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We derive the explicit Hamiltonian of twisted bilayer graphene (TBG) with Coulomb interaction
projected into the flat bands, and study the symmetries of the Hamiltonian. First, we show that all
projected TBG Hamiltonians can be written as Positive Semidefinite Hamiltonian, the first example
of which was found in [1]. We then prove that the interacting TBG Hamiltonian exhibits an exact
U(4) symmetry in the exactly flat band (nonchiral-flat) limit. We further define, besides a first
chiral limit where the AA stacking hopping is zero, a new second chiral limit where the AB/BA
stacking hopping is zero. In the first chiral-flat limit (or second chiral-flat limit) with exactly flat
bands, the TBG is enhanced to have an exact U(4)×U(4) symmetry, whose generators are different
between the two chiral limits. While in the first chiral limit and in the non-chiral case these
symmetries have been found in Ref. [2] for the 8 lowest bands, we here prove that they are valid for
projection into any 8nmax particle-hole symmetric TBG bands, with nmax > 1 being the practical
case for small twist angles < 1◦. Furthermore, in the first or second chiral-nonflat limit without
flat bands, an exact U(4) symmetry still remains. We also elucidate the link between the U(4)
symmetry presented here and the similar but different U(4) of [1]. Furthermore, we show that our
projected Hamiltonian can be viewed as the normal-ordered Coulomb interaction plus a Hartree-
Fock term from passive bands, and exhibits a many-body particle-hole symmetry which renders the
physics symmetric around charge neutrality. We also provide an efficient parameterization of the
interacting Hamiltonian. The existence of two chiral limits, with an enlarged symmetry suggests a
possible duality of the model yet undiscovered.

I. INTRODUCTION

Twisted bilayer graphene (TBG) near the magic an-
gle θ ≈ 1.1◦ hosts flat electron bands, and exhibits re-
markable interacting phases including correlated insula-
tors, Chern insulators and superconductors [1–111]. Both
transport [4–15, 24–27] and scanning tunneling micro-
scope [16–23] experiments show the correlated insulators
and Chern insulators originate from strong many-body
interactions. Extensive theoretical studies have been de-
voted to understanding the electron interactions in TBG
[1, 2, 53–104]. Kang and Vafek [1] first proposed that, by
projecting in a non-maximally-symmetric Wannier basis,
a non-negative interaction Hamiltonian can be obtained,
whose ground state at ν = ±2 electrons per unit cell
(with respect to charge neutrality) is an exactly solvable
insulator with some mild approximation. A U(4) symme-
try was also identified for the TBG interaction [1, 2, 73]
(both Refs. [1, 2] identified a U(4), which we show here
to be similar but different), which was shown to enlarge
into a U(4)×U(4) symmetry in the chiral limit w0 = 0
[2]. However, these symmetries were proposed only for
the 8 lowest bands (2 bands per valley-spin) around the
charge neutrality point, which applies for the first magic
angle; while the TBG theoretically and experimentally
exhibits, for example, 32 low-energy ”active” bands (8
bands per valley-spin) around charge neutrality at lower
angles θ = 0.45◦ [30].

In this paper, we derive the explicit TBG Hamiltonian
Coulomb Hamiltonian projected within any number of

8nmax (2nmax per spin per valley, nmax ≥ 1) particle-hole
symmetric low-lying moiré bands. For the first magic
angle, the number of bands where the projection makes
sense is 8 (2 per spin-valley) moiré bands in momentum
space; for smaller angles, the number increases. We show
the exact projected Coulomb interaction Hamiltonian
can always be written into a Kang-Vafek type [1] non-
negative form, which we hereby call Positive Semidefinite
Hamiltonian (PSDH). The projected Hamiltonian we de-
rived can be understood as the normal-ordered Coulomb
interaction in the active bands plus a Hartree-Fock po-
tential from the passive bands. Furthermore, the pro-
jected Hamiltonian has a many-body particle-hole sym-
metry, which ensures that all the physics are particle-hole
symmetric about charge neutrality, in agreement with
the overall picture of the experimental observations. We
then study the TBG symmetries in the flat band limit.
We prove the existence of not one but two (first and sec-
ond) chiral limits defined by zero hopping at either AA
or AB/BA stackings. We prove that the projected TBG
Hamiltonian in the nonchiral-flat limit has an exact U(4)
symmetry, which breaks to a U(2) × U(2) when kinetic
energy is added (nonchiral-nonflat case). This symmetry
is enhanced into an exact U(4)×U(4) symmetry in either
the first chiral-flat limit or the second chiral-flat limit.
The U(4)×U(4) symmetry for the first chiral limit, and
for projection into two low-lying active bands was ob-
tained in Ref. [2], but we here extend it to any number of
projected bands, as well as to a second chiral limit. In the
first chiral-nonflat limit or the second chiral-nonflat limit,
a kinetic term is also considered, and the bands are not
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flat; however, we show that an exact U(4) symmetry still
remains. All these symmetries, in all limits, are shown to
be not only valid for the 8 active bands at the first magic
angle [2], but also for the projected Hamiltonian within
any number of particle-hole symmetric bands. This is
relevant at smaller twist angles: in Ref. [30] it was exper-
imentally and theoretically found that 32 bands (8 bands
per valley/spin) contribute to the low energy physics. Be-
sides, for Hamiltonian projected in the lowest 8 bands (2
bands per spin per valley), we reveal that the Hamilto-
nian in the first or second chiral limit can be enhanced
into a stabilizer code Hamiltonian under certain assump-
tions. Furthermore, we elucidate the similarities and dif-
ferences between the U(4) symmetry of Kang and Vafek
[1] and the U(4) in the current paper. The explicit form
and symmetries of Hamiltonian here greatly simplify the
study of TBG many-body states, as we will discuss in
Refs. [109] and [110].

II. BISTRITZER-MACDONALD MODEL AND
COULOMB INTERACTION

We first present a short overview of the Bistritzer-
MacDonald (BM) model [3] to define our notations. The
reader might refer to Refs. [107, 108] for a in-depth dis-
cussion. For convenience, we also provide a detailed sum-

mary in App. A. To begin, we assume c†p,α,s,l denotes the
creation operator of the spin s =↑, ↓ electron at momen-
tum p in the graphene sublattice α = A,B and layer
l = ± (denoting top and bottom) of TBG, where p is
measured from the Γ point of the graphene Brillouin zone
(BZ) of layer l. The low-energy physics of TBG is con-
centrated at the two graphene valleys K,K ′ (which we
denote as valleys η = ±) at momenta p = ±K` in layer `,

respectively [3]. We further define qj = Cj−1
3z (K−−K+)

(j = 1, 2, 3), where C3z is the 3-fold rotation about z axis
(see Fig. 1(a)). The kinetic Hamiltonian of TBG is then
given by the continuum model [3, 108] as

Ĥ0 =
∑

k∈MBZ

∑
ηαβs

∑
QQ′

[
h

(η)
Q,Q′ (k)

]
αβ
c†k,Q,η,α,sck,Q′,η,β,s,

(1)
where η = ± and s =↑, ↓ are the valley and spin in-
dices, and the momentum k is measured from the cen-
ter (ΓM point) of the moiré BZ (MBZ). The momenta
Q,Q′ ∈ {Q+,Q−} as shown in Fig. 1(b), where we have
defined Q± = Q0 ± q1, and Q0 is the moiré reciprocal
lattice generated by reciprocal vectors bMj = q3 − qj
(j = 1, 2). The electron basis c†k,Q,η,α,s is defined as

c†ηKη·l+k−Q,α,s,η·l if Q ∈ Ql. The detailed kinetic term

h
(η)
Q,Q′ (k) at valley η = ± is given in App. A. In partic-

ular, there are two parameters w0 and w1 in the single-

particle Hamiltonian h
(η)
Q,Q′ (k) which correspond to the

interlayer hoppings at AA and AB/BA stacking centers,
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FIG. 1. Illustration of the relation between the graphene
BZs of two layers and the moiré BZ (MBZ). Blue solid and
red empty circles represent Q+ and Q−, respectively.

respectively (see Eq. (A7)):

w0 ≥ 0 : AA hopping,

w1 ≥ 0 : AB/BA hopping.
(2)

Generically, w0 < w1 due to the lattice relaxation and
corrugation [108, 112–115].

The Coulomb interaction term in TBG takes the form
(for details, see App. C 1)

ĤI =
1

2Ωtot

∑
G∈Q0

∑
q∈MBZ

V (q + G)δρ−q−Gδρq+G , (3)

where

δρq+G =
∑

η,α,s,k,Q∈Q±

(c†k+q,Q−G,η,α,sck,Q,η,α,s−
1

2
δq,0δG,0)

(4)
is the total electron density at momentum q + G rel-
ative to the charge neutral point (CNP) of the uncou-
pled twisted bilayer graphene without interlayer cou-

plings (which has a density 〈c†k+q,Q−G,η,α,sck,Q,η,α,s〉 =
1
2δq,0δG,0), and Ωtot is the total area of TBG. The inter-
action coefficient

V (q) = πξ2Uξ
tanh(ξ|q|/2)

ξ|q|/2
(5)

is the Fourier transform of the Coulomb potential with
dielectric constant ε screened by top and bottom gates
at distance ξ away, where Uξ = e2/εξ (see App. C).
Typical TBG experiments have a screening length ξ ≈
10nm [9, 10], and dielectric constant ε ∼ 6 as estimated
from the hBN substrates. This yields a Uξ ≈ 24meV.

Due to the absence of spin-orbit coupling, the total
Hamiltonian

Ĥ = Ĥ0 + ĤI (6)

of TBG has the spinless symmetries

[C3z, Ĥ] = [C2z, Ĥ] = [T, Ĥ] = 0 , (7)

where C3z is the 3-fold z-axis rotation symmetry sat-

isfying C3zc
†
k,Q,η,α,sC

−1
3z = (eiη2πσz/3)βαc

†
C3zk,C3zQ,η,β,s

,
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FIG. 2. The single-valley TBG band structure at θ = 1.05◦

(with exact PH symmetry P ) for (a) the nonchiral-nonflat
limit with w0 = 0.8wBM and w1 = wBM, (b) the first chiral
limit with w0 = 0 and w1 = wBM, and (c) the second chiral
limit w0 = wBM and w1 = 0, where wBM = 110meV is the
hopping in the original Bistritzer-Macdonald TBG model[3].
In particular, in the second chiral limit, the band structure is
a perfect metal where all bands are connected (proof given in
Ref. [108]).

C2z is the 2-fold z-axis rotation symmetry satisfying

C2zc
†
k,Q,η,α,sC

−1
2z = (σx)βαc

†
−k,−Q,−η,β,s, and T is the

anti-unitary time-reversal symmetry satisfying TiT−1 =

−i and Tc†k,Q,η,α,sT
−1 = c†−k,−Q,−η,α,s. Besides, each

graphene valley exhibits a charge U(1) symmetry and
a spin rotational SU(2) symmetry, leading to a global
U(2)×U(2) symmetry of two valleys (see App. A 3).

There also exists a unitary single-particle particle-hole
(PH) transformation P [45, 108] which anti-commutes

with Ĥ0 in Eq. (1) (see App. A 3) and commutes with

ĤI in Eq. (3):

{P, Ĥ0} = 0 , [P, ĤI ] = 0 , (8)

where P is defined by Pc†k,Q,η,α,sP
−1 = ζQc

†
−k,−Q,η,α,s,

with ζQ = ±1 for Q ∈ Q±. In particular, [P, ĤI ] = 0
can be seen by noting that δρq+G in Eq. (3) satisfies
Pδρq+GP

−1 = δρ−q−G. We note that an antiunitary PH
transformation P = PC2zT can also be defined, which is
adopted in some literature [2, 108].

III. PROJECTED HAMILTONIAN

We denote the eigenstates and eigenvectors of

h
(η)
Q,Q′ (k) in Eq. (1) as εn,η(k) and uQαnη(k) (which are

spin independent), where the integer n 6= 0 is the band
index so defined that n > 0 (n < 0) labels the |n|-th
conduction (valence) band of valley η.

Near the first magic angle θ ≈ 1.1◦, the lowest conduc-
tion and valence bands (n = ±1) of 2 spins and 2 valleys
of TBG form 8 extremely flat bands which are energeti-
cally isolated from the higher bands (Fig. 2(a)). There-
fore, it is appropriate to project the Hamiltonian into the

8 flat bands for low-energy physics at the first magic an-
gle. At higher magic angles, the number of low energy
bands increase; for instance, around the second magic
angle θ ≈ 0.5◦ [3], the lowest conduction and valence
bands form 32 (8 per spin/valley, |n| ≤ 4) low energy
bands [30]. In this case, the projection of Hamiltonian
into more PH symmetric bands is needed for studying
low energy physics. Therefore, to keep our discussions
generic, we consider the projection into a set of 8nmax

number of PH symmetric low-energy bands |n| ≤ nmax

with any nmax ≥ 1. As we will show, since the sym-
metries C2z, T, P which we will study are closed within
each pair of bands ±n, it is sufficient to focus on the 2-
dimensional band space of each pair of bands ±n when
examining the symmetries of the projected Hamiltonian.

The projection of the kinetic Hamiltonian Ĥ0 in the
set of bands |n| ≤ nmax bands is thus (which we denote
by H0 without hat)

H0 =
∑

|n|≤nmax

∑
kηs

εn,η(k)c†k,n,η,sck,n,η,s , (9)

where c†k,n,η,s =
∑

Q,α uQαnη(k)c†k,Q,η,α,s gives the band

basis of electrons, and ±nmax are the highest/lowest
bands we project into. Meanwhile, the projection of
Coulomb interaction ĤI in the flat bands can be writ-
ten as (denoted by HI without hat, see App. C 2)

HI =
1

2Ωtot

∑
q∈MBZ

∑
G∈Q0

O−q,−GOq,G , (10)

where

Oq,G =
∑
kηs

∑
|m|,|n|≤nmax

√
V (q + G)M (η)

m,n (k,q + G)

×
(
ρηk,q,m,n,s −

1

2
δq,0δm,n

)
.

(11)

Here we have defined the coefficient called the form fac-
tors (overlaps):

M (η)
m,n (k,q + G) =

∑
α,Q∈Q±

u∗Q−G,αmη(k + q)uQ,αnη(k),

(12)

and ρηk,q,m,n,s = c†k+q,m,η,sck,n,η,s is the density opera-

tor. The form factors (overlaps) M
(η)
m,n (k,q + G) was

shown to exhibit properties such as exponential decay in
the magnitude of G in Ref. [107]. As such, only |G| = 0
and |G| = |bM1 | momentum vectors will contribute to
Oq,G, all other G leading to exponentially smaller form

factors (overlaps). We now note that O−q,−G = O†q,G,
such that O−q,−GOq,G is a positive semidefinite opera-
tor for any q,G. Thus the interaction Hamiltonian HI ,
being a sum of positive semidefinite operators, is also
positive semidefinite. We call such Hamiltonians posi-
tive semidefinite Hamiltonians (PSDH).
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Below, we investigate the symmetries of the projected
Hamiltonian H = H0 + HI in various different limits.
Without loss of generality, we will consider the subspace
of a particular pair of PH symmetric bands n = ±nB with
1 ≤ nB ≤ nmax, since all the single-particle symmetries
we will be discussing are closed within the band pair n =
±nB.

Hereafter we shall use ζa, τa, sa to denote the identity
matrix (a = 0) and Pauli matrices (a = x, y, z) in the
energy band n = ±nB, valley η = ± and spin s =↑
, ↓ bases, respectively. In particular, when nB = 1, our
discussion applies to the projected Hamiltonian in the
lowest 8 flat bands near the first magic angle.

IV. SYMMETRIES IN THE GENERIC
NONCHIRAL-NONFLAT CASE

The projected Hamiltonian H = H0 + HI pre-
serves all the discrete TBG symmetries C3z, C2z, T
(see App. C). Moreover, the projected Hamiltonian re-
spects the global U(2)×U(2) spin-charge rotational sym-
metry of two valleys, which has 8 group generators

Sab =
∑

k(sab)m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ (a = 0, z and

b = 0, x, y, z, repeated indices are summed automatically
hereafter). Within each band pair n = ±nB, the matrices
sab are given by

s0b = ζ0τ0sb, szb = ζ0τzsb, (b = 0, x, y, z). (13)

We note that sab has no nonzero matrix elements be-
tween different pairs of PH symmetric bands nB 6= n′B.
Also, note that the operators Sab preserve the electron
momentum k.

Another k-preserving transformation is given by the
combined unitary operator C2zP (P is the PH transfor-
mation), which acts as

(C2zP )c†k,Q,η,α,s(C2zP )−1 = ζQ(σx)βαc
†
k,Q,−η,β,s, (14)

and thus satisfies (C2zP )2 = 1. Since
(C2zP )H0(C2zP )−1 = −H0, the single-particle band
energies satisfy εn,η(k) = −ε−n,−η(k), and the eigen-
state wavefunctions satisfy ζQ(σx)βαuQ,α,n,η(k) =
[BC2zP (k)]−n,−η;nηuQ,β,−n,−η(k), where BC2zP (k) is
the unitary sewing matrix of C2zP . This implies

(C2zP )c†k,n,η,s(C2zP )−1 = [BC2zP (k)]−n,−η;nηc
†
k,−n,−η,s,

(15)
Using the explicit form of BC2zP (k), one can prove that
[C2zP,Oq,G] = 0 (see App. D 2), and thus

{C2zP,H0} = 0 , [C2zP,HI ] = 0 . (16)

Therefore, C2zP is a commuting symmetry of HI but not
H0.

Furthermore, there is a many-body charge conjugation
symmetry Pc defined by C2zPT followed by the inter-
change of annihilation and creation operators, namely,

Pcc†k,n,η,sP−1
c = (C2zPT )ck,n,η,s(C2zPT )−1 (see App.

C 4). By showing that PcOq,GP−1
c = −Oq,G, one

can prove that the projected Hamiltonian within bands
|n| ≤ nmax satisfies (see Eq. (C33) in App. C 4)

Pc(H0 +HI)P−1
c = H0 +HI . (17)

In particular, Pc maps a many-body state from filling ν
to −ν, where ν is the number of electrons per moiré unit
cell relative to the CNP. Therefore, Pc ensures that the
eigenstates of the projected Hamiltonian H = H0 +HI is
PH symmetric about ν = 0, in agreement with the (big
picture) experimental observations.

We note that HI in Eq. (10) is not normal ordered.
We can rewrite HI =:HI : +∆HI +EI , where :HI : is the
normal ordered 4-fermion interaction, ∆HI is a quadratic
fermion term and EI is a constant. One can then show
that ∆HI = 1

2

(
Hν=−4nmax

HF −Hν=4nmax

HF

)
, where Hν

HF is
the Hartree-Fock potential in the projected bands con-
tributed by all the occupied bands below filling ν (see
App. C 5), and the factor of 4 comes from 2 spins and
2 valleys. Note that Hν

HF sums over all the bands be-
low filling ν, instead of only the projected active bands
(see derivation in App. C 5). Therefore, ∆HI can be un-
derstood as the mean field Hartree-Fock potential from
the remote bands projected away symmetrized about the
CNP. We note that :HI : alone does not have the Pc
symmetry, and thus ∆HI is indispensable as an effective
background Hartree-Fock potential.

V. U(4) SYMMETRY IN THE
NONCHIRAL-FLAT LIMIT

In the limit of exactly flat |n| ≤ nmax bands, we have
H0 = 0, so the projected Hamiltonian is simply H = HI .
By Eq. (16), C2zP becomes a symmetry of H. Note that
C2zP preserves the electron momentum k, thus is a local
unitary symmetry. Accordingly, the C2zP symmetry and
the spin-charge U(2)×U(2) symmetry together generate
a global U(4) symmetry of the Hamiltonian H = HI . To
see this, we define an operator

Sy0 =
∑
k,s

∑
nn′ηη′

[BC2zP (k)]nη,n′η′c
†
k,n,η,sck,n′,η′,s (18)

with sewing matrix BC2zP (k) of C2zP . It can be proved
that [Sy0, HI ] = 0 (see App. D 2). Note that Sy0 is iden-
tical to C2zP when acting on single-electron states. For

many-body states, one can show that C2zP = eiπS
y0/2

(up to a phase factor). With the 8 generators S0b, Szb of
U(2)×U(2) (b = 0, x, y, z), we can define another 8 oper-
ators Sxb = − i

2 [Sy0, Szb] and Syb = i
2 [Sx0, Szb]. The 16

operators Sab then satisfy the Lie algebra of U(4):

[Sab, Scd] =
∑
ef

fab,cdef Sef , (a, b = 0, x, y, z) (19)

where fab,cdef are U(4) group structure constants defined

by [τasb, τ csd] =
∑
ef f

ab,cd
ef τesf .
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It is useful to fix the gauge of wavefunctions to obtain
an explicit form of Sab. We do this by requiring

(C2zT )c†k,n,η,s(C2zT )−1 = c†k,n,η,s , (20)

which imposes (σx)αβuQ,β,n,η(k) = u∗Q,α,n,η(k).

