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DERIVATION OF h1(q) USING THE LITTLE
GROUP AT D1

The full symmetry group of the thin film in the ab-
sence of applied fields is D4h ⊗ T . The little group
at a Dirac point Di is the subgroup of all operations
that leave Di invariant. The little group therefore con-
sists of a mirror plane that passes Γ̄Di, C2T and their
combinations. Taking D1 as example, the little group
is generated by M11̄0 and C2T . In a general spin-
1/2 system we have: M2

11̄0 = C2
2 = T 2 = −1 and

{M11̄0, C2} = [M2
11̄0, T ] = [C2, T ] = 0, where C2 is

the 180-rotation about [001]-direction. Therefore the
two generators satisfy (i) M2

11̄0 = −C2
2T = −1 (ii)

{M11̄0, C2T } = 0. There is only one 2D irreducible
representation up to a basis rotation: M11̄0 = iσy and
C2T = Kσx. Physically, M11̄0 relates the Hamiltonian
h1(q1, q2) to h1(q1,−q2) and C2T commutes with h1(q);
or mathematically, M11̄0h1(q1, q2)M

−1
11̄0

= h1(q1,−q2)
and [C2T , h1(q)] = 0. The irreducible representation of
the little group along with the symmetry constraints de-
termine the form of h1(q) shown in Eq.(1).

In general, the k · p model is given by

h1(q) = d0(q)I2×2 + dx(q)σx + dy(q)σy + dz(q)σz ,(S1)

which must satisfy the symmetry constraints:

M11̄0h1(q1, q2)M
−1
11̄0

= h1(q1,−q2), (S2)

[C2T , h1(q)] = 0.

These symmetry constraints give that (1) d0,y is even
under q2 → −q2, (2) dx is odd under q2 → −q2 and (3)
dz = 0 to arbitrary order. We expand them to the second
order in |q|:

d0(q1, q2) = v0q1 +
q21
2m1

+
q22
2m2

, (S3)

dx(q1, q2) = v2q2 +
q1q2
2m3

,

dy(q1, q2) = v1q1 +
q21
2m4

+
q22
2m5

.

These terms make the dispersion deviate from perfectly
linear and may be understood as the ‘warping’ terms;
they also make corrections to the wave functions at each
q. It should be noted that dz = 0 holds up to arbitrary
orders and this means there is no out-of-plain pseudo-spin
component at any q. While including higher order terms
explains the shape-changing of the equal energy contours
from perfect ellipsoids, the Lifshitz transition cannot be
described in the framework of any two-band theory. To
do so, the model must be extended a four-band one, in
order to account for the hybridization between nearest
cones, as discussed in Ref.[21].

RELATING THE FOUR DIRAC CONES BY C4

SYMMETRY

In the main text, we mention that by 90-degree ro-
tations the effective theories for the four cones can be
related. This is an intuitive statement yet to be made
precise. In fact, k · p theories are always written with
respect to a chosen basis, which is our case is furnished
by (the periodic part of) the two Bloch states that are
degenerate at the Dirac point. Due to the degener-
acy, there is a gauge degree of freedom in the choice.
Here the choice is made by fixing the little group rep-
resentation at D1: M11̄0 = iσy and C2T = Kσx. If
we denote the two basis states by |u1↑〉 and |u1↓〉, we
then fix the bases at D2,1′,2′ to be {|u2↑〉, |u2↓〉} =

{C̃2
4 |u1↑〉, C̃

2
4 |u1↓〉}, {|u1′↑〉, |u1′↓〉} = {C̃4|u1↑〉, C̃4|u1↓〉}

and {|u2′↑〉, |u2′↓〉} = {C̃3
4 |u1↑〉, C̃

3
4 |u1↓〉}, respectively.

