strong interference regime.

It is worthwhile to give examples on these four random variables for ease of reading. Consider the case of the very weak
interference regime where 0 < m ≤ n

2 . Xtopj and SDj
, for j = 1, 2, are illustrated in Figure 11. In this regime, SD1

represents the top m bits of transmitter 1, and Xtop1 is a null region in this regime.
Consider a second example. Consider the case of the weak interference regime where n

2 ≤ m ≤ 2n
3 . Again, Xtopj and

SDj , for j = 1, 2, are also illustrated in Figure 11. In this regime, SD1 also represents the top m bits of transmitter 1. Xtop1

is the top 2m− n bits of transmitter 1.
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In the proofs below, we make use of the following lemma.

Lemma 1.

I(STD2
, XT

top1, Y
T
F2
,W2;Y

T
F1
,W1) ≤ H(Y TF1

|W1) +

T∑

i=1

[H(YF2i|X2i, Xtop1,i) +H(Xtop1,i|SD2i)] (82)

I(STD1
, XT

top2, Y
T
F1
,W1;Y

T
F2
,W2) ≤ H(Y TF2

|W2) +

T∑

i=1

[H(YF1i|X1i, Xtop2,i) +H(Xtop2,i|SD1i)]. (83)

Proof:

I(STD2
, XT

top1, Y
T
F2
,W2;Y

T
F1
,W1)

= I(W2;Y
T
F1
,W1) + I(STD2

, XT
top1, Y

T
F2
;Y TF1

,W1|W2)

(a)
= H(Y TF1

|W1) +H(Y TF2
, STD2

, XT
top1|W2)

(b)

≤ H(Y TF1
|W1) +

T∑

i=1

[H(YF2i|Y i−1F2
, SiD2

, Xi
top1,W2, X2i) +H(Xtop1,i|Y i−1F2

, SiD2
,W2, X2i) +H(SD2i|Y i−1F2

,W2, X2i)]

(c)
= H(Y TF1

|W1) +

T∑

i=1

[H(YF2i|X2i, Xtop1,i) +H(Xtop1,i|SD2i)]

where
(a) follows from the fact that, given (W1,W2), the entropy of any random variable is 0; and that W1 is independent of W2;
(b) comes from the fact that X2i is a function of (Y i−1F2

,W2); and
(c) follows from the fact SD2i is a function of X2i.
The second part of the lemma is proved similarly to the above.

We have

T (R1 +R2 − pTe )
≤ I(W1;Y

T
1 ) + I(W2;Y

T
2 )

≤ I(W1;Y
T
1 , Y

T
F1
) + I(W2;Y

T
2 , Y

T
F2
)

= H(Y T1 ) +H(Y TF1
|Y T1 )−H(Y TF1

|W1)−H(Y T1 |Y TF1
,W1) +H(Y T2 ) +H(Y TF2

|Y T2 )−H(Y TF2
|W2)−H(Y T2 |Y TF2

,W2)

(a)
= H(Y T1 )−H(STD2

|Y TF1
,W1) +H(Y T2 )−H(STD1

|Y TF2
,W2)−H(Y TF1

|W1)−H(Y TF2
|W2)

(b)
= H(Y T1 )−H(STD2

, XT
top1|Y TF1

,W1) +H(Y T2 )−H(STD1
, XT

top2|Y TF2
,W2)−H(Y TF1

|W1)−H(Y TF2
|W2)

≤ H(Y T1 ) + [I(STD2
, XT

top1;Y
T
F1
,W1)−H(STD2

, XT
top1)] + [H(STD2

, XT
top1|Y T2 )−H(STD2

, XT
top1|Y T2 , XT

2 )]

+H(Y T2 ) + [I(STD1
, XT

top2;Y
T
F2
,W2)−H(STD1

, XT
top2)] + [H(STD1

, XT
top2|Y T1 )−H(STD1

, XT
top2|Y T1 , XT

1 )]

−H(Y TF1
|W1)−H(Y TF2

|W2)

= I(STD2
, XT

top1;Y
T
F1
,W1) +H(Y T2 |STD2

, XT
top1)−H(STD2

, XT
top1|Y T2 , XT

2 )

+ I(STD1
, XT

top2;Y
T
F2
,W2) +H(Y T1 |STD1

, XT
top2)−H(STD1

, XT
top2|Y T1 , XT

1 )−H(Y TF1
|W1)−H(Y TF2

|W2)

(c)
= I(STD2

, XT
top1;Y

T
F1
,W1) +H(Y T2 |STD2

, XT
top1) + I(STD1

XT
top2;Y

T
F2
,W2) +H(Y T1 |STD1

, XT
top2)

−H(Y TF1
|W1)−H(Y TF2

|W2)

(d)

≤ I(STD2
, XT

top1, Y
T
F2
,W2;Y

T
F1
,W1) +H(Y T2 |STD2

, XT
top1) + I(STD1

, XT
top2, Y

T
F1
,W1;Y

T
F2
,W2) +H(Y T1 |STD1

, XT
top2)

−H(Y TF1
|W1)−H(Y TF2

|W2)

(e)

≤
T∑

i=1

[H(Y2i|SD2i, Xtop1,i) +H(Y1i|SD1i, Xtop2,i) +H(YF2i|X2i, Xtop1,i) +H(YF1i|X1i, Xtop2,i) +H(Xtop1,i|SD2i)

+H(Xtop2,i|SD1i),

where
(a) follows from the fact that YFj

is a function of Yj for j = 1, 2;
(b) follows from the fact that XT

topj is a function of XT
j , which is in turn a function of (Y TFj

,Wj), for j = 1, 2;
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(c) follows from the facts that STDj
is a function of XT

j for j = 1, 2; and XT
top1 is a function of XT

1 , which is in turn a
function of (Y T2 , X

T
2 ), and vice versa;

(d) follows from the fact that side information increases the mutual information; and
(e) follows from Lemma 1.

Case 1: 0 ≤ m ≤ n
2

We have

H(Y2i|SD2i, Xtop1,i) = H(Y1i|SD1i, Xtop2,i) ≤ n−m, (84)
H(YF2i|X2i, Xtop1,i) = H(YF1i|X1i, Xtop2,i) ≤ (l − (n−m))+, (85)
H(Xtop1,i|SD2i) = H(Xtop2,i|SD1i) = 0. (86)

Thus, we have R1 +R2 ≤ 2(n−m) + 2[l − (n−m)]+.

Case 2: n
2 ≤ m ≤ n

We have

H(Y2i|SD2i, Xtop1,i) = H(Y1i|SD1i, Xtop2,i) ≤ n−m, (87)

H(YF2i|X2i, Xtop1,i) = H(YF1i|X1i, Xtop2,i) ≤ (l −m)+, (88)

H(Xtop1,i|SD2i) = H(Xtop2,i|SD1i) ≤ (2m− n)+. (89)

Thus, we have R1 +R2 ≤ 2m+ 2[l −m]+.

Case 3: n ≤ m We have

H(Y2i|SD2i, Xtop1,i) = H(Y1i|SD1i, Xtop2,i) = H(YF2i|X2i, Xtop1,i) = H(YF1i|X1i, Xtop2,i) = 0, (90)
H(Xtop1,i|SD2i) = H(Xtop2,i|SD1i) ≤ m. (91)

Thus, we have R1 +R2 ≤ 2m.

Combining the three cases, we have proved the fourth outer bound for R1 +R2.

3) Bound on 2R1 + R2 and R1 + 2R2: In this sub-section, we focus on the proof for the upper bound on 2R1 + R2.
The proof for the bound on R1 + 2R2 follows in a similar manner.

