A General Approach to Network Configuration Verification

Ryan Beckett
Princeton University

Aarti Gupta
Princeton University

Abstract— We develop an approach to verify network
configurations that is (1) general whereas prior work is lim-
ited in terms of protocols or features, (2) accurate whereas
prior work approximates, (3) complete in that it analyzes all
possible sets of routing announcements from external sources
rather than just one or some, (4) powerful in that it can verify
a wide range of properties such as reachability, path length,
fault tolerance, and load balancing, and yet is (5) scalable.
Our approach translates unmodified network configurations
into a logical formula that captures both control and data
plane behaviors. It then uses an SMT solver to determine if
the paths that can emerge when the control plane converges
satisfy properties of interest. We implement our approach in
a tool called Minesweeper and use it to on configurations of
152 real networks from a large cloud provider. While these
networks have been operational for years, it found 96 bugs,
some of which represent serious security vulnerabilities. We
also used Minesweeper on synthetic benchmarks, and found
that it can verify rich properties for networks with hundreds
of routers in under 5 minutes. This performance is due to a
suite of model-slicing and hoisting optimizations we devel-
oped, which reduce verification time by over 460x.

1. INTRODUCTION

The control plane of traditional (non-SDN) networks is
a complex distributed system. Network devices use one or
more protocols to exchange information about topology and
paths to various destinations. How they process this infor-
mation and select paths to use for traffic depends on their
local configuration files. These files tend to have thousands
of lines of low-level directives, which makes it hard for hu-
mans to reason about them and even harder to reason about
the network behavior that emerges through their interactions.

As aresult, configuration errors that lead to costly outages
are all-too-common. Indeed, every few months configuration-
induced outages at major networks make the news [1, 25, 23,
3]. Systematic surveys of network outages also show that
configuration error is the biggest contributor [20, 15].

One way to combat such errors is through control plane
testing tools such as Batfish [11] and C-BGP [22]. Given
a concrete environment (i.e., a set of messages from neigh-
boring networks and a network failure scenario), these tools
simulate the network control plane to produce the data plane,
which can then be checked for properties such as reachabil-
ity to certain destinations. However, testing is necessarily
incomplete. It can only analyze a small number of the enor-
mous set of possible environments. But unfortunately, many
errors trigger in some environments and not others [9].

David Walker
Princeton University

Ratul Mahajan
Microsoft Research

Thus, it is highly desirable to perform control plane veri-
fication, which aims to analyze correctness in the face of all
possible environments. Verification is more challenging be-
cause one cannot simply simulate the control plane with con-
crete environments. Rather, one must build a model in which
the environment is symbolic (i.e., represented as a variable).

Several researchers have considered the network verifica-
tion problem, but in each case the underlying models are in-
complete or inaccurate. For instance, two of the most recent
systems, Bagpipe [27] and ERA [9], employ what we call
path-based models. They model the flow of symbolic rout-
ing messages along a primary network path and then con-
sider the interaction with messages along secondary paths.
ERA does not model potential interactions among multiple
secondary paths. Consequently, its analysis is sound only for
non-reachability (i.e, is A guaranteed not to reach B?), not
for reachability (i.e., is A guaranteed to reach B). Bagpipe
makes different simplifications. It considers only networks
with BGP where border routers are connected in a full mesh
and ignores internal topologies, routing protocols, and ac-
cess control lists (ACLs). Other recent tools are limited as
well. For instance, ARC [12] efficiently analyzes all possi-
ble failures but not all possible sets of external routing mes-
sages; and FSR [26] only models BGP preference ranks as
opposed to full control and data plane functionality.

Thus, a fundamental scientific question is still open:

Is it possible to accurately model a network’s
control and data planes as a function of its sym-
bolic environment such that the model scales suf-
ficiently to enable verification of real networks?

We answer this question in the affirmative, by combining the
following ideas from networking and verification literature:

Graphs vs paths. The path-based models above reason about
individual network paths. While this approach has proven
effective for stateless data plane verification (e.g., HSA [14]),
it creates substantial problems for control plane analysis.
The distinction is that, in stateless data planes, packets on
one path never interfere with those on a different path; but in
the control plane, two route announcements can interfere.
A routing message along one path may be less preferred
than a message over another path, causing it to be dropped
when the other message is present. For accuracy, interac-
tions along all paths must be modeled, but there can be an
intractably large number of paths. We avoid this problem by
using a graph-based model, where rich logical constraints on
its edges and nodes encode all possible interactions of route
messages. ARC [12] has a graph-based model as well, but

it uses shortest path graphs that cannot capture the policy-
based routing of BGP.

In addition to its better accuracy, our model can verify a
much richer set of properties, expressed over graphs, rather
than properties on paths alone. For example, it can reason
about equivalence of routers, load balancing, disjointedness
of routing paths, and if multiple paths to the same destination
have equal lengths. Such properties are difficult or impossi-
ble for path-based models to check, and we show that they
are valuable in finding bugs in real configurations.

Combinational search (not message set computation). Ex-
isting tools to analyze multiple environments [9, 27] eagerly
compute the sets of routing messages that can reach vari-
ous points in the network. However, the full sets are not
typically needed and computing them can incur a high cost.
Fortunately, the symbolic model checking community has
encountered this type of problem before. Rather than it-
eratively computing sets of messages, one can instead ask
for a satisfying assignment to a logical formula that rep-
resents all possible message interactions. Suppose a vari-
able x,,,; represents whether a message m reaches a loca-
tion ! in the network and N encodes the network seman-
tics logically. If there exists a satisfying assignment to the
formula N A x,,;=true, then m can reach [and all the
constraints [V imposed by interacting messages will also be
satisfied. The advantage of this formula-based approach is
that while model checking with message set computation is
PSPACE-complete [5, 24], the search for a satisfying assign-
ment in the related bounded model checking problem [4]
is NP-complete. The intuition behind lower complexity is
that searching for a satisfying assignment avoids comput-
ing many intermediate message sets. In practice too, mod-
ern SAT [17] and SMT (Satisfiability Modulo Theories) [7]
solvers routinely solve large instances of such combinational
search problems in hardware and software verification.

Stable paths problem. To realize an approach based on
graphs and combinational search, we need to convert the dis-
tributed message-passing of the control plane into an equiv-
alent logical formula. Here, we turn to the work of Griffin
et al. [13], who showed that network control planes (BGP in
particular) solve the stable paths problem, and these paths
can be described by constraints on edges. Consequently,
rather than encoding message exchanges, we can encode the
corresponding set of edge constraints in our formula, such
that satisfiable assignments correspond to stable paths in the
control plane. Our formula captures all possible environ-
ments as symbolic variables, and we can also add constraints
related to properties of interest to perform verification.

Slicing and hoisting optimizations. Our default encoding
of the network control plane produces large formulas that
cannot be solved quickly for real networks. We have dis-
covered a range of highly effective optimizations that reduce
the number of variables and constraints in our generated for-
mulae enormously. One class of optimizations is slicing,

which analyzes the formula to remove variables and con-
straints that cannot affect the final outcome. A second class
of optimizations is hoisting, which lifts repeated computa-
tions out of their logical context and precomputes them once.
Intuitively, such optimizations are effective because real net-
works have simpler control planes than the theoretical worst
case. For instance, in theory messages can be arbitrarily
modified when sent to neighbors (implying the need for dif-
ferent variables for messages to different neighbors), but in
practice the same message is sent to multiple neighbors (al-
lowing shared variables). Similarly, while different routers
may have arbitrarily different control plane logic in theory,
in practice many routers share parts of their configurations.

