DERIVATION OF $h_{1}(\mathbf{q})$ USING THE LITTLE GROUP AT D_{1}

The full symmetry group of the thin film in the absence of applied fields is $D_{4 h} \otimes T$. The little group at a Dirac point D_{i} is the subgroup of all operations that leave D_{i} invariant. The little group therefore consists of a mirror plane that passes $\bar{\Gamma} D_{i}, C_{2 T}$ and their combinations. Taking D_{1} as example, the little group is generated by $M_{1 \overline{1} 0}$ and $C_{2 T}$. In a general spin$1 / 2$ system we have: $M_{1 \overline{1} 0}^{2}=C_{2}^{2}=T^{2}=-1$ and $\left\{M_{1 \overline{1} 0}, C_{2}\right\}=\left[M_{1 \overline{1} 0}^{2}, T\right]=\left[C_{2}, T\right]=0$, where C_{2} is the 180-rotation about [001]-direction. Therefore the two generators satisfy (i) $M_{1 \overline{1} 0}^{2}=-C_{2 T}^{2}=-1$ (ii) $\left\{M_{1 \overline{1} 0}, C_{2 T}\right\}=0$. There is only one 2D irreducible representation up to a basis rotation: $M_{1 \overline{1} 0}=i \sigma_{y}$ and $C_{2 T}=K \sigma_{x}$. Physically, $M_{1 \overline{1} 0}$ relates the Hamiltonian $h_{1}\left(q_{1}, q_{2}\right)$ to $h_{1}\left(q_{1},-q_{2}\right)$ and $C_{2 T}$ commutes with $h_{1}(\mathbf{q})$; or mathematically, $M_{1 \overline{1} 0} h_{1}\left(q_{1}, q_{2}\right) M_{1 \overline{1} 0}^{-1}=h_{1}\left(q_{1},-q_{2}\right)$ and $\left[C_{2 T}, h_{1}(\mathbf{q})\right]=0$. The irreducible representation of the little group along with the symmetry constraints determine the form of $h_{1}(\mathbf{q})$ shown in Eq.(1).

In general, the $k \cdot p$ model is given by

$$
\begin{equation*}
h_{1}(\mathbf{q})=d_{0}(\mathbf{q}) I_{2 \times 2}+d_{x}(\mathbf{q}) \sigma_{x}+d_{y}(\mathbf{q}) \sigma_{y}+d_{z}(\mathbf{q}) \sigma_{z}, \tag{S1}
\end{equation*}
$$

which must satisfy the symmetry constraints:

$$
\begin{align*}
& M_{1 \overline{1} 0} h_{1}\left(q_{1}, q_{2}\right) M_{1 \overline{1} 0}^{-1}=h_{1}\left(q_{1},-q_{2}\right) \tag{S2}\\
& \quad\left[C_{2 T}, h_{1}(\mathbf{q})\right]=0
\end{align*}
$$

These symmetry constraints give that (1) $d_{0, y}$ is even under $q_{2} \rightarrow-q_{2}$, (2) d_{x} is odd under $q_{2} \rightarrow-q_{2}$ and (3) $d_{z}=0$ to arbitrary order. We expand them to the second order in $|q|$:

$$
\begin{align*}
& d_{0}\left(q_{1}, q_{2}\right)=v_{0} q_{1}+\frac{q_{1}^{2}}{2 m_{1}}+\frac{q_{2}^{2}}{2 m_{2}} \tag{S3}\\
& d_{x}\left(q_{1}, q_{2}\right)=v_{2} q_{2}+\frac{q_{1} q_{2}}{2 m_{3}} \\
& d_{y}\left(q_{1}, q_{2}\right)=v_{1} q_{1}+\frac{q_{1}^{2}}{2 m_{4}}+\frac{q_{2}^{2}}{2 m_{5}}
\end{align*}
$$

These terms make the dispersion deviate from perfectly linear and may be understood as the 'warping' terms; they also make corrections to the wave functions at each q. It should be noted that $d_{z}=0$ holds up to arbitrary orders and this means there is no out-of-plain pseudo-spin component at any \mathbf{q}. While including higher order terms explains the shape-changing of the equal energy contours from perfect ellipsoids, the Lifshitz transition cannot be described in the framework of any two-band theory. To do so, the model must be extended a four-band one, in order to account for the hybridization between nearest cones, as discussed in Ref.[21].