Mark that here C̃4 is the matrix representing the
90-degree rotation in both orbital space (including
spin). Defining the Bloch wave function at Di + q as
|ψi↑/↓(q)〉 = ei(Di+q)·r|ui↑/↓〉, it is easy to check that

|ψ2(q)〉 = Ĉ2
4 |ψ1(−q)〉, Ĉ4|ψ1′(q)〉 = Ĉ4|ψ1(−q2, q1)〉

and |ψ2′(q)〉 = Ĉ3
4 |ψ1(q2,−q1)〉. Here Ĉ4 is the single

particle operator acting in the Hilbert space, which is
the combination of the orbital rotation C̃4 plus rotation
(x, y) → (−y, x), where (x, y) is a lattice point and the
rotation center is also placed at a lattice point. The full
single Hamiltonian, projected to the states at the vicini-
ties of the four Dirac points, is given by

Ĥ =
∑

q,i=1,2,1′,2′,α,β=↑,↓

(hi(q))
αβ |ψiα(q)〉〈ψiβ(q)|. (S4)

C4 symmetry implies [Ĉ4, Ĥ ] = 0, which immedi-
ately leads to h2(q1, q2) = h1(−q1,−q2), h1′(q1, q2) =
h1(−q2, q1) and h2′(q1, q2) = h1(q2,−q1), confirming the
intuitive relations appearing in the main text.

CALCULATION OF THE CHERN NUMBER OF
THE TOP/BOTTOM SURFACE

In the text we refer to the Chern number contributed
by one massive Dirac cone, which is not mathematically
well-defined. In fact, the integrated Berry’s curvature
of a gapped Dirac cone is non-quantized in any finite
k-space, hence possesses no well-defined Chern number.
The Chern number of a whole 2D surface (top surface for
example) is, however, a well-defined quantity (if periodic
boundary is taken for the other two directions), which
may be calculated. Suppose we are interested in the
Chern number, C, at some Zeeman field ∆Z = ∆0 > 0.
Then since time-reversal reverses the Chern number, we
know for ∆Z = −∆0, the Chern number must be −C.
Consider a 3D space spanned by q1,2 and ∆Z , then from
Gauss’s law, the Chern number change from ∆Z = −∆0
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to ∆0 equals the total monopole charge between these
two planes in the 3D parameter space. The monopole, or
gap closing point, is always at (q1, q2,∆Z) = 0, around
which the Hamiltonian is that of 3D Weyl fermions:
h(q1, q2, q3) =

∑

i,j=1,2,3 Aijσiqj , where q3 ≡ ∆Z . The
charge of such a monopole is signdet(A), and since there
are in total four such monopoles between ∆Z = ±∆0,
we have the difference in Chern number C − (−C) =
4sign(detA), or C = 2sign(detA). All Chern numbers
obtained in the text are derived using this method.

DIAGONALIZING THE HAMILTONIAN IN
EQ.(4)

A Hamiltonian that describes isolated top and surface
states around Di is

H̃i =

(

Ht
i 0
0 Hb

i

)

, (S5)

and hybridization is equivalent to adding an off-diagonal
block term, resulting in, to the lowest order in |q|,

H̃i =

(

Ht
i ∆HI2×2

∆HI2×2 Hb
i

)

. (S6)

Diagonalizing H̃1 directly, we obtain four bands:

E1(q) = v0q1 +

√

∆t
1
2
+∆t

1
2
+ 2∆2

H + 2q21v
2
1 + 2q22v

2
2 +

√

(∆t
1 −∆b

1)
2 + 4[(∆t

1 +∆b
1)

2 + 4v21q
2
1 + 4v22q

2
2 ], (S7)

E2(q) = v0q1 +

√

∆t
1
2
+∆t

1
2
+ 2∆2

H + 2q21v
2
1 + 2q22v

2
2 −

√

(∆t
1 −∆b

1)
2 + 4[(∆t

1 +∆b
1)

2 + 4v21q
2
1 + 4v22q

2
2 ],

E3(q) = v0q1 −

√

∆t
1
2
+∆t

1
2
+ 2∆2

H + 2q21v
2
1 + 2q22v

2
2 −

√

(∆t
1 −∆b

1)
2 + 4[(∆t

1 +∆b
1)

2 + 4v21q
2
1 + 4v22q

2
2 ],

E4(q) = v0q1 −

√

∆t
1
2
+∆t

1
2
+ 2∆2

H + 2q21v
2
1 + 2q22v

2
2 +

√

(∆t
1 −∆b

1)
2 + 4[(∆t

1 +∆b
1)

2 + 4v21q
2
1 + 4v22q

2
2 ].

