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Multi-user lattice coding for the multiple-access

relay channel
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Abstract

This paper considers the multi-antenna multiple access relay channel (MARC), in which multiple users transmit

messages to a common destination with the assistance of a relay. In a variety of MARC settings, the dynamic

decode and forward (DDF) protocol is very useful due to its outstanding rate performance. However, the lack of

good structured codebooks so far hinders practical applications of DDF for MARC. In this work, two classes of

structured MARC codes are proposed: 1) one-to-one relay-mapper aided multiuser lattice coding (O-MLC), and 2)

modulo-sum relay-mapper aided multiuser lattice coding (MS-MLC). The former enjoys better rate performance,

while the latter provides more flexibility to tradeoff between the complexity of the relay mapper and the rate

performance. It is shown that, in order to approach the rate performance achievable by an unstructured codebook

with maximum-likelihood decoding, it is crucial to use a newK-stage coset decoder for structured O-MLC, instead

of the one-stage decoder proposed in previous works. However, if O-MLC is decoded with the one-stage decoder

only, it can still achieve the optimal DDF diversity-multiplexing gain tradeoff in the high signal-to-noise ratio

regime. As for MS-MLC, its rate performance can approach that of the O-MLC by increasing the complexity of

the modulo-sum relay-mapper. Finally, for practical implementations of both O-MLC and MS-MLC, practical short

length lattice codes with linear mappers are designed, which facilitate efficient lattice decoding. Simulation results

show that the proposed coding schemes outperform existing schemes in terms of outage probabilities in a variety

of channel settings.

I. INTRODUCTION

In recent years, cooperative communication has drawn a significant amount of interest as a means

of providing spatial diversity when time, frequency or antenna diversities are unavailable due to delay,

bandwidth or terminal size constraints, respectively. Cooperative communication techniques for single-

source networks have been extensively studied in terms of rate, outage probability or diversity-multiplexing
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tradeoff (DMT) perspectives [1] [2] [3]. However, practical communication networks usually involve more

than one source (user), leading to the study of the multiple-access channel (MAC). In this paper, we

consider an important multi-user cooperative communication channel, that is, the multi-antenna multiple-

access relay channel (MARC). The MARC is a MAC with an additional shared half-duplex relay [4].

It has been shown that the MARC provides a much larger achievable rate region [4] and diversity gain

per user [5], compared to those of the MAC. Also, since a single relay is shared by multiple users in

the MARC, the extra cost of adding such a relay is acceptable.However, the code design for the MARC

needs to jointly consider the codebooks of the multiple users and the relay [4] [6] [7], and is thus not a

trivial extension of those for the single-user relay channel or the multiple access channel.

The achievable rate region of the MARC has been characterized in [4] [6] and [7]. The decode and

forward protocol, which is a special case of the dynamic decode and forward (DDF) protocol [8], was

shown to achieve the capacity region of the MARC when the source-relay link is good enough [7], thus

having a larger achievable rate region than those of the multiple-access amplify and forward (MAF) [5]

and compress and forward (CF) protocols [9]. However, the capacity region of the general MARC remains

unknown. The DMT for the MARC with single antenna nodes was studied in [5] [8] and [9]. Although

the MAF and CF are both DMT optimal in the high multiplexing gain regime [5] [9], compared with the

DDF strategy, they both achieve lower diversity gains in thelow to medium multiplexing gain regimes

[5] [9]. Moreover, in [5], simulation results show that the DDF protocol yields a better outage probability

than that of MAF and CF over a large range of signal-to-noise ratio (SNR), even at the high multiplexing

gain regime. Thus we focus on the DDF in this paper due to its good performance in a variety of operation

settings.

However, previous results in [4]–[9] are based onunstructuredrandom codebooks and maximum

likelihood (ML) decoders, and are very difficult to implement in practice. In this paper, we propose

structuredmultiuser lattice coding aided by a relay mapper for the MARCunder the DDF protocol, in

which each node in the MARC has multiple antennas. To simplify the joint codebook design problem for

the multiple users and the relay, we introduce a relay mapperwhich selects the codeword to be transmitted

at the relay to aid the users’ transmissions. The relay mapper is a key new ingredient for our coding design,

which can also help implement the unstructured codebooks in[4], [6], [7] and [8] in practice, and does
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not appear in [4]–[9]. However, the introduction of the relay mapper makes the decoding much more

difficult than that for the MAC [10]. We will see that the one-stage coset decoding proposed in [10] fails

to achieve the rate performance of the unstructured codebook with the ML decoding demonstrated in [7].

Instead, we propose a newK-stage coset decoder that achieves the rate performance in [7] by successive

cancellation on the multiuser decoding tree. Two classes ofrelay mapper aided multiuser lattice coding

are proposed: 1) one-to-one relay mapper aided multiuser lattice coding (O-MLC), and 2) modulo-sum

relay mapper aided multiuser lattice coding (MS-MLC). The first enjoys better rate performance while

the second provides more flexibility to tradeoff between thecomplexity of the relay mapper and the rate

performance. With theK-stage coset decoder, the structured O-MLC can achieve the rate performance

obtained by the unstructured codebook in [7]. If only one-stage coset decoding is used, we also show

that O-MLC is DMT optimal for the DDF, and has better DMT than that in [5] and [9] for the low to

medium multiplexing gain regime. As for MS-MLC, when the codomain size of the modulo-sum relay

mapper becomes larger, the error performance of MS-MLC approaches that of O-MLC. Moreover, our

decoder is no longer a simple lattice decoder as that of [10],since the lattice structure for decoding may

be destroyed by the relay mapper. Further, a naive application of the theoretical error analysis in [10]

suffers from significant losses in prediction of the achievable rates of proposed coding. We overcome this

problem by introducing a new technique for bounding the error probability over the random relay-mapper

codebook ensemble. Finally, to implement our theoretical results, we construct practical lattice codebooks

with linear mappings for both O-MLC and MS-MLC, which enable the decoderto use the efficient lattice

decoding algorithms in [11] and [12].

Compared with codes appearing in previous works [4], [6]–[9] which are difficult to implement, our

structured MARC coding can be implemented in practice as we will see below. Some practical MARC

code designs were proposed in [13] and [14], but these studies lack theoretical performance analysis. In

[13] and [14], an orthogonal protocol was used in which usersand the relay must transmitted in different

time slots to avoid interference, while our scheme allows them to transmit simultaneously. Moreover, in

[14], instead of joint code design, the relay’s transmittedsymbol is formed from the users’ symbols with

a simple transformation. Due to the above reasons, there aresignificant losses in the achievable rates and

DMTs for the methods in [13] and [14], compared with our schemes. In simulations, we show that our
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Mu  Antennas

Mr  Antennas

N Antennas

Hd,1

Hd,K

Hr,K

Hr,1

Hd,K+1

Fig. 1. Dynamic decode and forward (DDF) for theK-user multiple-antenna multiple-access relay channel (MARC), where Phase 1 is the

relay’s listening phase while Phase 2 is the relay’s transmitting phase.

proposed lattice coding schemes also outperform the schemes in [5] [9] [13] and [14] in terms of outage

probabilities.

The rest of this paper is organized as follows. Section II introduces the system model and some

frequently used notation is summarized in Table I. In Section III, O-MLC and MS-MLC are introduced.

In Section IV, we establish the achievable rate region for both O-MLC and MS-MLC and show that

O-MLC is DMT optimal. In Section V, simulation results are presented, and Section VI concludes the

paper.