We implement the concepts above in our Minesweeper tool,
and apply it to many real and synthetic networks. Across the
152 small to medium real networks that we analyzed for two
properties, we found 96 new bugs, despite the fact that these
networks were in production use for years. One class of bugs
poses a serious security threat: the management interface IP
of the routers could be “hijacked" by external neighbors by
sending specific routing announcements. Our experiments
with synthetic networks show that Minesweeper can verify
a rich set of properties such as many-to-one reachability,
bounded path length, and device equivalence in under 5 min-
utes on networks with 100s of routers. Our optimizations are
key to this performance. They help reduce verification time
by a factor of up to 460x for larger networks.

Summary. Minesweeper is the first network configuration
verification tool that can i) generate a complete, accurate,
symbolic model of the network control and data planes; as
well as i) verify a wide range of properties for networks of
substantial size.

2. MOTIVATION

Our approach represents two significant departures from
existing work on configuration analysis:) using general
graphs, instead of source-destination paths; and i) using
combinational search, instead of eagerly computing message
sets. This section provides intuition behind these choices.

2.1 Paths vs. graphs

Consider the network in Figure 1(a). It has three inter-
nal routers, R1 to R3, that run OSPFE. It connects to three
external neighbors, N1 to N3, via BGP. The internal routers
are connected to subnets, S1 to S3, whose address prefixes
they redistribute into OSPE. R1 and R2 connect via iBGP, to
share the BGP routes they hear from N[1..3]. They also re-
distribute BGP destinations into OSPF, so that R3 can reach
those destinations, and OSPF into BGP so that internal sub-
nets are announced externally. The BGP preferences of R1
and R2 are as shown: R1 (R2) prefers routes through N2,
N1, and N3 (N3, N2, N1) in that order. Recall that in BGP,
when multiple routes are available to the same destination, a
router will select and share the most preferred one.

E (a) (s |

Figure 1: (a) An example network. (b) Its protocol-level decomposition. (¢) Routing information flow for BGP at R1.

Suppose we want to ensure that the subnet S3 uses N1 to
reach any external destination even when all three of N1, N2
and N3 announce a path to that destination. Does this prop-
erty hold in our network? The correct answer is positive, but
interestingly, the answer a configuration analysis tool deliv-
ers depends on the sophistication with which it reasons about
the interactions of control plane messages on different paths.

o If the analysis only considers the path N1-R1-R3, it will
conclude that the property holds. R1 will select the route
through N1 since no other route is available and pass it to
R3. Thus, R3 (and S3) will send traffic through N1. (Data
flows in the opposite direction to routing information.)

o [f the analysis additionally considers the routing path N2-
R2-R1-R3 (which interferes with the first path at router
R1), it will conclude that the property does not hold. R1
will select the route through N2 and thus the route through
N1 will not reach R3.

o If the analysis also considers N3-R2-R1-R3 (which inter-
feres with the second path at R2 and the first path at R1), it
will conclude once again that the property holds. R2 will
select the route through N3, and thus R1 will select and
propagate to R3 the route through N1.

In the general case, all possible paths can interfere with
one another, and for correct analysis, all mutual interactions
should be considered. But the number of paths can be enor-
mous: O(V V), where V and E are the number of nodes
and edges (and thus £ i is the average node degree). Existing
path-based tools 01rcumvent this problem by restricting the
networks they can analyze (e.g., Bagpipe) or conducting an
approximate, potentially unsound analysis (e.g., ERA).

Our model avoids this problem by constructing a compact
representation for all possible paths—a graph. The com-
plexity of this structure is O(V 4 E). Our graph accurately
(and symbolically) models all interactions between different
paths and supports a richer set of properties (described later).

2.2 Message sets vs. combinational search

One possible approach to control plane verification is to
simulate all possible outcomes of the distributed control plane
computation by computing (symbolic) sets of messages for
all destinations at once. Once all outcomes of the control

out1

€7 |n7 Riggp OLIt3

ne
°UtaP |nﬂ ¢

ee e5

(b) (c)

plane computation have been computed, one can analyze the
complete set of possible final states and judge if the property
of interest holds. Unfortunately, this approach often leads to
a lot of unnecessary work.

In many cases, computing a full solution to the control
plane computation is often unnecessary as the validity of the
property may not depend upon many parts of that solution.
In contrast, our approach encodes both the network and the
property in question as a logical formula. As the SMT solver
searches for a satisfying assignment to the formula, it will
take the property into account. If the property does not re-
quire knowledge of some aspects of the control plane, the
search process may ignore that part of the model. For ex-
ample, if router R3 has an ACL that drops traffic sent to R1,
then the solver might quickly learn that S3 will not be able
to reach N1 without reasoning about the full control plane
behavior. In Section 8, we show how many properties can
be checked much more efficiently for this reason.

In addition, approaches that compute message sets repre-
sent and store all possible outcomes of the control plane’s
full fixed point computation and they find all violations of
the property at once. In contrast, our approach searches for
just one outcome of the control plane computation that vi-
olates the given property. The latter can be done extremely
efficiently by modern SMT solvers in many domains. While
our approach will not find all violations at once, finding just
one violation can help pinpoint a bug. When that bug has
been fixed, one can apply the procedure again.

3. THE BASIC NETWORK MODEL

Our goal is to enable network operators to verify the be-
havior of their network under any possible environment. To
provide this capability, we model the network with respect to
a packet as a function of its environment. Because the packet
and the environment are symbolic, our model can verify the
control and data plane behavior of the network relevant to
any packet under any environment.

More specifically, we generate F', a system of SMT con-
straints defined as the conjunction of IV, the behavior of the
network, given the current configurations of all routers, and
—P, anegated property of interest to the operator. Satisfying

solutions for N correspond to stable forwarding paths in the
network. Thus, any stable solution (even among multiple
ones) that violates the property will be reported as a satis-
fying solution for F'. However, if F' is unsatisfiable, then
either all stable paths satisfy the property, or the network has
no stable paths for the destination(s) of interest.

This section describes the techniques we use to generate
a basic network model N using Figure 1 as a running ex-
ample. We explain, in turn, how to model (1) a data packet,
(2) the interactions between routing protocols, (3) the con-
trol plane information, (4) the import and export filters in
router configurations, (5) the route selection process, and (6)
the access control lists that apply to data packets. We end
this section with (7) an example encoding of a property P.
Throughout this section, we refer to Figure 2, which lists
the main symbolic variables used in our generated formulae.
§4 discusses extensions to the basic model, and §5 discusses
many additional properties.

(1) Modelling data plane packets. The first section of Fig-
ure 2 lists the main variables used to represent a symbolic
data packet. For instance, the packet’s destination IP is mod-
elled by the integer variable dstIP, which ranges from 0 to
232_1. We model other fields similarly. If operators wish
to ask about a specific destination, such as 10.0.0.0, they
may issue a query that constrains our model to consider only
packets with that destination (e.g., using the formula dstIP
= 10.0.0.0 in their property P). If they instead wish to ask
about packets with any destination IP, they may leave the
dstIP field unconstrained. Traditional (non-SDN) networks
do not typically modify packet headers' —they only forward
or block them. Consequently, we use only one, global copy
of each of these variables in our formula.