Straightforward algebraic work shows that the only so-
lution for E2(q) = E3(q), i.e., a gap-closing point, exists

at q1 = q2 = 0 when |∆H | =
√

∆t
1∆

b
1.

Parallel discussion for D2,1′,2′ proceeds and we con-
clude that a topological phase transition happens when

|∆H | =
√

∆t
i∆

b
i , (S8)

whereas the Chern number contributed by the cone at Di

changes from ±1, depending on the sign of ∆t,b
i , to zero.

Mark that on the right hand side of Eq.(S8), if ∆t
i∆

b
i < 0,

the transition cannot happen at any ∆H .

DERIVATION OF TABLE I

Here we provide details for deriving Table I.
First we note the following two simple facts: (i) the

strain tensor is a rank-2 tensor so its general transforma-
tion under O(3) takes the form:

ǫab → Raa′Rbb′ǫa′b′ , (S9)

where R is the three-by-three rotation matrix, and (ii)
it is invariant under time-reversal. All point group op-
erators including C2,4 and M110,11̄0 are elements of O(3)
and due to (ii), C2T transforms the tensor in the same
way as C2 does. The rotation matrix for these operations
are given by

RC2
=





−1 0 0
0 −1 0
0 0 1



 , RM110
=





−1 0 0
0 1 0
0 0 1



 ,(S10)

RM11̄0
=





1 0 0
0 −1 0
0 0 1



 , RC4
=





0 −1 0
1 0 0
0 0 1



 .

Substituting Eq.(S10) back into Eq.(S9), we have the up-
per part of Table I.

We then can use the upper part of Table I to determine
the terms that represent spin in the effective theories for
the four Dirac cones. The strain terms for the states
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around Di=1,2,1′,2′ are generally written as

δHab,i = m0
ab,iσ0 +mx

ab,iσx +my
ab,iσy +mz

ab,iσz +O(|q|).

(S11)

The little group of Di gives constraints on mα
ab,i. Here-

after we ignore m0
ab,i because this does not change the

wavefunction, thus preserving the topology, of the surface
states. ǫ11,22,33 are unchanged under C2T , M110 orM11̄0,
from which we know mx

11/22/33,i = mz
11/22/33,i = 0. Since

C4 relates the four Dirac points and sends ǫ11/22 to ǫ22/11,
we knowmy

11/22,1 = my
22/11,1′ = my

11/22,2 = my
22/11,2′ and

my
22/11,1 = my

11/22,1′ = my
22/11,2 = my

11/22,2′ . So far we

have derived the first three columns of the lower part of
the Table.

ǫ12 changes sign under M110,11̄0 and invariant under
C2T , from which we have my

12,i = mz
12,i = 0. Again from

C4, we obtain mx
12,1 = −mx

12,1′ = mx
12,2 = −mx

12,2′ . This
is the fourth column.

ǫ13/23 are invariant under M11̄0/110 but changes sign
under M110/11̄0 and C2T . The little group at D1,2 is
{M11̄0, C2T }, so we have mx,z

13,1 = mx,z
13,2 = 0 and mx,y

23,1 =
mx,y

23,2 = 0. Using that C2 maps D1/2 to D2/1, we have
my

13,1 = −my
13,2 and mz

13,1 = −mz
13,2. Then we notice

that since C4 maps D1/1′ to D2/2′ , and ǫ13 (ǫ23) to ǫ23
(−ǫ13), there are mx,y,z

23,1′/2′ = mx,y,z
13,1/2. This gives the last

two columns.

The above relations give in total six free masses:
(my

11,1,m
y
22,1,m

y
33,1,m

x
12,1,m

y
13,1,m

z
23), defined as

(λ11, λ22, λ33, λ12, λ13, λ23).