II. SYSTEM MODEL

We consider theK-user multiple-antenna MARC as shown in Fig. 1, in which a relay node is assigned

to assist the multiple-access users in transmitting data toa common destination. Each user and the relay

is equipped withMu andMr antennas, respectively, and the destination hasN antennas. In the DDF for

MARC, each codeword spansL slots each consisting ofT vector symbols, and the block ofLT vector
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symbols is split into two phases due to the half-duplex constraint at the relay node (i.e., it cannot transmit

and receive simultaneously). In Phase 1, the relay receivesthe signals from the users, then it tries to

decode the users’ messages until the decision timeℓ1T. Following [8], ℓ1T is chosen to be the earliest

time index such that afterℓ1T symbols, the relay can decode the users’ messages without error. If there

is no suchℓ1 ∈ {1, ...,L−1}, the relay remains silent. Let theMr ×Mu, N×Mu channel matrices from

user i to the relay and the destination beHr,i and Hd,i, respectively, which are perfectly known at the

corresponding receivers. For Phase 1, the receivedMr ×1 vector of symbols at the relay is∗

yr,l =

√

ρr

Mu

K

∑
i=1

Hr,ixi,l +nl , l = 1,2, ..., ℓ1T (1)

whereρr is the received SNR at the relay,xi,l is the Mu×1 vector signal transmitted by useri at time

index l , and the noise at the relaynl ∼ CN (0, IMr ) is a Gaussian vector with independent and identically

distributed (i.i.d.) entries. Similar to (1), the receivedvector symbols at the destination in Phase 1 is

yd1,l =

√

ρd

Mu

K

∑
i=1

Hd,ixi,l +vl , l = 1,2, ..., ℓ1T (2)

whereρd is the received SNR andvl ∼ CN (0, IN) is the noise vector at the destination. In Phase 2 of DDF,

based on the decoded messages obtained at the decision timeℓ1T, the relay transmits the corresponding

coded vector symbols to the destination. The signal received by the destination is then

yd2,l =

√

ρd

Mu

K

∑
i=1

Hd,ixi,l +

√

ρd

Mr
Hd,K+1xK+1,l +vl , l = ℓ1T +1, ℓ1T +2, ...,LT (3)

wherexK+1,l denotes for the signal transmitted by the relay andHd,K+1 is the channel matrix from the

relay to destination. As for the (normalized) MARC input power constraint, it is imposed on each user

and the relay as

E

[

1
LT

LT

∑
l=1

|xi,l |
2

]

≤ Mu, E

[

1
LT

LT

∑
l=1

|xK+1,l |
2

]

≤ Mr , i = 1, ...,K (4)

where the expectationE[ ] is taken over all codewords in the codebook.

∗Notation: Let A be a set, thenA∗ = A\{0}. Ac denotes the complement ofA, and|A| denotes the cardinality ofA. For a matrixM , MH is

the conjugate transpose and|M | is the determinant. We use log(·) for the logarithm with base 2, and× for the direct product. Ann-dimensional

real latticeΛ is a discrete additive subgroup ofRn. The lattice quantization function is defined asQΛ(y), argminλ∈Λ |y−λ| for y ∈R
n, and

the modulo-lattice operation̄y = y modΛ , y−QΛ(y) [15]. The second-order moment ofΛ is defined asσ2(Λ), 1
nVf (Λ)

∫
VΛ

x2dx, where

VΛ andVf (Λ) are given in (T1.2) and (T1.3) in Table I, respectively. Someother frequently used notation is also summarized in Table I.
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To simplify the presentation for the proposed lattice coding scheme, it is useful to transform our received

signal model (1), (2) and (3) into the equivalent real channel model form as in (5) and (6), for the relay

and the destination, respectively,

yrelay = Hrelayxrelay+nrelay (5)

ydst = Hdstxdst+ndst. (6)

The equivalent channel for the destination (6) is formed by concatenating the received signal (2) in Phase

1 and (3) in Phase 2, and the 2(KMu+Mr)LT ×1 super signal vectorxdst in (6) is

xdst ,
[

xT
1 , ...,x

T
K+1

]T
, (7)

wherexi =
[

{xR
i,1}

T , ...,{xR
i,LT}

T
]T

with xR
i,l =

[

Re{xi,l}
T , Im{xi,l}

T
]T

; while the 2NLT×1 super received

signal and noise at the destinationydst and ndst in (6) are similarly defined respectively. The 2NLT ×

2(KMu+Mr)LT super-channel matrixHdst in (6) is Hdst ,
[

Hd
1, ...,H

d
K+1

]

, where the 2NLT×2MuLT

equivalent channel matrixHd
i for user i comes from (2) as

Hd
i ,

√

ρd

Mu
ILT ⊗







Re{Hd,i} −Im{Hd,i}

Im{Hd,i} Re{Hd,i}






(8)

where⊗ denotes the Kronecker product andi = 1, ...,K, while the equivalent channel matrixHK+1 for

the relay comes from (3) as

Hd
K+1 , diag






I ℓ1T ⊗02N×2Mr ,

√

ρd

Mr
I (L−ℓ1)T ⊗







Re{Hd,K+1} −Im{Hd,K+1}

Im{Hd,K+1} Re{Hd,K+1}












, (9)

if 1 ≤ ℓ1 ≤ L−1, where the first 2Nℓ1T×2Mrℓ1T is a zero matrix because the relay is listening in Phase

1 (if ℓ1 = L, Hd
K+1 , 02NLT×2Mr LT since the relay is silent). As for the equivalent channel forthe relay (5),

it can be similarly obtained from (1) as above, with the dimensions ofHrelay being 2MrLT ×2KMuLT.

We consider two kinds of channel settings, the fixed channel and the slow fading channel. In the fixed

channel setting, the channels are deterministic and we use the achievable rate as a performance metric.

For the slow fading channel,Hdst andHrelay are random but remain constant over the whole code block.

Since the MARC cannot support any non-zero rate pairs with vanishing error probabilities now, we use

the DMT or the outage probabilities as performance metrics.The entries of the channel matrices are

assumed to be i.i.d.CN (0,1) when they are slow faded; i.e., we assume Rayleigh fading in this case.
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III. PROPOSEDRELAY-MAPPER A IDED MULTIUSER LATTICE CODING SCHEMES

In this section, we specify the proposed multiuser lattice coding schemes for the MARC, i.e., O-MLC

and MS-MLC. Each of O-MLC and MS-MLC consists of three building blocks:1) the relay mapper

which decides which codeword to be transmitted at the relay,2) Loeliger-type nested lattices for the

users’ and the relay’s codebooks and3) a K-stage coset decoder, which generalizes the one-stage decoder

of [10]. We first briefly introduce the adopted lattice codebooks. Tailored for them, the relay mappers,

the one-to-one mapperψone and the modulo-sum mapperψmod, for O-MLC and MS-MLC, respectively

are shown in Section III-B. Then the whole encoding/decoding blocks are introduced in Section III-C.

A. Loeliger-type Nested Lattice Codebooks

In our code construction, codebooks of thei-th user (1≤ i ≤ K) and the relay (i = K+1) are generated

from Loeliger-type nested lattices. To be specific, we introduce the following definitions.

Definition 1 (Self-similar nested lattice code):For useri, let ΛCi be a 2MuLT-dimensional coding lat-

tice andΛSi ⊂ ΛCi be the shaping lattice. The nested lattice codebook is defined asCnest
i , {c̄i : c̄i = ci

modΛSi ,ci ∈ ΛCi}, where c̄i are the coset leaders [15] of the partitionΛCi/ΛSi (the set of cosets ofΛSi

relative to ΛCi ). The codebook size is|Cnest
i | = 2RiLT , where the code rate isRi bits per channel use

(BPCU). WhenΛSi = (2Ri/2Mu)ΛCi where(2Ri/2Mu) ∈ N is the nesting ratio, the nested lattice codeCnest
i

is called a self-similar nested code.†

For a Loeliger-type nested-lattice ensemble, the coding lattice ΛCi for useri is randomly chosen from the

Loeliger lattices ensemble which is generated from linear codesCLo
i [17]. The detailed definition is given

in Definition 5 in the Appendix A-(I).