We have

T (2R1 +R2 − pTe )
≤ 2I(W1;Y

T
1 ) + I(W2;Y

T
2 )

≤ I(W1;Y
T
1 , Y

T
F1
) + I(W1;Y

T
1 , Y

T
F2
|W2) + I(W2;Y

T
2 , Y

T
F2
)

= H(Y T1 ) +H(Y TF1
|Y T1 )−H(Y TF1

|W1)−H(Y T1 |Y TF1
,W1) +H(Y TF2

|W2) +H(Y T1 |Y TF2
,W2)−H(Y T1 , Y

T
F2
|W2,W1)

+H(Y T2 ) +H(Y TF2
|Y T2 )−H(Y TF2

|W2)−H(Y T2 |Y TF2
,W2)

(a)
= H(Y T1 )−H(Y TF1

|W1)−H(Y T1 |Y TF1
,W1) +H(Y T1 |Y TF2

,W2) +H(Y T2 )−H(Y T2 |Y TF2
,W2)

(b)
= H(Y T1 )−H(Y TF1

|W1)−H(STD2
|Y TF1

,W1) +H(Y T1 |Y TF2
,W2) +H(Y T2 )−H(STD1

|Y TF2
,W2)

(c)
= H(Y T1 )−H(Y TF1

|W1)−H(STD2
, XT

top1|Y TF1
,W1) +H(Y T1 |Y TF2

,W2) +H(Y T2 )−H(STD1
|Y TF2

,W2)

(d)

≤ H(Y T1 )−H(Y TF1
|W1)−H(STD2

, XT
top1|Y TF1

,W1) +H(Y T1 , S
T
D1
|Y TF2

,W2) +H(Y T2 )−H(STD1
|Y TF2

,W2)

(e)

≤ H(Y T1 )−H(Y TF1
|W1)− [H(STD2

, XT
top1)− I(STD2

, XT
top1;Y

T
F1
,W1)] + [H(STD1

|Y TF2
,W2)

+H(Y T1 |STD1
, Y TF2

,W2)] +H(Y T2 , S
T
D2
, XT

top1)−H(STD1
|Y TF2

,W2)

= H(Y T1 )−H(Y TF1
|W1) + I(STD2

, XT
top1;Y

T
F1
,W1) +H(Y T1 |STD1

, Y TF2
,W2) +H(Y T2 |STD2

, XT
top1)

(f)

≤ H(Y T1 )−H(Y TF1
|W1) + I(STD2

, XT
top1, Y

T
F2
,W2;Y

T
F1
,W1) +H(Y T1 |STD1

, Y TF2
,W2) +H(Y T2 |STD2

, XT
top1)

(g)
= H(Y T1 )−H(Y TF1

|W1) + [I(W2;Y
T
F1
,W1) + I(STD2

, XT
top1, Y

T
F2
;Y TF1

,W1|W2)]

+H(Y T1 |STD1
, Y TF2

,W2) +H(Y T2 |STD2
, XT

top1)
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(h)
= H(Y T1 )−H(Y TF1

|W1) + [(H(Y TF1
|W1) +H(Y TF2

, STD2
, XT

top1|W2)] +H(Y T1 |STD1
, Y TF2

,W2) +H(Y T2 |STD2
, XT

top1)

(i)

≤
T∑

i=1

[H(Y1i) +H(YF2i|Y i−1F2
, SiD2

, Xi
top1,W2, X2i) +H(SD2i|Y i−1F2

,W2, X2i) +H(Xtop1,i|Y i−1F2
, SiD2

,W2)

+H(Y1i|SD1i, SD2i) +H(Y2i|SD2i, Xtop1,i)]

(j)
=

T∑

i=1

[H(Y1i) +H(YF2i|X2i, Xtop1,i) +H(Xtop1,i|SD2i) +H(Y1i|SD1i, SD2i) +H(Y2i|SD2i, Xtop1,i)],

where
(a) follows from the facts that H(Y T1 , Y

T
F2
|W2,W1) = 0, H(Y TF1

|Y T1 ) = 0, and H(Y TF2
|Y T2 ) = 0;

(b) follows from the fact that Xji is a function of (Y i−1Fj
,Wj), for j = 1, 2;

(c) follows from the fact that XT
top1 is a function of XT

1 , which is in turn a function of (W1, Y
T−1
F1

).This is the crucial step;
(d) follows from the fact that side information increases the entropy;
(e) follows from the fact that side information increases the entropy;
(f) follows from the fact side information increases the mutual information;
(g) follows from the fact that STD2

is a function of (Y TF2
,W2);

(h) follows from the fact given (W1,W2), the entropy of any random variable is 0;
(i) follows from the fact that X2i is a function of (Y i−1F2

,W2); and
(j) follows from the fact SD2i is a function of X2i.

Case 1: 0 ≤ m ≤ n
2

We have

H(Y1i) ≤ n, (92)

H(YF2i|X2i, Xtop1,i) ≤ (l − (n−m))+, (93)
H(Xtop1,i|SD2i) = 0, (94)
H(Y1i|SD1i, SD2i) = H(Y2i|SD2i, Xtop1,i) ≤ n−m. (95)

Thus, we have 2R1 +R2 ≤ 3n− 2m+ [l − (n−m)]+.
Case 2: n

2 ≤ m ≤ n
We have

H(Y1i) ≤ n, (96)

H(YF2i|X2i, Xtop1,i) ≤ (l −m)+, (97)

H(Xtop1,i|SD2i) ≤ (2m− n)+, (98)
H(Y1i|SD1i, SD2i) = H(Y2i|SD2i, Xtop1,i) ≤ n−m. (99)

Thus, we have 2R1 +R2 ≤ 2n+ [l −m]+.
Case 3: n ≤ m

We have

H(Y1i) = H(Y2i|SD2i, Xtop1,i) ≤ m (100)
H(YF2i|X2i, Xtop1,i) = H(Y1i|SD1i, SD2i) = H(Y2i|SD2i, Xtop1,i) = 0. (101)

Thus, we have 2R1 +R2 ≤ 2m.
Combining the three cases, we have proved the bound on 2R1 +R2.

B. Forward proof

In this section, we present an encoding scheme, for the symmetric linear deterministic interference channel with partial
feedback.

1) Achievable rate region for discrete memoryless interference channel with noisy feedback: Before we derive the
achievable rate region for the symmetric linear deterministic interference channel with partial feedback, we start with a
result, which gives an achievable rate region for the general two-user discrete memoryless interference channel with noisy
feedback.
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Remark 10. Throughout this section, we shall often use the notation convenience pV |U (v|u) = p(v|u) and pV (v) = p(v),
where the dropped subscripts are obvious by observation of the arguments used in the functions.

Lemma 2. The capacity region of the two-user discrete memoryless interference channel with noisy feedback as defined
above includes the set of (R1, R2) such that

R1 ≤ ρ1 + κ2 + ρ3 (102)
R2 ≤ κ1 + ρ2 + κ3 (103)
R1 ≤ κ6 (104)
R1 ≤ κ4 + ρ1 (105)
R2 ≤ ρ6 (106)
R2 ≤ ρ4 + κ1 (107)

R1 +R2 ≤ κ2 + ρ6 (108)
R1 +R2 ≤ ρ2 + κ6 (109)
R1 +R2 ≤ κ1 + ρ1 + κ5 + ρ2 (110)
R1 +R2 ≤ κ1 + ρ1 + ρ5 + κ2 (111)
R1 +R2 ≤ κ1 + ρ1 + κ3 + ρ3 (112)

2R1 +R2 ≤ κ6 + κ2 + ρ3 + ρ1 (113)
2R1 +R2 ≤ 2ρ1 + κ1 + κ5 + κ2 + ρ3 (114)
R1 + 2R2 ≤ ρ6 + ρ2 + κ3 + κ1 (115)
R1 + 2R2 ≤ 2κ1 + ρ1 + ρ5 + ρ2 + κ3, (116)

over all joint distributions

p(u)p(u1|u)p(u2|u)p(v1|u, u1)p(v2|u, u2)p(x1|u, u1, v1)p(x2|u, u2, v2)p(y1y2|x1x2)p(yF1 |y1)p(yF2 |y2), (117)

where

κ1 = I(U2;YF1
|X1, V1, U1, U) (118)

κ2 = I(X1;Y1|U,U1, U2, V1, V2) (119)
κ3 = I(X1, V2;Y1|U,U1, V1, U2) (120)
κ4 = I(X1;Y1|U,U1, U2, V2) (121)
κ5 = I(X1, V2;Y1|U,U1, U2) (122)
κ6 = I(U,U2, V2, X1;Y1) (123)
ρ1 = I(U1;YF2

|UV2U2X2) (124)
ρ2 = I(X2;Y2|U,U1, U2, V1, V2) (125)
ρ3 = I(X2, V1;Y2|U,U2, V2, U1) (126)
ρ4 = I(X2;Y2|U,U2, U1, V1) (127)
ρ5 = I(X2, V1;Y2|U,U1, U2) (128)
ρ6 = I(U,U1, V1, X2;Y2). (129)

Proof: This lemma is a corollary of Theorem 1 in Tuninetti’s work [14]. By interpreting Y1, Y2, Y3, Y4 in [14] as
YF1

, YF2
, Y1, Y2 in our work respectively, and applying Fourier-Motzkin elemination to the result in that Theorem 1, we

obtain this lemma.