RELATING THE FOUR DIRAC CONES BY C_{4} SYMMETRY

In the main text, we mention that by 90 -degree rotations the effective theories for the four cones can be related. This is an intuitive statement yet to be made precise. In fact, $k \cdot p$ theories are always written with respect to a chosen basis, which is our case is furnished by (the periodic part of) the two Bloch states that are degenerate at the Dirac point. Due to the degeneracy, there is a gauge degree of freedom in the choice. Here the choice is made by fixing the little group representation at $D_{1}: M_{1 \overline{1} 0}=i \sigma_{y}$ and $C_{2 T}=K \sigma_{x}$. If we denote the two basis states by $\left|u_{1 \uparrow}\right\rangle$ and $\left|u_{1 \downarrow}\right\rangle$, we then fix the bases at $D_{2,1^{\prime}, 2^{\prime}}$ to be $\left\{\left|u_{2 \uparrow}\right\rangle,\left|u_{2 \downarrow}\right\rangle\right\}=$ $\left\{\tilde{C}_{4}^{2}\left|u_{1 \uparrow}\right\rangle, \tilde{C}_{4}^{2}\left|u_{1 \downarrow}\right\rangle\right\}, \quad\left\{\left|u_{1^{\prime} \uparrow}\right\rangle,\left|u_{1^{\prime} \downarrow}\right\rangle\right\}_{\tilde{C}^{2}}=\left\{\tilde{C}_{4}\left|u_{1 \uparrow}\right\rangle, \tilde{C}_{4}\left|u_{1 \downarrow}\right\rangle\right\}$ and $\left\{\left|u_{2^{\prime} \uparrow}\right\rangle,\left|u_{2^{\prime} \downarrow}\right\rangle\right\} \tilde{\tilde{C}}^{=}\left\{\tilde{C}_{4}^{3}\left|u_{1 \uparrow}\right\rangle, \tilde{C}_{4}^{3}\left|u_{1 \downarrow}\right\rangle\right\}$, respectively. Mark that here \tilde{C}_{4} is the matrix representing the 90-degree rotation in both orbital space (including spin). Defining the Bloch wave function at $\mathbf{D}_{i}+\mathbf{q}$ as $\left|\psi_{i \uparrow / \downarrow}(\mathbf{q})\right\rangle=e^{i\left(\mathbf{D}_{\mathbf{i}}+\mathbf{q}\right) \cdot \mathbf{r}}\left|u_{i \uparrow / \downarrow}\right\rangle$, it is easy to check that $\left|\psi_{2}(\mathbf{q})\right\rangle=\hat{C}_{4}^{2}\left|\psi_{1}(-\mathbf{q})\right\rangle, \quad \hat{C}_{4}\left|\psi_{1^{\prime}}(\mathbf{q})\right\rangle=\hat{C}_{4}\left|\psi_{1}\left(-q_{2}, q_{1}\right)\right\rangle$ and $\left|\psi_{2^{\prime}}(\mathbf{q})\right\rangle=\hat{C}_{4}^{3}\left|\psi_{1}\left(q_{2},-q_{1}\right)\right\rangle$. Here \hat{C}_{4} is the single particle operator acting in the Hilbert space, which is the combination of the orbital rotation \tilde{C}_{4} plus rotation $(x, y) \rightarrow(-y, x)$, where (x, y) is a lattice point and the rotation center is also placed at a lattice point. The full single Hamiltonian, projected to the states at the vicinities of the four Dirac points, is given by

$$
\begin{equation*}
\hat{H}=\sum_{\mathbf{q}, i=1,2,1^{\prime}, 2^{\prime}, \alpha, \beta=\uparrow, \downarrow}\left(h_{i}(\mathbf{q})\right)^{\alpha \beta}\left|\psi_{i \alpha}(\mathbf{q})\right\rangle\left\langle\psi_{i \beta}(\mathbf{q})\right| . \tag{S4}
\end{equation*}
$$

C_{4} symmetry implies $\left[\hat{C}_{4}, \hat{H}\right]=0$, which immediately leads to $h_{2}\left(q_{1}, q_{2}\right)=h_{1}\left(-q_{1},-q_{2}\right), h_{1^{\prime}}\left(q_{1}, q_{2}\right)=$ $h_{1}\left(-q_{2}, q_{1}\right)$ and $h_{2^{\prime}}\left(q_{1}, q_{2}\right)=h_{1}\left(q_{2},-q_{1}\right)$, confirming the intuitive relations appearing in the main text.