(σx)αβuQ,β,n,η(k) = u∗Q,α,n,η(k) = u−Q,α,n,−η(−k). A
consistent k-independent gauge for C2zP is then

(C2zP )c†k,n,η,s(C2zP )−1 = −sgn(n)ηc†k,−n,−η,s. (21)

In addition, we require a k-space continuous gauge
(which is crucial for the useful bases Eqs. (26) and (28))
defined below to have well-defined Berry curvature, see
Sec. B 3):

lim
q→0
|u†n,η(k + q)un,η(k)− u†−n,η(k + q)u−n,η(k)| = 0.

(22)
Under this gauge, we can rewrite the 16 U(4) genera-

tors as Sab =
∑

k(sab)m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ (a, b =

0, x, y, z), where the matrices sab within each PH pair of
bands n = ±nB read

sab = {ζ0τ0sb, ζyτxsb, ζyτysb, ζ0τzsb}. (23)

We note that sab has no nonzero matrix elements between
different pairs of PH symmetric bands nB 6= n′B. Mean-

while, the form factors (overlaps) M
(η)
m,n (k,q + G) =

[M (k,q + G)]mη,nη are gauge fixed into the following
matrix form in the band and valley basis (App. C 3):

M (k,q + G) =

3∑
j=0

Mjαj(k,q + G) , (24)

where αj(k,q + G) are real nmax × nmax matrices, and
we have defined M0 = ζ0τ0, M1 = ζxτz, M2 = iζyτ0,
and M3 = ζzτz in the space of each pair of band basis
n = ±nB (1 ≤ nB ≤ nmax), all of which are real matri-
ces. Here Mjαj means the Kronecker direct product of
matrices Mj and αj .

We note that we could further fix the gauges of the
k non-preserving symmetries C2z, T and P in a k-
independent way in consistency with Eqs. (20-22) (see
App. B 2 and Eq. (B18)). Under a further gauge fixing

C2zc
†
k,n,η,sC

−1
2z = c†−k,n,−η,s, one can show that the func-

tions αj(k,q + G) (0 ≤ j ≤ 4) satisfy the conditions
in Eqs. (C24) and (C25). In particular, these conditions
require

α0(k,G) = αT0 (−k,G) ,

αj(k,G) = −αTj (−k,G) , (j = 1, 2, 3)
(25)

at q = 0 (see App. C 3).
With the gauge fixing of Eqs. (20-22), we can define a

new basis within the pair of bands n = ±nB as

d
(nB)†
k,eY ,η,s

=
c†k,nB,η,s

+ ieY c
†
k,−nB,η,s√

2
, (eY = ±1) (26)

which we show in App. B 3 have well-defined Berry cur-
vatures. The reason for the notation eY = ±1 is because
this basis is the eigenbasis of the Pauli matrix ζy with
eigenvalue eY in the 2-dimensional energy band basis of
n = ±nB. We shall call the basis (26) the irrep basis, for
the reason below.

At each k and Chern number eY , as shown in App.

D 2 b, the 4 irrep basis creation operators d
(nB)†
k,eY ,η,s

of val-
leys η = ± and spins s =↑, ↓ form the basis of a funda-
mental U(4) irreducible representation (irrep), where the
generators Sab have 4× 4 representation matrices

sab(eY ) = {τ0sb, eY τ
xsb, eY τ

ysb, τzsb}. (27)

This can be seen by observing that d
(nB)†
k,eY ,η,s

diagonal-

izes the matrix ζy in Eq. (23) with the eigenvalue being
eY . Note that the two irreps sab(eY ) with eY = ±1 dif-
fer by a unitary transformation τz, namely, a π valley
rotation about z axis. Despite of this difference by a uni-
tary transformation, the two irreps sab(eY ) are both the
fundamental irrep of U(4). In Young-tableaux accepted
notations, we shall denote the fundamental irrep of U(4)
as [1]4, and the trivial identity irrep of U(4) as [0]4 (see
App. D 1, and see [109] for a detailed explanation of
the Young tableaux notations). An electron with a fixed
eY = ±1 and k thus occupies a U(4) irrep [1]4.

For nB = 1, namely, for the lowest conduction and
valence bands n = ±1, we denote the basis in Eq. (26)
in simplified notations without upper index as

d†k,eY ,η,s =
c†k,+1,η,s + ieY c

†
k,−1,η,s√

2
, (eY = ±1) (28)

which will be extensively used for solving the projected
Hamiltonian within the lowest 8 flat bands in Refs. [109–
111]. As proved in [108] (see also similar discussions in
[2, 74]) and briefly reviewed in App. B 3, if a pair of en-
ergy bands n = ±nB are disconnected with other bands,
the irrep band we defined in Eq. (26) will carry a Chern
number eY e2,nB

, where e2,nB
is the Wilson loop winding

number of the two bands n = ±nB. Due to the nontriv-
ial topological winding number e2,1 = 1 in the n = ±1

bands [45–48, 50, 76, 116, 117], the irrep basis d†k,eY ,η,s
in Eq. (28) of all k for each fixed eY , η, s form the basis
of a Chern band of Chern number eY = ±1 (see proof in
details in Ref. [108], see also a brief review in App. B 3),
provided the n = ±1 energy bands are gapped from the
higher bands (which is true near the first magic angle).

For this reason, we shall call d†k,eY ,η,s (within the n = ±1

energy band space) the Chern band electron basis, or sim-
ply the Chern basis. We note that our Chern basis in Eq.
(28) is (adiabatically) equivalent to the Chern bands de-
fined in Refs. [2, 74].

If the |n| ≤ nmax bands are gapped from higher bands,
but are connected among themselves, we would expect

the net Chern number of the nmax irrep basis d
(nB)†
k,eY ,η,s

(1 ≤ nB ≤ nmax) to be equal to eY (see App. B 3).
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VI. U(4)×U(4) SYMMETRY IN THE (FIRST)
CHIRAL-FLAT LIMIT

The symmetry of flat-band TBG is enhanced when
w0 = 0 < w1 in Eq. (2), which is known as the chi-
ral limit [39]. In this paper we shall also call it the
first chiral limit, to distinguish with the second chiral
limit defined below in Sec. VIII. In this first chiral
limit, there is a unitary chiral transformation C act-

ing as Cc†k,Q,η,α,sC
−1 = (σz)βαc

†
k,Q,η,β,s, which satis-

fies CĤ0C
−1 = −Ĥ0 and C2 = 1. Therefore, the en-

ergy band eigenstates satisfy εn,η(k) = −ε−n,η(k), and
(σz)βαuQ,α,n,η(k) = [BC(k)]−n,η;nηuQ,β,−n,η(k), where
BC(k) is the unitary sewing matrix of C. This implies

Cc†k,n,η,sC
−1 = [BC(k)]−n,η;nηc

†
k,−n,η,s.

When projected into the flat bands |n| ≤ nmax, by
Eq. (11), one can prove that [C,Oq,G] = 0, and thus

{C,H0} = 0 , [C,HI ] = 0 . (29)

Therefore, in the first chiral-flat limit where H0 = 0 and
thus H = HI , the chiral transformation C becomes a
symmetry. Note that C preserves the electron momen-
tum k, thus is a local unitary symmetry.

We can then define a Hermitian operator

S′z0 =
∑
k,s

∑
nn′ηη′

[BC(k)]nη,n′η′c
†
k,n,η,sck,n′,η′,s , (30)

which commutes with HI . Note that S′z0 is identical to
C when acting on single-electron states. For many-body

states, one can verify that C = eiπS
′z0/2 (up to a phase

factor). Its commutations with the 16 U(4) generators
Sab in Eq. (19) yield another 16 new operators S′ab, and
one can prove that Sab and S′ab form the 32 generators
of a U(4)×U(4) group (App. D 3). This can be seen
explicitly under the gauge fixing of Eqs. (20) and (21),
for which the only k-independent gauge choice (up to

a global sign) for C is Cc†k,n,η,sC
−1 = isgn(n)ηc†k,−n,η,s

(App. D 3). We note that this gauge choice is also con-
sistent with the k-independent gauge fixings of C2z, T
and P in Eq. (B18). The 16 new generators can then be

expressed as S′ab =
∑

k(s′ab)m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′

(a, b = 0, x, y, z), where s′ab within each pair of bands
n = ±nB are given by

s′ab = {ζyτ0sb, ζ0τxsb, ζ0τysb, ζyτzsb}. (31)

We note that s′ab has no nonzero matrix elements be-
tween different pairs of PH symmetric bands nB 6= n′B.
We can further linear combine Sab and S′ab into oper-

ators Sab± =
∑

k(sab± )m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ (a, b =

0, x, y, z), where

sab± =
(
ζ0 ± ζy

)
τasb/2 . (32)

One can then verify that

[SabeY , S
cd
e′Y

] = δeY ,e′Y

∑
ef

fab,cdef SefeY , (eY = ±1) (33)

where fab,cdef are the U(4) structure constants in Eq. (19).

Therefore, each set of SabeY (eY = ±1) generates a U(4)
group, leading to a total U(4)×U(4) symmetry. We note
that the nonchiral-flat U(4) in Eq. (23) is not one of the
two U(4)s with fixed eY here, although it is a subgroup
of the first chiral-flat U(4)×U(4) here.

The 4 irrep band (Chern band if nB = 1) basis creation

operators d
(nB)†
k,eY ,η,s

(of valley-spin flavors η = ±, s =↑, ↓)
at a fixed k and eY in Eq. (26) occupy a fundamental
irrep of the U(4) generated by SabeY , and a trivial identity

irrep of the U(4) generated by Sab−eY (eY = ±1). The

corresponding representation matrices of Sab± are

sab± = (1± eY ) τasb/2 , (34)

which can be derived by replacing matrix ζ0 (ζy) by its

eigenvalue 1 (eY ) in the irrep band basis d
(nB)†
k,eY ,η,s

. If we

use ([λ1]4, [λ2]4) to represent a U(4)×U(4) irrep which is
the tensor product of an irrep [λ1]4 of the first U(4) and
an irrep [λ2]4 of the second U(4), we see that the irrep

basis d
(nB)†
k,+1,η,s at a fixed k occupy an irrep ([1]4, [0]4),

while the irrep basis d
(nB)†
k,−1,η,s at a fixed k occupy an irrep

([0]4, [1]4).
Furthermore, in App. D 3 we proved that (see Eq.

(D30)) the C symmetry restricts

α1(k,q + G) = α3(k,q + G) = 0 (35)

in Eq. (24). This makes Oq,G in Eq. (11) diagonal in

index eY in the basis d
(nB)†
k,eY ,η,s

(see Eq. (D45)), thus the

number of electrons in the nmax irrep bands (particularly,
Chern band if nmax = 1) with a fixed eY is conserved.

VII. U(4) SYMMETRY IN THE (FIRST)
CHIRAL-NONFLAT LIMIT

We now turn to the first chiral-nonflat case which is
in the first chiral limit w0 = 0 (thus Eq. (29) holds),
but does not have exactly flat bands (H0 6= 0). Since
the chiral symmetry implies εn,η(k) = −ε−n,η(k), the
projected kinematic term in Eq. (9) within each pair of
bands n = ±nB can be rewritten as

H
(nB)
0 =

∑
k

ε+nB,η(k)(ζzτ0s0)m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ .

(36)
As a result, H0 only commutes with 16 out of the 32
U(4)×U(4) generators Sab and S′ab in Eqs. (23) and
(31). We denote these 16 generators commuting with H0

as S̃ab =
∑

k(s̃ab)m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ , where s̃ab

within each pair of bands n = ±nB read

s̃ab = ζ0τasb , (a, b = 0, x, y, z). (37)

They form the 16 generators of a U(4) group. In par-

ticular, the representation matrix s̃x0 of generator S̃x0
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TBG limit H0 w0 w1 symmetry PH/chiral
nonchiral-nonflat 6= 0 > 0 > 0 U(2)×U(2) —

nonchiral-flat = 0 > 0 > 0 U(4) C2zP
(1st) chiral-flat = 0 = 0 > 0 U(4)×U(4) C2zP , C

(1st) chiral-nonflat 6= 0 = 0 > 0 U(4) iCC2zP
2nd chiral-flat = 0 > 0 = 0 U(4)×U(4) C2zP , C′

2nd chiral-nonflat 6= 0 > 0 = 0 U(4) iC′C2zP

TABLE I. Symmetries in different limits. The last column
are the contributing PH and chiral symmetries.

at each k is given by the sewing matrix of iCC2zP ,

and thus S̃x0 is identical to iCC2zP when acting on
single-electron states. For many-body states, one has

iCC2zP = eiπS̃
x0/2 (up to a phase factor). Therefore, in

the first chiral-nonflat limit with H0 6= 0, there is a global

U(4) symmetry generated by S̃ab, which is reduced from
the U(4)×U(4) symmetry of the first chiral-flat limit. We
note that this first chiral-nonflat U(4) here (Eq. (37)) is
different from the nonchiral-flat U(4) (Eq. (23).

Since S̃ab is proportional to ζ0 in the band basis, the

energy band creation operators c†k,n,η,s in each band n

at a fixed k occupy a fundamental irrep [1]4 of the first
chiral-nonflat U(4) group. Equivalently, the irrep band

(Chern band if nB = 1) creation operators d
(nB)†
k,eY ,η,s

for

fixed eY , nB and k also occupy a fundamental U(4) ir-

rep [1]4. For the irrep of either c†k,n,η,s or d
(nB)†
k,eY ,η,s

, the

representation matrices of S̃ab are given by

s̃ab(n) = s̃ab(eY ) = τasb (a, b = 0, x, y, z). (38)

Note that the representation matrices s̃ab(n) (or s̃ab(eY ))
are independent of n (or eY ). This is in contrast to the
nonchiral-flat limit, where the representation matrices of
Sab for eY = ±1 differ by a unitary transformation τz (al-
though eY = ±1 therein still give the same fundamental
nonchiral-flat U(4) irrep, see Eq. (27)).

VIII. U(4)×U(4) SYMMETRY IN THE SECOND
CHIRAL-FLAT LIMIT

We find that there exists a second chiral limit w1 = 0 <
w0 where the continuous symmetry of TBG is largely en-
hanced, similar to the situation in the first chiral limit
discussed in Secs. VI and VII. Although this limit is
far from the experimental reality of the TBG samples,
its existence suggests the possibility of a possible hid-
den duality in the BM model and its interactions. For
w1 = 0 < w0, we can define a second chiral transfor-
mation C ′ satisfying C ′2 = 1 and C ′Ĥ0C

′−1 = −Ĥ0,

which acts as C ′c†k,Q,η,α,sC
′−1 = (σz)βαζQc

†
k,Q,η,β,s with

ζQ = ±1 for Q ∈ Q±. This new chiral symmetry has
unusual commutation relations with the 2-fold rotation
C2z, time-reversal T and with the unitary particle hole
symmetry P (see App. D 5 a and Ref. [108] for details).

It also satisfies (see App. D 5):

{C ′, H0} = 0 , [C ′, HI ] = 0 , (39)

similar to the first chiral symmetry C (Eq. (29)). Note
that the second chiral symmetry C ′ preserves electron
momentum k. In the second chiral-flat limit with w1 = 0
and H0 = 0, similar to the first chiral-flat limit, we can
define a symmetry

S′′z0 =
∑
k,s

∑
nn′ηη′

[BC
′
(k)]nη,n′η′c

†
k,n,η,sck,n′,η′,s, (40)

where BC
′
(k) is the sewing matrix of C ′. Together with

Sab in Eq. (19), it generates a U(4)×U(4) group with 32
generators S′ab± (see App. D 5). Under the gauge fixings
of Eqs. (20) and (21), and a further gauge fixing for C ′

as C ′c†k,n,η,sC
′−1 = isgn(n)ηc†k,−n,η,s (which is consistent

with the continuous condition (22), see App. D 5 b), we

find S′ab± =
∑

k(s′ab± )m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ , where

s′ab± within each pair of bands n = ±nB read

s′ab± =
(
ζ0 ± ζy

)
τasb/2 . (41)

Again, we note that s′ab± has no nonzero matrix elements
between different pairs of PH symmetric bands nB 6= n′B.

It is worthwhile to mention that, due to the unusual
commutation relations of C ′ with C2z, T and P which
flip k, one cannot further fix the sewing matrices of C2z,
T and P into a k-independent form as in Eq. (B18). In-
stead, the sewing matrices of these k flipping symmetries
have to be k-dependent, for instance, given by Eq. (D65)
in App. D 5 b. This is closely related to the topologically
protected double degeneracies at C2z-invariant points of
the MBZ, as proved in Ref. [108].

In this second chiral-flat limit, the 4 irrep band basis

creation operators d
(nB)†
k,eY ,η,s

(η = ±, s =↑, ↓) at a fixed k

and eY in Eq. (26) occupy a fundamental irrep of the
U(4) generated by S′abeY , and a trivial identity irrep of the

U(4) generated by S′ab−eY (eY = ±1). The corresponding

representation matrices of S′ab± are

s′ab± = (1± eY ) τasb/2 , (42)

which can be see by substituting matrix ζ0 (ζy) by its

eigenvalue 1 (eY ) in the irrep band basis d
(nB)†
k,eY ,η,s

. There-

fore, the irrep basis d
(nB)†
k,+1,η,s at a fixed k occupy an ir-

rep ([1]4, [0]4) of the second chiral-flat U(4)×U(4), while

the irrep basis d
(nB)†
k,−1,η,s at a fixed k occupy an irrep

([0]4, [1]4).
Furthermore, in App. D 5 we proved that (see Eq.

(D66)) the C ′ symmetry restricts

α1(k,q + G) = α3(k,q + G) = 0 (43)

in Eq. (24).
However, with w1 = 0 < w0, there is barely an angle

where a set of low energy bands become flat, and it is
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proved in Ref. [108] that all the energy bands are topo-
logically connected into a perfect metal (see Fig. 2(c),
App. D 5 and Refs. [108, 118]). This makes the second
chiral-flat limit less related to experimental realities, al-
though it can possibly be achieved by artificial patterning
of the moiré lattice to enhance AA hopping. Besides, we
note that for the lowest PH band pair of nB = 1, the

“Chern band basis” d†k,eY ,η,s in Eq. (28) no longer have
a well-defined Chern number, since the n = ±1 bands
are connected with all the higher bands.

We also note that although the representation matri-
ces in the two chiral limits in Eqs. (32) and (41) are the
same, their physical operations are different, since they
are generated by the sewing matrices of the first chiral
symmetry C and the second chiral symmetry C ′, respec-
tively.

IX. U(4) SYMMETRY IN THE SECOND
CHIRAL-NONFLAT LIMIT

With the TBG bands in the second chiral limit poorly
flat, the second chiral-nonflat limit where w1 = 0 < w0

and H0 6= 0 gives a more physical limit, which may be
realized by artificial patterning of moiré lattices. In this
limit, similar to the first chiral-nonflat limit, we can prove
that (see App. D 6) a U(4) symmetry remains, which is
generated by the remaining iC ′C2zP symmetry. The 16
U(4) generators are a subset of the generators S′ab± in
the second chiral-flat limit (Eq. (41)), which we denote

by S̃′ab =
∑

k(s̃′ab)m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ , where s̃′ab

within each pair of bands n = ±nB are given by

s̃′ab = ζ0τasb . (44)

This simply gives the spin-valley rotations without af-
fecting the space of energy band indices n. Accordingly,

either the energy band basis c†k,n,η,s or the irrep band

basis d
(nB)†
k,eY ,η,s

at a fixed k and n or eY occupy a fun-

damental U(4) irrep, with the representation matrices of

S̃′ab given by

s̃′ab(n) = s̃′ab(eY ) = τasb (a, b = 0, x, y, z). (45)

X. THE STABILIZER CODE LIMIT

Generically, the projected interaction Hamiltonian HI

in Eq. (10) cannot be analytically diagonalized, since
generically [Oq,G, Oq′,G′ ] 6= 0 for q 6= q′ or G 6= G′ (see
Eq. (C16)), and thus the terms O−q,−GOq,G in HI are
non-commuting.