Remark 11. The lemma, just as related works in [14] [15] [5] [10], uses standard methods which combine three techniques:
block Markov encoding [31], backward decoding [32], and HK message splitting [29]. A message from each transmitter is
split into three parts: private message, cooperative common message and non-cooperative common message.
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Xj,pVj Xj

(n−m)+

m

Xj,ic Uj Xj,nic

Fig. 12: Generic encoding

2) Achievable rate region for the symmetric interference channel with partial feedback: Now, we apply this lemma to
construct a generic encoding scheme, and to find the corresponding achievable rate region for the symmetric deterministic
interference channel with partial feedback. Denote Xj,CC , Xj,NCC and Xj,P as column vectors of size min(n,m) bits, for
j, k ∈ {1, 2} and j 6= k. We let

U = ∅ (130)
Uj = U ⊕Xj,CC (131)
Vj = Uj ⊕Xj,NCC (132)
Xj = Vj ⊕Xj,P . (133)

Xj,CC , Xj,NCC , Xj,P contain the interfering common message, the non-interfering common message and private message,
respectively, for the transmitter j. Consider Figure 12, which illustrates the generic encoding scheme. The interfering common
message and the non-interfering common message are restricted to the top area of m bits, and the private message is restricted
to the bottom area of (n−m)+ bits. That means in the strong and very strong interference regimes when n < m, no private
message is encoded. Intuitively, this should be the case as any transmitted signal from any transmitter j will be received by
both receivers anyway. As interfering common message causes interference to the non-intended receiver, it needs to be fed
back via the feedback link so that interference can be resolved. Thus, the achievable rate of the interfering common message
depends directly on the feedback link strength. Hence, we propose an adaptive encoding scheme that varies according the
strength of the feedback link. Here, we choose the size of the interfering common message of the transmitter j to be upper-
bounded by m . Once the codeword Uj for the cooperative common message Xj,CC has been constructed, we construct the
codeword Vj which depends on the non-interfering common message Xj,NCC and Uj . The non-interfering common message
can either contain fresh information bits, or fedback signals, which needs to be relayed again for resolving interference, or
null information. Furthermore, the non-interfering common message only occupies positions in the top area of m bits, which
has not been taken by the interfering common information. Finally, the codeword Xj for the transmitter j depends on the
private message Xj,P and Vj . We will show that the optimal achievable rate region matches the outer bound region.

With the encoding scheme shown above, the following equalities, where f ′i(.) are deterministic functions, for i = 1, 2, 3, 4,

H(Y1|X1, V2) = 0, (134)
H(Y2|X2, V1) = 0, (135)

U1 = f ′1(V1), (136)
V1 = f ′2(X1), (137)
U2 = f ′3(V2), (138)
V2 = f ′4(X2), (139)

always hold. Thus, we have

κ1 = I(U2;YF1
|X1, V1, U1, U) = I(U2;YF1

|X1) (140)
κ2 = H(Y1|U,U1, U2, V1, V2) = H(Y1|V1, V2) (141)
κ3 = H(Y1|U,U1, V1, U2) = H(Y1|V1, U2) (142)
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κ4 = H(Y1|U,U1, U2, V2) = H(Y1|U1, V2) (143)
κ5 = H(Y1|U,U1, U2) = H(Y1|U1, U2) (144)
κ6 = H(Y1) (145)
ρ1 = I(U1;YF2

|U, V2, U2, X2) = I(U1;YF2
|X2) (146)

ρ2 = H(Y2|U,U1, U2, V1, V2) = H(Y2|V1, V2) (147)
ρ3 = H(Y2|U,U2, V2, U1) = H(Y2|V2, U1) (148)
ρ4 = H(Y2|U,U2, U1, V1) = H(Y2|U2, V1) (149)
ρ5 = H(Y2|U,U1, U2) = H(Y2|U1, U2) (150)
ρ6 = H(Y2). (151)

For readers’ convenience and for ease of calculation, we illustrate the encoding schemes case by case.
3) Very weak interference m ≤ 1

2n: We consider 2 cases.

Case 1: l ≤ n−m.
Set
• X1CC = X2CC = 0;
• X1NCC = X2NCC = m Bernoulli ( 12 ) random bits at the top region;
• X1P = X2P = n−m Bernoulli ( 12 ) random bits at the bottom area.
We have

ρ1 = κ1 = I(U2;YF1
|X1) = 0, (152)

ρ2 = κ2 = H(Y1|V1, V2) = n−m, (153)
ρ3 = κ3 = H(Y1|V1, U2) = n−m, (154)
ρ4 = κ4 = H(Y1|U1, V2) = n, (155)
ρ5 = κ5 = H(Y1|U1, U2) = n, (156)
ρ6 = κ6 = H(Y1) = n. (157)

Applying Lemma 2, the following region is achievable

R1 ≤ n, (158)
R2 ≤ n, (159)

R1 +R2 ≤ 2n−m, (160)
R1 +R2 ≤ 2(n−m), (161)
2R1 +R2 ≤ 3n− 2m, (162)
R1 + 2R2 ≤ 3n− 2m. (163)

Case 2: n−m ≤ l.
In this case, the feedback link helps to increase the rate of interfering common message. Set
• X1CC = X2CC = (l − (n−m))+ Bernoulli ( 12 ) random bits at the top region;
• X1NCC = X2NCC = m− (l − (n−m))+ Bernoulli ( 12 ) random bits, right below the interfering common message’s

region;
• X1P = X2P = n−m Bernoulli ( 12 ) random bits at the bottom area.
Applying Lemma 2, the following region is achievable

R1 ≤ n, (164)
R2 ≤ n, (165)

R1 +R2 ≤ 2n−m, (166)
R1 +R2 ≤ 2(n−m) + 2(l − (n−m)+))+, (167)

2R1 +R2 ≤ 3n− 2m+ (l − (n−m)+)+, (168)
R1 + 2R2 ≤ 3n− 2m+ (l − (n−m)+)+. (169)

Thus, we have shown the achievability of the capacity region in Theorem 1 in the very weak interference regime.
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The calculation in other regimes are similar. Thus, we will only show the assignment of bits to the random variables, and
leave it the readers that these bit assignments allow us to achieve the capacity region in Theorem 1.

4) Weak and moderately strong interference regimes 1
2n ≤ m ≤ n: We consider 2 cases.

Case 1: l ≤ m.
This is the case of weak feedback link, thus, feedback link cannot help to resolve interference at receivers. No interfering
common message should be sent. Set
• X1CC = X2CC = 0;
• X1NCC = X2NCC = m Bernoulli ( 12 ) random bits at the top region;
• X1P = X2P = n−m Bernoulli ( 12 ) random bits at the bottom area.

Case 2: m ≤ l. The rate of interfering common message should be chosen carefully to make use of the strong feedback
links. Set
• X1CC = X2CC = (l − (n−m))+ Bernoulli ( 12 ) random bits at the top region;
• X1NCC = X2NCC = m− (l − (n−m))+ Bernoulli ( 12 ) random bits, right below the interfering common message’s

region;
• X1P = X2P = n−m Bernoulli ( 12 ) random bits at the bottom area.
5) Strong and very strong interference regimes: n ≤ m: Note that no private information is sent in these regimes. We

consider two cases.
Case 1: l ≤ n. Set
• X1CC = X2CC = 0;
• X1NCC = X2NCC = m Bernoulli ( 12 ) random bits at the top region;
• X1P = X2P = 0.

Case 2: n ≤ l. Set
• X1CC = X2CC = m Bernoulli ( 12 ) random bits at the top region;
• X1NCC = X2NCC = 0;
• X1P = X2P = 0.

C. Proof of Theorem 2

Inspired by the LD-IC-PF, we define

S2G :=
√
INRX2 + Z1, (170)

S1G :=
√
INRX1 + Z2, (171)

Xtop1G :=

{
INR√
SNR

X1 + Z2,
1
2 ≤ αG ≤ 1

0, otherwise,
(172)

Xtop2G :=

{
INR√
SNR

X2 + Z1,
1
2 ≤ αG ≤ 1

0, otherwise.
(173)

Almost similarly to the proof of the outer bounds in Theorem 1, with some subtle difference, we can show the following
lemma.