In order to determine what happens to such packets in the
network, we must, of course, model the control plane proto-
cols and how they decide to forward packets.

(2) Modeling protocol interactions. Routers commonly
run multiple protocol instances, each of which operates in-
dependently and selects a best route for a destination prefix
based on the information from 4) its remote peers; and i7) re-
distribution from other local instances. Figure 1(b) presents
a protocol-level view of the internal routers in our exam-
ple. Here, routers R1 and R2 run BGP to exchange routes
with the outside world and OSPF to communicate internally.
CON denotes connected routes, i.e., those known through a
directly connected interface; we model them as if they are
their own protocol, which allows us to avoid special cases.
Figure 1(c) zooms into R1’s BGP instance. Each node is a
protocol instance and each edge represents information flow
between two instances. For example, the nodes R1pgpr and
R1pgp represent protocols OSPF and BGP on router R1.
Since OSPF redistributes into BGP, and vice versa, there are
edges back and forth between R1pgpr to Rlggp. The out-
going edge from R1¢on indicates that the connected routes

"Except for TTL and CRC fields, which we do not currently model.

Variable Description Rep.
Data plane

dstlIp Packet destination IP addr 0,2%2)
srclp Packet source IP addr 0,2%2)
dstPort Packet destination port 0,21)
srcPort Packet source port 0,21)
protocol Packet Protocol 0,2%)
Control plane

prefix,. Prefix for record r 0,2%2)
length,. Prefix length for r 0,2%)
ad, Administrative distance for | [0,2%)
Ip,. BGP local preference for r 0,2%2)
metric,. Protocol metric for r 0,210)
med, BGP MED attribute for 7 0,23?)
rid,. Neighbor router ID for r 0,23?)
Decision

controlfwd, , | x fwds to y (ignores ACLs) 1 bit
datafwd, , x fwds to y (includes ACLs) | 1 bit
Topology

failed, , Is the link from x to y failed | [0, 1]

Figure 2: Selected symbolic variables from the model

are redistributed into BGP. Since R1 uses BGP with the ex-
ternal neighbor N1 and R2, there are edges in both directions
between R1ggp and N1 and R2pgp.

(3) Encoding control plane information. To model the
control plane, we need to encode the information in the mes-
sages exchanged by protocol instances. We do so using records
of symbolic values, which roughly correspond to protocol
messages. As with the data packets, constraints may map
these variables to specific concrete values (e.g., the prefix
10.1.0.0/24) or may leave them fully or partially unconstrained,
allowing them to represent multiple possible values.

Unlike the single symbolic data packet, there are many
control plane records in our encoding. The edge labels in
Figure 1(c) indicate the presence of a specific record. Con-
sider the edge between R2pgp and Rlpgp. The label ey
represents the messages exported by R2’s BGP process on
the link to R1; and the label in4 represents the messages af-
ter traversing R1’s BGP import filter on the link from R2.
Naturally, the messages defined by ing and e, are closely
related. We encode the relationship using SMT constraints
generated from import filters in R1’s configuration.

Routing messages from the environment are represented
as records from an external neighbor. For example, the record
e is the export from neighbor N1, and left unconstrained, it
represents the fact that N1 could send any message.

The second section of Figure 2 lists the main fields of
symbolic control plane records. Each record is for a desti-
nation prefix of a particular length. Announcements for that
prefix are annotated with the administrative distance (ad).
When multiple protocol instances offer a route to the same

prefix, this measure (which is configured for each protocol)
determines which one is used for forwarding. These records
also contain the local preference (Ip) for BGP, and the met-
ric. The metric is a protocol-specific measure of the quality
of the route. For instance, it is path length for BGP and path
cost for OSPF. When routes are redistributed from one proto-
col to another, the configuration determines the initial metric
that the router will use. The router id (rid) is used to break
ties among equally-good routes. Other protocol-specific at-
tributes such as the BGP multi-exit discriminator (med) are
included in each such symbolic record. Finally, every record
contains one special boolean field, called valid. If valid is
true, then a message is present and the remaining contents
of the record are meaningful; otherwise, they are not mean-
ingful (e.g., no message arrives at this location).

Because we are interested in the behavior with respect to
a single symbolic packet, we only want to consider control
plane messages for prefixes that impact this packet. The
valid field of a control plane record will only be true if 7)
a message is present (e.g., advertised from a neighbor), and
11) the control plane destination prefix applies to the data
plane destination IP of the packet of interest. We capture
this latter fact with the constraint:

e.valid = FBM(e.prefix, dstIp, e.length)

The function FBM (first bits match) tests for equality of
the first e.length bits of the prefix (e.prefix) and destination
IP, thus capturing the semantics of prefix-based forwarding.?

(4) Encoding router configurations. Each router configu-
ration defines (possibly per neighbor) filters that can either
drop or modify protocol messages. As an example, consider
the following configuration fragment for router R1.

ip prefix_list L deny 192.168.0.0/16 le 32
ip prefix_1list L allow

route-map M 10
match ip address prefix-list L
set local-preference 120

This fragment blocks control plane announcements for any
prefix that matches the first 16 bits of 192.168.0.0, and has
prefix length between 16 and 32. It sets the local preference
attribute to 120 for any other prefixes. Assuming R1’s BGP
process is configured with this fragment as an import filter
then we use it to define the relationship between the sym-
bolic records e4 and iny4 in Figure 1(c). More specifically,
the filter is realized by the formula in Figure 3. The first line
in this formula ensures that there can be an advertisement at
ing only if R2 exports an advertisement to e4 and the R1-R2
link is not failed (R2 would only export to ey if the link is not
failed as well). The second condition implements the import
filter. If the two conditions are met, then information from
R2 will arrive at R1. Hence, we set the valid bit of iny4, en-
sure the local preference is 120, and ensure in4’s other fields

The constraint FBM(p;,pz,n) is surprisingly tricky to encode ef-
ficiently. A naive solution that represents p; and pz as bit-vectors
of size 32 is slow. See §6 for an efficient solution.

if e4.valid A failedr; r2 = 0 then
if - (FBM(eq4.prefix, 192.168.0.0, 16) A
16 < ey.length < 32)

then
ing.valid = true
ing.lp =120

ing.ad = e4.ad
ing.prefix = e4.prefix
ing.length = e4.length

else iny.valid = false
else iny.valid = false

Figure 3: Sample translation of an import filter

are the same as e4’s. In other cases, no advertisement arrives
at R1, so its valid bit must be false.

Such translation of import filters to symbolic constraints
can also capture route redistribution where routes learned in
one protocol are transferred to another. Users can set custom
metric and administrative distance values for route redistri-
bution, which would be updated as in the above example.

(5) Encoding the control plane decisions. Each protocol
instance executes a decision process that selects a best route
for a given IP prefix based on those available. For exam-
ple, the routes available to R1’s BGP instance may include
routes from R2’s BGP instance, R1’s OSPF and connected
instances. Thus, the available routes here are defined by the
status of the symbolic records ing, ing, ins, and in7. The
available routes are ordered by the decision process in a stan-
dard way. For instance, BGP first prefers the route with the
highest administrative distance, then if those are equal, the
highest local preference, then highest metric, efc. We im-
plement this ordering via a relation r; =< 75, which may be
read as “r; is preferred over r5.” The selected route is the
one that is both available (the valid bit is set) and highest in
the ordering. Logically, our encoding introduces a new sym-
bolic record best,,,o for each protocol instance prot. Each
such record is equated with the highest available route in the
order. For instance, for R1’s BGP process, if no input in; is
valid then best,;q is not valid. Otherwise:

/\ bestgap Xin; A \/

i€{2,4,5,7} 1€{2,4,5,7}

bestgap = in;

This constraint states that best record is less than all alterna-
tives and equal to one of them. It is linear in size.