However, in the case we are only projecting into the
lowest 8 bands with n = ±1 (namely, nmax = 1), there
is limit which we call the stabilizer code limit, where the
Hamiltonian becomes similar to (but not strictly identical
to, see App. E) a stabilizer code Hamiltonian with all
of its terms mutually commuting. The stabilizer code

U(4)xU(4) U(4)xU(4)U(4)

nonchiral-nonflat

nonchiral-flat1st chiral-flat 2nd chiral-flat

2nd chiral-nonflat1st chiral-nonflat

stabilizer code stabilizer code

U(2)xU(2) U(4)U(4)

w  /w =00 1 w  /w =0 1

k-independent form factors k-independent form factors

FIG. 3. The relations between the symmetries of projected
Hamiltonian within any set of PH symmetric bands of full
spin-valley flavors in various limits. The arrows point along
the directions along which the symmetry groups are enhanced
into a larger one.

limit is defined in either the first chiral-flat limit (with
first chiral symmetry C) or the second chiral-flat limit
(with second chiral symmetry C ′), where Eq. (35) or
(43) is satisfied, and the condition is that the form factors
M(k,q+G) in Eq. (24) are k-independent for any q,G.
In this limit, As we proved in App. E, one would have
[Oq,G, Oq′,G′ ] = 0. Thus, all the terms O−q,−GOq,G in
the Hamiltonian H = HI in Eq. (10) will be commuting:

[O−q,−GOq,G, O−q′,−G′Oq′,G′ ] = 0 . (46)

This stabilizer code-like Hamiltonian have all of its many-
body eigenstates exactly solvable, which will be solved in
a separate paper [109].

XI. DISCUSSION

We have demonstrated that for the projected Hamil-
tonian with Coulomb interaction in the lowest 8nmax

(2nmax per spin-valley) bands of any nmax ≥ 1, there
exists various different limits where a global U(4) or
U(4)×U(4) symmetry emerge. For nmax, there exists a
stabilizer code limit for the Hamiltonian in either the first
or the second chiral flat limit, where all the terms in the
Hamiltonian are mutually commuting. Our conclusions
are summarized in Tab. I and Fig. 3. Near the first
magic angle, the low energy physics is expected to be
governed by the projected Hamiltonian with nmax = 1.
A projected Hamiltonian within higher number of bands
could be a good approximation at higher magic angles,
where more than 2 bands per spin-valley can become flat.

The U(4) symmetry in the nonchiral-flat limit in
Eq. (23) and U(4)×U(4) symmetry in the first chiral-
flat limit in Eq. (32) that we prove here agree with those
discussed in Ref. [2] for the lowest 8 flat bands near the
first magic angle. We note that, however, we show the
symmetries are generic for the projection into any num-
ber of PH symmetric bands with full spin-valley degrees
of freedom. Besides, we have identified a second chiral
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limit, which also enjoys a U(4)×U(4) symmetry in a sec-
ond chiral-flat limit. We have also derived the explicit
irrep band basis of the symmetries in all the different
limits. Furthermore, we showed that under a strong con-
dition, the projected Hamiltonian in the lowest 8 bands
in the first or second chiral-flat limit becomes similar to a
stabilizer code Hamiltonian, thus allowing one to exactly
solve all the many-body eigenstates, which we will study
in Ref. [109].

A U(4) symmetry in the flat band limit is also dis-
cussed in Ref. [1], which is constructed based on a non-
maximally-symmetric Wannier basis. (These Wannier
functions break the C2zT and C2zTP symmetries, which
protect the fragile topology [45–47] and stable topol-
ogy [108] in TBG, respectively.) The U(4) symmetry
in Ref. [1] is closest to our first chiral-nonflat U(4) sym-
metry that we introduce in Eq. (37) since they have the
same generators τasb (a, b = 0, x, y, z). However, Ref. [1]
does not assume the CC2zP symmetry but requires the
flatness of the two bands, which is in contradict with
our first chiral-nonflat U(4), which assumes the CC2zP
symmetry and does not require flat bands. The reason
Ref. [1] needs flat bands is the absence of exact CC2zP
symmetry. We show in App. F that, if the CC2zP sym-
metry is imposed to the Wannier functions, then the two
U(4) symmetries become the same and do not require the
flatness of bands.

The TBG interacting Hamiltonian, symmetries, and
gauge fixings we derived here provide a solid ground for
future theoretical studies. In the various limits we dis-
cussed, the many-body eigenstates of TBG should fall
into irreps of U(4) or U(4)×U(4) groups. Besides, the

generic PSDH form of the projected interaction HI in
Eq. (10) allows us to look for ground states of the Kang-
Vafek type in the flat band limit. We will study the
ground states and excitations of TBG in these limits an-
alytically and numerically in separate papers [109–111].
The existence of several limits with identical large contin-
uous symmetry groups (but different generators) of the
BM interacting Hamiltonian, as shown in Fig. 3 suggests
the presence of a yet to be found duality of this model.
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tices, Physical Review B 99, 075127 (2019).

[67] J. Liu, Z. Ma, J. Gao, and X. Dai, Quantum valley hall
effect, orbital magnetism, and anomalous hall effect in
twisted multilayer graphene systems, Physical Review
X 9, 031021 (2019).

[68] X.-C. Wu, C.-M. Jian, and C. Xu, Coupled-wire
description of the correlated physics in twisted bi-
layer graphene, Physical Review B 99, 10.1103/phys-
revb.99.161405 (2019).

[69] A. Thomson, S. Chatterjee, S. Sachdev, and M. S.
Scheurer, Triangular antiferromagnetism on the honey-
comb lattice of twisted bilayer graphene, Physical Re-
view B 98, 10.1103/physrevb.98.075109 (2018).

[70] J. F. Dodaro, S. A. Kivelson, Y. Schattner, X.-Q. Sun,
and C. Wang, Phases of a phenomenological model of
twisted bilayer graphene, Physical Review B 98, 075154
(2018).

[71] J. Gonzalez and T. Stauber, Kohn-luttinger supercon-
ductivity in twisted bilayer graphene, Physical review
letters 122, 026801 (2019).

[72] N. F. Yuan and L. Fu, Model for the metal-insulator
transition in graphene superlattices and beyond, Phys-

https://doi.org/10.1038/s41586-020-2049-7
https://doi.org/10.1038/s41586-020-2049-7
https://arxiv.org/abs/2006.14000
https://doi.org/10.1103/PhysRevLett.122.106405
https://doi.org/10.1103/PhysRevB.98.085435
https://arxiv.org/abs/1809.04604
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.155415
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.155415
https://doi.org/10.1103/PhysRevB.98.035404
https://doi.org/10.1103/PhysRevB.98.035404
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevLett.123.036401
https://doi.org/10.1103/PhysRevLett.123.036401
https://doi.org/10.1103/PhysRevB.99.195455
https://doi.org/10.1103/PhysRevB.99.195455
https://doi.org/10.1103/PhysRevX.9.021013
https://doi.org/10.1103/PhysRevB.100.195135
https://doi.org/10.1103/PhysRevB.100.195135
https://doi.org/10.1103/PhysRevB.99.035111
https://doi.org/10.1103/PhysRevB.99.035111
https://doi.org/10.1103/PhysRevB.102.041402
https://doi.org/10.1103/physrevb.100.035115
https://arxiv.org/abs/2005.02406
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.087001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.087001
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevB.98.081102
https://doi.org/10.1103/PhysRevB.98.081102
https://doi.org/10.1103/PhysRevB.98.121406
https://doi.org/10.1073/pnas.1810947115
https://doi.org/10.1073/pnas.1810947115
https://doi.org/10.1103/PhysRevB.98.245103
https://doi.org/10.1103/PhysRevB.98.245103
https://doi.org/10.1038/s41535-019-0153-4
https://doi.org/10.1103/physrevlett.124.046403
https://doi.org/10.1103/physrevlett.124.046403
https://doi.org/10.1103/PhysRevLett.122.257002
https://doi.org/10.1103/PhysRevLett.122.257002
https://doi.org/10.1103/PhysRevLett.121.257001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.217001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.217001
https://doi.org/10.1103/PhysRevLett.124.166601
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.075127
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.031021
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.031021
https://doi.org/10.1103/physrevb.99.161405
https://doi.org/10.1103/physrevb.99.161405
https://doi.org/10.1103/physrevb.98.075109
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.075154
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.075154
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.026801
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.026801
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.045103


12

ical Review B 98, 045103 (2018).
[73] K. Seo, V. N. Kotov, and B. Uchoa, Ferromagnetic mott

state in twisted graphene bilayers at the magic angle,
Phys. Rev. Lett. 122, 246402 (2019).

[74] K. Hejazi, X. Chen, and L. Balents, Hybrid wannier
chern bands in magic angle twisted bilayer graphene and
the quantized anomalous hall effect (2021).

[75] E. Khalaf, S. Chatterjee, N. Bultinck, M. P. Zaletel,
and A. Vishwanath, Charged skyrmions and topologi-
cal origin of superconductivity in magic angle graphene
(2020), arXiv:2004.00638 [cond-mat.str-el].

[76] H. C. Po, L. Zou, A. Vishwanath, and T. Senthil, Origin
of Mott Insulating Behavior and Superconductivity in
Twisted Bilayer Graphene, Physical Review X 8, 031089
(2018).

[77] F. Xie, Z. Song, B. Lian, and B. A. Bernevig, Topology-
bounded superfluid weight in twisted bilayer graphene,
Phys. Rev. Lett. 124, 167002 (2020).

[78] A. Julku, T. J. Peltonen, L. Liang, T. T. Heikkilä,
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Appendix A: Review of the Single-particle Hamiltonian

The quantitative and symmetry aspects of the single-particle Hamiltonian of TBG are discussed in details in Refs.
[107, 108]. For completeness of a self-contained presentation, here we briefly review the notations and conclusions for
the single-particle Hamiltonian.

1. Bases

We denote the fermion operator in the plane wave basis of graphene layer l as c†p,α,s,l. Here p is measured from
the Γ point of the monolayer graphene Brillouin zone BZ, α = A,B represents the AB sublattice, s =↑, ↓ is the spin
index, and l = ± is the layer index. We define K+ as the K point in the top layer graphene BZ, and K− as the K
point in the bottom layer graphene BZ. K+ and K− differ by a twist angle θ (Fig. 1). For concreteness, we assume
Kl is along the direction with an angle −lθ/2 to the px axis. Each graphene layer l contains two valleys K and K’ at
momenta ηKl, where η = ± denotes graphene valleys K and K’, respectively.

For later use, we define the 2D momenta

q1 = (K− −K+) = kθ(0, 1)T , q2 = C3zq1 = kθ(−
√

3

2
,−1

2
)T , q3 = C2

3zq1 = kθ(

√
3

2
,−1

2
)T , (A1)
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where kθ = |K− −K+| = 2|K+| sin(θ/2) for twist angle θ. We can then define the moiré BZ (MBZ) for the TBG
moiré lattice, which is generated by the moiré reciprocal vectors

bM1 = q3 − q1 , bM2 = q3 − q2 . (A2)

2. Single-particle Hamiltonian

When the twist angle between the two graphene layers is small (θ ∼ 1◦), an approximate valley-U(1) symmetry,
and an approximate moiré translation symmetry emerges. Accordingly, the single-particle Hamiltonian is decoupled
between two valleys η = ±.

To concentrate on the low energy physics of the two valleys, we define Q0 = ZbM1 +ZbM2 as the triangular moiré
reciprocal lattice sites generated by the moiré reciprocal vectors bM1 and bM2 in Eq. (A2). We then define two shifted

momentum lattices Q+ = q1 +Q0 and Q− = −q1 +Q0. We then define the low energy fermion operators c†k,Q,η,α,s
at valley η and Q ∈ Q± as

c†k,Q,+,α,s =

{
c†K++k−Q,α,s,+ Q ∈ Q+

c†K−+k−Q,α,s,− Q ∈ Q−
, (A3)

c†k,Q,−,α,s =

{
c†−K−+k−Q,α,s,− Q ∈ Q+

c†−K++k−Q,α,s,+ Q ∈ Q−
, (A4)

where k takes value in the MBZ, and k = 0 is chosen at the center (ΓM point) of the MBZ. In practice, we always
take a finite cutoff for Q0,+,−; the largest Q in Q± should have a norm much smaller than |K+|. We denote the
number of points in Q0,+,− as |Q0,+,−|.

The single-particle Hamiltonian of TBG for small twist angle θ is given by [3, 107, 108]

Ĥ0 =
∑

k∈MBZ

∑
ηαβs

∑
QQ′

[
h

(η)
Q,Q′ (k)

]
αβ
c†k,Q,η,α,sck,Q′,η,β,s , (A5)

where h
(η)
Q,Q′ (k) is the first-quantized momentum space Hamiltonian at valley η in the sublattice space, and Q,Q′ ∈

Q±. At valley K (η = +), we have

h
(+)
Q,Q′ (k) = vF (k−Q) · σδQ,Q′ +

3∑
j=1

TjδQ,Q′±qj , (A6)

where vF is the graphene Fermi velocity, and the matrices

Tj = w0σ0 + w1

[
σx cos

2π(j − 1)

3
+ σy sin

2π(j − 1)

3

]
. (A7)

Here σ0 and σ = (σx, σy) are the 2 × 2 identity matrix and Pauli matrices in the space of sublattice indices, while
w0 ≥ 0 and w1 ≥ 0 are the interlayer hoppings at the AA and AB stacking centers of TBG, respectively. Generically,
in realistic systems w0 < w1 due to the lattice relaxation. In the absence of lattice relaxation, one has w0 = w1.

At valley K’ (η = −), we have

h
(−)
Q,Q′ (k) = σxh

(+)
−Q,−Q′ (−k)σx = −vF (k−Q) · σ∗δQ,Q′ +

3∑
j=1

(σxTjσx)δQ,Q′±qj , (A8)

where σ∗ = (σx,−σy).

3. Symmetries

Here we summarize the symmetries of TBG, which can be found in Ref. [45] and expanded on in Ref. [108].
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1. Discrete symmetries. Since graphene has zero spin-orbit coupling (SOC), we can define a set of spinless symme-
tries for TBG. In TBG, there are spinless unitary discrete rotational symmetries C2z, C3z and C2x, and the spinless
anti-unitary time-reversal symmetry T , which satisfy

[C3z, Ĥ0] = [C2z, Ĥ0] = [C2x, Ĥ0] = [T, Ĥ0] = 0 . (A9)

We denote the action of a spinless symmetry operator g on the fermion basis c†k,Q,η,α,s as

gc†k,Q,η,α,sg
−1 =

∑
Q′η′β

[D(g)]Q′η′β,Qηαc
†
gk,Q′,η′,β,s , (A10)

where D(g) is the representation matrix of the symmetry operation g in the space of indices {Q, η, α}, and gk is the
momentum after acting g on momentum k. In particular, C2zk = Tk = −k. The representation matrices for the
discrete symmetries of TBG are given by

[D(C3z)]Q′η′β,Qηα = δQ′,C3zQδη′,η(eiη
2π
3 σz )βα. (A11)

[D(C2x)]Q′η′β,Qηα = δQ′,C2xQδη′,−η(σx)βα, (A12)

[D(C2z)]Q′η′β,Qηα = δQ′,−Qδη′,−η(σx)βα, (A13)

[D(T )]Q′η′β,Qηα = δQ′,−Qδη′,−ηδβ,α, (A14)

Moreover, T is anti-unitary, so TiT−1 = −i.
In particular, the combined symmetry C2zT does not change k, i.e., C2zTk = k, and the representation matrix is

[D(C2zT )]Q′η′β,Qηα = [D(C2z)D(T )]Q′η′β,Qηα = δQ′,Qδη′,η(σx)β,α. (A15)

2. U(2)×U(2) spin-charge rotation symmetry. The graphene has zero (negligible) spin-orbit coupling (SOC). Since
the single-particle Hamiltonian of TBG has two decoupled valleys η = ±, and the SOC is zero, the electron SU(2)
spins of each valley can be rotated freely. Each valley also has a charge U(1) rotation symmetry. This leads to a
global U(2)×U(2) symmetry. The 8 generators of the U(2)×U(2) symmetry are given by

Ŝab =
∑
k

(τa)ηη′(s
b)ss′c

†
k,Q,η,α,sck,Q,η′,α,s′ , (a = 0, z, b = 0, x, y, z) , (A16)

where we have defined τa and sa (a = 0, x, y, z) as the 2× 2 identity and Pauli matrices in the valley and spin spaces,
respectively.

3. Particle-hole (PH) transformation P . In addition to the above symmetries, TBG also has a unitary particle-hole
(PH) “symmetry” [45], which satisfies the anti-commutation relation

{P, Ĥ0} = 0 . (A17)

The action of P is given by

Pc†k,Q,η,α,sP
−1 =

∑
Q′η′β

[D(P )]Q′η′β,Qηαc
†
−k,Q′,η′,β,s , (A18)

with the representation matrix

[D(P )]Q′η′β,Qηα = δQ′,−Qδη′,ηδβ,αζQ , (A19)

where ζQ = ±1 for Q ∈ Q±, respectively. Note that P transforms creation operators to creation operators (rather
than annihilation operators), and maps sites Q ∈ Q± into −Q ∈ Q∓. Since P flips the single-particle Hamiltonian

Ĥ0, it is not a commuting symmetry of TBG, but only reflects a relation between the positive and negative energy
spectra. Furthermore, the PH transformation P satisfies

P 2 = −1, [P,C3z] = 0, {P,C2x} = 0, {P,C2z} = 0, {P, T} = 0, [P,C2zT ] = 0. (A20)
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4. Eigenstates

The solutions to the single-particle Hamiltonian Ĥ0 in Eq. (A5) allows us to define the energy band basis

c†k,n,η,s =
∑
Qα

uQα;nη (k) c†k,Q,η,αs , (A21)

where uQα;nη(k) is the eigenstate wave function of energy band n of the first quantized single-particle Hamiltonian

h
(η)
Q,Q′ (k) in valley η. It satisfies ∑

Q′,β

[h
(η)
Q,Q′ (k)]αβuQ′β;nη(k) = εn,η(k)uQα;nη(k) , (A22)

where εn,η(k) is the single-particle energy of eigenstate uQα;nη(k). Note that the wave function uQα;nη(k) and energy
εn,η(k) are independent of spin s, because of the absence of SOC. In each valley and spin, we shall use integers n > 0
to label the n-th conduction band, and use integer n < 0 to label the |n|-th valence band (thus n 6= 0). The lowest
conduction and valence bands in each valley-spin flavor is thus labeled by n = ±1.

Since c†k+bMi,Q,ηαs
= c†k,Q−bMi,ηαs for reciprocal vector bMi (i = 1, 2), we generalize the eigenstate wave function

to momenta k outside the MBZ by the embedding relation for shifting momentum k by a reciprocal vector bMi:

uQα;nη (k + bMi) = uQ−bMi,α;nη (k) . (A23)

This ensures our energy band basis is defined periodically in the MBZ, namely, c†k+bMi,nηs
= c†knηs. Besides, due to

the C2z symmetry and PH symmetry P , the energy spectrum satisfies

εn,η(k) = εn,−η(−k) , εn,η(k) = −ε−n,η(−k) . (A24)

The single-particle Hamiltonian can then be rewritten in the energy band basis as

Ĥ0 =
∑
k

∑
nηs

εn,η(k)c†knηscknηs. (A25)

Appendix B: Gauge Fixing and the Chern Band Basis

In this appendix, we fix the gauge for the energy band basis c†knηs in Eq. (A21), so that we we are able to obtain an
explicit form of the interaction Hamiltonian in App. C 3. We will also define a Chern band basis, whose gauge fixing
was shown in Ref. [108], using the energy band basis.

1. Sewing matrices

The discrete symmetries in App. A 3 yield certain relations among the eigenstate wave functions related by these
symmetries. For the purpose of gauge fixing, here we will discuss these relations among eigenstate wave functions for
operators C2z, T and P .