Lemma 3. Consider the Gaussian IC with noisy feedback as defined in Section II. The capacity region of the symmetric
Gaussian IC with noisy feedback, is included by the set of non-negative pairs (R1, R2) satisfying

R1 ≤ h(Y1, YF2
|X2)− h(Z1)− h(Z̃2), (174)

R1 +R2 ≤ h(Xtop1G|S2G) + h(YF2
|X2, Xtop1G) + h(Y2|S2G, Xtop1G)

+ h(Xtop2G|S1G) + h(YF1
|X1, Xtop2G) + h(Y1|S1G, Xtop2G)

− h(Z̃2)− h(Z̃1)− 2h(Z2)− 2h(Z1) (175)
2R1 +R2 ≤ h(Xtop1G|S2G) + h(YF2

|X2, Xtop1G) + h(Y2|S2G, Xtop1G)

+ h(Y1|S1G, X2) + h(Y1)− 2h(Z1)− 2h(Z2)− h(Z̃2). (176)

The proof of Lemma 3 is presented in the appendix, section VI-D.
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We are going to calculate the mutual informations in the bounds mentioned above and simplify them. We have

h(Y1|X2)− h(Z1) =
1

2
log[SNR(1− ρ2) + 1]

≤ 1

2
log(SNR + 1). (177)

We can also show that

h(YF2 |Y1, X2)− h(Z̃2) = h(g2(h12X1 + Z2) + Z̃2|h11X1 + Z1, X2)− h(Z̃2) (178)

≤ h(g2(h12X1 + Z2) + Z̃2|h11X1 + Z1)− h(Z̃2) (179)

=
1

2
log

( SNRF

SNR+INR+2ρ
√
SNR.INR+1

· (SNR + INR + 1)

SNR + 1
+ 1

)
(180)

≤ 1

2
log

(
SNRF

SNR + 1
+ 1

)
. (181)

From equations (174), (177) and (181), we can prove the validity of the bound (37).

Next, we are going to prove the bound (40).
Case 1: 1

2 ≤ αG < 1
We have

h(Xtop1G|S2G)− h(Z2) =
1

2
log

(
INR3

SNR (1− ρ2) + INR + INR2

SNR + 1

INR + 1

)
(182)

≤ 1

2
log

(
INR3 + INR2

SNR · (INR + 1)
+ 1

)
. (183)

Next, we have

h(Y2|S2, Xtop1G)− h(Z2) (184)

= h

(
h21X1 + h22X2 + Z2|

√
INRX2 + Z1,

INR√
SNR

X1 +X2

)
− h(Z2) (185)

= log

√
SNR

INR
+ h

(
INR√
SNR

X1 +
√
INRX2 +

√
INR√
SNR

Z2|
√
INRX2 + Z1,

INR√
SNR

X1 +X2

)
− h(Z2) (186)

=
1

2
log

SNR

INR
+ h

(
INR√
SNR

X1 +

√
INR√
SNR

Z2 − Z1|
√
INRX2 + Z1,

INR√
SNR

X1 +X2

)
− h(Z2) (187)

≤ 1

2
log

SNR

INR
+ h

(
INR√
SNR

X1 +

√
INR√
SNR

Z2 − Z1|
INR√
SNR

X1 +X2

)
− h(Z2) (188)

=
1

2
log

SNR

INR
+

1

2
log




INR3

SNR2 + 2 INR2

SNR + 1− 2 INR2
√
INR

SNR
√
SNR

INR2

SNR + 1


 (189)

≤ 1

2
log

SNR

INR
+

1

2
log 3. (190)

Next, we have

h(YF2
|X2, Xtop1G)− h(Z̃2) = h

(
g2(h21X1 + Z2) + Z̃2|X2,

INR√
SNR

X1 + Z2

)
− h(Z̃2) (191)

≤ h
(
g2
√
INR ·X1 + g2Z2 + Z̃2|

INR√
SNR

X1 + Z2

)
− h(Z̃2) (192)

=
1

2
log


g22

INR + INR2

SNR − 2 INR
√
INR√

SNR

INR2

SNR + 1
+ 1


 (193)

≤ 1

2
log

(
g22

INR + INR2

SNR
INR2

SNR

+ 1

)
(194)
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=
1

2
log

(
SNRF

SNR + INR + 2ρ
√
SNRINR + 1

· SNR + INR

INR
+ 1

)
(195)

≤ 1

2
log

(
SNRF
INR

+ 1

)
(196)

Combining equations (175), (183),(190) and (196), and using symmetry, we have proved the first half of the bound (40).

Case 2: αG /∈ [ 12 , 1]
In this case, due to the definition of XtopjG, the equation (175) is equivalent to

R1 +R2 ≤ h(YF2
|X2) + h(Y2|S2G) + h(YF1

|X1) + h(Y1|S1G)− h(Z̃2)− h(Z̃1)− h(Z2)− h(Z1). (197)

Next, we have

h(YF2 |X2)− h(Z̃2) =
1

2
log

(
SNRF

SNR + INR + 2ρ
√
SNR · INR + 1

· [INR(1− ρ2) + 1] + 1

)
(198)

≤ 1

2
log

(
SNRF

SNR + INR + 1
· (INR + 1) + 1

)
. (199)

Next, we have

h(Y1|S1G)− h(Z1) (200)

=
1

2
log

(
[INR2(1− ρ2) + SNR + 2INR + 2ρ

√
SNR · INR + 1] · 1

INR + 1

)
(201)

≤ 1

2
log

(
[INR2 + SNR+ 2INR + 2ρ

√
SNR · INR + 1] · 1

INR + 1

)
. (202)

Combining equations (197), (199), and (202), and using symmetry, we have proved the last half of the bound (40).

Next, we are going to prove the validity of the bound (41).
We have

h(Y1|X2, S1)− h(Z1) ≤
1

2
log

(
SNR

INR + 1
+ 1

)
(203)

h(Y1)− h(Z1) ≤
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1). (204)

Case 1: 1
2 ≤ αG < 1

Combining equations (176), (203), (204), (183), (190) and (196), we have proved the bound (41) for this case.
Case 2: αG /∈ [ 12 , 1]
Combining equations (176), (203), (204), (197), (199) and (202), we have proved the bound (41) for this remaining case.

D. Proof of Lemma 3

The proof of the bound (174) in Lemma 3 is trivial. In this sub-section, we will only prove the bound (176). The proof
of the bound (175) contains no new ideas and can be proved similarly to the proof in Theorem 1 and the proof of (176).
Before proving the bound of (176), we need to prove two lemmas.

Lemma 4.

h(ST2G|W1, Y
T
F1
) = h(Y T1 |W1, Y

T
F1
) (205)

h(ST1G|W2, Y
T
F2
) = h(Y T2 |W2, Y

T
F2
) (206)
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Proof: We have

h(Y T1 |W1, Y
T
F1
)
(a)
=

T∑

i=1

h(Y1i|W1, Y
T
F1
, Y i−11 , Xi

1)

=

T∑

i=1

h(S2G,i|W1, Y
T
F1
, Si−12G , Xi

1)

(b)
=

T∑

i=1

h(S2G,i|W1, Y
T
F1
, Si−12G )

= h(ST2G|W1, Y
T
F1
)

where (a),(b) comes from the fact Xi
1 is a function of (W1, Y

i−1
F1

).
The other equality is proven in a similar way.

Lemma 5.

I(ST2G, X
T
top1G, Y

T
F2
,W2;Y

T
F1
,W1) ≤

T∑

i=1

[h(Xtop1G,i|S2G,i)− h(Z2i)

+ h(YF2i|X2i, Xtop1G,i)− h(Z̃1i)− h(Z̃2i)] + h(Y TF1
|W1), (207)

I(ST1G, X
T
top2G, Y

T
F1
,W1;Y

T
F2
,W2) ≤

T∑

i=1

[h(Xtop2G,i|S1G,i)− h(Z1i)

+ h(YF1i|X1i, Xtop2G,i)− h(Z̃2i)− h(Z̃1i)] + h(Y TF2
|W2). (208)

Proof:

I(ST2G, X
T
top1G, Y

T
F2
,W2;Y

T
F1
,W1)

= I(ST2G, X
T
top1G, Y

T
F2
;Y TF1

,W1|W2) + I(W2;Y
T
F1
,W1)

= h(ST2G, X
T
top1G, Y

T
F2
|W2)− h(ST2G, XT

top1G, Y
T
F2
|Y TF1

,W1,W2) + h(Y TF1
|W1) + h(W1)− h(W1|W2)− h(Y TF1

|W1,W2)

(a)
= h(ST2G, X

T
top1G, Y

T
F2
|W2)− h(ST2G, XT

top1G, Y
T
F2
|Y TF1

,W1,W2, X
T
1 ) + h(Y TF1

|W1)− h(Y TF1
|W1,W2)

(b)
= h(ST2G, X

T
top1G, Y

T
F2
|W2)− h(ST2G, ZT2 , Y TF2

|Y TF1
,W1,W2, X

T
1 ) + h(Y TF1

|W1)− h(Y TF1
|W1,W2)

(c)

≤ h(ST2G, X
T
top1G, Y

T
F2
|W2)− h(ST2G, ZT2 , Y TF2

|Y TF1
,W1,W2, X

T
1 , X

T
2 ) + h(Y TF1

|W1)− h(Y TF1
|W1,W2)

(d)

≤ h(ST2G, X
T
top1G, Y

T
F2
|W2)− h(ZT1 , ZT2 , Z̃T2 |Y TF1

,W1,W2, X
T
1 , X

T
2 ) + h(Y TF1

|W1)− h(Y TF1
|W1,W2, Y

T
1 )