The codebook for the relay is generated similarly as above but with dimension 2MrLT.

B. Proposed Relay Mappers

The relay mapperψ is used to select the codeword (coset leader)c̄K+1 to be transmitted from the relay

(transmitterK+1) according to the codewords (coset leaders)c̄i , i = 1, ..,K, of theK users. In other words,

by concatenating the totalK +1 codewords as a super onec̄= [(c̄T
1 , . . . , c̄

T
K), c̄

T
K+1]

T = [c̄T
u , c̄

T
r ]

T((T1.5) in

Table I), thenψ(c̄u) = c̄r . Now we introduce the proposed mappers. The first one is as follows.

Definition 2 (One-to-one mapper):The one-to-one mapperψone: Cnest
u →Cnest

r for O-MLC is a one-to-

one bijective mapping that maps coset leaders in the super-codebook of usersCnest
u to the relay codebook

† Our results can be easily generalized to the case in which good (but maybe not self-similar) nested codes as in [16] are used.
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TABLE I
L IST OF FREQUENTLY USED NOTATION

Notation Definition Description
(T1.1) Z

n
p n-dimensional finite field overZp = {0,1, ..., p− 1},

where p is a prime
Prime p finite field

(T1.2) VΛ The set ofv ∈R
n closer to0 than to any otherλ ∈ Λ,

for a latticeΛ
Voronoi Region

(T1.3) Vf (Λ) Volume of Voronoi regionVΛ in (T1.2) Fundamental Volume
(T1.4) vi ni ×1 vectorvi ∈ Λi consists of the elements ofv in

Λi , wherev = [vT
1 , . . . ,v

T
K+1]

T is
(

∑K+1
i=1 ni

)

×1, and
Λi is transmitteri’s lattice (coding or shaping)

Vector for transmitteri, where 1≤ i ≤
K correspond to the users whilei =K+
1 corresponds to the relay

(T1.5) vu, vr vu = [vT
1 , ...,v

T
K ]

T , vr = vK+1, with vi defined in (T1.4) Super-vector for all users, and vector
for relay

(T1.6) CLo
ur CLo

1 ×·· ·×CLo
K+1, whereCLo

i is the Loeliger linear code
for transmitteri as in Definition 5

Super Loeliger-linear-code of users and
relay

(T1.7) ΛCu, ΛSu ΛC1 ×·· ·×ΛCK , ΛS1 ×·· ·×ΛSK Super-coding and shaping lattices of
users

(T1.8) ΛCr , ΛSr ΛCK+1, ΛSK+1 Super-coding and shaping lattices of
relay

(T1.9) ΛCur , ΛSur ΛC1 ×·· ·×ΛCK+1 , ΛS1 ×·· ·×ΛSK+1 Super-coding and shaping lattices of
users and relay

(T1.10) v̄, v̄i v modΛSur , vi modΛSi Modulo lattice operation
(T1.11) pi ,γi Definition 5 Loeliger lattice ensemble parameters
(T1.12) ψone, ψmod Definition 2, 3 One-to-one Mapper, Modulo-sum

Mapper
(T1.13) Cnest

u , Cnest
r Definition 2 Users’ Codebooks, Relay’s Codebook

(T1.14) ψone
∆ , ψmod

∆ ψone
∆ : ψone

∆
(

d̄u(w)
)

= d̄r(w), ψmod
∆ : ψmod

∆
(

d̄u(w)
)

=
d̄r(w)

Differential mapper for one-to-one and
modulo-sum mapper

(T1.15) (CCψ∆ ,E)
∗ (CCψ∆ ,E)

∗ , {d̄ : d̄ ∈C∗
ψ∆ ,Cψ∆ ∈ Cψ∆,E} Differential codewords in ensemble

Cψ∆,E
(T1.16) Oψ∆ (13) Differential ambiguity cosets
(T1.17) MS Matrix MS , [M i1, ...,M i|S| ] is formed from M =

[M1, ...,MKM ], whereKM is the number of the subma-
trices of M , S= {i1, ..., i|S|}, 1≤ i1 < · · · < i|S| ≤ KM

Matrix for users in setS

(T1.18) Rdst
unG(H

{S,K+1}
dst ) 1

2 log|I2(|S|Mu+Mr )LT +
(

H{S,K+1}
dst

)H
H{S,K+1}

dst | Rate constraint at the destination using
unstructured Gaussian codebook

(T1.19) Rrelay
unG (HS

relay)
1
2 log|I2|S|MuLT +

(

HS
relay

)H
HS

relay| Rate constraint at the relay using un-
structured Gaussian codebook

(T1.20) d(r) The diversity gain lim
ρ→∞

− logPE(ρ)
logρ given a certain mul-

tiplexing gain r , wherePE(ρ)$ is the probability that
not all users are correctly decoded,ρ is the received
SNR, andr = [r1, ..., rK ] with r i , lim

ρ→∞
Ri(ρ)
logρ andRi(ρ)

is the transmission rate of useri

Diversity and multiplexing tradeoff
(DMT)

(T1.21) z̄p Apply componentwise modulop operation onz Modulo p

(T1.22) z̄p [ ¯(z1)
T
p1
, ..., ¯(z1)

T
pK+1

], for p = (p1, ..., pK+1), z =

[zT
1 , ...,z

T
K+1]

T
Modulo vectorp

(T1.23) γz [γ1zT
1 , ...,γK+1zT

K+1]
T , for γ = (γ1, ...,γK+1), z =

[zT
1 , ...,z

T
K+1]

T
“Vector” Hadamard product

$ Instead ofPE(ρ), the outage probability is used for the calculation of DMT ofthe relay node in the DDF [3], [8]
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Cnest
r . Here Cnest

u , {c̄u : c̄u = (cu modΛSu),cu ∈ ΛCu} and Cnest
r , {c̄r : c̄r = (cr modΛSr ),cr ∈ ΛCr},

whereΛSu andΛCu are defined in (T1.7) whileΛSr andΛCr are defined in (T1.8) in Table I.

Note that|Cnest
r |= |Cnest

u | since the aforementioned mapping is bijective. The one-to-one relay mapper

may require high complexity as the size of super-user codebook |Cnest
u | becomes large. To reduce the

complexity of the mapper, we introduce another mappingψmod, where the modulo-sum operation is

performed at the relay, which is motivated by the XOR operations in network coding [18].

Definition 3 (Modulo-sum mapper):The modulo-sum mapperψmod : Cnest
u → Cnest

r for MS-MLC is

defined asψmod(c̄u) = ∑K
i=1ψmod

i (c̄i) modΛSr , whereψmod
i : Cnest

i → Cnest
r is an injective mapping for

useri with nested user codebookCnest
i given in Definition 1, whileCnest

u andCnest
r are given in Definition

2.

Note we require that|Cnest
r | ≥maxi{|Cnest

i |} to ensure that the mappingψmod
i in Definition 3 is injective.

The domain dimension ofψmod is at most maxi{|Cnest
i |} while that of the one-to-one mapperψone is

∏K
i=1 |C

nest
i |, and ψmod has less complexity compared withψone. However, the one-to-one mapperψone

ensures that two different users’ super-codewords are mapped to different codewords at the relay, and

results in better error performance. In contrast, it is possible that two different super-codewords map to

the same codeword of the relay due to the modulo-sum operation in ψmod, and ambiguity occurs while

decoding.

C. Encoders and Proposed K-stage Coset Decoders

1) Encoders at the K transmitters and the relay: Useri selects the codeword̄ci according to its message

wi from the codebook described in Section III-A, and sends signal xi into the MARC (5)-(6) (cf. (7))

xi = ([c̄i −ui ] modΛSi ) (10)

whereui is a dither signal uniformly distributed over the Voronoi region VΛSi
of the shaping latticeΛSi

((T1.2) in Table I). From [19], due to the ditherui , xi is uniformly distributed overVΛSi
and independent

of c̄i . To meet the input power constraints (4) as in [16], we let thesecond-order moment of the shaping

lattice σ2(ΛSi ) = 1/2.