For notation simplicity, we denote the wave function uQα;nη(k) as a column vector unη(k) in the space of indices
{Q, α}. Furthermore, when a representation matrix D(g) of an operation g (defined in Eqs. A11 to A19) acts on a
wave function unη′(k), we denote the resulting wave function in valley η for short as [D(g)]ηη′unη′(k), the components
of which are given by

∑
Q′βη′ [D(g)]Qαη,Q′βη′uQ′β;nη′(k). Namely, we suppress the indices {Q, α} of the representation

matrix D(g) for short.

When g is a symmetry operator satisfying [Ĥ0, g] = 0 (or {Ĥ0, g} = 0), if unη′(k) is an eigenstate wave function at
momentum k, the wave function [D(g)]ηη′unη′(k) (an additional complex conjugation is needed if g is anti-unitary)
must also be an eigenstate wave function at momentum gk at the same (or opposite) single-particle energy. For
symmetries C2z, T and P , this allows us to define the sewing matrices Bg(k) in the band and valley space connecting
the symmetry related eigenstates by

[D(C2z)]ηη′unη′(k) =
∑
m

[BC2z (k)]mη,nη′umη(−k) , (B1)
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[D(T )]ηη′u
∗
nη′(k) =

∑
m

[BT (k)]mη,nη′umη(−k) , (B2)

[D(P )]ηη′unη′(k) =
∑
m

[BP (k)]mη,nη′umη(−k) . (B3)

For non-degenerate wave function unη′(k) in valley η′, since C2z and T commute with the Ĥ0 and flips the valley η,

while P anti-commutes with Ĥ0 and preserves the valley η, we generically have

[BC2z (k)]mη,nη′ = δη,−η′δm,ne
iϕ
C2z
n,η′ (k)

, [BT (k)]mη,nη′ = δη,−η′δm,ne
iϕT
n,η′ (k) ,

[BP (k)]mη,nη′ = δη,η′δ−m,ne
iϕP
n,η′ (k) .

(B4)

Accordingly, the action of a symmetry operator g on the energy band fermion operators (defined in Eq. (A21)) is
given by

gc†k,n,η′,sg
−1 =

∑
mη

[Bg(k)]mη,nη′c
†
gk,m,η,s . (B5)

Since the three symmetries satisfy the relations

C2
2z = 1 , T 2 = 1 , P 2 = −1 , {P,C2z} = 0 , {P, T} = 0 , [C2z, T ] = 0 , (B6)

With the above notations, the symmetries C2z, T and P allows us to define

BC2z (−k)BC2z (k) = BT (−k)BT∗(k) = −BP (−k)BP (k) = I , BP (−k)BC2z (k) = −BC2z (−k)BP (k) ,

BP (−k)BT (k) = −BT (−k)BP∗(k) , BT (−k)BC2z∗(k) = −BC2z (−k)BT (k) ,
(B7)

where Bg∗(k) stands for the complex conjugation of matrix Bg(k), and I is the identity matrix in the n, η space.
More discussions on the sewing matrices can be found in Ref. [108].

The combination of the three symmetries yields two independent symmetry operations C2zT and C2zP which do
not change k. Note that C2zT is anti-unitary, and C2zP is unitary. Their sewing matrices are defined by

[D(C2z)D(T )]ηη′u
∗
nη′(k) =

∑
m

[BC2zT (k)]mη,nη′umη(k) , (B8)

[D(P )D(C2z)]ηη′unη′(k) =
∑
m

[BC2zP (k)]mη,nη′umη(k) . (B9)

For non-degenerate eigenstates at momentum k (non-degenerate within one valley), they are given by

[BC2zT (k)]mη,nη′ = δη,η′δm,ne
iϕ
C2zT

n,η′ (k)
, [BC2zP (k)]mη,nη′ = δ−η,η′δ−m,ne

iϕ
C2zP

n,η′ (k)
, (B10)

where by definition we have ϕC2zT
n,η′ (k) = ϕTn,η′(k) + ϕC2z

n,−η′(−k), and ϕC2zP
n,η′ (k) = ϕC2z

n,η′(k) + ϕPn,−η′(−k). The sewing
matrices of C2zT and C2zP are subject to the constraint that

(C2zT )2 = (C2zP )2 = 1 , [C2zT,C2zP ] = 1 , (B11)

thus they satisfy

BC2zT (k)BC2zT∗(k) = [BC2zP (k)]2 = I , BC2zP (k)BC2zT (k) = BC2zT (k)BC2zP∗(k) . (B12)

2. Gauge fixing

We will now gauge fix the wave functions and sewing matrices of the k preserving symmetry operations C2zT and
C2zP . By Eqs. (B10) and (B12), we are able to choose the following k independent choices for the sewing matrices:

[BC2zT (k)]mη,nη′ = δη,η′δm,n , [BC2zP (k)]mη,nη′ = −sgn(n)η′δ−η,η′δ−m,n . (B13)
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Accordingly, the symmetry actions on the band basis fermion operators are given by

(C2zT )c†k,n,η,s(C2zT )−1 = c†k,n,η,s , (C2zP )c†k,n,η,s(C2zP )−1 = −sgn(n)ηc†k,−n,−η,s . (B14)

This, however, does not yet fix the entire phases of the energy basis at momentum k, since the sewing matrices
in Eq. (B13) are invariant under the unitary transformation of wave functions unη(k) → sgn(n)ηunη(k) at each
individual k. To further fix this gauge freedom for different k ∈ MBZ, we start by choosing a momentum k = k0

where eigenstates within one valley are nondegenerate, and choose a fixing of the band basis at k0 satisfying Eq. (B13).
We then fix the band basis of bands ±n at other k 6= k0 by requiring

fn,η(k + q,k) =
∣∣∣u†n,η(k + q)un,η(k)− u†−n,η(k + q)u−n,η(k)

∣∣∣ (B15)

to be a continuous function of k and q, and satisfies

lim
q→0

fn,η(k + q,k) = 0 (B16)

for all k. Meanwhile, we require the wave functions un,η(k) at all k to satisfy Eq. (B13). This fixes the relative
sign between wave functions un,η(k) and u−n,η(k) in a way that is continuous in k. Note that we do not require the
wave function un,η(k) itself to be globally continuous in k of the entire MBZ, which is impossible when the band n is
topological. However, locally un,η(k) can always be chosen to be continuous in k, provided un,η(k) is non-degenerate
at momentum k. We will see the importance of condition (B16) in App. B 3 again.

We also note that, we could alternatively define the continuous condition between the same n but opposite η bands

as limq→0

∣∣∣u†n,η(k + q)un,η(k)− u†n,−η(k + q)un,−η(k)
∣∣∣ = 0. Together with Eq. (B13), this is equivalent to condition

(B16).
In particular, we see that all the sewing matrices in Eq. (B13) are closed within each pair of bands n = ±nB for

any nB ≥ 1. The same is true for all the sewing matrices we will consider in this paper, which are either commuting
or anti-commuting with the single-particle Hamiltonian Ĥ0. Within the space of each pair of PH symmetric bands
with band indices n = ±nB, if we use ζa and τa (a = 0, x, y, z) to denote the identity and Pauli matrices in the energy
band n = ±nB space and the valley space, respectively, the sewing matrices in Eq. (B13) can be rewritten as

BC2zT (k) = ζ0τ0 , BC2zP (k) = ζyτy . (B17)

We also mention that for nB = 1 (i.e., within the lowest conduction and valence bands n = ±1 per spin per valley)
when k is at KM or K ′M point of the MBZ, bands n = +1 and n = −1 are degenerate. In this case, we still choose
the eigenstate basis at KM or K ′M point such that Eqs. (B17) and (B16) are satisfied.

Lastly, we note that we can further fix the relative gauge between wave functions at momenta k and −k by fixing
the sewing matrices of C2z and P . In particular, for k not at the P -invariant momenta, which are ΓM and the three
equivalent MM in TBG, one can choose the sewing matrices of C2z, T and P between each pair of bands n = ±nB as

BC2z (k) = ζ0τx , BT (k) = ζ0τx , BP (k) = −iζyτz . (B18)

which are consistent with Eq. (B17). As proven in the next subsection, with the gauge condition Eq. (B16), the sewing
matrix BP (k) must have additional minus signs, i.e., BP (k) = iζyτz, at an odd (even) number of the four P -invariant
momenta if the the two bands n = ±nB have an odd (even) topological winding number protected by C2zT ; and at
the other odd (even) P -invariant momenta BP (k) are −iζyτz, same as those at generic momenta. Accordingly, the
sewing matrices BC2z (k) and BT (k) also have the additional minus at momenta where BP (k) has the minus sign. In
this work, we choose BP (kΓM ) = −iζyτz and BP (kMM

) = iζyτz. It should be noticed that Eq. (B18) is incompatible
with the second chiral symmetry, which we explain in Sec. D 5.

For the purpose of this paper, we will use the gauge conditions in Eqs. (B17) and (B18) for gauge fixing of the
interaction Hamiltonian in App. C.

3. The Irrep band basis and Chern band basis

After we have gauge fixed the wave functions as shown in Eqs. (B17) and (B16), we have defined a new basis

d
(nB)†
k,eY ,η,s

in Eq. (26) within the band space of each pair of PH symmetric bands n = ±nB, which we call the irrep
basis:

d
(nB)†
k,eY ,η,s

=
c†k,nB,η,s

+ ieY c
†
k,−nB,η,s√

2
, (eY = ±1). (B19)
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In particular, for nB = 1, we call them the Chern band basis within the lowest two bands (in each valley-spin flavor),

which we denote for simplicity as d
(1)†
k,eY ,η,s

= d†k,eY ,η,s, as given in Eq. (28), where eY = ±1. This basis will be useful
when we discuss the symmetries in various limits in App. D.

In this appendix, we briefly show that the basis d
(nB)†
k,eY ,η,s

defines a band with well-defined Berry curvature, and for
a fixed eY , η, s gives a band with Chern number

CnB
eY ,η,s = eY e2,nB

, (B20)

where e2,nB
∈ Z is the Wilson loop winding number of the two bands n = ±nB, provided the pair of bands n = ±nB

are disconnected with other bands. More details can be found in Ref. [108].
The wave functions of the Chern band basis in Eq. (B19) are given by (denoted by wave functions with a prime)

u′eY ,nB,η(k) =
u+nB,η(k) + ieY u−nB,η(k)√

2
. (B21)

Due to the condition in Eq. (B16), we know that limq→0 u
†
+nB,η(k + q)u+nB,η(k) = limq→0 u

†
−nB,η(k + q)u−nB,η(k).

Therefore, we find the Chern band wave functions satisfy the continuous condition

lim
q→0
|u′†eY ,nB,η(k + q)u′e′Y ,nB,η

(k)| = 1

2
lim
q→0
|u†+nB,η(k + q)u+nB,η(k) + eY e

′
Y u
†
−nB,η(k + q)u−nB,η(k)| = δeY ,e′Y , (B22)

This continuous condition (which is due to condition (B16)) allows us to define a continuous Berry curvature for the
Chern band wave function u′e′Y ,nB,η

(k).

We first focus in the valley η = + sector. The sewing matrix for C2zT restricted in valley η = + is given by
BC2zT (k) = ζ0 (see Eq. (B17)). Under this gauge, according to [47], the non-abelian Berry’s connection [A(k)]mn =

iu†m,+(k)∂kun,+(k) will take the form

A(k) =

(
0 ia(k)

−ia(k) 0

)
(B23)

in the energy band basis un,+(k) of n = ±nB. The sign of wave functions un,+(k) is fixed in such a way that a(k)
is globally continuous in the BZ excluding the Dirac nodes between the two bands ±nB (recall that we assume the
bands ±nB are disconnected from other bands, thus there can be Dirac nodes between them only if nB = 1), which
is always possible [47]. In particular, this way of sign fixing is consistent with Eq. (B16), since the vanishing of the
diagonal Berry’s connection requires limq→0 |u†m,η(k + q)un,η(k)| = δm,n.

It is known that the Wilson loop winding number of two bands isolated from other bands is given by the Euler
class [47]:

e2,nB =
1

2π

∑
i

˛
∂Di

dk · a(k) =
1

2π

ˆ
MBZ−

∑
iDi

d2k Ω(k) , (B24)

where Di is a sufficiently small region containing the ith Dirac point in the BZ, and Ω(k) = ∇k × a(k).

With Eq. (B23), we can derive the Berry connection of the irrep band basis d†k,eY ,+,s at k away from Dirac points
as

A′eY (k) = iu′†eY ,nB,+(k)∂ku
′
eY ,nB,+(k)

=
i

2
[u†+nB,+(k)∂ku+nB,+(k) + ieY u

†
+nB,+(k)∂ku−nB,+(k)− ieY u†−nB,+(k)∂ku+nB,+(k) + u†−nB,+(k)∂ku−nB,+(k)]

= eY a(k) . (B25)

Furthermore, the Berry curvature can be shown to be non-divergent at the Dirac points between the two bands
n = ±nB (see proof in [108]. If nB > 1, there are no Dirac points between bands n = ±nB). Therefore, by Eq. (B24),

we find the irrep basis d
(nB)†
k,eY ,+,s

carries a Chern number given by Eq. (B20).

Further, note that the C2z symmetry maps the irrep basis d
(nB)†
k,eY ,+,s

into d
(nB)†
−k,eY ,−,s (see Eq. (B18)). Since C2z does

not change the Chern number, we conclude that the Chern number of the irrep basis d
(nB)†
k,eY ,η,s

in the MBZ is simply

given by Eq. (B20).
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In particular, for the lowest two bands nB = 1, the bands are topological and carry a winding number e2 = 1

[45–47]. Therefore, for the Chern band basis (the irrep basis with nB = 1) d†−k,eY ,−,s, we have Chern number

CeY ,η,s = eY , (B26)

thus the name “Chern band basis” within the lowest two bands (see [108] for a more careful treatment at the Dirac
points at CNP, which does not change the conclusion).

For nB > 1, if the two bands n = ±nB are isolated from other bands, they will be trivial, and thus e2,nB
= 0 for

nB > 1 [45–47]. Therefore, they will have Chern number CnB
eY ,η,s = 0.

Now we show that if e2,nB is odd, then the sign of the sewing matrix BP (k) must be k-dependent: for η = +,
BP (k) can be chosen as −iζy at all the momenta except one or three of the P -invariant momenta, where BP (k) must
be iζy. To see this, we assume BP (k) = −iχ(k)ζy, where χ(k) = ±1, and transform it into the Chern band basis
Eq. (B21). We obtain

BP ′eY ,e′Y
(k) = u′†eY ,nB ,+(−k)D(P )u′eY ,nB ,+(k) = −iχ(k)eY δeY ,e′Y . (B27)

Therefore, P leaves each branch of the Chern band basis, which has the Chern numbers e2,nBeY , invariant. iP can
be equivalently thought as an inversion symmetry for each Chern band since it squares to 1 and changes k to −k.
The “inversion” eigenvalues of the Chern band eY are given by χ(k)eY for k being the P -invariant momentum. Due
to the relation between Chern number and inversion eigenvalues, we have

(−1)e2,nB =
∏
K

χ(K), (B28)

where K indexes the four P -invariant momenta. Therefore, the right hand side must be -1 (1) if e2,nB is odd (even),
implying χ(K) = −1 at one or three (zero, two, or four) of the four P -invariant momenta. The sign of BP (k) in the
other valley η = − can be obtained from the constraint between BC2zP (k) and BP (k).

In the case when a pair of bands n = ±nB are not isolated, the Chern number CnB
eY ,η,s is not clearly well defined.

We leave this question for future studies.

Appendix C: Interacting Hamiltonian with Coulomb Interaction

In this appendix, we write down the interaction Hamiltonian of TBG for the Coulomb interaction with screening
from the top and bottom gates.

1. Low energy interaction

We denote the (screened) Coulomb interaction in TBG between two electrons of distance r as V (r). Usually, TBG
samples in experiments feel the Coulomb screenings from the top and bottom gates. Here we assume the TBG has a
top gate plate and bottom gate plate which are distance ξ away in the z direction. The screened Coulomb interaction
is then given by

Ṽ (r) = Uξ

∞∑
n=−∞

(−1)
n√

(r/ξ)
2

+ n2

, (C1)

where Uξ = e2/ (εξ), with ε being the dielectric constant, and r = |r|. We call ξ the screening length, which is usually
around 10nm and comparable to the moiré lattice constant. For ε ≈ 6 from typical hBN substrates, and ξ ≈ 10nm,
we have Uξ ≈ 24meV. Using the 2D Fourier transformation formula that

ˆ
d2q

(2π)
2 ·

e−ξq+iq·r

q
=

ˆ ∞
0

dq

ˆ 2π

0

dθe−ξq+iqr cos θ =

ˆ 2π

0

dθ
1

ξ − ir cos θ
=

˛
|z|=1

dz

ξz − ir(z2 + 1)/2

=
1

2π

1√
ξ2 + r2

, (ξ ≥ 0) ,

(C2)



22

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

V(q)
πξ  U2

ξ

ξq

FIG. 4. The interaction V (q) as a function of ξq given by Eq. C3.

we find the Fourier transformation of the Coulomb interaction (C1) is

V (q) =

ˆ
d2re−iq·rṼ (r) = ξUξ

∞∑
n=−∞

ˆ
d2r

(−1)
n
e−iq·r√

r2 + (nξ)2

= 2πξUξ

∞∑
n=−∞

ˆ
d2r

ˆ
d2q′

(2π)2
(−1)

|n| e
−|n|ξq′+i(q′−q)·r

q′
= 2πξUξ

∞∑
n=−∞

ˆ
d2q′δ2(q− q′) (−1)

n e
−|n|ξq′

q′

= 2πξUξ

∞∑
n=−∞

(−1)
n e
−|n|ξq

q
=
(
πξ2Uξ

) tanh (ξq/2)

ξq/2
=

2πe2

ε

tanh (ξq/2)

q
,

(C3)

where q = |q|, and we have used the formula
∑∞
n=−∞ e−|n|x = 1− 2e−x

1+e−x = tanh
(
x
2

)
. Note that V (−q) = V (q). The

function V (q) with respect to ζq is plotted in Fig. 4.
The Coulomb interaction of the 2D TBG electrons can be written in the momentum space under the graphene

plane wave basis as c†p,α,s,l as

ĤI =
1

2Ωtot

∑
p,p′,q∈GBZ

∑
α,α′,s,s′,l,l′

V (q)

(
c†p+q,α,s,lcp,α,s,l −

1

2
δq,0

)(
c†p′−q,α′,s′,l′cp′,α′,s′,l′ −

1

2
δq,0

)
, (C4)

where p,p′,q takes values in the microscopic graphene BZ, and Ωtot is the total area of TBG. Note that we did
not normal-order the interaction Hamiltonian ĤI in Eq. (C4), and have subtracted a 1

2δq,0 term in the two brackets

of fermion operators. Normal-ordering or removing the term 1
2δq,0 only shifts ĤI by a chemical potential term of

the form µ
∑

p,α,s,l c
†
p,α,s,lcp,α,s,l, which does not change the general physics. However, the advantage of the form

in Eq. (C4), the Hamiltonian ĤI is symmetric about the filling of the charge neutral point (CNP). In particular,
this chemical potential shift allows us to easily obtain a many-body PH symmetric projected Hamiltonian, as we will
derive below and discuss in more details in App. C 4. The derived many-body PH symmetric projected Hamiltonian
is the most appropriate one, as it effectively properly includes the Hartree-Fock contributions from the passive bands
(App. C 5).

The low energy physics of TBG is concentrated at microscopic electron momenta p around the two valleys ±Kl.
Since V (q) decays quickly when q � 1/ξ, and in TBG |Kl| � 1/ξ, we can ignore the terms in Eq. (C4) with |q| ∼ |Kl|
connecting two valleys. After this approximation, at low energies we can assume p and p + q (p′ and p′ + q) belong
to the same graphene valley, namely, only intra-valley scattering is preserved. Rewriting the fermion operators using
Eqs. (A3) and (A4), we can rewrite the low energy interaction Hamiltonian as

ĤI =
1

2Ωtot

∑
G∈Q0

∑
q∈MBZ

V (q + G)δρ−q−Gδρq+G , (C5)
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where

δρq+G =
∑
η,α,s

∑
k∈MBZ

∑
Q∈Q±

(
c†k+q,Q−G,η,α,sck,Q,η,α,s −

1

2
δq,0δG,0

)
. (C6)

Physically, δρq+G is the Fourier transform of the total electron density at momentum q + G relative to the filling of the

graphene CNP (since the CNP of TBG when the two layers are decoupled is at half filling 〈c†k+q,Q−G,η,α,sck,Q,η,α,s〉 =
1
2δq,0δG,0 in both graphene layers).