=

T∑

i=1

[h(S2G,i, Xtop1G,i, YF2i|Si−12G , Xi−1
top1G, Y

i−1
F2

,W2)]− h(ZT1 )− h(ZT2 )− h(Z̃T2 ) + h(Y TF1
|W1)− h(Z̃T1 |W1,W2, Y

T
1 )

(e)
=

T∑

i=1

[h(S2G,iXtop1G,i, YF2i|X2i, S
i−1
2G , Xi−1

top1G, Y
i−1
F2

,W2)]− h(ZT1 )− h(ZT2 )− h(Z̃T2 )− h(Z̃T1 ) + h(Y TF1
|W1)

≤
T∑

i=1

[h(S2G,i, Xtop1G,i, YF2i|X2i)− h(Z1i)− h(Z2i)− h(Z̃2i)− h(Z̃1i)] + h(Y TF1
|W1)

≤
T∑

i=1

[h(S2G,i|X2i) + h(Xtop1G,i|X2i, S2G,i) + h(YF2i|X2i, S2G,i, Xtop1G,i)− h(Z1i)− h(Z2i)− h(Z̃2i)

− h(Z̃1i)] + h(Y TF1
|W1)

=

T∑

i=1

[h(Z1i|X2i) + h(Xtop1G,i|X2i, S2Gi) + h(YF2i|X2i, S2G,i, Xtop1G,i)− h(Z1i)− h(Z2i)− h(Z̃2i)

− h(Z̃1i)] + h(Y TF1
|W1)
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(f)

≤
T∑

i=1

[h(Xtop1G,i|S2G,i) + h(YF2i|X2i, Xtop1G,i)− h(Z2i)− h(Z̃1i)− h(Z̃2i)] + h(Y TF1
|W1)

where
(a) follows from the facts that W1 and W2 are independent, and that XT

1 is a function of Y T−1F1
and W1;

(b) follows from the fact we can remove the known information XT
1 from XT

top1G;
(c) follows from the fact that more conditioning reduces the entropy;
(d) follows from the fact that more conditioning reduces the entropy;
(e) follows from the fact that Xji is a function of (Y i−1Fj

,Wj) for j = 1, 2; and
(f) in this step, we try to obtain a bound that is equivalent to that in the linear deterministic model.

Now, we are going to prove the bound (176). We have

T (2R1 +R2 − pTe )
≤ 2I(W1;Y

T
1 ) + I(W2;Y

T
2 )

≤ I(W1;Y
T
1 , Y

T
F1
) + I(W1;Y

T
1 , Y

T
F2
|W2) + I(W2;Y

T
2 , Y

T
F2
)

= h(Y T1 ) + h(Y TF1
|Y T1 )− h(Y TF1

|W1)− h(Y T1 |Y TF1
,W1) + h(Y TF2

|W2)− h(Y TF2
|W2,W1) + I(W1;Y

T
1 |Y TF2

,W2)

+ h(Y T2 ) + h(Y TF2
|Y T2 )− h(Y TF2

|W2)− h(Y T2 |Y TF2
,W2)

= h(Y T1 )− h(Y T1 |Y TF1
,W1) + I(W1;Y

T
1 |Y TF2

,W2) + h(Y T2 )− h(Y T2 |Y TF2
,W2)

+ h(Y TF1
|Y T1 )− h(Y TF1

|W1)− h(Y TF2
|W2,W1) + h(Y TF2

|Y T2 )

(a)
= h(Y T1 )− h(ST2G|Y TF1

,W1) + I(W1;Y
T
1 |Y TF2

,W2) + h(Y T2 )− h(ST1G|Y TF2
,W2)

+ h(Y TF1
|Y T1 )− h(Y TF1

|W1)− h(Y TF2
|W2,W1) + h(Y TF2

|Y T2 )

(b)
= h(Y T1 )− h(ST2G, ZT2 |Y TF1

,W1, X
T
1 ) + h(ZT2 |Y TF1

,W1, X
T
1 S

T
2G) + I(W1;Y

T
1 |Y TF2

,W2) + h(Y T2 )− h(ST1G|Y TF2
,W2)

+ h(Y TF1
|Y T1 )− h(Y TF1

|W1)− h(Y TF2
|W2,W1) + h(Y TF2

|Y T2 )

(c)

≤ h(Y T1 )− h(ST2G, XT
top1G|Y TF1

,W1) + I(W1;Y
T
1 |Y TF2

,W2) + h(Y T2 )− h(ST1G|Y TF2
,W2)

+ h(Y TF1
|Y T1 )− h(Y TF1

|W1)− h(Y TF2
|W2,W1) + h(Y TF2

|Y T2 )

(d)

≤ h(Y T1 )− h(ST2G, XT
top1G|Y TF1

,W1) + I(W1;Y
T
1 , S

T
1G|Y TF2

,W2) + h(Y T2 )− h(ST1G|Y TF2
,W2)

+ h(Y TF1
|Y T1 )− h(Y TF1

|W1)− h(Y TF2
|W2,W1) + h(Y TF2

, |Y T2 )

= h(Y T1 )− h(ST2G, XT
top1G|Y TF1

,W1) + h(Y T1 , S
T
1G|Y TF2

,W2)− h(Y T1 , ST1G|Y TF2
,W2,W1) + h(Y T2 )

− h(ST1G|Y TF2
,W2) + h(Y TF1

|Y T1 )− h(Y TF1
|W1)− h(Y TF2

|W2,W1) + h(Y TF2
|Y T2 )

(e)

≤ h(Y T2 )− h(ST2G, XT
top1G|Y TF1

,W1) + h(Y T1 |ST1G, Y TF2
,W2) + h(Y T1 )− h(ZT1 , ZT2 )

+ h(Y TF1
|Y T1 )− h(Y TF1

|W1)− h(Y TF2
|W2,W1) + h(Y TF2

|Y T2 )

(f)

≤ h(Y T2 ) + [I(ST2G, X
T
top1G;Y

T
F1
,W1)− h(ST2G, XT

top1G)] + [h(ST2G, X
T
top1G|Y T2 )− h(ST2G, XT

top1G|Y T2 , XT
2 , X

T
1 )]

+ h(Y T1 |ST1G, Y TF2
,W2) + h(Y T1 )− h(ZT1 )− h(ZT2 ) + h(Y TF1

|Y T1 )− h(Y TF1
|W1)− h(Y TF2

|W2,W1) + h(Y TF2
|Y T2 )

= I(ST2G, X
T
top1G;Y

T
F1
,W1) + h(Y T2 |ST2G, XT

top1G)− h(ZT1 , ZT2 |Y T2 , XT
2 , X

T
1 ) + h(Y T1 |ST1G, Y TF2

,W2)

+ h(Y T1 )− h(ZT1 )− h(ZT2 ) + h(Y TF1
|Y T1 )− h(Y TF1

|W1)− h(Y TF2
|W2,W1) + h(Y TF2

|Y T2 )

(g)

≤ I(ST2G, X
T
top1G, Y

T
F2
,W2;Y

T
F1
,W1) + h(Y T2 |ST2G, XT

top1G) + h(Y T1 |ST1G, Y TF2
,W2) + h(Y T1 )− 2h(ZT1 )− h(ZT2 )

+ h(Y TF1
|Y T1 )− h(Y TF1

|W1)− h(Y TF2
|W2,W1) + h(Y TF2

|Y T2 )

(h)

≤
T∑

i=1

[h(Xtop1G,i|S2G,i) + h(YF2i|X2i, Xtop1G,i)− h(Z2i)− h(Z̃1i)− h(Z̃2i)] + h(Y TF1
|W1) + h(Y T2 |ST2G, XT

top1G)

+ h(Y T1 |ST1G, Y TF2
,W2) + h(Y T1 )− 2h(ZT1 )− h(ZT2 ) + h(Y TF1

|Y T1 )− h(Y TF1
|W1)− h(Y TF2

|W2,W1) + h(Y TF2
|Y T2 )

(i)

≤
T∑

i=1

[h(Xtop1G,i|S2Gi) + h(YF2i|X2i, Xtop1G,i)− h(Z2i)− h(Z̃1i)− h(Z̃2i)] + h(Y T2 |ST2G, XT
top1G)
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+ h(Y T1 |ST1G, Y TF2
,W2) + h(Y T1 )− 2h(ZT1 )− h(ZT2 ) + h(Z̃T1 |Y T1 )− h(Y TF2

|W2,W1, Y
T
2 ) + h(Z̃T2 |Y T2 )