As for the relay (transmitterK + 1), it will first decode the users’ messages, using the operation

introduced below. Then the relay selects its codewordc̄K+1 according to the decoded transmitted codewords

c̄is using the mappers in Section III-B, and then transmitsxK+1 as in (10) with the power constraint (4).
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1 2 3

1 12 23 3

(1,1)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

1k

2k

3k K

Fig. 2. The multiuser decoding tree for theK-stage coset decoding in Table II withK = 3. Here for each node, the label(k, j) denotes the

j-th node from the left at thek-th stage (Nodestage in Table II), while the numberi inside a circle denotes the indexi of the user assumed

to have been correctly decoded at the previous stage (Nodeuser in Table II). For example, when the coset decoding in Table II is performed

at node(2,1) (the leftmost child node of the root node), user 1 is assumed to have been correctly decoded. The path from root node(1,1)

to node(3,1) is illustrated with bolder lines.

2) K-stage coset decoder:We first introduce the decoder at the destination, which generalizes the single

stage coset decoder in [10] to the multi-stage one. The cosetdecoder disregards the boundaries of the

codewords and avoids the complicated boundary control [12], which allows for significant complexity

reductions compared to ML decoding. Moreover, it facilitates the efficient sphere decoding algorithm

[11], [12]. To decode messages from the received signalydst in (6), the proposedK-stage coset decoder

works as in Table II with the detailed steps explained as follows.

According to Table II, the decoder first generates the decoding tree as in Step A. An example forK = 3

is given in Fig. 2. The decoder will traverse nodes from stage1 to K in the tree, and produce the candidate

codewords. We take the root node in Fig. 2 as an example to explain Steps B.1 and B.2 in Table II. We

use the notation̄c(wt) to represent the super-codeword for theK +1 transmitters corresponding to the
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TABLE II

ALGORITHM OF THE K-STAGE COSET DECODING FOR THEDESTINATION*

A. Generation of the decoding tree:

Initialization: For the root node, Nodeuser= empty, Nodestage= 1

for k= 1 : K −1

for each node with nodestage= k,

generates(K −k+1) child nodes for the next stage (Nodestage= k+1),

for the child nodes from left to right,

Node user are assigned from the set {1, ...,K}\S in increasing order,

whereS = { j : Node user= j , for the ancestors** of child node}

end

B. K-stage candidate generation via coset decoding:

for k= 1 : K

Step B.1: For the node(k, j), let y(k, j)dst = ydst−∑i∈S
(k, j)
p

Hd
i x̂i , whereS

(k, j)
p is the set of previously-decoded usersi along the

path from root node to node(k, j), x̂i is the transmitted signal (from (10)) corresponding to previous-decoded useri’s message,

and the channelHd
i is formed from (8).

(For example, for the path starting from root node to node (3,1) in Fig. 2, the setS (3,1)
p is {1,2}.)

Step B.2: Decodes the users’ messages in the residual user setS (k, j) = {1, ...,K}\S
(k, j)
p by coset decoding

ĉ(k, j) = argminc∈Oψ,(k, j) M(k, j)(c(k, j)),

where

M(k, j)(c(k, j)) =
∣

∣

∣F
(k, j)
dst y(k, j)dst +B(k, j)

dst

(

u(k, j)−c(k, j)
)∣

∣

∣

2
. (T2.1)

Let mk = 2((K −k+1)Mu+Mr )LT andN′ = 2NLT, the mk×1 c(k, j) is formed from the super-codewordc by collecting all

ci ∈ ΛCi of transmitteri ((T1.4) in Table I) wherei ∈ {S (k, j),K +1}; the dither signalu(k, j) is formed fromu similarly; the

mk×N′ F(k, j)
dst andmk×mk B(k, j)

dst are the corresponding MMSE -GDFE filters forc(k, j); and the searching cosets formed by

previously-decoded usersi ∈ S
(k, j)
p is

Oψ,(k, j) = {c : c∈Oψ,(ci modΛSi ) = (ĉp,(k, j)
i modΛSi ), i ∈ S

(k, j)
p },

whereOψ is given in (12),ci ∈ ΛCi ((T1.4) in Table I) whereΛCi is transmitteri’s coding lattice, and(ĉp,(k, j)
i modΛSi ) is

the codeword (coset leader) of the previously-decoded useri where i ∈ S
(k, j)
p .

end

C. Candidate elimination:

For node(K, j) at the final stageK, combine the decoded messages to produce theK×1 super-messagêw(K, j)
t as

the candidate at node(K, j). The decoder searches for allK! candidatesŵ(K, j)
t and declares the one such thatHdstx̂(K, j) is

nearest to the received signalydst as the final decoded message, wherex̂(K, j) is the transmitted signal according to messageŵ(K, j)
t .

* The algorithm for the relay can be identically obtained by ignoring the relay’s codewords.

** The ancestors of a node are all the nodes along the path from the root to that node (not included).
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K ×1 transmitted message vectorwt = [(wt)1, . . . ,(wt)K]
T , where(wt)i denotes the transmitted message

for user i. For the root node (the first stage coset decoding), with received signalydst at the destination;

the decoder output̂c according to (10) is

ĉ= arg min
c∈Oψ

M(c), with M(c) = |Fdstydst+Bdst(u−c)|2, (11)

whereFdst and Bdst are the forward and feedback filters of the minimum mean-square error (MMSE)

estimation generalized decision feedback equalizer (GDFE) as defined in [10] and [16] respectively;

u = [uT
1 , ...,u

T
K+1]

T and the decoder searches points in the cosetsO
ψ (see (12)) of allc̄(w) (defined

similarly to c̄(wt) above),w ∈ W , with W being the set of all possible messages:

O
ψ , {c∈ ΛCur : (c modΛSur) = c̄(w),w ∈ W }, (12)

where the super-lattice of users and the relayΛCur is defined in (T1.9) of Table I. The decoded message

ŵt is declared ifc̄(ŵt) and the decoded̂c from (11) belong to the same coset,ĉ modΛSur = c̄(ŵt). For

the node(k, j) in the decoding tree (thej-th node from the left atk-th stage) we consider a path from

the root node to node(k, j). An example for(k, j) = (3,1) is given in Fig. 2. In Step B.1 of Table II, the

decoder assumes that all the users at the nodes along the path(users 1 and 2 for the example path in Fig.

2), have already been successively decoded (not necessarily correctly), and subtract the corresponding

transmitted signals from the received signalydst. Then the decoder decodes the remaining transmitted

messages by (T2.1) in the Step B.2 of Table II (which corresponds to (11)). Finally, as in Step C, the

decoder searches for allK! candidates produced at the nodes at theK-th stage (instead of all 2LT ∑K
i=1 Ri

codewords) to choose the final decoded message.

The decoder at the relay also uses (11) as the criterion to decode messages fromyrelay in (5) with the

corresponding MMSE-GDFE forward and feedback filters. The main difference is that now the decoding

does not make use of the relay codebook, and the decoder searches in the super-lattice of usersΛCu instead

of the cosetOψ in (12). The complexity of the decoder in Table II is about

(

∑K
k=1

K!
(K−k+1)! O(m3

k)+

K!O
(

m2
K

)

)

= O((LT)3)‡, wheremk = 2((K −k+1)Mu+Mr)LT. It is much smaller compared with the

complexity of the ML decoderO(2LT ∑K
i=1 Ri), which grows exponentially with the block lengthLT.

‡ According to our practical design in Section V, one can use a linear mapper to implement O-MLC and MS-MLC. Then themk-dimensional

coset decoder can be implemented by the sphere decoding algorithm in [12] with complexity rougly beingO(m3
k).