2. Projected Hamiltonian

We now project the TBG Hamiltonian into the lowest 8nmax bands |n| ≤ nmax in each spin and valley. When
the twist angle θ is close to the magic angle θM ≈ 1.1◦, a reasonable projected Hamiltonian is with nmax = 1. To
distinguish with the unprojected Hamiltonians Ĥ0 and ĤI in Eqs. (A5) and (C5) which have a hat, we denote the
projected kinetic and interaction Hamiltonians as H0 and HI (without a hat), and the total projected Hamiltonian
as H = H0 +HI .

From Eq. (A25) we can easily write down the projected kinetic Hamiltonian into |n| ≤ nmax bands as:

H0 =
∑

|n|≤nmax

∑
ηs

∑
k∈MBZ

εn,η(k)c†knηscknηs . (C7)

To find the projected interaction Hamiltonian, we first note that due to Eq. (A21), the density operator in Eq. (C6)
can be written as

δρG+q =
∑
ηαs

∑
k

∑
Q∈Q±

((∑
mn

u∗Q−G,α;mη(k + q)uQ,α;nη(k)c†k+q,m,η,sck,n,η,s

)
− 1

2
δq,0δG,0

)

=
∑
ηαs

∑
k

∑
Q∈Q±

∑
m,n

u∗Q−G,α;mη(k + q)uQ,α;nη(k)

(
c†k+q,m,η,sck,n,η,s −

1

2
δq,0δmn

)
, (C8)

where from the first line to the second line we have used the completeness relation

δG,0 =
∑
nη

u∗Q−G,α;nη(k)uQ,α;nη(k). (C9)

We then define the form factor (overlap) matrix as given in Eq. (12), which we reprint here for convenience:

M (η)
m,n (k,q + G) =

∑
α

∑
Q∈Q±

u∗Q−G,α;mη (k + q)uQ,α;nη (k) . (C10)

We note that if k + q is outside the first BZ, it must be brought into the first BZ using the embedding relation in
Eq. (A23). This further simplifies Eq. C8 into

δρG+q =
∑
kηs

∑
m,n

Mη
m,n(k,q + G)

(
c†k+q,m,η,sck,n,η,s −

1

2
δq,0δmn

)
. (C11)

We can then define a projected density operator δρG+q by restricting |m|, |n| ≤ nmax in Eq. (C11):

δρG+q =
∑
kηs

∑
|m|,|n|≤nmax

Mη
m,n(k,q + G)

(
c†k+q,m,η,sck,n,η,s −

1

2
δq,0δmn

)
, (C12)

and substitute δρG+q into Eq. (C5) to obtain the projected interaction Hamiltonian HI in the n = ±1 bands. To
simplify the form of the interaction Hamiltonian, we define a set of operators

Oq,G =
√
V (q + G)δρG+q =

∑
kηs

∑
|m|,|n|≤nmax

√
V (q + G)M (η)

m,n (k,q + G)

(
ρηk,q,m,n,s −

1

2
δq,0δm,n

)
, (C13)
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and the electron density operator within the flat bands

ρηk,q,m,n,s = c†k+q,m,η,sck,n,η,s . (C14)

We can then write the projected interaction Hamiltonian as

HI =
1

2Ωtot

∑
q∈MBZ

∑
G∈Q0

O−q,−GOq,G , (C15)

as given in the main text Eq. (10). In particular, we have

[Oq,G, Oq′,G′ ] =
∑

k,m,n,n′,η,s

√
V (G + q)V (G′ + q′)ρηk,q+q′,m,n,s×[

M
(η)
m,m′ (k + q′,q + G)M

(η)
m′,n (k,q′ + G′)−M (η)

m′,n (k,q + G)M
(η)
m,m′ (k + q,q′ + G′)

]
,

(C16)

which in general does not vanish if q 6= q′ or G 6= G′. Therefore, different terms in the interaction Hamiltonian HI

do not commute.

3. Gauge fixing of the interaction

Eq. (C10) give the generic definition of the coefficient M
(η)
m,n (k,q + G). Here we fix the form of this coefficient

under the gauge fixing of Eq. (B17). Under this gauge, the following constraints must be satisfied:
(I) Hermiticity condition:

M (η)∗
mn (k,q + G) = M (η)

nm(k + q,−q−G) , (C17)

which is trivially satisfied by the definition in Eq. (C10).
(II) The C2zT symmetry yields the real condition

M (η)
m,n (k,q + G) =

∑
α

∑
Q∈Q±

[D(C2zT )umη(k + q)]Q−G,α[D(C2zT )u∗nη (k)]Q,α

=
∑
α

∑
Q∈Q±

u∗Q,ᾱ;nη(k)uQ−Gᾱ,mη(k + q) =
∑
α

∑
Q∈Q±

u∗Q+G,α;nη(k)uQα,mη(k + q)

=M (η)∗
mn (k,q + G) . (C18)

(III) Due to the combination operation C2zP , which has the sewing matrix D(C2zP ) = ζyτy in each pair of bands
n = ±nB (Eq. (B17)), we have

M (η)
mn(k,q + G) =

∑
α

∑
Q∈Q±

[D(C2zP )u∗mη(k + q)]Q−G,α[D(C2zP )unη (k)]Q,α

=
∑
α

∑
Q∈Q±

(ζy)mm′u
∗
Q−Gα,m′,−η(k + q)uQ,α;n′,−η(k)(ζy)n′n

=[ζyM (−η)(k,q + G)ζy]m,n, (C19)

where we write M
(η)
mn in short as a matrix M (η) in the band space, and ζα means the Pauli matrix within each pair

of bands ±n.
(IV) For momenta k and k + q not at MM points, due to the C2z symmetry, which has the sewing matrix

B(C2z)(k) = ζ0τx (Eq. (B18)), we further have

M (η)(k,q + G) = M (−η)(−k,−q−G). (C20)

For the case where k is at MM and k+q is not at MM , the sewing matrices are given by −BC2z (k) = BC2z (k+q+G) =
iζ0τx due to the discussion in appendix B 2, hence the above condition changes to

M (η)(k,q + G) = −M (−η)(−k,−q−G). (C21)
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For the case where k is not at MM and k + q is at MM , the M matrix also satisfies Eq. (C21) for the same reason.
For the case where k is at MM and q = 0, the sewing matrices are given by BC2z (k) = BC2z (k + G) = −iζ0τx and
hence the M matrix satisfies Eq. (C20).

We can generically parameterize Mη
m,n(k,q) as

Mη
m,n(k,q + G) =

∑
a=0,x,y,z

∑
b=0,z

(ζa)mn(τ b)ηηαab(k,q + G) , (C22)

where only b = 0, z are allowed, since Mη
m,n(k,q + G) is diagonal in valley η. We have assumed αab(k,q + G) are

nmax × nmax matrices, and is tensor producted with ζa in each pair band basis n = ±nB and the valley Pauli matrix
τ b. Condition (III) requires M to be commutative with ζyτy in the band and valley indices, which restricts M matrix
to decompose into four terms

M(k,q + G) = ζ0τ0α0(k,q + G) + ζxτzα1(k,q + G) + iζyτ0α2(k,q + G) + ζzτzα3(k,q + G). (C23)

We note that if nmax = 1, α0,1,2,3(k,q+G) are simply numbers, while if nmax > 1, α0,1,2,3(k,q+G) will be matrices.
Condition (II) requires Mη

m,n(k,q + G) to be real, thus α0,1,2,3(k,q + G) are all real (matrix) functions. We denote
the matrix coefficient of αj(k,q + G) in Eq. (C23) as Mj . Besides, Condition (I) requires

(1) αa(k,q + G) = αTa (k + q,−q−G) for a = 0, 1, 3, α2(k,q + G) = −αT2 (k + q,−q−G). (C24)

Finally, for k and k + q not at MM points, Condition (IV) requires

(2) αa(k,q + G) = αa(−k,−q−G) for a = 0, 2, αa(k,q + G) = −αa(−k,−q−G) for a = 1, 3. (C25)

In particular, the combination of Eqs. (C24) and (C25) implies that at q = 0, we have

α0(k,G) = αT0 (−k,G) , αj(k,G) = −αTj (−k,G), (j = 1, 2, 3). (C26)

It is worth noting that, even though Eq. (C25) is derived with assumption that k and k + q are not at the MM

momentum, it is also true for k at MM and q = 0 because the Condition IV (Eq. (C20)), from which Eq. (C25) is
derived, is true for k at MM and q = 0. Therefore, Eq. (C26), which is the combination of Eqs. (C24) and (C25) at
q = 0, is true for k over the whole BZ.

4. Many-body charge conjugation symmetry of the Projected Hamiltonian

The full projected Hamiltonian H = H0 +HI has a many-body charge-conjugation symmetry, which ensures that
all the physical phenomena is PH symmetric about the filling of the charge neutrality point (CNP) at ν = 0.

We define the many-body charge conjugation Pc as the single-particle transformation C2zTP followed by an inter-
change between electron annihilation operators c and creation operators c†, namely,

Pcc†k,n,η,sP
−1
c = c−k,m,η′,s[B

C2zTP (k)]mη′,nη(k), Pcck,n,η,sP−1
c = c†−k,m,η′,s[B

C2zTP∗(k)]mη′,nη . (C27)

Under the gauge fixings of (Eq. (B17)) and (Eq. (B18)), one has BC2zTP
mη′,nη = BPmη′,nη = (−iζyτz)mη′,nη (Eq. (B18))

within each pair of bands n = ±nB. We now show Pc is a symmetry of the projected Hamiltonian.
Because of the relation εn,η(k) = −ε−n,η(−k), the kinetic Hamiltonian is invariant under Pc up to a constant:

PcH0P−1
c =

∑
k,nη,s

εn,η(k)c−k,−n,ηc
†
−k,−n,η =

∑
k,nη,s

ε−n,η(−k)c†−k,−n,ηc−k,−n,η + const. = H0 + const. (C28)

Next, we note that the projected density operator δρq+G in Eq. (C12) satisfies

Pcδρq+GP−1
c =

∑
ηmns

∑
k

(ζyMη(k,q + G)ζy)mn

(
c−k−q,m,η,sc

†
−k,n,η,s −

1

2
δq,0δmn

)
=
∑
ηmns

∑
k

(ζyMη(k,q + G)ζy)mn

(
−c†−k,n,η,sc−k−q,m,η,s +

1

2
δq,0δmn

)
=
∑
ηmns

∑
k

(ζyMη(−k + q,q + G)ζy)mn

(
−c†k+q,n,η,sck,m,η,s +

1

2
δq,0δmn

)
(C29)
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Due to Eqs. (C23) and (C25) we have

Mη
m,n(k,q + G) =

∑
m′n′

ζym′,mM
η
m′,n′(−k,−q−G)ζyn′n , (C30)

and hence

Pcδρq+GP−1
c =

∑
ηmns

∑
k

Mη
mn(k− q,−q−G)

(
−c†k+q,n,η,sck,m,η,s +

1

2
δq,0δmn

)
. (C31)

Due to Eq. (C17), Mη
mn(k− q,−q−G) = Mη

nm(k,q + G), thus

Pcδρq+GP−1
c =

∑
ηmns

∑
k

Mη
mn(k,q + G)

(
−c†k+q,m,η,sck,n,η,s +

1

2
δq,0δmn

)
= −δρq+G. (C32)

Therefore, according to Eq. (C13), we have PcOq,GP−1
c = −Oq,G, and thus the projected interaction in Eq. (C15)

has the charge-conjugation symmetry [Pc, HI ] = 0. In total, we have

PcHP−1
c = H −

∑
|n|≤nmax

∑
k,η,s

εn,η(k) = H (C33)

for H = H0 +HI , where we have used the fact that εn,η(k) = −ε−n,η(−k) in Eq. (A24) due to the single-particle PH
symmetry P . Note that Pc maps a many-body state at filling ν to filling −ν, where ν is the number of electrons per
moiré unit cell relative to the CNP. Therefore, one expects the TBG ground states at ν and −ν to be PH symmetric.

5. Contributions from the passive bands in the Projected Hamiltonian: Hartree-Fock Potential

We note that the projected interaction Hamiltonian HI in Eq. (C15) is not normal ordered. We can rewrite HI

into normal-ordered part and some quadratic fermionic terms as

HI = Hnorm
I + ∆H(1) + ∆H(2) + const. . (C34)

where Hnorm
I is the normal ordered Hamiltonian, and H(1) and ∆H(2). are specified shortly below. By defining

interaction parameters

U
(η′η)
m′n′;mn (q;k′k) =

∑
G∈Q0

V (G + q)M
(η′)
m′,n′ (k

′,−q−G)M (η)
m,n (k,q + G) , (C35)

we can rewrite each term as

Hnorm
I =

1

2Ωtot

∑
qkk′∈MBZ

∑
ηη′ss′

∑
m,n;m′,n′

U
(η′η)
m′n′;mn (q;k′k) c†k+q,m,η,sc

†
k′−q,m′,η′,s′ck′,n′,η′,s′ck,n,η,s (C36)

∆H(1) = − 1

2Ωtot

∑
kk′

∑
ηη′ss′

∑
m,n;m′

U
(η′η)
m′m′;mn (0;k′k) c†k,m,η,sck,n,η,s , (C37)

and

∆H(2) =
1

2Ωtot

∑
k,q

∑
η,s

∑
m,n′;m′

U
(ηη)
m′n′;mm′ (q;k,k− q) c†k,m,η,sck,n′,η,s , (C38)

where we have used the fact that U
(η′η)
m′n′;mn (q;k′k) = U

(ηη′)
mn;m′n′ (−q;kk′) which trivially holds by exchanging the two

M matrices in the definition (C35). By summing over only |m|, |n| ≤ nmax, HI gives the projected Hamiltonian.

In the following, we prove that H
(1)
I and H

(2)
I can be heuristically understood as the Hartree and Fock potential

of the higher passive bands |n| > nmax which are projected out. We emphasize that the difference between the HI
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and its normal-ordered version is not just a simple chemical potential shift, contrary to the unprojected interaction
Hamiltonian ĤI .

We first note that the full interaction Hamiltonian ĤI before projection is simply given by Eqs (C36)-(C38) with
summation over all band indices m,n,m′, n′. We now derive the Hartree-Fock Hamiltonian of the full Hamiltonian
ĤI at filling ν = −4nmax (number of electrons per moiré unit cell relative to the CNP). The occupied single-particle
bands at ν = −4nmax produce a mean field

〈c†k,m,η,sck′,n,η′,s′〉 = Θ(−nmax −m)δk,k′δm,nδη,η′δs,s′ , (C39)

where we define Θ(x) = 1 if x > 0, and Θ(x) = 0 if x ≤ 0. We shall use the property of interaction parameter

U
(η′η)
m′n′;mn (q;k′k) = sgn(mn)U

(η′−η)
m′n′;−m,−n (q;k′k) = sgn(m′n′)U

(−η′η)
−m′−n′;m,n (q;k′k) = U

(ηη′)
mn;m′n′ (−q;kk′), which can

be verified by the properties of the M matrices through Eq. (C23)-(C25). We then find the Hartree term

Hν=−4nmax

H =
1

2Ωtot

∑
kk′

∑
ηη′ss′

∑
m,n;m′

[2Θ(−nmax −m′)− 1]U
(η′η)
m′m′;mn (0;k′k) c†k,m,η,sck,n,η,s

= − 1

2Ωtot

∑
kk′

∑
ηη′ss′,m,n

∑
|m′|≤nmax

U
(η′η)
m′m′;mn (0;k′k) c†k,m,η,sck,n,η,s ,

(C40)

and the Fock term

Hν=−4nmax

F = − 1

2Ωtot

∑
k,q

∑
η,s

[ ∑
m,n′;m′

Θ(−nmax −m′)U (ηη)
m′n′;mm′ (q;k + q,k) c†k+q,m,η,sck+q,n′,η,s

+
∑

m′,n;m

Θ(−nmax −m)U
(ηη)
m′m;mn (q;k + q,k) c†k,m′,η,sck,n,η,s

]
= − 1

2Ωtot

∑
k,q

∑
η,s

∑
m,n′;m′

Θ(−nmax −m′)
[
U

(ηη)
m′n;mm′ (q;k + q,k) + U

(ηη)
mm′;m′n (−q;k,k + q)

]
c†k+q,m,η,sck+q,n,η,s

= − 1

2Ωtot

∑
k,q

∑
η,s

∑
m,n′;m′

2Θ(−nmax −m′)U (ηη)
m′n;mm′ (q;k,k− q) c†k,m,η,sck,n,η,s .

(C41)

Similarly, one can show the Hartree term at ν = 4nmax are given by

Hν=4nmax

H = −Hν=−4nmax

H , (C42)

and the Fock term at ν = 4nmax:

Hν=4nmax

F = − 1

2Ωtot

∑
k,q

∑
η,s

∑
m,n′;m′

2Θ(nmax + 1−m′)U (ηη)
m′n;mm′ (q;k,k− q) c†k,m,η,sck,n,η,s . (C43)

Therefore, when projected into the lowest 8nmax bands (2nmax per spin-valley), we find for the difference between our
particle-hole symmetric Hamiltonian and its normal-ordered version:

∆H(1) = Hν=−4nmax

H = −Hν=4nmax

H , ∆H(2) =
1

2

(
Hν=−4nmax

F −Hν=4nmax

F

)
. (C44)

Note that the interaction satisfies the orthonormal condition
∑
m′ U

(ηη)
m′n;mm′ (q;k,k− q) =

∑
G V (q + G)δm,n, so

under the single-particle PH transformation P which takes Pc†k,m,η,sP
−1 = −sgn(m)ηc†−k,−m,η,s, we have

PHν=−4nmax

F P−1 = − 1

2Ωtot

∑
k,q

∑
η,s

∑
m,n′;m′

2Θ(−nmax −m′)sgn(mn)U
(ηη)
m′n;mm′ (q;k,k− q) c†−k,−m,η,sc−k,−n,η,s

= − 1

2Ωtot

∑
k,q

∑
η,s

∑
m,n′;m′

2Θ(nmax + 1 +m′)U
(ηη)
m′n;mm′ (q;k,k− q) c†k,m,η,sck,n,η,s

= − 1

2Ωtot

∑
k,q

∑
η,s

∑
m,n′;m′

2[1−Θ(nmax + 1−m′)]U (ηη)
m′n;mm′ (q;k,k− q) c†k,m,η,sck,n,η,s

= −Hν=4nmax

F − µV
∑

k,m,η,s

c†k,m,η,sck,m,η,s ,

(C45)
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where we have used the PH symmetry of interaction U
(ηη′)
mn;m′n′ (q;k,k′) = sgn(mnm′n′)U

(ηη′)
−m,−n;−m′,−n′ (−q;−k,−k′).

The constant µV is defined by µV = 1
Ωtot

∑
q,G V (q + G), which is a coefficient of a chemical potential term.

6. U(2)×U(2) spin-charge rotational symmetry

In Eq. (A16) we have given the generators of the U(2)×U(2) symmetry of the single-particle Hamiltonian H0 from
the spin-charge rotational symmetry in each valley. Here we show that the projected interaction Hamiltonian also
respects the U(2)×U(2) symmetry. Hereafter, with the understanding that we assume the gauge fixing given by Eqs.
(B17) and (B16) (We note that Eq. (B16) is only used for defining the irrep band basis in Eq. (B19), which will
be useful in the discussion of nonchiral-flat U(4) irreps in Sec. D 2 b ), we shall use ζa, τa, sa to denote the identity
matrix (a = 0) and Pauli matrices (a = x, y, z) in the each pair of bands n = ±nB, valley η = ± and spin s =↑, ↓
bases, respectively.