=

T∑

i=1

[h(Xtop1G,i|S2Gi) + h(YF2i|X2,i, Xtop1G,i)− 2h(Z1i)− 2h(Z2i)] + h(Y T2 |ST2G, XT
top1G) + h(Y T1 |ST1G, Y TF2

,W2, X
T
2 )

+ h(Y T1 )− h(Z̃T2 |W2,W1, Y
T
2 )

≤
T∑

i=1

[h(Xtop1G,i|S2G,i) + h(YF2i|X2i, Xtop1G,i) + h(Y2i|S2G,i, Xtop1G,i) + h(Y1i|S1G,i, X2i) + h(Y1i)

− 2h(Z1i)− 2h(Z2i)− h(Z̃2i)]

where
(a) follows from Lemma 4;
(b) follows from the fact that XT

1 is a function of (Y TF1
,W1);

(c) follows from the fact XT
top1G is a function of ZT2 and XT

1 , which is in turn a function of (Y TF1
,W1);

(d) follows from the fact, more side information increases the mutual information;
(e) follows from h(Y T1 , S

T
1G|Y TF2

,W2,W1) ≥ h(Y T1 , ST1G|Y TF2
,W2,W1, X

T
1 ) = h(ZT1 , Z

T
2 );

(f) follows from the fact more conditioning reduces the entropy;
(g) follows from the fact, more side information increases the mutual information;
(h) follows from utilization of Lemma 5; and
(i) follows from the fact more conditioning reduces the entropy.

E. Proof of Theorem 3

Choose (U,Ui, Vi, Xip), for i ∈ {1, 2} as jointly Gaussian, independent random variables which satisfy

U ∼ N (0, 0), (209)
Ui ∼ N (0, Pcc), (210)
Vi ∼ N (0, Pnc), (211)

Xip ∼ N (0, Pp), (212)
Pcc + Pnc + Pp = 1. (213)

Set Xi = U + Ui + Vi +Xip. With this choice of random variables, Theorem 3 is a direct corollary of Lemma 2.

F. Proof of Theorem 4

The strategy to prove this theorem is that we need to carefully choose the right power allocations Pp, Pnc, Pcc such that
the achievable rate region approximates the capacity region within a constant gap.

When INR < 1, by treating interference as noise and not using any feedback, each receiver can achieve a rate of

1

2
log

(
1 +

SNR

INR + 1

)
. (214)

We have

ψ1 −
1

2
log

(
1 +

SNR

INR + 1

)
=

1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1)− 1

2
log

(
1 +

SNR

INR + 1

)
(215)

≤ 1

2
log(3SNR + 3)− 1

2
log

(
1

2
+

SNR

2

)
(216)

=
1

2
log 3 +

1

2
= 1.3 bits (217)

Thus, δR ≤ 1.3.

Next, we have

ψ3 − 2 · 1
2
log

(
1 +

SNR

INR + 1

)
= ψ1 −

1

2
log

(
1 +

SNR

INR + 1

)
(218)

≤ 1

2
log 3 +

1

2
= 1.3 bits. (219)
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Thus, δ2R ≤ 1.3.
Subsequently,

ψ3 + ψ1 − 3 · 1
2
log

(
1 +

SNR

INR + 1

)
≤ 2(

1

2
log 3 +

1

2
) = 2.6 bits. (220)

Thus, δ3R ≤ 2.6.
Therefore, the outer bounds in Theorem 2 is within 2.6 bits/s/Hz away from the achievable rate region. Thus, our main

focus in this subsection now is to quantify the gaps for INR ≥ 1.

• Case 1: 1 ≤ αG

– Sub-case 1.1: SNRF < SNR
Choose Pp = 0, Pcc = 0, Pnc = 1. With this power allocation, from Theorem 3 we have

τ6 =
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (221)

τ5 =
1

2
log(SNR + INR + 1) ≥ 1

2
log INR (222)

τ4 =
1

2
log(SNR + 1) (223)

τ3 =
1

2
log(INR + 1) ≥ 1

2
log INR (224)

τ2 = τ1 = 0 (225)

Next, we simplify some outer bounds first.

ψ2 =
1

2
log(SNR + 1) +

1

2
log

(
SNRF

SNR + 1
+ 1

)
(226)

≤ 1

2
log(SNR + 1) +

1

2
log(2). (227)

ψ3 =
1

2
log

(
SNR

INR + 1
+ 1

)
+

1

2
log
(
SNR + INR + 2ρ

√
SNR · INR + 1

)
(228)

≤ 1

2
log(2) +

1

2
log
(
SNR + INR + 2ρ

√
SNR · INR + 1

)
. (229)

ψ5 =
1

2
log

(
INR2 + SNR+ 2INR + 2ρ

√
SNR · INR + 1

INR + 1

)
+

1

2
log

(
SNRF (INR + 1)

SNR + INR + 1
+ 1

)
(230)

+
1

2
log

(
SNR

INR + 1
+ 1

)
+

1

2
log
(
SNR + INR + 2ρ

√
SNR · INR + 1

)
(231)

≤ 1

2
log

(
INR2 + 5INR + 4

INR + 1

)
+

1

2
log (SNRF + 1) (232)

+
1

2
log(2) +

1

2
log
(
SNR + INR + 2ρ

√
SNR · INR + 1

)
(233)

≤ 1

2
log (INR + 4) +

1

2
log (SNRF + 1) +

1

2
+

1

2
log
(
SNR + INR + 2ρ

√
SNR · INR + 1

)
. (234)

Now, the gap can be quantified easily.

ψ1 − τ6 = 0 (235)

ψ2 − (τ4 + τ1) ≤
1

2
(236)

ψ1 − (τ1 + τ2 + τ3) ≤
1

2
log(5INR)− 1

2
log(INR) (237)

=
1

2
log(5) = 1.2. (238)
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Thus, δR ≤ 1.2.
Next, we have

ψ3 − (τ2 + τ6) ≤
1

2
, (239)

ψ3 − (2τ1 + τ2 + τ5) ≤
1

2
+

1

2
log(5INR)− 1

2
log(INR) (240)

=
1

2
+

1

2
log(5) = 1.7 (241)

ψ3 − (2τ1 + 2τ3) ≤
1

2
+

1

2
log(5INR)− 1

2
log(INR2) (242)

=
1

2
+

1

2
log(5) = 1.7 (243)

Thus, δ2R ≤ 1.7.
Next, we have

(ψ1 + ψ3)− (τ1 + τ2 + τ3 + τ6) = (ψ1 − τ6) + (ψ3 − τ3) (244)

≤ 1

2
+

1

2
log(5INR)− 1

2
log(INR) (245)

=
1

2
+

1

2
log(5) = 1.7 (246)

(ψ1 + ψ3)− (3τ1 + τ2 + τ3 + τ5) (247)

≤ [
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) +

1

2
log(2) +

1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1)] (248)

− [
1

2
log(INR) +

1

2
log(SNR + INR + 1)] (249)

≤ [log 3(SNR + INR + 1) +
1

2
log(2) + log(5INR)]− [

1

2
log(INR) +

1

2
log(SNR + INR + 1)] (250)

=
1

2
log(30) = 2.5 (251)

Thus, δ3R ≤ 2.5.
Therefore, with current power allocation, in this sub-case, the achievable region is at most 2.5 bits/s/Hz from the
outer bounds.

– Sub-case 1.2: SNR ≤ SNRF ≤ INR
Choose Pp = 0, Pcc = 1, Pnc = 0. With this power allocation, from Theorem 3 we have

τ6 =
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (252)

τ5 = τ4 = τ3 = τ2 = 0 (253)

τ1 =
1

2
log

SNRF

SNR+INR+2ρ
√
SNR.INR+1

· (INR + 1) + 1

SNRF

SNR+INR+2ρ
√
SNR·INR+1

+ 1
(254)

≥ 1

2
log

SNRF

5INR · INR

2
(255)

=
1

2
log SNRF −

1

2
log 10 (256)

Next, we simplify some outer bounds first.

ψ2 =
1

2
log(SNR + 1) +

1

2
log

(
SNRF

SNR + 1
+ 1

)
(257)

≤ 1

2
log(3SNRF ). (258)

ψ3 =
1

2
log

(
SNR

INR + 1
+ 1

)
+

1

2
log
(
SNR + INR + 2ρ

√
SNR · INR + 1

)
(259)

≤ 1

2
log(2) +

1

2
log
(
SNR + INR + 2ρ

√
SNR · INR + 1

)
. (260)
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Now, the gap can be quantified easily.