CALCULATION OF THE CHERN NUMBER OF THE TOP/BOTTOM SURFACE

In the text we refer to the Chern number contributed by one massive Dirac cone, which is not mathematically well-defined. In fact, the integrated Berry's curvature of a gapped Dirac cone is non-quantized in any finite k-space, hence possesses no well-defined Chern number. The Chern number of a whole 2D surface (top surface for example) is, however, a well-defined quantity (if periodic boundary is taken for the other two directions), which may be calculated. Suppose we are interested in the Chern number, C, at some Zeeman field $\Delta_{Z}=\Delta_{0}>0$. Then since time-reversal reverses the Chern number, we know for $\Delta_{Z}=-\Delta_{0}$, the Chern number must be $-C$. Consider a 3 D space spanned by $q_{1,2}$ and Δ_{Z}, then from Gauss's law, the Chern number change from $\Delta_{Z}=-\Delta_{0}$
to Δ_{0} equals the total monopole charge between these two planes in the 3D parameter space. The monopole, or gap closing point, is always at $\left(q_{1}, q_{2}, \Delta_{Z}\right)=0$, around which the Hamiltonian is that of 3 D Weyl fermions: $h\left(q_{1}, q_{2}, q_{3}\right)=\sum_{i, j=1,2,3} A_{i j} \sigma_{i} q_{j}$, where $q_{3} \equiv \Delta_{Z}$. The charge of such a monopole is sign $\operatorname{det}(A)$, and since there are in total four such monopoles between $\Delta_{Z}= \pm \Delta_{0}$, we have the difference in Chern number $C-(-C)=$ $4 \operatorname{sign}(\operatorname{det} A)$, or $C=2 \operatorname{sign}(\operatorname{det} A)$. All Chern numbers obtained in the text are derived using this method.

DIAGONALIZING THE HAMILTONIAN IN EQ.(4)

A Hamiltonian that describes isolated top and surface states around D_{i} is

$$
\tilde{H}_{i}=\left(\begin{array}{cc}
H_{i}^{t} & 0 \tag{S5}\\
0 & H_{i}^{b}
\end{array}\right)
$$

and hybridization is equivalent to adding an off-diagonal block term, resulting in, to the lowest order in $|q|$,

$$
\tilde{H}_{i}=\left(\begin{array}{cc}
H_{i}^{t} & \Delta_{H} I_{2 \times 2} \tag{S6}\\
\Delta_{H} I_{2 \times 2} & H_{i}^{b}
\end{array}\right)
$$

Diagonalizing \tilde{H}_{1} directly, we obtain four bands:

$$
\begin{align*}
& E_{1}(\mathbf{q})=v_{0} q_{1}+\sqrt{\Delta_{1}^{t^{2}}+\Delta_{1}^{t}{ }^{2}+2 \Delta_{H}^{2}+2 q_{1}^{2} v_{1}^{2}+2 q_{2}^{2} v_{2}^{2}+\sqrt{\left(\Delta_{1}^{t}-\Delta_{1}^{b}\right)^{2}+4\left[\left(\Delta_{1}^{t}+\Delta_{1}^{b}\right)^{2}+4 v_{1}^{2} q_{1}^{2}+4 v_{2}^{2} q_{2}^{2}\right]}} \tag{S7}\\
& E_{2}(\mathbf{q})=v_{0} q_{1}+\sqrt{\Delta_{1}^{t^{2}}+\Delta_{1}^{t^{2}}+2 \Delta_{H}^{2}+2 q_{1}^{2} v_{1}^{2}+2 q_{2}^{2} v_{2}^{2}-\sqrt{\left(\Delta_{1}^{t}-\Delta_{1}^{b}\right)^{2}+4\left[\left(\Delta_{1}^{t}+\Delta_{1}^{b}\right)^{2}+4 v_{1}^{2} q_{1}^{2}+4 v_{2}^{2} q_{2}^{2}\right]}} \\
& E_{3}(\mathbf{q})=v_{0} q_{1}-\sqrt{\Delta_{1}^{t^{2}}+\Delta_{1}^{t^{2}}+2 \Delta_{H}^{2}+2 q_{1}^{2} v_{1}^{2}+2 q_{2}^{2} v_{2}^{2}-\sqrt{\left(\Delta_{1}^{t}-\Delta_{1}^{b}\right)^{2}+4\left[\left(\Delta_{1}^{t}+\Delta_{1}^{b}\right)^{2}+4 v_{1}^{2} q_{1}^{2}+4 v_{2}^{2} q_{2}^{2}\right]}} \\
& E_{4}(\mathbf{q})=v_{0} q_{1}-\sqrt{\Delta_{1}^{t^{2}}+\Delta_{1}^{t^{2}}+2 \Delta_{H}^{2}+2 q_{1}^{2} v_{1}^{2}+2 q_{2}^{2} v_{2}^{2}+\sqrt{\left(\Delta_{1}^{t}-\Delta_{1}^{b}\right)^{2}+4\left[\left(\Delta_{1}^{t}+\Delta_{1}^{b}\right)^{2}+4 v_{1}^{2} q_{1}^{2}+4 v_{2}^{2} q_{2}^{2}\right]}}
\end{align*}
$$

Straightforward algebraic work shows that the only solution for $E_{2}(\mathbf{q})=E_{3}(\mathbf{q})$, i.e., a gap-closing point, exists at $q_{1}=q_{2}=0$ when $\left|\Delta_{H}\right|=\sqrt{\Delta_{1}^{t} \Delta_{1}^{b}}$.