When projected into the 8nmax flat bands of |n| ≤ nmax, the 8 generators Sab (a = 0, z, b = 0, x, y, z) of the
U(2)×U(2) symmetry in Eq. (A16) take the form

Sab =
∑

k,m,η,s;n,η′,s′

(sab)m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ , (a = 0, z, b = 0, x, y, z) , (C46)

where the matrices within each pair of bands n = ±nB are given by

s0b = ζ0τ0sb, szb = ζ0τzsb, (b = 0, x, y, z). (C47)

In particular, S0b and Szb give the global spin-charge U(2) rotations and the valley spin-charge U(2) rotations,
respectively.

It is easy to see that both S0b and Szb are diagonal in valley η, and only acts on spin s. Since the operator Oq,G

defined in Eq. (C13) is diagonal in valley η, and all the coefficients are independent of spin s, we conclude that

[Oq,G, S
0b] = [Oq,G, S

zb] = 0 . (C48)

Accordingly, the interaction HI in Eq. (C15) respects the U(2)×U(2) symmetry, and so does the full projected
Hamiltonian H = H0 +HI .

Appendix D: Enhanced symmetries in various limits

In this appendix, we will show that the U(2)×U(2) symmetry (Eq. (C46)) of the full Hamiltonian H = H0 +HI is
enhanced into higher symmetries in various limits of TBG. Since all these higher symmetries involve the U(4) group,
we first briefly review the algebra of the U(4) group.

1. Brief Review of the U(4) group

The U(N) group is defined by all the N × N unitary matrices U satisfying U†U = IN , where IN is the identity
matrix. The matrices U are generated by all the linearly independent N × N Hermitian matrices, thus the total
number of generators is N2. In particular, for the U(4) group, the 16 generators can be represented by the tensor
product of two sets of 2× 2 identity and Pauli matrices τa and sa (a = 0, x, y, z) as

sab0 = τasb , (a, b = 0, x, y, z) . (D1)

We denote their commutation relations as

[sab0 , s
cd
0 ] = fab,cdef sef0 . (D2)

Then fab,cdef are the group structure constants, which are the same for all representations of U(4) group.

The set of all the 4× 4 matrices U defines the 4-dimensional fundamental irreducible representation (irrep) of the
U(4) group, the representation matrices of the generators are exactly given by Eq. (D1). There is also a 1-dimensional
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trivial identity irrep, in which the representation matrices of all generators sab0 = 0. We shall use the following notation
to denote the fundamental irrep and trivial identity irrep of the U(4) group:

U(4) fundamental irrep: [1]4 , U(4) trivial identity irrep: [0]4 . (D3)

We will not explain the meaning of these notations, except that we mention they are consistent with the Young
tableau notations for U(4) irreps we explain and adopt in Ref. [109].

2. U(4) symmetry in the nonchiral-flat limit

a. The symmetry

We now assume the magic angle TBG is in the nonchiral-flat limit, where the projected kinetic Hamiltonian in
Eq. (C7) becomes exactly H0 = 0, while both w0 > 0 and w1 > 0 in Eq. (A7). In this case, the total projected
Hamiltonian is H = HI . We will show that there is an enhanced U(4) symmetry.

To see this, we first show that C2zP is a symmetry of H = HI . With the sewing matrix of C2zP given by
BC2zP (k) = ζyτy in (Eq. (B17)), we have

(C2zP )Oq,G(C2zP )−1 =
∑
kηs

∑
m,n=±1

√
V (q + G)M (η)

m,n (k,q + G)

(
(C2zP )c†k+q,m,η,sck,n,η,s(C2zP )−1 − 1

2
δq,0δm,n

)

=
∑
kηs

∑
|m|,|n|≤nmax

√
V (q + G)

(
[ζyM (−η) (k,q + G) ζy]mnc

†
k+q,m,η,sck,n,η,s −

1

2
M (η)
m,n (k,q + G) δq,0δm,n

)

=
∑
kηs

∑
|m|,|n|≤nmax

√
V (q + G)M (η)

m,n (k,q + G)

(
c†k+q,m,η,sck,n,η,s −

1

2
δq,0δm,n

)
= Oq,G ,

(D4)

where we have used Eq. (C19). Therefore, we have [C2zP,Oq,G] = 0, and thus the interaction Hamiltonian HI in
Eq. (C15) satisfies

[C2zP,HI ] = 0 . (D5)

Besides, since [C2z, H0] = 0 and {P,H0} = 0, we have {C2zP,H0} = 0, which implies εn,η(k) = −ε−n,−η(k). If we
want to have [C2zP,H0] = 0, we would have to require εn,η(k) = ε−n,−η(k), which is only possible when εn,η(k) = 0,
namely, only in the exact flat band limit with projected kinetic term H0 = 0.

The C2zP symmetry allows us to define the following operator as a commuting symmetry of the projected Hamil-
tonian H = HI :

Sy0 =
∑
k,s

∑
nn′ηη′

[BC2zP (k)]nη,n′η′c
†
k,n,η,sck,n′,η′,s =

∑
k,s

∑
nn′ηη′

[ζyτy]nη,n′η′c
†
k,n,η,sck,n′,η′,s , (D6)

where we have used the gauge fixing of Eq. (B17), and ζy only acts within each pair of bands n = ±nB. We note that

when Sy0 acts on single-electron states c†k,n,η,s|0〉 where |0〉 is the vacuum, it is the same as the operation of C2zP .
To see this is a symmetry, we note that

[Sy0, Oq,G] =
∑
k,s

∑
nn′ηη′

([ζyτy,M(k,q + G)])nη,n′η′ c
†
k,n,η,sck,n′,η′,s = 0 , (D7)

where we have used the fact that the M(k,q + G) matrix commutes with ζyτy from condition (C23), a result of the
C2zP symmetry. Therefore, Sy0 is a commuting symmetry of the interaction Hamiltonian HI in Eq. (C15), namely,

[Sy0, HI ] = 0 . (D8)

Recall that HI has a U(2)×U(2) symmetry with 8 generators S0b and Szb (b = 0, x, y, z) in Eq. (C46). The
commutators of Sy0 in Eq. (D6) with the 8 U(2)×U(2) generators then yields 16 Hermitian operators in total:

Sab =
∑

k,m,η,s;n,η′,s′

(sab)m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ , (a, b = 0, x, y, z) , (D9)
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where within each pair of bands n = ±nB

sab = {ζ0τ0sb, ζyτxsb, ζyτysb, ζ0τzsb}, (a, b = 0, x, y, z) . (D10)

More specifically, the new generators are given by

Sxb = − i
2

[Sy0, Szb] , Syb =
i

2
[Sx0, Szb] . (D11)

It is then easy to see that the 16 operators Sab satisfy the commutation relations of U(4) generators:

[Sab, Scd] = fab,cdef Sef , (D12)

where fab,cdef are the U(4) structure constants defined in Eq. (D2). Therefore, we find in the nonchiral-flat limit, the

projected interaction Hamiltonian HI has an enhanced U(4) symmetry.

The Cartan subalgebra of the U(4) generators in Eq. (D10) can be chosen as

Cartan: ζ0τ0s0, ζ0τ0sz, ζ0τzs0, ζ0τzsz. (D13)

We note that although we proved the symmetry of Sy0 under the fixed gauge (B17), the definition of Sy0 =∑
k,s

∑
nn′ηη′ [B

C2zP (k)]nη,n′η′c
†
k,n,η,sck,n′,η′,s in Eq. (D6) is gauge invariant. This can be seen by noting that under

a gauge transformation c†k,n,η,s → eiφn,ηc†k,n,η,s, the sewing matrix elements change according to [BC2zP (k)]nη,n′η′ →
e−iφn,η+iφn′,η′ [BC2zP (k)]nη,n′η′ .

b. The single-electron irreps

The k-independent representation matrices of Eq. (D10) at each momentum k can be decomposed into fundamental
U(4) irreps. This can be done by transforming into a new basis where ζy is diagonalized. This turns out to be exactly

the irrep band basis d
(nB)†
k,eY ,η,s

= 1√
2
(c†k,+nB,η,s

+ ieY c
†
k,−nB,η,s

) we defined earlier in Eq. (26) (see also Ref. [108]). For

nB = 1, eY = ±1 gives the Chern number of the band basis. The single-electron state in irrep band eY

d
(nB)†
k,eY ,η,s

|0〉 (D14)

has eigenvalue ζy = eY . It is then easy to see that the representations of the U(4) generators Sab for the single-electron
state (D14) are given by

sab(eY ) = {τ0sb, eY τ
xsb, eY τ

ysb, τzsb}. (D15)

Therefore, the single-electron state (D14) for a fixed eY , or equivalently the irrep band fermion operator d†k,eY ,η,s for

a fixed eY , occupies a fundamental irrep [1]4 of the U(4) group. However, we note that the eY = +1 and eY = −1
irreps differ by a π valley rotation eiπτ

z/2 about the z axis.

For many-body Fock states created by multiple d
(nB)†
k,eY ,η,s

, the U(4) representation is given by the tensor product of

the U(4) fundamental irreps [1]4 of each d
(nB)†
k,eY ,η,s

. Such tensor product representations can be further decomposed into

U(4) irreps, which we will not discuss here, but in our upcoming paper of the many-body states of the PSDHs[109].

3. U(4)×U(4) symmetry in the (first) chiral-flat limit

In this appendix, we demonstrate that by setting w0 = 0 < w1 (the chiral condition), and set the projected kinetic
Hamiltonian H0 to zero (flat condition), the system has a unitary U(4)×U(4) symmetry. We call this limit the first
chiral-flat limit.
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a. The chiral symmetry at w0 = 0

In the first chiral-flat limit, since w0 = 0, the single-particle Hamiltonian of TBG acquires an additional unitary
chiral symmetry C, which satisfies the anti-commutation relation with the full single-particle Hamiltonian Ĥ0 in
Eq. (A5):

{C, Ĥ0} = 0 . (D16)

The action of C is given by

Cc†k,Q,η,α,sC
−1 =

∑
Q′η′β

[D(C)]Q′η′β,Qηαc
†
k,Q′,η′,β,s , (D17)

with the representation matrix

[D(C)]Q′η′β,Qηα = δQ′,Qδη′,η(σz)β,α . (D18)

Note that C preserves the electron momentum k. Since C flips the single-particle Hamiltonian Ĥ0, it is not a
commuting symmetry of TBG, but only reflects a relation between the positive and negative energy spectra. The
transformation C satisfies

C2 = 1, {C,C2z} = 0, [C, T ] = 0, [C,P ] = 0, {C,C2zT} = 0, {C,C2zP} = 0. (D19)

b. The full symmetry

When transformed into the energy band basis, the chiral symmetry C implies

εn,η(k) = −ε−n,η(k) , (D20)

[D(C)]ηη′unη′(k) =
∑
m

[BC(k)]mη,nη′umη(k) , (D21)

where

[BC(k)]mη,nη′ = δη,η′δ−m,ne
iϕC
n,η′ (k) (D22)

This implies the transformation

Cc†k,n,η′,sC
−1 =

∑
mη

[BC(k)]mη,nη′c
†
k,m,η,s . (D23)

By the relations {C,C2zT} = {C,C2zP} = 0, the sewing matrix of C satisfies

BC(k)BC2zT (k) = −BC2zT (k)BC∗(k) , BC(k)BC2zP (k) = −BC2zP (k)BC(k) . (D24)

Under the gauge fixing of Eq. (B17), we have BC2zT (k) = ζ0τ0, and BC2zP (k) = ζyτy. The only k-independent gauge
for sewing matrix of C in consistency with Eqs. (D22) and (D24) within each pair of bands n = ±nB is then (up to
a global minus sign)

BC(k) = ζyτz . (D25)

In particular, this k-independent gauge fixing (D25) of C automatically ensures the continuous gauge fixing condition
(B16), which is crucial for defining the irrep band basis in Eq. (26). To see this, note that Eq. (D25) tells us that
u−n,η(k) = isgn(n)ηun,η(k) for band n = ±nB, and thus we have

fn,η(k + q,k) =
∣∣∣u†n,η(k + q)un,η(k)− u†−n,η(k + q)u−n,η(k)

∣∣∣ =
∣∣u†n,η(k + q)un,η(k)[1− sgn(n)2η2]

∣∣ = 0 (D26)

for any k and q, satisfying Eq. (B16).
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We also note that this gauge fixing of C is consistent with the gauge fixings of both C2z and P separately in
Eq. (B18). Basically, the relations {C,C2z} = 0 and [C,P ] = 0 requires

BC(−k)BC2z (k) = −BC2z (k)BC(k) , BC(−k)BP (k) = BP (k)BC(k) , (D27)

which is satisfied by Eq. (D25).
For the projected Hamiltonian H = H0 + HI , we now show that C is a symmetry of the interaction Hamiltonian

HI , and further constraints the matrix M(k,q + G) in Eq. (C23). To see this, we note that with the relation (D21)
due to C symmetry, the definition of M(k,q + G) in Eq. (C10) satisfies (written as a matrix in the n, η space)

M (η)
m,n (k,q + G) =

∑
α

∑
Q∈Q±

u∗Q−G,α;mη (k + q)uQ,α;nη (k)

=
∑
α

∑
Q∈Q±

[u†mη (k + q)D†(C)]Q−G,α[D(C)unη (k)]Q,α

= [BC(k + q)†]mη,m′η′
∑
α

∑
Q∈Q±

u∗Q−G,α;m′η′ (k + q)uQ,α;n′η′ (k) [BC(k)]n′η′,nη ,

(D28)

or in matrix form,

M(k,q + G) = BC(k + q)†M(k,q + G)BC(k) . (D29)

We note that Eq. (D29) is independent of gauge fixings. If we take the gauge fixed form of M(k,q+G) in Eq. (C23),
and the gauge fixing of C in Eq. (D25), we find M(k,q + G) has to commute with ζyτz. Thus when there is the
chiral symmetry C, the gauge fixed M(k,q + G) has to take the form

M(k,q + G) = ζ0τ0α0(k,q + G) + iζyτ0α2(k,q + G). (D30)

In particular, the functions α1(k,q + G) = α3(k,q + G) = 0.
By Eqs. (D23) and (D29), it is easy to see that

COq,GC
−1 =

∑
kηs

∑
m,n=±1

√
V (q + G)M (η)

m,n (k,q + G)

(
Cc†k+q,m,η,sck,n,η,sC

−1 − 1

2
δq,0δm,n

)

=
∑
kηs

∑
m,n=±1

√
V (q + G)

(
[BC(k + q)†M(k,q + G)BC(k)]mη;nηc

†
k+q,m,η,sck,n,η,s −

1

2
M (η)
m,n (k,q + G) δq,0δm,n

)

=
∑
kηs

∑
m,n=±1

√
V (q + G)M (η)

m,n (k,q + G)

(
c†k+q,m,η,sck,n,η,s −

1

2
δq,0δm,n

)
= Oq,G .

(D31)

Therefore, [C,Oq,G] = 0, and accordingly the projected interaction HI satisfies

[C,HI ] = 0 , (D32)

implying C is a symmetry of HI .
The C symmetry allows us to define the following operator as a commuting symmetry of HI :

S′z0 =
∑
k,s

∑
nn′ηη′

[BC(k)]nη,n′η′c
†
k,n,η,sck,n′,η′,s =

∑
k,s

∑
nn′ηη′

[ζyτz]nη,n′η′c
†
k,n,η,sck,n′,η′,s , (D33)

where we have gauge fixed its representation by Eq. (D25). We note that when Sy0 acts on single-electron states

c†k,n,η,s|0〉 where |0〉 is the vacuum, it is the same as the operation of C. To see this is a symmetry, we note that

[S′z0, Oq,G] =
∑
k,s

∑
nn′ηη′

([ζyτz,M(k,q + G)])nη,n′η′ c
†
k,n,η,sck,n′,η′,s = 0 . (D34)

Therefore, S′z0 is a commuting symmetry of the interaction Hamiltonian HI in Eq. (C15), namely,

[S′z0, HI ] = 0 . (D35)
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Note that S′z0 does not commute with the single-particle Hamiltonian H0 unless εn,η(k) = ε−n,η(k). Due to Eq. (D20),
this is only possible when εn,η(k) = 0, namely, in the exact flat band limit H0 = 0.

Recall that HI already has a U(4) symmetry generated by Sab in Eq. (D9). The commutation of Sab with S′z0

then produces another 16 Hermitian operators:

S′ab =
∑

k,m,η,s;n,η′,s′

(s′ab)m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ , (a, b = 0, x, y, z) , (D36)

where for each pair of bands n = ±nB

s′ab = {ζyτ0sb, ζ0τxsb, ζ0τysb, ζyτzsb}, (a, b = 0, x, y, z) . (D37)

In summary, the single-particle representation matrices of all the generators Sab and S′ab can be reorganized into

{ζ0τasb , ζyτasb } , (a, b = 0, x, y, z) . (D38)

It is more convenient to linear combine the U(4)×U(4) generators as

Sab± =
∑

k,m,η,s;n,η′,s′

(sab± )m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ , (D39)

where we define

sab± =
1

2
(ζ0 ± ζy)τasb , (a, b = 0, x, y, z). (D40)

In this form, it is easier to see that the 16 generators Sab+ generates one U(4), the 16 generators Sab− generates another

U(4), and [Sab+ , Scd− ] = 0. Therefore, in total they give a U(4)×U(4) symmetry in the first chiral-flat limit.
We note that the U(4) group in the nonchiral-flat limit in Eq. (D10) is a subgroup of the U(4)×U(4) group in the

first chiral-flat limit in Eq. (D40), but it is not one of the two tensor-producted U(4) groups.
The Cartan subalgebra of the first chiral-flat U(4)× U(4) generators in Eq. (D38) can be chosen as:

Cartan of first Chiral U(4)× U(4) :

ζ0τ0s0, ζ0τ0sz, ζ0τzs0, ζ0τzsz, ζyτ0s0, ζyτ0sz, ζyτzs0, ζyτzsz (D41)

c. The single-electron irreps

The irreps of the U(4)×U(4) group can be obtained by the tensor product of the irreps of the first U(4) and the
second U(4), respectively. We shall use

([λ1]4, [λ2]4) (D42)

to represent a U(4)×U(4) irrep which is the tensor product of an irrep [λ1]4 of the first U(4) and an irrep [λ2]4 of the
second U(4).

At each momentum k, the k-independent representation matrices in Eq. (D40) can be decomposed into U(4)×U(4)
irreps. This can be done again by transforming into a new basis where ζy is diagonalized, which is exactly the irrep

band basis d
(nB)†
k,eY ,η,s

= 1√
2
(c†k,+nB,η,s

+ ieY c
†
k,−nB,η,s

) we defined earlier in Eq. (26), where eY = ±1 gives the irrep

number of the band basis. The single-electron state in irrep band eY

d
(nB)†
k,eY ,η,s

|0〉 (D43)

has eigenvalue ζy = eY . It is then easy to see that the representation matrices of the U(4)×U(4) generators Sab± for
the single-electron state (D43) are given by the 4× 4 matrices

sab± =
1

2
(1± eY ) τasb . (D44)

Therefore, the single-electron state (D43) for a fixed eY , or equivalently the irrep band fermion operator d
(nB)†
k,eY ,η,s

for

a fixed eY , occupies an irrep of the U(4)×U(4) group. The U(4)×U(4) irrep of d
(nB)†
k,+1,η,s is given by ([1]4, [0]4), while
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the U(4)×U(4) irrep of d†k,−1,η,s is ([0]4, [1]4), where we recall that [1]4 and [0]4 are the 4-dimensional fundamental

irrep and the 1-dimensional trivial identity irrep of U(4) group, respectively.
We also note that the operator Oq,G in the first chiral limit can be rewritten under irrep band basis as

Oq,G =
∑

k,eY ,η,s

√
V (G + q)[MeY (k,q + G)]nB,n′B

∑
η,s

(
d

(nB)†
k+q,eY ,η,s

d
(n′B)
k,eY ,η,s

− 1

2
δq,0δnB,n′B

)
, (D45)

where

MeY (k,q + G) = α0 (k,q + G) + ieY α2 (k,q + G) . (D46)

Therefore, the interaction HI in Eq. (10) is diagonal in the index eY .

For many-body Fock states created by multiple d
(nB)†
k,eY ,η,s

, the U(4)×U(4) representation is given by the tensor

product of the U(4)×U(4) irreps ([1]4, [0]4) or ([0]4, [1]4) of each d
(nB)†
k,eY ,η,s

. Such tensor product representations can

be further decomposed into U(4)×U(4) irreps, which will be discussed in a separate paper [109].

