








 
 
FIG 4. On-chip high-resolution imaging of the same cells in the same worms throughout larval development. (a) 3D renderings of 
Z-stacks of the same worm at 2 days (above white line) and 5 days after initiation of feeding. Left: Full body. Middle: Cells in the 
vicinity of the int-2 cell ring. Right: Single int-2 nucleolus. Compressive immobilization in the device allows for detailed imaging 
and reconstruction of cellular structure throughout larval development. (b) Maximum intensity projections of Z-stacks of the same 
int-2 cell nucleoli in a single worm in the device during growth. Changes in the size and internal organization of the nucleoli are 
observed.  Arrows in the middle column point to int-2 nucleoli. Scale bar, 5 µm.  
 

Measuring temporal changes in the dynamics of nucleoli in developing worms 

Using the device, we observed 7 isolated individual worms over 5 days post-hatching 

synchronization, until egg laying and performed FRAP on the same int-2 nucleoli. We observed a 

distinct increase in the timescale of fluorescence recovery of the FIB1 component of intestinal 

nucleoli over this period (Fig. 5a). We also sought to examine proteins enriched in the outer 
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granular component (GC) layer of nucleoli. In contrast to the behavior of FIB1, NPM1 showed no 

change in the FRAP recovery time at different developmental stages (Fig. 5b). These results are 

consistent with prior work which suggests that droplets of FIB1, but not NPM1, appear to age in 

vivo in liquid droplets and in vivo in X. laevis oocytes and C. elegans worms(Feric et al. 2016). 

Fitting the fluorescence recovery data to an exponential, we find that the recovery timescale 𝜏 

increases roughly threefold for FIB1 and remains constant for NPM1 (Fig. 5d). All results showed 

complete recovery, which by the double normalization method indicates a negligible immobile 

fraction of FIB1 or NPM1 within the nucleolus (Phair et al. 2003). Our results support the idea 

that the FIB1-rich DFC undergoes time-dependent changes to its viscoelastic properties. Thus, we 

demonstrate that the device enables immobilization at all larval stages sufficient to repeatedly 

perform stable confocal microscopy and FRAP, and thus resolve time-dependent changes in the 

material properties of the same cells in the same worms during larval development. 
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FIG 5. On-chip FRAP measurement of the same cells in the same worms throughout larval development. (a) Fluorescence recovery 
of FIB1 component and (b) NPM1 components in int-2 nucleoli in the same worms over 5 days show consistently fast recovery for 
NPM1 but a slowing in the rate of recovery of FIB1 as larval development progresses. Curves represent least-squares fit to 𝑓 𝑡 =
𝐴 1 − exp(−t/τ)  and error bars represent standard error of the mean. (c) Representative time-lapses of FRAP in the FIB1 and 
NPM1 components of two nucleoli in a Day 4 worm. Rapid recovery of NPM1 is observed, compared to slower recovery of FIB1. 
Scale bars, 2 µm. (d) Calculated recovery timescale τ for FIB1 and NPM1 components over 5 days of larval development. Error 
bars represent S.E.M. 
 

CONCLUSIONS 

We present a microfluidic device that allows for culture and stable, periodic immobilization of 

individual, trackable C. elegans worms from the earliest larval stage into adulthood. We 

demonstrate that the device achieves immobilization stability that is comparable to that achieved 

with the anesthetic levamisole, and we use the device to track morphological and biophysical 

changes in the components of specific intestinal nucleoli within the same worms throughout their 

growth. The device could be readily scaled up to include more chambers in series, which would 

enable even larger population-level studies. With stability sufficient to conduct 3D confocal 

imaging of developing worms at all growth stages, this microfluidic approach could potentially be 

applied to the study of any number of dynamic properties of developing C. elegans, as it enables 
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the measurement of temporal changes at the subcellular level, in addition to 3D imaging of the 

entire organism. This device thus enables linking assembly and function at several levels of 

biological organization, from organelle to organism, in individual worms via quantitative imaging. 

As a unique but complementary approach to recent published work (Keil et al. 2016), our device 

offers a robust, technically simple and easy-to-implement alternative, with the added benefits of 

linear immobilization and the ability to automatically load individual embryos into isolated 

chambers. 

 

 

 

SUPPLEMENTARY MATERIAL 

See supplementary material for detailed description of the FRAP normalization method and 

AutoCAD schematic for the device. 
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