13

Note that since the super-codewords have to satisfy the relay mapping rule (which may not be linear)

in Section III-B, the setOψ is not necessary a sublattice ofΛCur . This makes (11) different from the

MMSE-GDFE lattice decoder in [10] and [16]. Without the algebraic structure ofa lattice, the upcoming

error probability analysis in the next section, and the design of practical decoding algorithms for the

simulations in Section V will be much more difficult than those in [10].

IV. PERFORMANCE ANALYSIS OF THE PROPOSED CODING SCHEMES

In this section, we establish the achievable rate regions for the MARC defined in (5) and (6), using

the proposed O-MLC and MS-MLC for a fixed channel matrix, respectively. We show that the rate

performance, which was originally achieved by using an unstructured random codebook in [7], is now

achieved by our structured O-MLC. The key is using theK-stage coset decoder which performs successive

cancellation on the multiuser decoding tree, thus avoidingthe rate loss incurred by the one-stage coset

decoder in [10]. The rate loss due to use of a one-stage coset decoder is derived in Corollary 1. However,

in Corollary 2, we show that the rate loss is relatively smallin the high SNR regime, and structured

O-MLC with the one-stage coset decoder achieves the optimalDMT for the MARC in (5) and (6). Note

that the DMT was achieved by an unstructured random codebookand ML decoding in [8]. For MS-MLC,

we show that it can approach the rate performance of O-MLC by increasing the relay’s codebook size,

and thus can tradeoff between the rate performance and complexity.

In the error analysis of the proposed schemes, the conventional approach tailored for ML decoding [5]

[8] and [20] fails in predicting the performance of the cosetdecoder in (11) due to the infinite number

of points c∈ Oψ where the setOψ is defined in (12). To solve this problem, from (12), we define the

differential ambiguity cosetsfor the event that the transmitted messagewt is erroneously decoded asw as

O
ψ∆ , {d ∈ ΛCur : d̄ = d̄(w),w ∈ W ,w 6= wt}, (13)

where thedifferential codeword̄d(w), (c̄(w)− c̄(wt) modΛSur) with ΛSur given in (T1.9) of Table I and

the vector after modulo operation̄d is defined in (T1.10). From the closure property of lattice addition,

d̄(w)∈ ΛCur . Moreover,Oψ∆ is not a direct product ofK+1 lattices (i.e.,ΛCur ), and thus the techniques in

[10] fail to predict the error probability of O-MLC. We propose a new error probability upper-bound which

avoids directly counting points ofOψ∆ in the decision region of the decoder as this kind of evaluation is
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intractable. Please see the upcoming Lemma 1 presented in the proof of Theorem 1 and the discussions

after it.

Besides providing the aforementioned new proof techniques, we also show that there will be a rate loss

due to the one-stage coset decoding in [10]. The loss can be circumvented with the proposedK-stage

coset decoders by letting the decoder successively cancel the previously decoded messages. We show

that in our multiuser decoding tree as in Fig. 2, there existsat least one path at each stage of Step B

of Table II on which the previously decoded messages are correct. Then we canat leastobtain a better

decoder for the remaining users in the next stage to improve the error performance. To show that we can

always choose the correct codeword from the candidates at the final stage in the decoding tree, we use

a suboptimal decoder instead of the optimal one in Step C of Table II to complete our proof. Note that

our decoder is different from the successive MAC decoding studied in [21], where the decoder is based

on ML decoding and the previously decoded messages are correct.

Now, we are ready to derive the achievable rate region of (5) and (6), using O-MLC as follows.

Theorem 1:For the MARC in (5) and (6), the DDF rate region in (14) and (15), which is achieved by

unstructured Gaussian codebooks and ML decoding in [7], is achievable by thestructuredO-MLC and

the K-stage coset decoder in Table II, where the rate constraintsat the relay and destination are

∑
i∈S

Ri <
1

LT
Rrelay

unG (HS
relay), and (14)

∑
i∈S

Ri <
1

LT
Rdst

unG(H
{S,K+1}
dst ), ∀S⊆ {1, ...,K} (15)

respectively, withRdst
unG(H

{S,K+1}
dst ) andRrelay

unG (HS
relay) given in (T1.18) and (T1.19) in Table I. The channel

matrix from the users in the setS and the relay to the destinationH{S,K+1}
dst is formed from Hdst =

[Hd
1, . . . ,H

d
K+1] as in (T1.17) withHd

i given in (8) and (9), and the channel matrix from the users in the

setS to the relayHS
relay is defined similarly toH{S,K+1}

dst .

Proof: We prove only (15) here since (14) follows similarly. First,for the first stage (k= 1, the root

node of Fig. 2) of the candidate generation process in Step B of Table II, we show that at least one of the

users’ messages is correctly decoded in the generated “super”-messagêw(1,1)
t of all users (with probability

1) asT → ∞. To do this, we first define the following error event.

Definition 4 (set-S error):A decoded super-messagew is with set-Serror if the message inw for every
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user i, where i ∈ S, is different from the corresponding transmitted message.That is,wi 6= (wt)i ,∀i ∈ S,

while wi = (wt)i , otherwise.

Let Pe(S|Hdst) be the probability that there existsw with set-Serror with fixedHdst, and minc∈o(w)M(c)≤

minc∈o(wt)M(c), with M(c) defined in (11) ando(w) being the coset ofw. To validate our claim, we first

consider the erroneous user setS (1) = {1, ...,K} and will prove thatPe(S
(1)|Hdst)→ 0 for the first-stage,

if the transmission ratesRi satisfy (15) and the lattice codes are good as defined in the upcoming Lemma

1. Here Pe(S
(1)|Hdst) is averaged over the random relay-mapper and linear-code ensembleEψ,CLo =

{ψone,CLo
ur } consisting of all possible one-to-one mappersψone and Loeliger linear codesCLo

ur of the users

and relay ((T1.6) in Table I).

Lemma 1:For O-MLC, letRi , i = 1, ...,K+1, be the code rates for the users and the relay, and{ΛCi}

belong to the Loeliger lattices ensembles (cf. Definition 5 in Appendix A-(I)). For stagek= 1 of Step B

in Table II, asLT → ∞, the set-S (1) error probability (cf. Definition 4), whereS (1) = {1, ...,K}, satisfies

Pe(S
(1)|Hdst)≤

1
|Eψ,CLo|

∑
(ψone,CLo

ur )∈Eψ,CLo

∣

∣

∣
O

ψone
∆

S (1) ∩Rβ

∣

∣

∣

≤ exp

(

−LT
loge

[

1
LT

Rdst
unG(H

{S (1),K+1}
dst )− ∑

i∈S (1)

Ri +
1

LT
log

2RK+1LT −1
2RK+1LT

]) (16)

whereO
ψone

∆
S (1) consists of points belonging to the differential ambiguitycosets for O-MLCOψone

∆ (cf. (13)),

with corresponding messages having set-S (1) errors;Eψ,CLo = {ψone,CLo
ur } is defined right before Lemma

1; the decision regionRβ ,
{

v : |Bdstv|2 ≤ (KMu+Mr)LT(1+β)
}

with filter Bdst defined as in (11) and

β > 0; and the rate constraintRdst
unG(H

{S (1),K+1}
dst ) is defined as in (15).

The proof of Lemma 1 is given in Appendix A. The main difficultyis that the cosetsOψone
∆ is not a

direct product ofK +1 lattices as in [10], so the methods in [10] and [17]cannotbe directly applied to

counting the number of points ofO
ψone

∆
S (1) in the decision regionRβ in the second inequality of (16). We

avoid explicitly counting points inO
ψone

∆
S (1) by developing new upper-bounds as in (26) and (27) in Appendix

A. Otherwise, naively applying the methods of [10] and [17] will result in rates as in (16) but without

the factor(2RK+1LT −1) cancelling out 2RK+1LT , and lead to significant rate loss compared with our (15)

with S= S (1) sinceRK+1 = ∑K
i=1Ri is required to ensure the one-to-one mapping.