Each router installs only one route in its data plane, which
is then used to forward traffic. Thus, it chooses a best route
among all running protocols. Once again, this can be mod-
elled with a new symbolic record bestyyerall, Which is simi-
larly constrained to be the best among all the best,.qt, records.
After selecting a best route, each protocol will then export
messages to each of its peers after potentially processing
these messages through peer-specific export filters. The en-

coding of an export filter is similar to the encoding of an
import filter shown earlier. The main difference is that it
will connect a record for a protocol decision process, such
as R1’s bestggp, with a record on an outgoing edge of a
router, such as outy, and then update the protocol metric to
account for the change in path cost.

To represent the final forwarding decision of the router,
we introduce a new boolean variable controlfwdy , for each
edge in the network between routers x and y. The variable
indicates that router x decides to forward traffic for the desti-
nation to router y. Intuitively, router x will decide to forward
to router y if the message received from y is equal to the best
choice. For example, to determine if R1 will forward to R2,
we use the following constraint:

controlfwdr r2 = (e4.valid A e4 = bestoyerall)

(6) Encoding data plane constraints. Although routers de-
cide how to forward packets in the control plane through
their decision process, the actual data plane forwarding be-
havior can differ due to the presence of an access control list
(ACL), which lets a router block traffic directly in the data
plane. To handle ACLs, we create additional, separate vari-
ables to represent the final data plane forwarding behavior
of the network. For each variable controlfwd, ,,, we create a
corresponding datafwd, y variable. The data plane forward-
ing will be the same as the control plane forwarding modulo
any ACLs. For example, consider the following ACL:

access-1list 1 deny ip 172.10.1.0 0.0.0.255

The mask 0.0.0.255 signifies the wildcard bits for the match.
This will therefore block any packets that match destination
IP 172.10.1.% in the data plane. This constraint is captured
by first translating the ACL to a formula and then joining it
with the control plane decision in the following way:

datafwdRLRg =
controlfwdgr r2 A = FBM(dstIP, 172.10.1.0, 24)

(7) Encoding properties. While the model above captures
the joint impact of all possible network interactions, to ver-
ify properties of interest we can instrument it with additional
variables as needed. For example, suppose we wish to check
that router R3 will be able to reach N1 regardless of any
advertisements received from neighbors N2-N3. For each
router x in the network, we add a variable reachy represent-
ing that x can reach the destination subnet. For R1, which is
directly connected to N1, we add:

canReachr; <= datafwdri N1

For every other router, we say it can reach N1 if it can for-
ward to some neighbor that can reach N1. For router R3:

canReachry <— \/ (datafwdgrs r A canReachg)
Re{R1}

Since we are interested in checking that the property holds
for any possible packet, we leave the packet fields (e.g., dstIp)

unconstrained. Finally, we would assert the negation of the
property we are interested, namely —canReachgrs and ask the
solver to prove unsatisfiability, thereby ensuring the property
holds for all packets and environments.

Limitations. Although our model of the network is highly
flexible, it has several limitations. First, because we encode
the solution to a stable network control plane directly, this
model cannot be used to verify properties about transient
states of the network, prior to convergence.

Second, because we only consider control plane messages
that influence the forwarding decision for a single symbolic
packet, it is harder to pose queries that involve more than
one packet (e.g., packet A reaches a server only if packet B
reaches the server). This also makes it challenging to model
a few features that introduce dependencies among destina-
tions. For example, it is possible for static routes to specify
a next hop IP address that does not belong to a directly con-
nected interface, thereby requiring the model to understand
how to route to that next hop. In general, there are two ways
to resolve this issue. We can either (1) model the semantics
of static routes precisely by creating a separate copy of ev-
ery control plane variable to determine the forwarding for a
second packet corresponding to the next hop destination, or
(2) overapproximate the behavior of the static route by treat-
ing the static route as non-deterministically sending out any
port. This overapproximation is sound in that any property
verified for the overapproximated network must hold in the
real network. None of the real configurations we analyzed
used this feature.

4. GENERALIZING THE MODEL

This section describes how we encode several additional
features of network configurations.

Link-state Protocols. In link-state protocols, such as OSPF
and ISIS, routers share information about the configured cost
and state (up or down) of each link. Each router then builds a
global view of the network and computes the least-cost path
to each destination. These least-cost paths are a special case
of stable paths. Each router along the shortest path will send
traffic to a neighbor only if that neighbor has a path to the
destination and no other neighbor offers a lower cost path.
Thus, we can model link-state protocols in the same way as
path-vector protocols, simply using different link costs.

Maximum Path Length. Distance-vector protocols (which
we model similarly to path-vector protocols) can suffer from
the “count-to-infinity" problem, where it takes a long time
for the protocol to converge because routers repeatedly learn
slightly better paths. To counter this problem, these proto-
cols introduce a maximum hop count (e.g., 15 in RIP), and
routes longer than the maximum are discarded. To capture
this semantics, we extend the import filters of every router to
reject routes that exceed the maximum hop count. In EIGRP,
the hop count is distinct from the metric, so it is maintained
as a separate variable in each symbolic record.

Static Routes. Static routes are used to tell a router to al-
ways forward to a particular next hop IP address, or out a
particular interface. As with directly connected routes, we
model static routes on each router as their own routing pro-
cess that decide how to forward based on the destination IP
address. The advantage of modelling static routes this way
is that it is possible to treat them similarly to other proto-
cols and to model route redistribution where static routes are
injected into other protocols.

Aggregation. Aggregation, by which routers announce a
less-specific prefix that covers many, more-specific prefixes,
is an important technique to reduce the size of the routing
tables. We model aggregation as a modification to the pre-
fix length attribute. If a prefix is valid for the destination IP
address before aggregation, it will remain valid after aggre-
gation, however the prefix length will be smaller.

Multipath Routing. Our path selection encoding, as de-
scribed in §3, was limited to a single best path. However,
multipath routing is common in modern networks, where
to balance load, traffic is spread over multiple equally-good
routes. To encode multipath routing, we relax the best route
comparison so that it does not compare the router ID. This
relaxation makes it so there is no longer a total ordering of
preferred routes, and any route as good as the best route will
be used.

BGP Communities (not yet implemented). BGP commu-
nities are arbitrary strings that can be attached to route adver-
tisements, which other routers can use as part of their policy.
We can model community values by introducing a new com-
munity variable (communityy) for each router = for each
community c used in the policy. Vendors allow community
values to be added or removed arbitrarily by any router. We
apply these transformations simply by updating the value of
community, . according to the import/export filter at the
router. We plan to implement this feature shortly.

S. PROPERTIES

As noted earlier, our model allows us to express a range
of rich properties using SMT constraints. We now show how
to encode some common properties of interest.

Reachability and Isolation. We focus on answering reach-
ability queries for a fixed destination port and set of source
routers. To answer such a query, each router x is instru-
mented with an additional variable canReach, representing
the fact that the router can reach the destination port. We
then add constraints as in Section 3. Isolation is checked by
asserting that a collection of routers are not reachable.