ψ1 − τ6 = 0 (261)

ψ2 − (τ4 + τ1) ≤
1

2
log 30 = 2.5 (262)

ψ2 − (τ1 + τ2 + τ3) ≤
1

2
log 30 = 2.5. (263)

Thus, δR ≤ 2.5.
Next, we have

ψ3 − (τ2 + τ6) ≤
1

2
, (264)

2ψ2 − (2τ1 + τ2 + τ5) ≤ log(30) = 4.9 (265)
2ψ2 − (2τ1 + 2τ3) ≤ log(30) = 4.9 (266)

Thus, δ2R ≤ 4.9.
Next, we have

(ψ2 + ψ3)− (τ1 + τ2 + τ3 + τ6) ≤
1

2
log(60) = 3.0 (267)

(3ψ2)− (3τ1 + τ2 + τ3 + τ5) ≤
1

2
log(27000) = 7.4 (268)

Thus, δ3R ≤ 7.4.
Therefore, with current power allocation, in this sub-case, the achievable region is at most 7.4 bits/s/Hz from the
outer bounds.

• Case 2: 1
2 ≤ αG ≤ 1

– Sub-case 2.1: SNRF ≤ INR
Choose Pp = 1

INR , Pnc = 1− Pp, Pcc = 0. With this power allocation, from Theorem 3 we have

τ6 =
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1)− 1

2
(269)

τ5 =
1

2
log(SNR + INR + 1)− 1

2
(270)

τ4 =
1

2
log(SNR + 2)− 1

2
≥ 1

2
log(SNR + 1)− 1

2
(271)

τ3 =
1

2
log

(
SNR

INR
+ INR + 1

)
− 1

2
≥ 1

2
log(INR)− 1

2
(272)

τ2 =
1

2
log

(
SNR

INR
+ 2

)
− 1

2
≥ 1

2
log

(
SNR

INR

)
− 1

2
(273)

τ1 = 0. (274)

Next, we simplify some outer bounds first.

ψ2 =
1

2
log(SNR + 1) +

1

2
log

(
SNRF

SNR + 1
+ 1

)
(275)

≤ 1

2
log(SNR + 1) +

1

2
log(2). (276)

ψ3 =
1

2
log

(
SNR

INR + 1
+ 1

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1) (277)

≤ 1

2
log

(
2
SNR

INR

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1). (278)
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ψ4 = log

(
INR3 + INR2

SNR(INR + 1)
+ 1

)
+ log

(
SNRF
INR

+ 1

)
+ log

(
SNR

INR

)
+ log 3 (279)

≤ log

(
3INR2

SNR

)
+ log(2) + log

(
SNR

INR

)
+ log 3 (280)

= log 18 + log INR (281)

ψ5 =
1

2
log

(
INR3 + INR2

SNR(INR + 1)
+ 1

)
+

1

2
log

(
SNRF
INR

+ 1

)
+

1

2
log

(
SNR

INR

)
+

1

2
log 3 (282)

+
1

2
log

(
SNR

INR + 1
+ 1

)
+

1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (283)

≤ 1

2
log

(
3INR2

SNR

)
+

1

2
log(2) +

1

2
log

(
SNR

INR

)
+

1

2
log 3 (284)

+
1

2
log

(
2SNR

INR

)
+

1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (285)

=(a) 1

2
log 36 +

1

2
log SNR +

1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (286)

≤(b) 1

2
log 36 +

1

2
log SNR +

1

2
log 3(SNR + INR + 1) (287)

where, depending on our need, we use either the form (a) or the form (b).
Now, the gap can be quantified easily.

ψ1 − τ6 =
1

2
(288)

ψ2 − (τ4 + τ1) ≤ 1 (289)

ψ2 − (τ1 + τ2 + τ3) ≤
(
1

2
log(2SNR) +

1

2

)
−
(
1

2
log(INR)− 1

2
+

1

2
log(

SNR

INR
)− 1

2

)
(290)

=
1

2
log(16) = 2. (291)

Thus, δR ≤ 2.
Next, we have

ψ3 − (τ2 + τ6) ≤
3

2
, (292)

ψ3 − (2τ1 + τ2 + τ5) ≤
1

2
log

(
2
SNR

INR

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1) (293)

−
(
1

2
log

(
SNR

INR

)
− 1

2
+

1

2
log(SNR + INR + 1)− 1

2

)
(294)

≤ 1

2
log(2) + log 3(SNR + INR + 1) (295)

−
(
−1

2
+

1

2
log(SNR + INR + 1)− 1

2

)
(296)

=
1

2
log(24) = 2.3 (297)

ψ4 − (2τ1 + 2τ3) ≤ [log 18 + log(INR)]− [log(INR)− 1] (298)
= log(36) = 5.2 (299)

Thus, δ2R ≤ 5.2.
Next, we have

(ψ5)− (τ1 + τ2 + τ3 + τ6) ≤
1

2
log 36 +

3

2
= 4.1 (300)

(ψ5)− (3τ1 + τ2 + τ3 + τ5) ≤
1

2
log 108 +

3

2
= 4.9 (301)
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Thus, δ3R ≤ 4.9.
Therefore, with current power allocation, in this sub-case, the achievable region is at most 5.2 bits/s/Hz from the
outer bounds.

– Sub-case 2.2: INR ≤ SNRF ≤ SNR
Choose Pp = 1

INR , Pnc =
SNR

INR·SNRF+SNR −Pp, Pcc = INR·SNRF

INR·SNRF+SNR . With this power allocation, from Theorem
3 we have

τ6 =
1

2
log(SNR + INR + 2ρ

√
SNR.INR + 1)− 1

2
(302)

τ5 =
1

2
log

(
SNR2

INR · SNRF + SNR
+

INR.SNR

INR.SNRF + SNR
+ 1

)
− 1

2
(303)

≥ 1

2
log

(
SNR2

2INR · SNRF

)
− 1

2
(304)

τ4 =
1

2
log

(
SNR2

INR · SNRF + SNR
+ 2

)
− 1

2
(305)

≥ 1

2
log

(
SNR2

2INR · SNRF

)
− 1

2
(306)

τ3 =
1

2
log

(
SNR

INR
+

INR.SNR

INR · SNRF + SNR
+ 1

)
− 1

2
(307)

≥ 1

2
log

(
SNR

INR

)
− 1

2
(308)

τ2 =
1

2
log

(
SNR

INR
+ 2

)
− 1

2
(309)

≥ 1

2
log

(
SNR

INR

)
− 1

2
(310)

τ1 =
1

2
log

SNRF

SNR+INR+2ρ
√
SNR·INR+1

(INR + 1) + 1

SNRF

SNR+INR+2ρ
√
SNR·INR+1

( INR·SNR
INR·SNRF+SNR + 1) + 1

(311)

≥ 1

2
log

SNRF

5SNR (INR)
SNRF

SNR ( INR·SNR
INR·SNRF

+ 1) + 1
(312)

≥ 1

2
log

SNRF
SNR

(INR)− 1

2
log 15 (313)

Next, we simplify some outer bounds first.

ψ3 =
1

2
log

(
SNR

INR + 1
+ 1

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1) (314)

≤ 1

2
log

(
2
SNR

INR

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1). (315)

ψ4 = log

(
INR3 + INR2

SNR(INR + 1)
+ 1

)
+ log

(
SNRF
INR

+ 1

)
+ log

(
SNR

INR

)
+ log 3 (316)

≤ log

(
3INR2

SNR

)
+ log

(
2SNRF
INR

)
+ log

(
SNR

INR

)
+ log 3 (317)

= log 18 + log SNRF (318)

ψ5 =
1

2
log

(
INR3 + INR2

SNR(INR + 1)
+ 1

)
+

1

2
log

(
SNRF
INR

+ 1

)
+

1

2
log

(
SNR

INR

)
+

1

2
log 3 (319)

+
1

2
log

(
SNR

INR + 1
+ 1

)
+

1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (320)
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≤ 1

2
log

(
3INR2

SNR

)
+

1

2
log

(
2SNRF
INR

)
+

1

2
log

(
SNR

INR

)
+

1

2
log 3 (321)

+
1

2
log

(
2SNR

INR

)
+

1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (322)

=
1

2
log 36 +

1

2
log

SNR · SNRF
INR

+
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (323)

Now, the gap can be quantified easily.