4. U(4) symmetry in the (first) chiral-nonflat limit

We have seen that the first chiral-flat limit has a U(4)×U(4) symmetry in the projected Hamiltonian H = HI . Here
we show that if w0 = 0 < w1 but H0 6= 0, which we define as the nonchiral-flat limit, there is still a remaining U(4)
symmetry.

a. The symmetry

When H0 6= 0, namely, when εnη(k) is not constantly zero, we have H = H0 + HI , and neither C2zP nor C is a
commuting symmetry of H. However, their combination CC2zP is still a commuting symmetry, namely,

[CC2zP,H] = [CC2zP,H0] + [CC2zP,HI ] = 0 . (D47)

Therefore, the symmetry is still enhanced compared to the nonchiral-nonflat case. This can be most easily seen as
follows: among the 32 generators in Eq. (D38), only those with a single-particle representation matrix proportional
ζ0 is still a symmetry when H0 6= 0. This is because the kinetic Hamiltonian in the first chiral limit (denoted by H+

0 )
can be written as

H0 = H+
0 =

∑
k

ε|n|,η(k)(ζzτ0s0)m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ , (D48)

where we have used the constraint εn,η(k) = −ε−n,η(k) due to the chiral symmetry C. It is then clear that the
generators in Eq. (D38) proportional to ζy will flip the pair of single-particle bands n = ±nB, and do not commute
with H0. Therefore, we are left with 16 generators commuting with H = H0 + HI . We redefine their notations as
follows:

S̃ab =
∑

k,m,η,s;n,η′,s′

(s̃ab)m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ , (D49)

where for each pair of bands n = ±nB

s̃ab = ζ0τasb, (a, b = 0, x, y, z) . (D50)

They form the generators of a U(4) symmetry group. In particular, ζ0τxs0 is the sewing matrix of iCC2zP .
We note that this U(4) symmetry group in the first chiral-nonflat limit is different from the U(4) symmetry group

in the nonchiral-flat limit (Eq. (D10)). Here the generators S̃ab are simply the full unitary rotations in the valley-spin
space, while the band space is not transformed.
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b. The single-electron irreps

Since the generators in Eq. (D50) is proportional to ζ0, any fixed band basis of all valleys and spins form a
fundamental U(4) irrep. For example, we still consider the single-electron state in the irrep band basis

d
(nB)†
k,eY ,η,s

|0〉 . (D51)

For a fixed k and eY , the states in Eq. (D51) occupies a fundamental irrep [1]4 of the first chiral-nonflat U(4), and
the representation matrices of the generators are given by

τasb , (a, b = 0, x, y, z) (D52)

for either eY = ±1. Similarly, the many-body Fock states created by d
(nB)†
k,eY ,η,s

are given by the tensor product of the

fundamental irreps [1]4 of each d
(nB)†
k,eY ,η,s

[109].

5. U(4)×U(4) symmetry in the second chiral-flat limit

We now consider an opposite limit where w1 = 0 < w0, which we define as the second chiral limit. Although this
limit is far from experimental reality, and the band structure contains no flat bands over the full MBZ (but they are
flat in some directions of the MBZ) and is a perfect metal (see Fig. 2, proof is given in Ref. [108]), the interaction
Hamiltonian enjoys a enhanced U(4)×U(4) symmetry of different physical origin from the first chiral limit. One
cannot help but hope there is some hidden duality in the TBG problem.

a. The second chiral symmetry

When w1 = 0, we can define a second chiral transformation C ′, which anti-commutes with the full single-particle
Hamiltonian Ĥ0 in Eq. (A5):

{C ′, Ĥ0} = 0 . (D53)

The operation of C ′ is given by

C ′c†k,Q,η,α,sC
′−1 =

∑
Q′η′β

[D(C ′)]Q′η′β,Qηαc
†
k,Q′,η′,β,s , (D54)

with the representation matrix

[D(C ′)]Q′η′β,Qηα = ζQδQ′,Qδη′,η(σz)β,α , (D55)

where ζQ = ±1 for Q ∈ Q±. Note that C ′ preserves the electron momentum k. Since C ′ flips the single-particle

Hamiltonian Ĥ0, it is not a commuting symmetry of TBG, but only reflects a relation between the positive and
negative energy spectra. The transformation C ′ satisfies

C ′2 = 1, [C ′, C2z] = 0, {C ′, T} = 0, {C ′, P} = 0, {C ′, C2zT} = 0, {C ′, C2zP} = 0. (D56)

b. The full symmetry

When transformed into the energy band basis, the second chiral symmetry C ′ implies

εn,η(k) = −ε−n,η(k) , (D57)

[D(C ′)]ηη′unη′(k) =
∑
m

[BC
′
(k)]mη,nη′umη(k) , (D58)
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where

[BC
′
(k)]mη,nη′ = δη,η′δ−m,ne

iϕC
′

n,η′ (k) (D59)

This implies the transformation

C ′c†k,n,η′,sC
′−1 =

∑
mη

[BC
′
(k)]mη,nη′c

†
k,m,η,s . (D60)

By the relations {C ′, C2zT} = {C ′, C2zP} = 0, the sewing matrix of C ′ satisfies

BC
′
(k)BC2zT (k) = −BC2zT (k)BC

′∗(k) , BC
′
(k)BC2zP (k) = −BC2zP (k)BC

′
(k) . (D61)

Note that this constraint for the sewing matrix of C ′ is exactly the same as that for C in Eq. (D24). Therefore,
within each pair of bands n = ±nB, if we impose the gauge fixing of Eq. (B17), we similarly find the only consistent
k-independent gauge for sewing matrix of C ′ is (up to a global minus sign)

BC
′
(k) = ζyτz . (D62)

This k-independent gauge fixing (D62) of C ′ also automatically ensures the continuous gauge fixing condition (B16),
which is crucial for defining the irrep band basis in Eq. (26). This is because Eq. (D62) tells us that u−n,η(k) =
isgn(n)ηun,η(k) for band n = ±nB, which implies

fn,η(k + q,k) =
∣∣∣u†n,η(k + q)un,η(k)− u†−n,η(k + q)u−n,η(k)

∣∣∣ =
∣∣u†n,η(k + q)un,η(k)[1− sgn(n)2η2]

∣∣ = 0 (D63)

for any k and q, satisfying Eq. (B16).
However, the gauge fixing of C ′ in Eq. (D62) is inconsistent with the k-independent gauge fixings of both C2z and

P separately in Eq. (B18). This is because [C ′, C2z] = 0 and {C ′, P} = 0 requires

BC
′
(−k)BC2z (k) = BC2z (k)BC

′
(k) , BC

′
(−k)BP (k) = BP (k)BC

′
(k) , (D64)

which is, however, not satisfied by the simultaneous gauge fixings of Eqs. (D62) and (B18). If we fix the sewing
matrix of C ′ to be k-independent as given in Eq. (D62), the sewing matrices of C2z and P have to be k dependent.
In this appendix we shall choose the gauge fixing of Eq. (D62) and give up the separate gauge fixing of C2z and P in
Eq. (B18), since only their combination C2zP is used for the U(4) symmetries discussed here.

However, we note that if a momentum k is C2z invariant (the ΓM point and the 3 MM points in MBZ), the above
gauge fixing problem appears to imply the absence of well-defined sewing matrices of C2z and P . In fact, this is
because at w1 = 0, the TBG band structure is protected to be doubly degenerate at C2z invariant momenta, which
leads to a perfect metal (see Fig. 2, and see [108] for proof). Therefore, the pair of bands n = ±nB are connected
with the other bands at ΓM and MM points, where the projection within the two bands n = ±nB is ill-defined.
The sewing matrices of C2z and P at such C2z invariant momenta can only be written down when the additional
degenerate states at these momenta from other bands are included. We shall not discuss this matter here, since we
will not use the sewing matrices of C2z and P in this appendix.

Nevertheless, we note that one could fix the gauge of C2z and P in a simple k dependent way, provided k is not a
C2z invariant point. First, we divide all the C2z-non-invariant k points into two sets K1,K2 related by C2z, namely,
C2zK1 = K2. For instance, K1 and K2 can be two half-MBZs related by C2z. Then we can fix the sewing matrices of
C2z and P (and T given that C2z and C2zT are fixed) at C2z-non-invariant k within each pair of bands n = ±nB as

BC2z (k) = (−1)jζ0τx , BT (k) = −(−1)jζ0τx , BP (k) = i(−1)jζyτz , (for k ∈ Kj). (D65)

Since the gauge fixed sewing matrix of C ′ in Eq. (D62) is exactly the same as that of C in Eq. (D25), we can follow
a similar derivation as that from Eqs. (D28) to (D40), which gives us the following.

First, C ′ is a symmetry of HI satisfying [C ′, HI ] = 0, and the M(k,q + G) matrix is restricted to have the form

M(k,q + G) = ζ0τ0α0(k,q + G) + iζyτ0α2(k,q + G). (D66)

The Hermitian condition of the M(k,q + G) (Eq. (C17)) requires that

α0(k,q + G) = αT0 (k + q,−q−G), α2(k,q + G) = −αT2 (k + q,−q−G). (D67)
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For q = 0, the BC2z (k) sewing matrix implies Mη(k,G) = M−η(−k,−G) and hence

α0(k,G) = α0(−k,−G), α2(k,G) = α2(−k,−G). (D68)

Combining the above two constraints, we obtain

α0(k,G) = αT0 (−k,G), α2(k,G) = −αT2 (−k,G). (D69)

Second, the C ′ symmetry yields a U(4)×U(4) symmetry with generators

S′ab± =
∑

k,m,η,s;n,η′,s′

(s′ab± )m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ , (D70)

where we define

s′ab± =
1

2
(ζ0 ± ζy)τasb , (a, b = 0, x, y, z). (D71)

We note, however, although these generators take the same gauge-fixed form as those in the first chiral-flat limit
(Eq. (D71)), their physical origins are different: here the U(4)×U(4) generators are generated by the sewing matrix
of the second chiral symmetry C ′, while in the first chiral-flat limit, the U(4)×U(4) generators are generated by the
sewing matrix of the first chiral symmetry C.

c. The single-electron irreps

We have shown that under the gauge fixings (B17) and (D62), the U(4)×U(4) generators of the second chiral-
flat limit is exactly the same as that of the first chiral-flat limit. Therefore, exactly parallel to the first chiral-

flat limit, the single-electron irreps in the second chiral-flat limit are given by the irrep band basis d
(nB)†
k,eY ,η,s

=
1√
2
(c†k,+nB,η,s

+ ieY c
†
k,−nB,η,s

) we defined earlier in Eq. (26), where eY = ±1 gives the irrep number of the band basis.

The single-electron state

d
(nB)†
k,eY ,η,s

|0〉 (D72)

with a fixed eY and k occupies a U(4)×U(4) irrep of ([1]4, [0]4) if eY = +1, and ([0]4, [1]4) if eY = −1. The
representation matrices of the U(4)×U(4) generators Sab± for the single-electron state (D43) are given by the 4 × 4
matrices

s′ab± =
1

2
(1± eY ) τasb . (D73)

However, in this second chiral limit, we note that the basis d†k,eY ,η,s = d
(1)†
k,eY ,η,s

when nB = 1 no longer give a
well-defined Chern band in the MBZ with a definite Chern number as illustrated in Sec. B 3, since the lowest two
bands n = ±1 are gapless with the higher bands when w1 = 0 (see Fig. 2). Neither are the bands flat, possibly giving
rise to interesting, gapless phases.

6. U(4) symmetry in the second chiral-nonflat limit

If w1 = 0 < w0, taking into account the kinetic term H0 6= 0, we are still left with a U(4) symmetry. We call this
limit the second chiral-nonflat limit. Since the U(4)×U(4) generators in the second chiral-flat limit are exactly the
same as those in the first chiral-flat limit, the case here is mathematically exactly the same as the first chiral-nonflat
limit in App. D 4. Therefore, we conclude that the second chiral-nonflat limit has a remaining U(4) symmetry with
generators given by

S̃′ab =
∑

k,m,η,s;n,η′,s′

(s̃′ab)m,η,s;n,η′,s′c
†
k,m,η,sck,n,η′,s′ , (D74)

where within each pair of bands n = ±nB

s̃′ab = ζ0τasb, (a, b = 0, x, y, z) , (D75)

under the gauge fixings of Eqs. (B17) and (D62). The only difference is that here the U(4) symmetry is generated by
the sewing matrix of iC ′C2zP , which reads ζ0τxs0.

This second chiral-nonflat limit is more physical, since when w1 = 0 < w0, the bands are never too flat (Fig. 2).
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Appendix E: The stabilizer Code Limit

The projected interacting Hamiltonian in Eq. (10) is generically a quantum Hamiltonian, where the terms
O−q,−GOq,G do not commute, since the commutator [Oq,G, Oq′,G′ ] given in Eq. (C16) does not vanish for generic

form factors (overlaps) M
(η)
m,n (k,q + G). Thus, although it gives a PSDH, which allows us to find exact ground states

at certain fillings in the flat band limit (for which H = HI) as we will demonstrate in a separate paper [109], it is
impossible to analytically solve all the many-body eigenstates of H = HI .

However, in the case where we are projecting only into the 8 lowest n = ±1 bands (i.e., nmax = 1), in the first (or

second) chiral-flat limit w0 = 0 (or w1 = 0) and H0 = 0, if we further has M
(η)
m,n (k,q + G) being independent of k,

we would have [Oq,G, Oq′,G′ ] = 0. We call this limit the stabilizer code limit :

stabilizer code limit = 1st/2nd chiral-flat limit + k-independent form factors M(k,q + G). (E1)

Indeed, Eq. (D30) or (D66), and our k-independent assumption lead to a k-independent form factor matrix

M(k,q + G) = M(0,q + G) = ζ0τ0α0(0,q + G) + iζyτ0α2(0,q + G). (E2)

In particular, if nmax = 1, both α0(0,q+G) and α2(0,q+G) are not matrices but just numbers, thus they commute
among each other. Therefore by Eq. (C16), we have

[Oq,G, Oq′,G′ ] ∝M(k + q′,q + G)M(k,q′ + G′)−M(k + q,q′ + G′)M(k,q + G) = 0 . (E3)

This yields a Hamiltonian similar to a stabilizer code Hamiltonian

H = HI =
1

2Ωtot

∑
q∈MBZ

∑
G∈Q0

O−q,−GOq,G , (E4)

where all the terms commute:

[O−q,−GOq,G, O−q′,−G′Oq′,G′ ] = 0 . (E5)

Therefore, all the terms O−q,−GOq,G can be simultaneously diagonalized, which makes all the many-body eigenstates
of the Hamiltonian exactly solvable. Note that Eq. E4 is not strictly a stabilizer code Hamiltonian since the terms
O−q,−GOq,G do not have a spectrum equal to 0 or 1 (moreover their spectrum depends on q and G). Nevertheless,
Eq. E4 has the crucial feature that makes the spectrum of a stabilizer code solvable (namely a sum of commuting
operators), thus its name.

As we will prove in Ref. [109], the Hamiltonian H = HI in the stabilizer code limit is an extended Hubbard model
with extended interactions and zero hoppings. Therefore, although far from physical, the stabilizer code limit provides
a Hubbard-model understanding of the TBG physics, as suggested by the recent experimental observations [20, 21].

We will solve the stabilizer code limit Hamiltonian in Ref. [109].

Appendix F: Comparison with the U(4) symmetry of Ref. [1]

In this appendix, we discuss the interaction Hamiltonian of Ref. [1], and compare with ours. In Ref. [1], Kang and
Vafek were the first to show the appearance of a U(4) approximate symmetry in their Hamiltonian, which is a type
of PSDH obtained by projecting into a Wannier basis.

1. The Wannier gauge

The s =↑↓ sectors are related by an SU(2) rotation. Thus we only need to construct Wannier functions in the
s =↑ sector, the Wannier functions in the s =↓ sector can then be symmetrically generated. Before we introduce the
Wannier functions, let us first write the Bloch states of TBG as linear combintations of plane waves

|ψk,n,η〉 =
1√
N

∑
Q∈Q±

∑
Rα

uQ,α;nη(k)ei(k+Q)·(R+tα)|Rα〉, (F1)
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where summations over R, α are limited to sites in the top layer (bottom layer) graphene for Q ∈ Q+ (Q ∈ Q−),
|Rα〉 is the atomic orbital at R+ tα, and N is the number of unit cells in each of the two graphene layers. Generally,
the Wannier functions are linear combinations of the Bloch states

|wRM ,µ,η〉 =
1√
NM

∑
k

e−ik·RM |ψ̃k,µ,η〉, |ψ̃k,µ,η〉 =
∑
n=±1

|ψk,n,η〉W η
n,µ(k), (F2)

where NM is the number of moiré unit cells and W η(k) at each k is a two-by-two matrix. We denote the center of the
Wannier function |wRM ,µ,η〉 as RM + tM,µ, with RM = l1aM1 + l2aM2 being a moiré lattice and tM,µ (µ = 1, 2) the

sublattice vectors. Here we take the unit cell basis as aM1 = (0,−1) and aM2 = (
√

3
2 ,

1
2 ). Notice that the Bloch states

are periodic in momentum space, so the transformation coefficient is e−ik·R rather than e−ik·(R+tµ). The sewing

matrices of |ψ̃k,µ,η〉 are defined as

Bgµη,νη′(k) = 〈ψ̃gk,µ,η|g|ψ̃k,ν,η′〉. (F3)

The two bands in each valley have a fragile topology protected by C2zT symmetry and a stable topology protected by
the PC2zT symmetry [108]. Thus, in order to obtain the Wannier functions, we have to abandon smooth C2zT gauge

and smooth P gauge of |ψ̃k,µ,η〉. It is possible to choose smooth gauge for the remaining symmetries g = C3z, C2y, T
since they do not protect a topology. According to Kang and Vafek [44], the two Wannier states (µ = 1, 2) in each
valley locate at the honeycomb lattice, i.e., tM,1 = 1

3aM,1 + 2
3aM,2 = ( 1√

3
, 0), and tM,2 = −tM,1, and one can choose

the Wannier functions to satisfy

C ′3z|wRM ,µ,η〉 = eiη
2π
3 |wR′M ,µ,η

〉, (R′M + tM,µ = C ′3z(RM + tM,µ)), (F4)

C2y|wRM ,µ,η〉 =
∑
β

γxνατ
x
η′,η|wR′M ,ν,η

′〉, (R′M + tM,ν = C2y(RM + tM,µ)), (F5)

T |wRM ,µ,η〉 = |wRM ,µ,−η〉, (F6)

where γx is the first Pauli matrix in the moiré sublattice space, and τx is the first Pauli matrix in the valley space.
Kang and Vafek’s |w1,2,3,4〉 are our |wRM ,1,+〉, |wRM ,1,−〉, |wRM ,2,−〉, |wRM ,2,+K〉, respectively. Here we have used
C ′3z to represent the 2π/3 rotation microscopically centered at honeycomb vertex of graphene. In this work, We use
C3z to denote the 2π/3 rotation microscopically centered at the honeycomb center of graphene. One should notice

that the C ′3z eigenvalues, which are eiη
2π
3 at ΓM , are different from the C3z in the BM model, which are 1 at ΓM [45].

We will discuss the relation between C3z and C ′3z in the end of this subsection.