One benefit of the graph-based encoding is that queries
can involve many routers at once and the solver will analyze
their joint impact. For example, to check if two routers r;
and ro can both either reach or not reach the destination, one
would assert canReach,, <= canReach,,. Similarly,
the user can check if all routers from a set S can reach the
destination in a single query by checking: A, 5 canReach;.

In contrast, in existing data plane and control plane verifi-
cation tools, to answer questions about reachability between
all pairs of n devices, one is typically required to run n?
separate queries, which can be very expensive [21].

Waypointing. Suppose we want to verify that traffic will
traverse a chain of devices myq, . .., my. Rather than adding
one variable for each router as with reachability, instead we
add k variables for each router to indicate how much of
the service chain has been matched. If a router forwards
to neighbor m; and its (j — 1)th variable is true, then the jth
variable must be true for that router. Routers where the kth
variable is true will send traffic through the service chain.

Bounded or Equal Path Length. In many settings, it is
desirable to guarantee that traffic follows paths of certain
length. For example, for a data center with a folded-Clos
topology, an operator may wish to ensure that traffic never
traverses a path longer than four hops. A violation of such
an invariant likely indicates a configuration bug. Similarly,
the operator may want to ensure that all top-of-rack routers
in a pod use equal length paths to the destination.

Similar to reachability, path length is easily instrumented
in the model by adding a new integer variable for each router
in the network. Each router has path length n to the destina-
tion if it forwards to some neighbor with path length n — 1.

Disjoint Paths. It is also possible to ensure that two differ-
ent routers use edge-disjoint paths to a destination. Given
two source routers, we add two bits to each edge indicat-
ing whether either router ever forwards through that edge.
A constraint then states that both bits are never set for any
edge. A similar approach can be used to guarantee that paths
do not share nodes or other shared-risk elements (e.g., fiber
conduits), by introducing a variable for each risk factor.

Routing Loops. Routing loops in the network can arise from
configuration errors in one or more of route redistribution,
administrative distances, and static routes. To detect routing
loops for a particular router r, we add a single control bit
to say whether each other router will eventually send traffic
through r. If r sends traffic to any neighbor with this bit
true, then there will be a routing loop. As an optimization,
we analyze configurations to identify routers where a routing
loop is possible (e.g., due to the presence of static routes).
We then add control bits only for these routers.

Black Holes. Black holes occur when traffic is dropped be-
cause it arrives at a router that does not have a corresponding
forwarding entry. This behavior may be intentional (e.g., in
the case of ACLs) or unintentional. We can find black holes
by checking if any router has a neighbor that forwards to it,
yet the router itself does not forward to any neighbor.

Multipath Consistency. Batfish [11] introduced a property
called multipath consistency, which ensures that traffic along
all paths from a source is treated the same. A violation of
multipath consistency occurs when traffic is dropped along
one path but not the other. Consider the example in Fig-

Figure 4: Example networks for encoding (a) multipath
consistency, and (b) load balancing.

ure 4(a). Router R1 is configured to use multipath routing,
yet an ACL on router R3 prevents traffic from using the link
to R5. We encode multipath consistency as follows.

canReachrr = Apec(po ray
(controlfwdpr p =
datafwdpy,r A canReachpr)

canReachrs =—

The first constraint says that if R1 can reach the destina-
tion S at all, then forwarding to R2 (R3) in the control plane
implies that R2 (R3) should also be able to reach the desti-
nation, and this also aligns with forwarding in the data plane
to R2 (R3). In the example presented in Figure 4(a) this con-
straint will fail since R3 cannot reach the destination, due to
the bad ACL to R5. Suppose now that R3 can also use mul-
tipath routing, and can therefore reach the destination via
R4 (shown as the dotted edge). Now the first constraint at
R1 will succeed, but the second constraint for R3 will fail,
because R3 can forward through R4 but not through RS.

Neighbor/Path Preferences. Operators often want to en-
force preferences among external neighbors based on com-
mercial relationships. For example it is common to prefer
routes learned from customers over peers over providers.
Given a router R with three edges to neighbors nl, n2, and
n3 with import records el, e2, and e3, we can verify that nl
is preferred over n2 over n3 in the following way. For each
neighbor, we add a constraint that, if a message survives the
import filter, and all other more preferred neighbor adver-
tisements do not, then the presence of the message implies
that we will choose that neighbor in the selection process:

el.valid = controlfwdg n1
—el.valid A e2.valid = controlfwdg, n2
—el.valid A —e2.valid A e3.valid = controlfwdpr n3

This type of reasoning can be lifted to entire paths. For
example suppose we want to verify that the network prefers
to use pathy = x1, ..., Ty, over pathe = y1, ..., Y,. What
we want to check is that if the less preferred path is used,
then the more preferred path was not available:

n—1 m—1
/\ controlfwdy, .., = \/ —e;.valid

i=1 =1

That is, whenever traffic flows along paths it is because
path, is not available due the advertisement being rejected
along one of the edges. A straightforward generalization of
the above can help enforce preferences over classes of neigh-
bors, instead of individual neighbors.

Load Balancing. Consider the example network in Fig-
ure 4b. Suppose router R1 is configured to use ECMP to
send traffic to R2 and R4. We can roughly model the effect
of load distribution with the following steps. First, for each
router R in the network we introduce a symbolic real num-
ber called totalp representing the portion of traffic going
through R. For each source router of interest (e.g., R1 and
R3), we set the load to some initial value based on traffic
measurements (e.g., 1.0 in this example):

totalg; = 1.0 A totalgs = 1.0

For each outgoing interface in the network, we add a vari-
able out; representing the fraction of the load sent out that
interface, which depends on the forwarding behavior.

out; = if datafwdgi r4 then x else 0.0
outy = if datatwdpg, g2 then x else 0.0
totalgy = outy + outsy

Each interface’s load is equal to the (same) value defined by
a single new variable z if traffic is forwarded out the inter-
face, otherwise it is 0. This new variable x ensures the loads
are all equal.® The total at non-source routers is simply the
sum of their incoming totals:

totalge = outy + outs

Now we can ask questions about the load on each node/edge.
For example, we can check that the difference between the
loads on R2 and R4 is always within some threshold &:

—k < totalgy — totalgy < k

Aggregation and Leaking Prefixes. We can ensure that
prefixes are aggregated properly (e.g., a /32 is not leaked to
an external network) by checking: whenever the network ad-
vertises record e to an external neighbor, then e.length = [
where [is prefix length after aggregation.

Local Equivalence. In many networks (e.g., data centers),
several devices will perform a similar “role" (e.g., aggre-
gation router) and have similar configurations. Checks for
equivalence can help detect inconsistencies. For example,
we might want to know that a particular community value is
always attached to advertisements sent to external neighbors.

Because we fully model each router’s interactions with all
of its neighbors, we can check if two routers are behaviorally
equivalent for some notion of equivalence. In particular, we
ask if given equal environments (i.e., peer advertisements),
the routers will make the same forwarding decisions and
export the same new advertisements. For example, if two

3This could be easily extended to weighted ECMP by scaling x by
a constant according to the fraction of traffic split.

routers R1 and R2 have both have the same two peers P1
and P2 with import records in; and ins, and output records
out; and outs, then we check the following:

(out1 = Outg) A
(datafwdRLpl = datadengpl) A
(datadeRLpg = datafwdm,pg)

ing =iny —

Full Equivalence. It is also possible to check full equiv-
alence between two sets of router configurations. This is
done in a similar way as the local equivalence check, by first
making two separate copies of the network encoding, and
then relating the environments. As before, we check that all
the final data plane forwarding decisions and all exports to
neighboring networks must be the same as a result.