With the results for the first stagek = 1 in Lemma 1, we show by induction that after the candidate

generation process in Step B of Table II, among all “super”-messagêw(K, j)
t at stageK (defined in Step C),
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there exists a correct one almost surely (with probability 1) asT → ∞. To do this, we will show that for

stagek, with at leastk−1 (almost surely) correctly decoded users from the previousstage, almost surely

there exists one node(k, j ′k) having at leastk users correctly decoded. Note that for stagek, conditioned

on the event that all decoded users’ messages from the previous stages are correct, the noisendst in (6)

may no longerbe Gaussian [21]. However, under the condition (15), the probability P(k)
e that there exists

no node at stagek having at leastk users correctly decoded can be shown to still satisfy

P(k)
e

(a)
≤ Pe(S

(1)|Hdst)+
k

∑
s=2

PG
e (S (s, j ′s)|Hdst,S

(s, j ′s)
p )

(b)
→ 0, (17)

as LT → ∞, wherePG
e (S (s, j ′s)|Hdst,S

(s, j ′s)
p ) is defined under Gaussianndst and will be given below and

(17 a) follows from [21]. Then our claim for stageK is valid andP(K)
e → 0 by induction. Since under

(15), asLT → ∞, Pe(S
(1)|Hdst)→ 0 from (16), we will show thatPG

e (S (s, j ′s)|Hdst,S
(s, j ′s)
p )→ 0,∀s≤ k, in

this setting to validate (17 b). Now we introduce the definition of PG
e (S (s, j ′s)|Hdst,S

(s, j ′s)
p ) as follows. Let

S
(s, j ′s)
p be the set ofs−1 previous users along the path starting from the root node tonode(s, j ′s), the j ′s-th

node at stages, in the decoding tree shown in Fig. 2. Also, let the setS (s, j ′s) be {1, . . . ,K}\S
(s, j ′s)
p . Then

PG
e (S (s, j ′s)|Hdst,S

(s, j ′s)
p ) is defined as the probability that there existsw with set-S (s, j ′s) error (Definition

4) conditioned on the event that all users inS
(s, j ′s)
p are correct (the existence ofj ′s is guaranteed by the

assumption of inductionP(s−1)
e → 0, 1< s≤ k), andndst in (6) is conditionally Gaussian. For this kind

of error events, minc∈o(w)M(s, j ′s)(c) ≤ minc∈o(wt)M(s, j ′s)(c) with M(s, j ′s)(c) defined on the right-hand side

(RHS) of (T2.1) in Table II. As in the proof for Lemma 1 in Appendix A, we can similarly upper-bound

PG
e (S (s, j ′s)|Hdst,S

(s, j ′s)
p ) by the RHS of (16) withS (1) replaced byS (s, j ′s). Thus if the transmission ratesRi

satisfy (15), asT → ∞, we have thatPG
e (S (s, j ′s)|Hdst,S

(s, j ′s)
p )→ 0, which verifies (17 b). This validates our

claim for stageK.

For the Step C of Table II, we will use the following suboptimal decoder instead of the optimal

decoder in Table II to prove that we can find the correct message wt almost surely. First, we compare

candidatesŵ(K,1)
t and ŵ(K,2)

t , and form the set of usersSc so that for anyi ∈ Sc, ŵ(K,1)
t and ŵ(K,2)

t

have a common message for useri. Then we compare the “coset”-distances min
c∈o(ŵ(K,1)

t )
D(kc)(c) and

min
c∈o(ŵ(K,2)

t )
D(kc)(c) of these two candidates and choose the one with smaller “coset”-distance (if equal,

we randomly select one), where D(kc)(c) is formed by replacingS (k, j)
p with Sc in M(k, j)(c) in (T2.1) of Table

II (also the corresponding parameters). We then compare thechosen candidate with the next candidate
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ŵ(K,3)
t , and so on. AfterK!−1 comparisons among totalK! candidates, the final chosen candidate in the

final comparison will be declared as the decoded message. Nowwe show that the error probability of

the above sub-optimal decoder will approach zero. As in (17 a), this error probability is upper-bounded

by P(K)
e +PG

e (ŵ(K, j)
t |ŵ(K, j ′K)

t = wt), whereP(K)
e is defined before (17) andPG

e (ŵ
(K, j)
t |ŵ(K, j ′K)

t = wt) is the

probability that the sub-optimal decoder outputs incorrect ŵ(K, j)
t 6= wt conditioned on the event that there

is one correct candidatêw
(K, j ′K)
t = wt and the noisendst is Gaussian. SinceP(K)

e → 0 according to the

previous paragraph, we will showPe(ŵ
(K, j)
t |ŵ(K, j ′K)

t =wt)→ 0 and then our proof is complete. Specifically,

if the decoder output̂w(K, j) 6=wt , it will have smaller (or equal) “coset”-distance than thatof ŵ(K, j ′K) =wt ,

i.e., min
c∈o(ŵ(K, j)

t )
D(kc)(c)≤min

c∈o(ŵ(K, j′K))
D(kc)(c), and nowSc becomes the set of correctly decoded users

in ŵ(K, j) since it is the set of users with common messages for bothŵ(K, j)
t and the correct̂w(K, j ′K) = wt .

That is, messagêw(K, j)
t may have set-(Sc)

c error (Definition 4) given that the users inSc are correct,

where (Sc)
c = {1, . . . ,K} \ Sc. However, from the derivations in the previous paragraph, conditioned on

the event that users inSc are correct, the probability of set-(Sc)
c error PG

e ((Sc)
c|Hdst,Sc)→ 0. This is a

contradiction andPG
e (ŵ(K, j)

t |ŵ(K, j ′K)
t = wt)→ 0. Thus our suboptimal decoder will always find the correct

wt , and this concludes our proof since the optimal decoder in Table II will perform even better.

If only the one-stage coset decoder is used as in [10], we havethe following.

Corollary 1: For the MARC in (5) and (6), the rate region constrained by (18) and (19), which is

strictly smaller than that in Theorem 1, is achievable by O-MLC with the one-stage coset decoder in (11),

where

∑
i∈S

Ri <
1

LT
Rrelay

unG (HS
relay)−Mu|S| log

K
|S|

and, (18)

∑
i∈S

Ri <
1

LT
Rdst

unG(H
{S,K+1}
dst )− (Mu|S|+Mr) log

KMu+Mr

|S|Mu+Mr
, ∀S⊆ {1, ...,K}. (19)

The proof can be easily obtained by modifying Lemma 1, in which we count all of the points in cosets

Oψone
∆ instead of only counting those corresponding to the messagewith set-S (1) error (Definition 4) as

in O
ψone

∆
S (1) of (16), and follows arguments similar to those used in Theorem 1. The details are omitted

here. Clearly, compared to the rate region in (14) and (15), there are rate loss termsMu|S| log K
|S| and

(Mu|S|+Mr) log KMu+Mr
Mu|S|+Mr

in (18) and (19), respectively. These losses are zero when|S| = K, and the

MMSE-GDFE processing for the one-stage coset decoding in (11) is only sum rate optimal.
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For MS-MLC, we have the following theorem. In this result, inaddition to the same rate constraints

(14) and (15) as in Theorem 1, there is an additional rate constraint (20) for MS-MLC which makes the

achievable rate region smaller than that for O-MLC.