ψ1 − τ6 =
1

2
(324)

ψ1 − (τ4 + τ1) ≤
1

2
log(5SNR)−

[
1

2
log

SNRF
SNR

(INR)− 1

2
log 15 +

1

2
log(

SNR2

2INR · SNRF
)− 1

2

]
(325)

=
1

2
log(150) +

1

2
= 4.1 (326)

ψ1 − (τ1 + τ2 + τ3) ≤
1

2
log(75) + 1 = 4.1 (327)

Thus, δR ≤ 4.1.
Next, we have

ψ3 − (τ2 + τ6) ≤
3

2
(328)

ψ4 − (2τ1 + τ2 + τ5) = log(270) + 1 = 9.1 (329)
ψ4 − (2τ1 + 2τ3) ≤ log(270) + 1 = 9.1 (330)

Thus, δ2R ≤ 9.1.
Next, we have

(ψ5)− (τ1 + τ2 + τ3 + τ6) ≤
1

2
log 540 +

3

2
= 6.0 (331)

(ψ5)− (3τ1 + τ2 + τ3 + τ5) ≤
1

2
log 607500 +

3

2
= 11.1 (332)

Thus, δ3R ≤ 11.1.
Therefore, with current power allocation, in this sub-case, the achievable region is at most 11.1 bits/s/Hz from the
outer bounds.

• Case 3: 0 ≤ αG ≤ 1
2

– Sub-case 3.1: SNRF ≤ SNR
INR

Choose Pp = 1
INR , Pnc = 1− Pp, Pcc = 0. With this power allocation, from Theorem 3 we have

τ6 =
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1)− 1

2
(333)

τ5 =
1

2
log(SNR + INR + 1)− 1

2
(334)

τ4 =
1

2
log(SNR + 2)− 1

2
≥ 1

2
log(SNR + 1)− 1

2
(335)

τ3 =
1

2
log

(
SNR

INR
+ INR + 1

)
− 1

2
≥ 1

2
log

(
SNR

INR

)
− 1

2
(336)

τ2 =
1

2
log

(
SNR

INR
+ 2

)
− 1

2
≥ 1

2
log

(
SNR

INR

)
− 1

2
(337)

τ1 = 0. (338)

Next, we simplify some outer bounds first.

ψ2 =
1

2
log(SNR + 1) +

1

2
log

(
SNRF

SNR + 1
+ 1

)
(339)

≤ 1

2
log(SNR + 1) +

1

2
log(2). (340)
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ψ3 =
1

2
log

(
SNR

INR + 1
+ 1

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1) (341)

≤ 1

2
log

(
2
SNR

INR

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1). (342)

ψ4 = log

(
INR2 + SNR+ 2INR + 2ρ

√
SNR · INR + 1

INR + 1

)
+ log

(
SNRF (INR + 1)

SNR + INR + 1
+ 1

)
(343)

≤ log

(
7SNR

INR

)
+ log(3) = log

(
SNR

INR

)
+ log(21) (344)

ψ5 =
1

2
log

(
INR2 + SNR+ 2INR + 2ρ

√
SNR · INR + 1

INR + 1

)
+

1

2
log

(
SNRF (INR + 1)

SNR + INR + 1
+ 1

)
(345)

+
1

2
log

(
SNR

INR + 1
+ 1

)
+

1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (346)

≤ 1

2
log

(
7SNR

INR

)
+

1

2
log(3) +

1

2
log

(
2SNR

INR

)
+

1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (347)

≤ 1

2
log 42 +

1

2
log

(
SNR2

INR2

)
+

1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (348)

≤ 1

2
log 42 +

1

2
log

(
SNR2

INR2

)
+

1

2
log 3(SNR + INR + 1) (349)

Now, the gap can be quantified easily.

ψ1 − τ6 =
1

2
(350)

ψ2 − (τ4 + τ1) ≤ 1 (351)

ψ2 − (τ1 + τ2 + τ3) ≤
1

2
log(16) = 2. (352)

Thus, δR ≤ 2.
Next, we have

ψ3 − (τ2 + τ6) ≤
3

2
, (353)

ψ3 − (2τ1 + τ2 + τ5) ≤
1

2
log(24) = 2.3 (354)

ψ4 − (2τ1 + 2τ3) ≤ log(21) + 1 = 5.4 (355)

Thus, δ2R ≤ 5.4.
Next, we have

(ψ5)− (τ1 + τ2 + τ3 + τ6) ≤
1

2
log 42 +

3

2
= 4.2 (356)

(ψ5)− (3τ1 + τ2 + τ3 + τ5) ≤
1

2
log 126 +

3

2
= 5.0 (357)

(358)

Thus, δ3R ≤ 5.0.
Therefore, with current power allocation, in this sub-case, the achievable region is at most 5.4 bits/s/Hz from the
outer bounds.

– Sub-case 3.2: SNR
INR ≤ SNRF ≤ SNR

Choose Pp = 1
INR , Pnc =

SNR
INR·SNRF+SNR −Pp, Pcc = INR·SNRF

INR·SNRF+SNR . With this power allocation, from Theorem
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3 we have

τ6 =
1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1)− 1

2
(359)

τ5 =
1

2
log

(
SNR2

INR.SNRF + SNR
+

INR · SNR

INR.SNRF + SNR
+ 1

)
− 1

2
(360)

≥ 1

2
log

(
SNR2

2INR · SNRF

)
− 1

2
(361)

τ4 =
1

2
log

(
SNR2

INR · SNRF + SNR
+ 2

)
− 1

2
(362)

≥ 1

2
log

(
SNR2

2INR · SNRF

)
− 1

2
(363)

τ3 =
1

2
log

(
SNR

INR
+

INR · SNR

INR.SNRF + SNR
+ 1

)
− 1

2
(364)

≥ 1

2
log

(
SNR

INR

)
− 1

2
(365)

τ2 =
1

2
log

(
SNR

INR
+ 2

)
− 1

2
(366)

≥ 1

2
log

(
SNR

INR

)
− 1

2
(367)

τ1 =
1

2
log

SNRF

SNR+INR+2ρ
√
SNR·INR+1

(INR + 1) + 1

SNRF

SNR+INR+2ρ
√
SNR·INR+1

( INR·SNR
INR·SNRF+SNR + 1) + 1

(368)

≥ 1

2
log

SNRF

5SNR (INR)
SNRF

SNR ( INR·SNR
INR.SNRF

+ 1) + 1
(369)

≥ 1

2
log

SNRF
SNR

(INR)− 1

2
log 15 (370)

Next, we simplify some outer bounds first.

ψ2 =
1

2
log(SNR + 1) +

1

2
log

(
SNRF

SNR + 1
+ 1

)
(371)

≤ 1

2
log(2SNR) +

1

2
log(2). (372)

ψ3 =
1

2
log

(
SNR

INR + 1
+ 1

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1) (373)

≤ 1

2
log

(
2
SNR

INR

)
+ log(SNR + INR + 2ρ

√
SNR · INR + 1). (374)

ψ4 = log

(
INR2 + SNR+ 2INR + 2ρ

√
SNR · INR + 1

INR + 1

)
+ log

(
SNRF (INR + 1)

SNR + INR + 1
+ 1

)
(375)

≤ log

(
7SNR

INR

)
+ log

(
3SNRF INR

SNR

)
(376)

≤ log(SNRF ) + log(21) (377)

ψ5 =
1

2
log

(
INR2 + SNR+ 2INR + 2ρ

√
SNR · INR + 1

INR + 1

)
+

1

2
log

(
SNRF (INR + 1)

SNR + INR + 1
+ 1

)
(378)

+
1

2
log

(
SNR

INR + 1
+ 1

)
+

1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (379)

≤ 1

2
log

(
7SNR

INR

)
+

1

2
log

(
3SNRF INR

SNR

)
+

1

2
log

(
2SNR

INR

)
+

1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1)

(380)
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≤ 1

2
log 42 +

1

2
log

(
SNRFSNR

INR

)
+

1

2
log(SNR + INR + 2ρ

√
SNR · INR + 1) (381)

Now, the gap can be quantified easily.

ψ1 − τ6 =
1

2
(382)

ψ2 − (τ4 + τ1) ≤
1

2
log(60) + 1 = 4.0 (383)

ψ2 − (τ1 + τ2 + τ3) ≤
1

2
log(60) + 1 = 4.0 (384)

Thus, δR ≤ 4.0.
Next, we have

ψ3 − (τ2 + τ6) ≤
3

2
(385)

ψ3 − (2τ1 + τ2 + τ5) =
1

2
log(2250) +

3

2
= 7.1 (386)

ψ4 − (2τ1 + 2τ3) ≤ log(315) + 1 = 9.3 (387)

Thus, δ2R ≤ 9.3.
Next, we have

(ψ5)− (τ1 + τ2 + τ3 + τ6) ≤
1

2
log 630 +

3

2
= 6.2 (388)

(ψ5)− (3τ1 + τ2 + τ3 + τ5) ≤
1

2
log 708750 + 2 = 11.7 (389)

(390)

Thus, δ3R ≤ 11.7.
Therefore, with current power allocation, in this sub-case, the achievable region is at most 11.7 bits/s/Hz from the
outer bounds.

In conclusion, we have proved that the outer bounds are at most 11.7 bits/s/Hz from the achievable rate region.
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