Fault Tolerance. Configurations that work correctly in failure-

free environments may no longer work correctly after one or
more links in the network fail. For each property above, we
can verify that it holds for up to k failures by adding the
following constraint on the number of links that are failed:

> failed,, <k
(z,y)E€edges

6. OPTIMIZATIONS

While conceptually simple, the naive encoding of the con-
trol plane described in §3 does not scale to large networks.
We present two types of optimizations that dramatically im-
prove the performance of the control-plane encoding.

6.1 Hoisting

Hosting lifts repeated computations outside their logical
context and precomputes them once. Two main optimiza-
tions of this class that we use are:

Prefix elimination. Our naive encoding does not scale well
in large part because of the constraints of the form FBM(p1,
p2, n), which checks that two symbolic variables have the
first n bits in common. The natural way to represent p1 and
p2 for this check is to use 32-bit bitvectors and check for
equality using a bit mask. However, bitvectors are expensive
and solvers typically convert them to SAT. In our model, this
would introduce up to 128 new variables for every topology
edge in the network (4 records per edge) thereby introducing
an enormous number of additional variables.

To avoid this complexity, we observe that the prefix re-
ceived from a neighbor does not actually need to be rep-
resented explicitly. In particular, because we know (sym-
bolically) the destination IP address of the packet and the
prefix length, there is a unique valid, corresponding prefix
for the destination IP. For example, if the destination IP is
172.18.0.4 and the prefix length is /24, and the route is valid
for the destination, then the prefix must be 172.18.0.0/24%.

However, we must still be able to check if a prefix is
matched by a router’s import or export filter. Somewhat

* Alternatives such as 172.18.0.1/24 are treated identically.

unintuitively, we can actually safely replace any filter on
the destination prefix with a different test on the destination
IP address directly, thereby avoiding the need to explicitly
model prefixes. Consider the following prefix filter:

ip prefix_list L allow 192.168.0.0/16 ge 24 le 32

Its semantics is that it succeeds only if the first 16 bits
of 192.168.0.0 match the prefix, and the prefix length is be-
tween 24 and 32. In general, for a prefix filter of the form
P/A ge B le C to be well formed it must be that A <
B < C. A simple translation of this to SMT record e is:

FBM(e.prefix, 192.168.0.0, 16) A (24 < e.length < 32)

Suppose now, we replace the test on the prefix contained in
the control plane advertisement with a test directly on the
destination IP address of a packet of interest:

FBM(dstIp, 192.168.0.0, 16) A (24 < e.length < 32)

There are two cases to consider. First, if e.length is not be-
tween 24 and 32, then both tests fail regardless, so they are
equivalent. Suppose instead, e.length is in this range. Re-
call that, because we are considering a slice of the network
with respect to the destination IP address, for the advertise-
ment corresponding to e to be valid (exist in the network), it
must be the case that the prefix contains the destination IP.
That is: FBM(e.prefix, dstlp, e.length). However, because
we know the prefix length falls in the range between 24 and
32, it must be greater than 16. Since the first bits up to the
prefix length are common between the destination IP and the
prefix, the first 16 bits must also be the same. Therefore the
above substitution is equivalent.

Further, because the test FBM is now purely in terms of
constants in the configuration (not the symbolic prefix length
variable), we can represent the destination variable as an in-
teger and implement the test using the efficient theory of in-
teger difference logic (IDL). Thus, we would test that:

(192.168.0.0 < dstIp < 192.168.0.0 + 232716) A
(16 < e4.length < 32)

Loop Detection. In protocols that support policy-based rout-
ing (e.g., BGP), path length alone does not suffice to prevent
loops. For this reason, BGP tracks the ASNs (autonomous
system numbers) of networks along the advertised path and
routers reject paths with their own ASN. We can model this
by maintaining, for each BGP router, a control bit saying
whether or not the advertised path already went through that
router. However, doing so can be expensive since the number
of control bit variables grows with the square of the num-
ber of routers. Instead, observe that, any BGP router that
uses only default local preferences (i.e., only makes deci-
sions based on path length) can never cause a loop, and thus
need not maintain a control bit. Similarly, BGP routers that
use non-default local preferences only for external peers will
also never cause a loop. These two cases together make it
possible to forgo modelling loops in most cases.

_ 400 600x
g 60 «w %500)(462X
< E 300 § 400x
[=%
£ 40 £ 200 & 300x
E E £ 200x 20dx
o] ©
5 20 =100 & 100x
[[
0 0 Prefix Network

Networks

Networks Hoisting Slicing

Figure 5: Verification time for management interface reachability (left) and local equivalence (middle) for real configu-
rations sorted by total lines of configuration. Cumulative speedup from optimizations for synthetic networks (right).

6.2 Network Slicing

Slicing removes bits from the encoding that are unnec-
essary for the final solution. We use the following slicing
optimizations:

e Remove symbolic variables that never influence the deci-
sion process. For example, if BGP routers never set a local
preference, then the local preference attribute will never af-
fect the decision and can be removed.

e Keep a single copy of import and export variables for an
edge when there is no import filter on the edge. The two
variable sets will simply be copies of each other.

o Keep a single, merged copy of the export record for a pro-
tocol when there is no peer-specific export policy.

e Do not model directly connected routes for a router whose
interface addresses can never overlap with the destination IP
range of interest to the query.

e Merge the data plane and control plane forwarding vari-
ables along edges that do not have ACLs.

e Merge per-protocol and overall best records when there is
only a single protocol running on a router.

Together, these optimizations are effective at removing a
lot of redundant information that the SMT solver might oth-
erwise have to discover for itself.

7. IMPLEMENTATION

We implemented Minesweeper in Java to construct a sym-
bolic control plane model from real network configurations.
Minesweeper uses Batfish [11] to parse vendor-specific con-
figurations into a vendor-neutral data format and then trans-
late from that format to the symbolic model. To check for
(un)satisfiability of our encoding, Minesweeper uses Z3 [6],
a modern, high-performance SMT solver, with the theory of
integer difference logic (IDL), as well as several preprocess-
ing steps to simplify formulas before solving. We plan to
make Minesweeper available as open source software.

8. EVALUATION

We evaluate Minesweeper by using it to verify a selection
of the properties described in Section 5 on both real and
synthetic network configurations. In particular, we are in-
terested in measuring (1) the ability of Minesweeper to find
bugs in real configurations, which are otherwise hard to find;
(2) its scalability for answering various queries on large net-

10

works; and (3) the impact of the optimizations described in
§6 on performance. All experiments are run on an § core,
2.4 GHz Intel i7 processor running Mac OSX 10.12.

8.1 Finding Errors in Real Configurations

We demonstrate Minesweeper’s ability to find bugs in real
configurations by applying it on a collection of configura-
tions for 152 real networks. We obtained these from a large
cloud provider, and they represent different networks within
their infrastructure. The networks range in size from 2 to 25
routers with 1-23K lines of configuration each. These net-
works have been operational for years, and thus we expect
that all easy-to-find bugs have already been ironed out. This
data set was also analyzed by ARC [12].