Theorem 2:For the MARC in (5) and (6), using MS-MLC and theK-stage coset decoder in Table II,

the rate region with constraints in (14) and (15) and the following additional constraint (20) is achievable,

where

∑
i∈S

Ri <
1

LT
Rdst

unG(H
S
dst)−Mu|S| log

|S|Mu+Mr

|S|Mu
+RK+1 ∀S⊆ {1, ...,K}, |S|> 1. (20)

When using MS-MLC with one-stage coset decoder in (11), the rate region with the constraints in (18)

and (19) and the following additional constraint (21) is achievable, where

∑
i∈S

Ri <
1

LT
Rdst

unG(H
S
dst)−Mu|S| log

KMu+Mr

|S|Mu
+RK+1 ∀S⊆ {1, ...,K}, |S|> 1. (21)

Proof: Unlike O-MLC, there is a possibility for MS-MLC that two different users’ super-codewords

are mapped to the same relay codeword from Definition 3. This fact makes the properties exploited in

Lemma 1 for the random mapped-codebook ensemble of O-MLC (for details, please see the proof of

(28) in Appendix A) no longer hold for the ensemble for MS-MLC. Thus Lemma 1 cannot be applied

for MS-MLC. We solve this problem by dividing the random mapped-codebook ensemble for MS-MLC

into two partitions, and the techniques for proving Lemma 1 can be modified to deal with each partition

separately. The detailed proof is given in Appendix B. The rate region for one-stage coset decoder in

(18), (19) and (21) follows by using techniques similar to those used in the proof of Corollary 1.

The additional rate constraint (20) is due to the ambiguity of the modulo-sum mapper in MS-MLC,

where there is a rate loss termMu|S| log |S|Mu+Mr
|S|Mu

. However, the rate constraint (20) can be negligible and

even looser than constraint (15), as
(

RK+1−Mu|S| log |S|Mu+Mr
|S|Mu

)

becomes larger by increasing the relay

codebook size 2RK+1LT (which reduces the occurrence of ambiguity). Thus MS-MLC can approach the

performance of O-MLC by increasing the complexity.

Finally, for random slow fading channels, we show that O-MLCwith the one-stage coset decoder (11)

is DMT optimal for the DDF MARC, as stated in the following corollary. Despite the rate loss terms in

(18) and (19) compared with (14) and (15), respectively, thelosses become relatively negligible for the

DMT analysis when the SNR is high.
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Corollary 2: For the MARC in (5) and (6), with the one-stage coset decoder (11), the O-MLC achieves

the optimal DDF DMTd(r) of (5) and (6), respectively, whered(r) is defined in (T1.20) of Table I.

Sketch of proof:As in [3] and [8], we need to establish the DMT optimality for both the relay and

destination channels. We focus on the destination channel (6) since the DMT-optimality for the relay

channel (5) (identical to the MAC channel) has been proved in[10]. Following [16] and the proof steps

for (19), we can exponentially upper-bound the error probability Pe(ρd) in (T1.20) of Table I using decoder

(11) (averaged over randomHdst which satisfy (15)) as

Pe(ρd)≤̇EHdst

[

(1+δ) · ∑
S⊆{1,...,K},S6=φ

ρLT ∑i∈Sr i
d exp

[

−1
loge

Rdst
unG

(

H{S,K+1}
dst

)

]

]

.
= Pr(O) (22)

whereδ > 0, ρd is the received SNR at the destination;r i is the given multiplexing gain for useri as in

(T1.20); the exponential larger and equal [20] are denoted as ≥̇ and =̇; andO is the outage event when

Hdst does not satisfy (15). The proof of (22) is detailed in Appendix D. Together with the fact that for

any coding schemes,Pe(ρd)≥̇Pr(O)
.
= ρ−d(r)

d as in [20], we prove that O-MLC can achieve the optimal

DMT d(r) for the destination. �

In [8], a two-user, single antenna node MARC was studied for the symmetric rate case (R1 = R2),

which showed that the DDF strategy achieves the optimal DMT for the MARC in the low to medium

multiplexing gain regime. The DMT results of Corollary 2 canbe achieved by codebooks, which are more

structured than that in [8]. Moreover, our designs in the next section also demonstrate that our theoretical

results can be implemented in practice.

V. SIMULATION RESULTS

In this section, we present numerical examples to illustrate our theoretical results. Performance results

based on practical decoders are also presented. As mentioned in Section III-C, the lattice decoderin

[10] and [16] fails to be directly applicable to ourcoset decoderof (11) since only the points inOψ

of (12) will be searched. In general, the optimal non-linearrelay mapper may make the coset decoders

very complicated and impractical. To facilitate the coset decoder for the relay mapper, we resort to the

sub-optimallinear mapper such that the coset decoder of (11) can be transformedinto the efficient lattice

decoder. For simplicity, we consider the case in which thereare two users with the same transmission

rate, i.e,R1 = R2 = R.
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Let the code rate of the relayR3 = 2R, andGi , i = 1,2,3, be the generation matrix of the coding lattice

ΛCi (cf. Definition 5) for transmitteri. Then for useri = 1,2, the codewords arēci = (Giz̃i modΛSi ),

wherez̃i ∈ Z
2MuLT . For O-MLC, with Mr = 2Mu, we choose the linear relay mapping such that the relay

codewords arēc3 = (G3z̃3 modΛS3) with z̃3 = [z̃T
1 , z̃

T
2 ]

T . After some manipulations, it can be verified

that the decoding equation of (11) is transformed into

ẑ= arg min
z∈Zn

|Fdstydst+(Bdstu−BdstGz)|2 (23)

wheren= 8MuLT. Then for the linear one-to-one relay mapper, we have

G = diag(G1,G2,G3) ·













I2MuLT 0

0 I2MuLT

0

I4MuLT 2
R

2Mu I4MuLT













. (24)

For the linear modulo-sum relay mapper, withMu = Mr , we choose the linear relay mapping such that

z̃3 = z̃1+ z̃2 and the correspondingG can be similarly derived. Note now that the decoder searchesthe

whole integer vector planeZn in (23), thus the lattice decoder using the efficient sphere decoding algorithm

[11], [12] can be applied .

In the following simulation results, the number of slots is selected asL = 2, and the sum rate(R1+R2),

is 4 BPCU. The relay forwards the message only when the users’messages are correctly decoded. All the

channel links are Rayleigh faded and unless otherwise specified, the sources-to-relay (S-R) channel link

is 10 dB better than the other channel links. In Fig. 3, for single-antenna nodes, we show that O-MLC

has better error performance than that of MS-MLC and both outperform the protocols of [5], [9], [13] and

[14] in terms of outage probability and achieve the diversity min{Mu(Mr +N),(Mu+Mr)N} as expected.

In Fig. 4, for the casesMu = N = 1,Mr = 2 andMu = Mr = 1,N = 2 (where the S-R link is 15 dB better

than the other channel links), respectively, we show that our proposed coding schemes outperform the

MAF. For the former case, the MAF achieves a diversity of only2 instead of 3. Note the methods in [9],

[13] and [14] cannot be straightforwardly extended to the case of multiple-antenna nodes.

For the simulation of practical lattice codings based on one-stage practical decoder and linear relay

mapper, with the slot lengthT = 2, we use the pair of self-similar randomly generated nestedlattices

drawn from the lattice ensemble defined in Definition 5. For the settings the same as the above, in Fig.

5, the block error rate for O-MLC and MS-MLC are presented. The parameters of the linear codes in the
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 MS−MLC outage prob.
 MAF [5] outage prob.
 CF [9] outage prob.
[14] with Gaussian codebooks outage prob.
[13] with Gaussian codebooks outage prob.

Fig. 3. The outage probability for O-MLC (14), (15) and MS-MLC (14), (15), (20) vs. the protocols in [5], [9], [13] and [14].

lattice ensemble for O-MLC and MS-MLC are(pi ,ki) = (97,3),(47,3),∀i (cf. Definition 5), respectively.

The diversity of 3 for each user is achieved as expected usingour finite T code construction.