The sewing matrices of C3z, C2y, T on |ψ̃k,µ,η〉 can be obtained from the actions of C3z, C2y, T on the Wannier
functions. We have

C ′3z|ψ̃k,µ,η〉 =
1√
NM

∑
RM

eik·RMC ′3z|WRM ,µ,η〉 = eiη
2π
3

1√
NM

∑
RM

eik·RM |WR′M ,µ,η
〉

=eiη
2π
3

1√
NM

∑
R′M

eik·(C
′−1
3z R′M+C′−1

3z tM,µ−tM,µ)|WR′M ,µ,η
〉

=eiη
2π
3 ei(C

′
3zk−k)·tM,µ |ψ̃C′3zk,µ,η〉, (F7)

where R′M = C ′3z(RM + tM,µ)− tM,µ. Thus the C ′3z sewing matrix is

B
C′3z
µη,νη′(k) = δµνδηη′e

iη 2π
3 ei(C3zk−k)·tµ . (F8)

We also have

C2y|ψ̃k,µ,η〉 =
1√
NM

∑
RM

eik·RMC2y|wRM ,µ,η〉 =
∑
βη′

γxν,µτ
x
η′η

1√
NM

∑
RM

eik·RM |wR′M ,ν,η
′〉

=
∑
βη′

γxβ,ατ
x
η′η

1√
NM

∑
R′M

eik·(C
−1
2y R′M+C−1

2y tM,ν−tM,µ)|wR′M ,ν,η
′〉

=
∑
νη′

γxν,µτ
x
η′η|ψ̃C2yk,µ,η′〉, (F9)
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where C2ytM,ν = tM,µ and R′M = C2y(RM + tM,µ)− tM,ν . Thus the C2y sewing matrix is

B
C2y

µη,νη′(k) = γxµντ
x
ηη′ . (F10)

For the time-reversal, we have

T |ψ̃k,µ,η〉 =
1√
NM

∑
RM

e−ik·RM |wR,µ,−η〉 = |ψ̃−k,µ,−η〉. (F11)

Thus the time-reversal sewing matrix is

BTµη,νη′(k) = δµντ
x
η,η′ . (F12)

In this gauge, the C2zT sewing matrix BC2zT (k) and the P sewing matrix B(P )(k) must have be discontinuous at
some momenta due to the topology protected by C2zT and/or PC2zT of the two lowest bands. Correspondingly, in
the Wannier basis the C2zT and P representations must be non-local. Usually, an Wannier function at r (r 6= 0)
would be transformed to another Wannier function at −r under C2zT or P . In the non-local case, the Wannier
function at r (r 6= 0) will be transformed to a linear combination of all the Wannier functions in the whole 2D space
under C2zT or P . Any tight-binding model in this Wannier representation that have finite-range hopping will break
the C2zT and the P symmetries.

Re-choice of C3z center We find that the C ′3z operation, which is a 2π/3 rotation at the honeycomb vertex of
graphene, is the 2π/3 centered at honeycomb center of graphene followed by a microscopic translation, i.e., C ′3z =
{1| − a1}C3z. Here a1 is the lattice basis of single layer graphene. The microscopic model of TBG cannot have both
C ′3z and C3z. For example, we choose the twisting center at the honeycomb center, then C3z is an exact symmetry
but C ′3z is only an approximate symmetry; however, the microscopic error of C ′3z should be negligible, diminishing

at small angle. The translation −a1 will leads to factors ei
2π
3 and e−i

2π
3 for the two valleys K and K ′, respectively.

Thus the representation matrix of C ′3z in the BM model is given by

D(C ′3z) = ei
2π
3 τ

z

D(C3z), (F13)

where D(C3z) is given by Eq. (A11). Thus C3z acts on the Wannier functions as

C3z|wRM ,µ,η〉 = |wR′M ,µ,η
〉, (R′M + tM,µ = C3z(RM + tM,µ)). (F14)

It follows that the C3z sewing matrix is

BC3z

µη,νη′(k) = δµνδηη′e
i(C3zk−k)·tµ . (F15)

Notice that the C2y axis of Kang and Vafek’s model is same as ours, so we do not need to change the C2y sewing
matrix.

2. Interaction

Now that we have implement the Kang and Vafek Wannier symmetries, we transform their interaction [1] into
momentum space. Let us denote the fermion annihilation operator of the Wannier states as cRM ,µ,η,s. Then the
Kang-Vafek interaction has the form

HI =
V0

2

∑
RM

ORM
ORM

, (F16)

ORM
=

1

3
QRM

+ κTRM
(F17)

where RM sums over all the lattice vectors (honeycomb centers), and QRM
and TRM

are given by

QRM
=
∑
η,s

∑
j∈9

c†RM+dM,j−tM,[j],[j],η,scRM+dM,j−tM,[j],[j],η,s, (F18)
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TRM
=
∑
η,s

∑
j∈9

(
(−1)j−1ei(−1)j−1ηϑc†RM+dM,j+1−tM,[j+1],[j+1],η,scRM+dM,j−tM,[j],[j],η,s + h.c.

)
. (F19)

Here j sums over the six hexagon vertex around the triangle site RM , [j] = j mod 2 is the sublattice index, ϑ is
a phase factor. The vectors are given by dM,1 = tM,1, dM,4 = tM,2 = −tM,1, dM,j+2 = C3zdM,j . To match our

convention of Wannier functions, we have decomposed the position (RM +dM,j) of the operator c†RM+dM,j−tM,[j],[j],η,s
into a lattice vector RM + dM,j − tM,[j] and a sublattice vector tM,[j]. QRM

is the total charge on the six vertices of
the honeycomb centered at RM . TRM

is a hopping-like term where each term annihilates an electron at the vertex j
and create an electron at the vertex j + 1 or j − 1. The phase factor associated with the hopping is eiηϑ if j = 1, 3, 5
and is −e−jηϑ if j = 2, 4, 6. κ is a factor determining the strength of the hopping-like term and is estimated as 0.16 in
Ref. [1]. (κ is originally denoted as α1 in Ref. [1]. We changed the notation to avoid confusion with the α1(k,q+G)
function (Eq. (C23)) in this manuscript.) We can write ORM

as

ORM
=
∑
η,s

∑
j∈9

1

3
c†RM+dM,j−tM,[j],[j],η,scRM+dM,j−tM,[j],[j],η,s

+ κ
(

(−1)j−1ei(−1)j−1ηϑc†RM+dM,j+1−tM,[j+1],[j+1],η,scRM+dM,j−tM,[j],[j],η,s + h.c.
)
. (F20)

Now we apply the transformation

ORM
=

1

NM

∑
q

e−iq·RMOq (F21)

such that the interaction can be written as our interaction form (already present in Vafek and Kang)

HI =
V0

2NM

∑
q

O−qOq. (F22)

We transform the three terms, i.e., the QRM
term, the first term in TRM

term, and the second term in TRM
, in ORM

one by one. First we have

O1
q =

1

NM

∑
RM

eiRM ·qO1
RM

=
1

3NM

∑
RM

eiRM ·q
∑
η,s

∑
j∈9

c†RM+dM,j−tM,[j],[j],η,scRM+dM,j−tM,[j],[j],η,s

=
1

3NM

∑
RM

eiRM ·q
∑
η,s

∑
j∈9

∑
pk

e−i(RM+dM,j−tM,[j])·pei(RM+dM,j−tM,[j])·kc†p,[j],η,sck,[j],η,s

=
1

3

∑
ηs

∑
j∈9

∑
k

c†k+q,[j],η,sck,[j],η,s =
∑
µηs

∑
k

c†k+q,µ,η,sck,µ,η,s. (F23)

Second we have

O2
q =

κ

NM

∑
RM

eiRM ·q
∑
η,s

∑
j∈9

(−1)j−1ei(−1)j−1ηϑc†RM+dM,j+1−tM,[j+1],[j+1],η,scRM+dM,j−tM,[j],[j],η,s

=
κ

NM

∑
RM

eiRM ·q
∑
η,s

∑
j∈9

(−1)j−1ei(−1)j−1ηϑ
∑
pk

e−i(RM+dM,j+1−tM,[j+1])·pei(RM+dM,j−tM,[j])·kc†p,[j+1],η,sck,[j],η,s

=κ
∑
η,s

∑
j∈9

(−1)j−1ei(−1)j−1ηϑ
∑
k

e−i(dM,j+1−tM,[j+1])·(k+q)ei(dM,j−tM,[j])·kc†k+q,[j+1],η,sck,[j],η,s. (F24)

We split the summation
∑
j∈9 into

∑
j=1,3,5 and

∑
j=2,4,6, then

O2
q =κ

∑
η,s

∑
j=1,3,5

eiηϑ
∑
k

ei(−dM,j+1+tM,2)·qei(dM,j−tM,1−dM,j+1+tM,2)·kc†k+q,2,η,sck,1,η,s

−κ
∑
η,s

∑
j=2,4,6

e−iηϑ
∑
k

ei(−dM,j+1+tM,1)·qei(dM,j−tM,2−dM,j+1+tM,1)·kc†k+q,1,η,sck,2,η,s. (F25)



42

Since tM,1 = −tM,2 and dM,j+3 = −dM,j , the phase factors of the second term are the complex conjugations of those
of the first term, thus we can rewrite O2

q as

O2
q = κ

∑
ηs

∑
k

eiηϑω(k,q)c†k+q,2,η,sck,1,η,s − e
−iηϑω∗(k,q)c†k+q,1,η,sck,2,η,s (F26)

with

ω(k,q) =
∑

j=1,3,5

ei(−dM,j+1+tM,2)·qei(dM,j−tM,1−dM,j+1+tM,2)·k. (F27)

Now we list all the involved vectors in the phase factors (tM,1 = dM,1, tM,2 = dM,4):

j = 1, −dM,j+1 + dM,4 = −aM2, dM,j − dM,1 − dM,j+1 + dM,4 = −aM2. (F28)

j = 3, −dM,j+1 + dM,4 = 0, dM,j − dM,1 − dM,j+1 + dM,4 = −aM1 − aM2. (F29)

j = 5, −dM,j+1 + dM,4 = −ã1 − aM2, dj − d1 − dM,j+1 + dM,4 = −aM1 − 2aM2. (F30)

Thus we have

ω(k,q) = e−iaM2·qe−iaM2·k + e−i(aM1+aM2)·k + e−i(aM1+aM2)·qei(aM1−2aM2)·k. (F31)

Since the third term in ORM
is the Hermitian conjugation of the second term, we have

O3
q =Q2†

−q = κ
∑
ηs

∑
k

(
−eiηϑω(k,−q)c†k,2,η,sck−q,1,η,s + e−iηϑω∗(k,−q)c†k,1,η,sck−q,2,η,s

)
=κ
∑
ηs

∑
k

(
−eiηϑω(k + q,−q)c†k+q,2,η,sck,1,η,s + e−iηϑω∗(k + q,−q)c†k+q,1,η,sck,2,η,s

)
(F32)

We define

β(k,q) = ω(k,q)− ω(k + q,−q). (F33)

Thus O2
q +O3

q can be written as

O2
q +O3

q =
∑
ηs

∑
k

eiηϑβ(k,q)c†k+q,2,η,sck,1,η,s − e
−iηϑβ∗(k,q)c†k+q,1,η,sck,2,η,s. (F34)

Now we write the total Oq operator as

Oq =
∑
ηs

∑
k

Mη
µ,ν(k,q)c†k+q,µ,η,sck,ν,η,s, (F35)

where M is

Mη(k,q) = γ0 − iκγyRe[eiηϑβ(k,q)] + iκγxIm[eiηϑβ(k,q)]. (F36)

We can also express M as a 4 by 4 matrix (in the sublattice and valley spaces) as

M(k,q) =γ0τ0 − iκγyRe[(cosϑτ0 + i sinϑτz)β(k,q)] + iκγxIm[(cosϑτ0 + i sinϑτz)β(k,q)]

=γ0τ0 − iκγyτ0Re[cosϑβ(k,q)] + iκγxτ0Im[cosϑβ(k,q)] + iκγyτzIm[sinϑβ(k,q)] + iκγxτzRe[sinϑβ(k,q)]. (F37)

With this, we have brought the Kang-Vafek interaction to the same form as our momentum-space interactions.
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3. The Kang-Vafek U(4) symmetry

It is obvious that the Kang-Vafek interaction have spin-valley U(2)×U(2) symmetry, whose generators are

γ0τ0sa, γ0τzsa, a = 0, x, y, z. (F38)

Now we show that it indeed has a U(4) symmetry. Our proof is the momentum-space version of the original proof
[1]. We introduce two matrices

Σx = γxτ0 cosϑ+ γyτz sinϑ, Σy = −γxτz sinϑ+ γyτ0 cosϑ, (F39)

and rewrite the M matrix as

M(k,q) = γ0τ0 + iκΣxIm[β(k,q)] + iκΣyRe[β(k,q)]. (F40)

One can verify that {Σx,Σy} = 0. We then apply a k-independent gauge transformation ei
ϑ
2 γ

zτz such that

ei
ϑ
2 γ

zτzΣxe−i
ϑ
2 γ

zτz = γxτ0 and ei
ϑ
2 γ

zτzΣye−i
ϑ
2 γ

zτz = γyτ0. After the transformation, M becomes

M(k,q) = γ0τ0 + iκγxτ0Im[β(k,q)]− iκγyτ0Re[β(k,q)]. (F41)

Therefore, the M matrix is invariant under the U(4) generators

γ0τasb, a, b = 0, x, y, z. (F42)

This gauge transformation seems equivalent to setting ϑ = 0 [1]. However, after the gauge transformation, the sewing
matrices might change.

4. Relation between Kang-Vafek U(4) and the C2zP -implied U(4) symmetry

Let us first fix the C2zP gauge of the Wannier functions. According to Eq. (A20), we have

(C2zP )2 = 1, [C3z, C2zP ] = 0, [C2y, C2zP ] = 0, {T,C2zP} = 0, (F43)

and hence

(BC2zP (k))2 = 1, BC3z (k)BC2zP (k) = BC2zP (C3zk)BC3z (k) (F44)

BC2y (k)BC2zP (k) = BC2zP (C2yk)BC2y (k), BT (k)BC2zP∗(k) = −BC2zP (−k)BT (k) (F45)

Since both T and C2zTP (the charge-conjugation) are local in real space, as shown in App. C 4, C2zP must also
be a local operator in real space. Thus we want C2zP to be local in the Wannier representation. However, this is
incompatible with the crystalline and time-reversal symmetries. In order to be local in the Wannier representation,
C2zP must leave the center of each Wannier function invariant and hence will be k-independent. Since C2zP does
not change the sublattice, the sewing matrix BC2zP (k) should be diagonal in the sublattice index and thus does not
contain γx,y terms. Since C2zP changes valley, it must not contain τ0 and τz. Thus BC2zP can only have four possible
terms, i.e., γ0,zτx,y. All the four terms commute with BC3z (k), which only contains the terms γ0,zτ0. In order to
commute with BC2y (k) (γxτx), only γ0τx and γzτy are possible. However, both commute with T = τxK, whereas
Eq. (F43) shows that C2zP anti-commutes with T . Thus a local representation of C2zP is not compatible with the
C3z, C2y, T symmetries. In other words, C2zP in the Wannier representation that respects C3z, C2y, T symmetries
must be non-local.

The above analysis leads to two conclusions: (i) our charge-conjugation symmetry must be non-local in the Kang-
Vafek Wannier representation, (ii) Kang and Vafek U(4) symmetry, which is local in the Wannier representation, is
not equivalent to the C2zP -implied U(4) symmetry, which is non-local in their Wannier representation.
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5. Kang-Vafek U(4) as our U(4) chiral-nonflat limit symmetry

We now ask: is the Kang and Vafek U(4) consistent with our U(4) implied by the C2zPC? We assume that the
Kang and Vafek model (at least approximately) preserves the C2zPC symmetry. Here C is the chiral symmetry

D(C)h(k)D−1(C) = −h(k), D(C)Q,α;Q′,α′ = δQ,Q′σ
z
αα′ , C2 = 1. (F46)

Commutations between C and T,C3z, C2y, C2zP are

[T,C] = 0, [C3z, C] = 0, [C2y, C] = 0, {C,C2zP} = 0. (F47)

Thus we have

(C2zPC)2 = −1, [C3z, C2zPC] = 0, [C2y, C2zPC] = 0, {T,C2zPC} = 0, (F48)

and hence

(BC2zPC(k))2 = −1, BC3z (k)BC2zPC(k) = BC2zPC(C3zk)BC3z (k) (F49)

BC2y (k)BC2zPC(k) = BC2zPC(C2yk)BC2y (k), BT (k)BC2zPC∗(k) = −BC2zPC(−k)BT (k) (F50)

We try to find a k-independent solution, which means C2zPC is local in the Wannier representation. Since C2zPC
preserves the sublattice (local) and changes valley, BC2zPC can only have four terms iγ0,zτx,y, each of which squares
to -1. All the four terms commute with C3z (γ0,z). Two terms commute with C2y (γxτx): iγ0τx, iγzτy. And the two
terms also anti-commute with T . Therefore, there are two solutions of BC2zPC :

BC2zPC(1) = iγ0τx, BC2zPC(2) = iγzτy. (F51)

If we can understand M (Eq. (F36)) as the inner product of periodic part of Bloch wave functions, i.e.,

Mη
µν(k,q) ∼

√
V (q)〈uk+q,µ,η|uk,ν,η〉, (F52)

then M must commute with BC2zPC . Applying BC2zPC(1) and BC2zPC(2) to Eq. (F37), we obtain ϑ = 0, π and
ϑ = ±π2 , respectively. For ϑ = 0, π, the U(4) generators are

γ0τasb, a, b = 0, x, y, z; (F53)

for ϑ = ±π2 , the U(4) generators are

γzτx,ysa, γ0τ0,zsa, a = 0, x, y, z. (F54)

Now we show that the two representations Eqs. (F53) and (F54) are equivalent. Under the gauge transformation(
τ0 0
0 iτz

)
, Eq. (F54) becomes Eq. (F53) and BC3z , BC2y , BT remain unchanged.

To summarize: (i) The C2zPC can be chosen as local in the Wannier representation. (ii) If Kang and Vafek’s model
does not have an exact C2zPC symmetry (which remains to be checked), then, if we continuously recover the C2zPC
symmetry, their U(4) continuously changes to our U(4) implied by the C2zPC symmetry; this U(4) is implied by the
chiral, non-flat limit. Hence we conjecture that the Kang and Vafek U(4) is also invariant to the addition of some
kinetic terms. (iii) The U(4) symmetry implied by C2zPC is also local in the Wannier representation because the
U(2)×U(2) part is already local, and the additional generator is just the C2zPC operation.

If we impose the CC2zP symmetry to the Kang and Vafek’s tight-binding model, their U(4) symmetry would become
the chiral-nonflat U(4) symmetry, since the two U(4) symmetries share the same generators τasb (a, b = 0, x, y, z).


	Twisted bilayer graphene III. Interacting Hamiltonian and exact symmetries
	Abstract
	I Introduction
	II Bistritzer-MacDonald Model and Coulomb Interaction
	III Projected Hamiltonian
	IV Symmetries in the generic nonchiral-nonflat case
	V U(4) symmetry in the nonchiral-flat limit
	VI U(4)U(4) symmetry in the (first) chiral-flat limit
	VII U(4) symmetry in the (first) chiral-nonflat limit
	VIII U(4)U(4) symmetry in the second chiral-flat limit
	IX U(4) symmetry in the second chiral-nonflat limit
	X The Stabilizer Code Limit
	XI Discussion
	 Acknowledgments
	 References
	 Contents
	A Review of the Single-particle Hamiltonian
	1 Bases
	2 Single-particle Hamiltonian
	3 Symmetries
	4 Eigenstates

	B Gauge Fixing and the Chern Band Basis
	1 Sewing matrices
	2 Gauge fixing
	3 The Irrep band basis and Chern band basis

	C Interacting Hamiltonian with Coulomb Interaction
	1 Low energy interaction
	2 Projected Hamiltonian
	3 Gauge fixing of the interaction
	4 Many-body charge conjugation symmetry of the Projected Hamiltonian
	5 Contributions from the passive bands in the Projected Hamiltonian: Hartree-Fock Potential
	6 U(2)U(2) spin-charge rotational symmetry

	D Enhanced symmetries in various limits
	1 Brief Review of the U(4) group
	2 U(4) symmetry in the nonchiral-flat limit
	a The symmetry
	b The single-electron irreps

	3 U(4)U(4) symmetry in the (first) chiral-flat limit
	a The chiral symmetry at w0=0
	b The full symmetry
	c The single-electron irreps

	4 U(4) symmetry in the (first) chiral-nonflat limit
	a The symmetry
	b The single-electron irreps

	5 U(4)U(4) symmetry in the second chiral-flat limit
	a The second chiral symmetry
	b The full symmetry
	c The single-electron irreps

	6 U(4) symmetry in the second chiral-nonflat limit

	E The stabilizer Code Limit
	F Comparison with the U(4) symmetry of Ref. kangstrong2019
	1 The Wannier gauge
	2 Interaction
	3 The Kang-Vafek U(4) symmetry
	4  Relation between Kang-Vafek U(4) and the C2zP-implied U(4) symmetry
	5  Kang-Vafek U(4) as our U(4) chiral-nonflat limit symmetry 