Properties checked. Since we do not have the operator-
intended specification of these networks, we focus on two
consistency properties expected to hold in such networks:

e Management interface reachability: All nodes in the net-
work should be able to reach each management interface,
irrespective of the environment. Management interfaces are
used to log into the devices, manage their firmware and con-
figuration, and collect system logs. Uninterrupted access to
it is important for the network’s security and manageability.
e Local equivalence: Routers serving the same role (e.g., as
“top-of-rack") should be similar in how they treat packets.
We identify routers in the same role by leveraging the net-
works’ naming convention and check that all pairs of routers
in the network in a given role are equivalent.

Violations. We found 67 violations of management inter-
face reachability, that is, cases where a management inter-
face could become unreachable. In each case, the violation
occurs only in the presence of a particular announcement
from outside. For example, an external BGP advertisement
for the same /32 interface prefix with path length < 1 would
result in a more preferred route for the destination that would
ultimately divert traffic away from the correct interface.

The checks for local equivalence revealed 29 violations.
Upon further investigation, we found that each violation was
caused by one or more exceptions in ACLs where almost all
routers in a given role would have identical ACLs except for
a single router with an extra or a missing entry. Such differ-
ences are possibly caused by copy and paste type mistakes.

i [No Blackholes

€ 105{ EEE Multipath Consistency
[Local Consistency

b= 104 E=@ Single-ToR Reachability

= [All-Tor Reachability

c 103 =3 Single-Tor Bounded Length

.8 3 All-Tor Bounded Length

8 102 = Equal Length Pod

}J:

g 10

> Ao I LM

100 M [|

5(2) 45 (6)

125 (10)

i I

245 (14)

405 (18)

Number of Routers (Pods)

Figure 6: Verification time for synthetic configurations for different properties and network sizes.

8.2 Verification Performance

We evaluate the performance of Minesweeper to verify dif-
ferent properties on real and synthetic configurations.

Real configurations. We benchmarked the verification time
for the networks and properties described above. Figure 5
(left) shows this time for management-interface reachability
for each network that is configured with at least one man-
agement interface. The networks are sorted by total lines of
configuration, with more complex networks appearing far-
ther right. We see that the checks take anywhere from 2ms
to 60ms for every network tested.

Figure 5 (middle) shows the verification time for local
equivalence among routers in each unique role, for all net-
works with at least two routers in any particular role. Verifi-
cation time ranges anywhere from roughly 5Sms to 400ms.
This check is more expensive than management-interface
reachability, in part, because it requires more queries.

While the networks we studied are small, the sub-second
verification times we observe are encouraging. They point
to the ability of Minesweeper to verify real configurations in
an acceptable amount of time. Next, we stress test our tool
by running it on larger, albeit synthetic networks.

Synthetic configurations. To test the scalability of our tool
on larger networks, we use a collection of synthesized, but
functional, configurations for data center networks of in-
creasing size. In terms of their structure and policy, these
networks are similar to those described in Propane [2]. Each
data center uses a folded-Clos topology and runs BGP both
inside the network as well as to connect to an external back-
bone network. Each top-of-rack router in the data center
is configured to advertise a /24 prefix corresponding to the
shared subnet for its hosts. All routers are configured to en-
able multipath routing to evenly distribute load across all of
its available peers. Spine routers in the data center connect
to external neighbors in the adjacent backbone network and
are configured to use route filters on all externally connected
interfaces to block certain advertisements.

For each network, we use Minesweeper check a large col-
lection of the properties described in Section 5. First, we
fix a destination ToR and use queries to check both single-

11

source and all-source reachability from other ToRs. Simi-
larly, we also check that both some and all other ToRs will
always use a path to the destination ToR that is bounded by
four hops, to ensure that traffic never uses a “valley" path
that goes down, up, and then down again). To demonstrate
a query that asks about more than a single path, we verify
that all ToRs in a separate pod from the destination will al-
ways use paths that have equal length. This ensures a cer-
tain form of symmetry in routing. In addition to path-based
properties, we also verify the multipath-consistency prop-
erty that every router in the network will never have different
forwarding behavior along different paths. We also check
that every spine router in the network is equivalent using the
local-consistency property. To ensure that all n spine routers
are equivalent, we check for local equivalence among two at
a time using n — 1 separate queries. If all routers are equiv-
alent, then transitively they are equivalent as well. Finally,
we verify the absence of black holes in the data center.

Figure 6 shows the time to check each property for differ-
ent different size data centers. Multipath consistency and the
no-blackholes property are the fastest to check, taking under
a second to verify in a cases. This speed is in most part
due to the minimal use of ACLs in the configurations. The
solver quickly realizes that the properties cannot be violated
because the control and data planes stay in sync.

The next fastest property to verify is local equivalence
among spine routers. This check takes under 2 minutes for
the largest network. In this case, each pairwise equivalence
check takes roughly 145 milliseconds.

The most expensive properties pertain to reachability and
path-length. For the largest network it takes under 5 minutes
to verify such properties. Interestingly, queries checking all-
source vs single-source take approximately the same amount
of time. Instead of being multiple queries, as is the case in
many prior, path-based tools [9, 27], all-source reachability
is a single query in our graph-based formulation.

8.3 Optimization Effectiveness

We conclude our evaluation by quantifying the effective-
ness of the optimizations from Section 6. We focus on the
verification time for a single-source reachability query. Fig-

ure 5 (right) shows the cumulative speedup from each of the
three types of optimization. The prefix-hoisting optimization
that replaces symbolic variables representing an advertised
prefix with instances of the global destination IP variable has
a large impact on performance, speeding up verification by
over 200x. This is due to the fact that bitvectors are expen-
sive for SMT solvers. Solvers typically deal with bitvectors
by “bit blasting" them into SAT. However, this introduces
32 extra variables for every logical edge in the graph. The
next two optimizations: merging common import and export
records of variables and specializing variables by protocol,
are both forms of slicing optimizations. Together, these op-
timizations improve the performance of the solver roughly
2.3x over prefix hoisting alone.

9. RELATED WORK

Our work builds on prior work on network configuration
analysis, which we divide into three classes:

(1) Analysis without network models. Early configurations
analysis tools such as rcc [10] and IP Assure [19] focused
on common mistakes and inconsistencies in configurations
of different protocols. This approach proved successful in
finding a range of configuration errors. But because it does
not build a model of the underlying network, it can have
both false positives and false negatives and can not answer
questions about specific network behaviors.

(2) Analysis of individual environments. Testing tools such
as Batfish [11] and C-BGP [22] take as input the network’s
configuration and a concrete environment, simulate the re-
sulting network behavior, and produce the data plane. The
resulting network behavior and the data plane can be ana-
lyzed for properties of interest.

As noted earlier, the primary disadvantage of testing is
that it can feasibly analyze only a small number of environ-
ments, while many configuration errors occur only in spe-
cific environments. However, unlike our approach, testing
can support a more detailed analysis of individual environ-
ments (e.g., it can count the exact size of routing tables).
Minesweeper employs configuration parsers of Batfish.

(3) Analysis of many environments. Our approach belongs
to this class which can simultaneously analyze multiple envi-
ronments by building an abstract network model. Prior work
in this class includes FSR [26], ARC [12], ERA [9], and
Bagpipe [27]. We borrow heavily from these works. FSR
encodes BGP preferences using SMT constraints, our multi-
protocol, logical view of the network (Figure 1) is similar to
ARC, and our protocol-independent symbolic records (Fig-
ure 2) are similar to ERA. But our work goes beyond prior
efforts in its scope and generality. We support the entire con-
trol plane functionality and a wider range of properties.