Parallel discussion for $D_{2,1^{\prime}, 2^{\prime}}$ proceeds and we conclude that a topological phase transition happens when

$$
\begin{equation*}
\left|\Delta_{H}\right|=\sqrt{\Delta_{i}^{t} \Delta_{i}^{b}} \tag{S8}
\end{equation*}
$$

whereas the Chern number contributed by the cone at D_{i} changes from ± 1, depending on the sign of $\Delta_{i}^{t, b}$, to zero. Mark that on the right hand side of Eq.(S8), if $\Delta_{i}^{t} \Delta_{i}^{b}<0$, the transition cannot happen at any Δ_{H}.

DERIVATION OF TABLE I

Here we provide details for deriving Table I.
First we note the following two simple facts: (i) the strain tensor is a rank-2 tensor so its general transformation under $O(3)$ takes the form:

$$
\begin{equation*}
\epsilon_{a b} \rightarrow R_{a a^{\prime}} R_{b b^{\prime}} \epsilon_{a^{\prime} b^{\prime}} \tag{S9}
\end{equation*}
$$

where R is the three-by-three rotation matrix, and (ii) it is invariant under time-reversal. All point group operators including $C_{2,4}$ and $M_{110,1 \overline{1} 0}$ are elements of $O(3)$ and due to (ii), $C_{2 T}$ transforms the tensor in the same way as C_{2} does. The rotation matrix for these operations are given by

$$
\begin{align*}
R_{C_{2}} & =\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right), R_{M_{110}}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \tag{S10}\\
R_{M_{1 \overline{1} 0}} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right), R_{C_{4}}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{align*}
$$

Substituting Eq.(S10) back into Eq.(S9), we have the upper part of Table I.

We then can use the upper part of Table I to determine the terms that represent spin in the effective theories for the four Dirac cones. The strain terms for the states
around $D_{i=1,2,1^{\prime}, 2^{\prime}}$ are generally written as
$\delta H_{a b, i}=m_{a b, i}^{0} \sigma_{0}+m_{a b, i}^{x} \sigma_{x}+m_{a b, i}^{y} \sigma_{y}+m_{a b, i}^{z} \sigma_{z}+O(|q|)$.
ϵ_{12} changes sign under $M_{110,1 \overline{1} 0}$ and invariant under $C_{2 T}$, from which we have $m_{12, i}^{y}=m_{12, i}^{z}=0$. Again from C_{4}, we obtain $m_{12,1}^{x}=-m_{12,1^{\prime}}^{x}=m_{12,2}^{x}=-m_{12,2^{\prime}}^{x}$. This (S11) is the fourth column.
$\epsilon_{13 / 23}$ are invariant under $M_{1 \overline{1} 0 / 110}$ but changes sign under $M_{110 / 1 \overline{1} 0}$ and $C_{2 T}$. The little group at $D_{1,2}$ is $\left\{M_{1 \overline{1} 0}, C_{2 T}\right\}$, so we have $m_{13,1}^{x, z}=m_{13,2}^{x, z}=0$ and $m_{23,1}^{x, y}=$ $m_{23,2}^{x, y}=0$. Using that C_{2} maps $D_{1 / 2}$ to $D_{2 / 1}$, we have $m_{13,1}^{y}=-m_{13,2}^{y}$ and $m_{13,1}^{z}=-m_{13,2}^{z}$. Then we notice that since C_{4} maps $D_{1 / 1^{\prime}}$ to $D_{2 / 2^{\prime}}$, and $\epsilon_{13}\left(\epsilon_{23}\right)$ to ϵ_{23} $\left(-\epsilon_{13}\right)$, there are $m_{23,1^{\prime} / 2^{\prime}}^{x, y, z}=m_{13,1 / 2}^{x, y, z}$. This gives the last two columns.

The above relations give in total six free masses: $\left(m_{11,1}^{y}, m_{22,1}^{y}, m_{33,1}^{y}, m_{12,1}^{x}, m_{13,1}^{y}, m_{23}^{z}\right)$, defined as $\left(\lambda_{11}, \lambda_{22}, \lambda_{33}, \lambda_{12}, \lambda_{13}, \lambda_{23}\right)$.