Dataplane analysis tools. Dataplane analysis tools such as
Anteater [16] and HSA [14] have a simpler task than than
full network configuration analysis tools: they do not have to
model the control-plane dynamics that can give rise to many

12

possible data planes. In fact, a tool like Batfish will first sim-
ulate the control plane on a concrete environment, then pro-
duce a single dataplane, and finally use a dataplane analysis
tool to verify properties. Hence, such data plane tools can
be thought of as a special case (or subcomponent) of a test-
ing tool. Though the task is simpler, and the specifics differ
widely. Methodologically, the dataplane analysis tool most
similar to our work was developed by Zhang [28]. They en-
code the network dataplane as a SAT formula and use com-
binatorial search, like we do, to find configuration errors.

Configuration synthesis. Network configuration synthe-
sis [2, 18, 19] is complementary to verification. It uses a
high-level design approach to generate configurations that
are provably bug free or less likely to have bugs. Unlike
verification, synthesis does not help check the correctness
of configurations that already exist. But the two approaches
may share network models. Our SMT-based control plane
model has some similarity with a contemporary synthesis
project [8], but there are significant differences as well. That
effort uses a symbolic representation of network protocols
based on stratified Datalog, such that the fixed point of the
Datalog program represents the forwarding state of the net-
work. The synthesis problem, of finding configuration in-
puts that satisfy specified properties, is effectively reduced to
satisfiability checking of an SMT formula that is generated
by using a specialized solver for stratified Datalog. In con-
trast, we do not restrict ourselves to stratified Datalog and
use first order theories supported by SMT solvers to sym-
bolically model the state of the network, without computing
fixed points. We believe that our network model could also
be used for finding configuration inputs that satisfy network-
wide properties, but this is outside the scope of this paper.

10. CONCLUSIONS

We present the first general purpose symbolic model of
both the network control and data planes based on encod-
ing solutions to stable routing behavior as satisfying assign-
ments to SMT formulas. Using this model, we show how
to verify a wide variety of properties including reachabil-
ity, fault-tolerance, router equivalence, and load balancing,
both for all possible packets and all possible data planes that
might emerge from the control plane. Using these ideas, we
have implemented a tool called Minesweeper to verify proper-
ties for real network configurations. We evaluate Minesweeper
on a collection of real and synthetic configurations, showing
that it is effective at finding issues in real configurations and
verifying properties of larger networks in minutes.

11. REFERENCES

[1] M. Anderson. Time warner cable says outages largely
resolved. http://www.seattletimes.com/
business/time-warner—-cable—-says-—
outages—largely-resolved, August 2014.

[2] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and
D. Walker. Don’t mind the gap: Bridging

network-wide objectives and device-level

configurations. In Proceedings of the 2016 Conference

on ACM SIGCOMM 2016 Conference, SIGCOMM

’16, pages 328-341, 2016.

News and press | BGPMon. http:

//www.bgpmon.net/news—and-events/.

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic

model checking without BDDs. In Proceedings of

TACAS, pages 193-207, 1999.

E. M. Clarke, E. A. Emerson, and A. P. Sistla.

Automatic verification of finite-state concurrent

systems using temporal logic specifications. ACM

Transactions on Programming Languages and

Systems (TOPLAS), 8(2):244-263, 1986.

[6] L. De Moura and N. Bjgrner. Z3: An efficient smt
solver. In TACAS, March 2008.

[7]1 L. De Moura and N. Bjgrner. Satisfiability modulo
theories: Introduction and applications. Commun.
ACM, 54(9):69-77, September 2011.

[8] A.El-Hassany, P. Tsankov, L. Vanbever, and

M. Vechev. Network-wide configuration synthesis.

https://arxiv.org/abs/1611.02537,

November 2016.

S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan,

T. Millstein, V. Sekar, and G. Varghese. Efficient

network reachability analysis using a succinct control

plane representation. In OSDI, 2016.

N. Feamster and H. Balakrishnan. Detecting BGP

configuration faults with static analysis. In NSDI, May

2005.

A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan,

R. Govindan, R. Mahajan, and T. Millstein. A general

approach to network configuration analysis. In NSDI,

March 2015.

A. Gember-Jacobson, R. Viswanathan, A. Akella, and

R. Mahajan. Fast control plane analysis using an

abstract representation. In SIGCOMM, August 2016.

[13] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The

stable paths problem and interdomain routing.
IEEE/ACM Trans. Netw., 10(2):232-243, April 2002.

[14] P. Kazemian, G. Varghese, and N. McKeown. Header

space analysis: Static checking for networks. In NSDI,

pages 113-126, April 2012.

D. Kline. Network downtime results in job, revenue

loss. http://www.avaya.com/en/about—

avaya/newsroom/news-—

releases/2014/pr-140305/, March 2014.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.

Godfrey, and S. T. King. Debugging the data plane

with anteater. In SIGCOMM, pages 290-301, August

2011.

(10]

[11]

[12]

[15]

[16]

13

[17] S. Malik and L. Zhang. Boolean satisfiability from
theoretical hardness to practical success. Commun.
ACM, 52(8):76-82, 2009.

[18] S. Narain, G. Levin, S. Malik, and V. Kaul.

Declarative infrastructure configuration synthesis and

debugging. Journal of Network Systems Management,

16(3):235-258, October 2008.

S. Narain, R. Talpade, and G. Levin. Guide to Reliable

Internet Services and Applications, chapter Network

Configuration Validation. Springer, 2010.

J. Networks. As the value of enterprise networks

escalates, so does the need for configuration

management. https://www—935.ibm.com/
services/au/gts/pdf/200249.pdf, May

2008.

G. D. Plotkin, N. Bjgrner, N. P. Lopes,

A. Rybalchenko, and G. Varghese. Scaling network

verification using symmetry and surgery. In POPL,

pages 69-83, January 2016.

B. Quoitin and S. Uhlig. Modeling the routing of an

autonomous system with C-BGP. IEEE Network,

19(6), November 2005.

S. Sharwood. Google cloud wobbles as workers patch

wrong routers. http://www.theregister.co.

uk/2016/03/01/google_cloud_wobbles_
as_workers_patch_wrong_routers/, March

2016.

A. P. Sistla and E. M. Clarke. The complexity of

propositional linear temporal logics. J. ACM,

32(3):733-749, July 1985.

Y. Sverdlik. Microsoft: misconfigured network device

led to azure outage. http://www.

datacenterdynamics.com/content—
tracks/servers—-storage/microsoft-
misconfigured-network-device-led-to-
azure-outage/68312.fullarticle, July

2012.

A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo,

J. Rexford, V. Nigam, A. Scedrov, and C. L. Talcott.

FSR: Formal analysis and implementation toolkit for

safe inter-domain routing. IEEE/ACM Transactions on

Networking (ToN), 2012.

K. Weitz, D. Woos, E. Torlak, M. D. Ernst,

A. Krishnamurthy, and Z. Tatlock. Formal semantics

and automated verification for the border gateway

protocol. In NetPL, March 2016.

S. Zhang and S. Malik. SAT based verification of

network data planes. In Automated Technology for

Verification and Analysis - 11th International

Symposium, ATVA 2013. Proceedings, pages 496-505,

2013.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