VI. CONCLUSION

In this work, we have proposed O-MLC and MS-MLC for structured MARC coding. The former enjoys

better error performance, while the latter provides more flexibility to tradeoff between the complexity and

the error performance. The error performance of MS-MLC can approach that of O-MLC by increasing

the complexity. We have shown that with the newK-stage decoding instead of the one-stage decoding

considered in previous works, the structured O-MLC can approach the rate performance of unstructured

codebook with ML decoding. When only the one-stage decoder is used, O-MLC can still achieve the

optimal DMT of DDF. Besides the theoretical results, we havealso considered the design of practical

short length lattice code withlinear mapping, which facilitates the efficient lattice decoding.Simulation

results have shown that our proposed coding schemes outperform existing schemes in terms of outage

probabilities.
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Fig. 4. The outage probability for O-MLC (14), (15) and MS-MLC (14), (15), (20) vs. MAF [5].

APPENDIX
A. Proof of Lemma 1

(I) Some useful definitions :Here we introduce some notation for simplification. We denote the nesting

ratio in Definition 1 asτi = 2Ri/2Mu while the dimensions of the lattice code areni = 2MuLT, (1≤ i ≤ K).

The corresponding parameters for the relay areτK+1 andnK+1, respectively. We also have the following

definitions.

Definition 5 (Loeliger lattices ensemble [17]):Let Λ̄Ci be a lattice generated by a linear codeCLo
i as

Λ̄Ci , {z∈ Z
ni : z̄pi ∈ CLo

i }, where z̄pi is obtained by applying the componentwise reduction modulopi

operation onz [17] and the(ni,ki) linear codeCLo
i is defined over the finite fieldZni

pi
((T1.1) in Table

I). The Loeliger lattices ensemble is the lattices ensemble{ΛCi = (γiΛ̄CLo
i
) : CLo

i ∈ Ci,Loe,γi ∈ R}, where

Ci,Loe is a balanced set of linear codesCLo
i [17]. In our analysis, we letpi → ∞, andγi → 0 such that the

fundamental volume ofΛCi ((T1.3) in Table I)Vf (ΛCi) = pni−ki
i γni

i is fixed.

The following balanced set definition generalizes the balanced set defined in [17].

Definition 6: (Balanced set for the K-user MARC):Let C be the set ofc wherec= c1×·· ·×cK+1 ∈
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Fig. 5. Comparison of theoretical outage probabilities andthe block error probabilities using practical linear relaymapping, (18), (19) for

O-MLC and (18), (19), (21) for MS-MLC .

R
n1 × ·· ·×R

nK+1, and CE be the finite set ofC (e.g., c is a codeword of a codebookC, and CE is a

codebook ensemble). We collect all non-zeroc in C of CE as (CCE)
∗ , {c∈ R

n : c∈C∗,C∈ CE}, where

n=∑K+1
i=1 ni , C∗ =C\{0}. The setCE is calledbalancedif every nonzero elementc in (CCE)

∗ is contained

in the same number, denoted byNb, of C from CE. We refer toNb as thebalanced number.

(II) Proof: Here we show the proof only for the second inequality of (16) since the proof for the first one

is similar to that in [10]. An outline of the proof is providedfirst to provide insight into how to solve the

problem that cosets with set-S (1) errorsO
ψone

∆
S (1) , {d∈Oψone

∆ : d̄i 6= 0,∀i ∈ S (1)} (or even cosetsOψone
∆ in (13))

is not a direct product ofK+1 lattices, where the differential coset leaderd̄i for useri is defined below

(13) with (T1.4) and (T1.10) in Table I. First, by averaging over the ensemble of mappers, and judiciously

using the balanced set property in Definition 6, we can upper bound 1
|Eψ,CLo|

∑(ψone,CLo
ur )∈Eψ,CLo

∣

∣

∣
O

ψone
∆

S (1) ∩Rβ

∣

∣

∣

in (16) using the RHS of (27 b) below. Note that instead of summation over cosetsO
ψone

∆
S (1) as in the RHS

of (26) below, in the RHS of (27 b) the summation is over the lattice points of set(ΛCur)
⋆ in (29) below,

which makes further upper-bounding possible. By taking thelimits, we conclude our proof.
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Now we give the details to show the second inequality of (16).First we introduce some useful notation

for the upcoming (25 a). The differential mapperψone
∆ , which corresponds toψone in Definition 2, is

defined by replacing the super-codewordc̄= [(c̄u)
T ,(c̄r)

T ]T in ψone with the differential super-codeword

d̄(w) in (13), as in (T1.14) of Table I. LetEψ∆,CLo be the ensemble corresponding toEψ,CLo in (16), but

with one-to-one mappersψone
∆ replaced by the corresponding differential mappersψone

∆ . Also let f (·) be

the indicator function wheref (d) = 1 if d ∈ Rβ, otherwisef (d) = 0. Clearly the following (25 a) is valid

for the left-hand side (LHS) of the second inequality of (16)since|Eψ,CLo|= |Eψ∆,CLo|,

1
|Eψ,CLo|

∑
(ψone,CLo

ur )∈Eψ,CLo

∣

∣

∣O
ψone

∆
S (1) ∩Rβ

∣

∣

∣

(a)
= ∑
(ψone

∆ ,CLo
ur )∈Eψ∆,CLo

∑
d∈Oψone

∆,S(1)

f (d)
|Eψ∆,CLo|

(b)
≤
(τK+1)

nK+1∏i∈S (1) 2RiLT

(τK+1)nK+1 −1

∫
R

∑K+1
i=1 ni

f (d)dd

∏i∈{S (1),K+1}Vf (ΛSi )
. (25)

As for the above (25 b), it can be proved from the RHS of the upcoming (27 b) by averaging overCLoe

using techniques similar to those in [10] and [17]. Thus we focus on the proof of (27 b) below. As pointed

out in the beginning of this appendix, our trick to prove thiscritical step is replacing the summation over

the “non-lattice” cosetsO
ψone

∆
S (1) in the LHS of (25 b) with the set(ΛCur)

⋆ in (27 b) by showing

1
|Eψ∆,CLo|

∑
(ψone

∆ ,CLo
ur )∈Eψ∆,CLo

∑
d∈O

ψone
∆

S(1)

f (d) =
1

|CLoe|
∑

CLo
ur ∈CLoe

(

1
|Cψ∆,E|

∑
ψone

∆ ∈Ψone
∆

∑
d∈O

ψone
∆

S(1)

f (d)

)

(26)

(a)
=

1
|CLoe|

∑
CLo

ur ∈CLoe

(

1
((τK+1)nK+1 −1) ∑

d∈(ΛCur)
⋄

f (d)

)

(b)
≤

1
((τK+1)nK+1 −1)|CLoe|

∑
CLo

ur ∈CLoe

∑
d∈(ΛCur)

⋆

f (d), (27)

where the derivation of each step comes as follows:

For (26), we first defineCψ∆,E as the ensemble of all mapped nested-codebooks (differential) Cψone
∆

given

a particular super Loeliger linear codeCLo
ur (T1.6), with codewords ofCψone

∆
satisfying the mapping rules

of the correspondingψone
∆ . Note that allCψone

∆
∈ Cψ∆,E are based on the sameCLo

ur , but with different

mappers. Also letCLoe= C1,Loe×·· ·×CK+1,Loe be the ensemble of all possibleCLo
ur with Ci,Loe given in

Definition 5, andΨone
∆ be the ensemble of all possible differential mappers. Then (26) is obtained by

|Eψ∆,CLo|= |Cψ∆,E||CLoe| by definition.

For (27 a), given mapperψone
∆ and Loeglier linear codeCLo

ur (thus mapped-codebookCψone
∆

), we rewrite

the set-S (1) error cosets asO
ψone

∆
S (1) = {d ∈ ΛCur : d̄ ∈C∗

ψone
∆
, d̄i 6= 0,∀i ∈ S (1)}, whereΛCur is in (T1.9), and

set-S (1) errors is defined in Definition 4. Then the term inside the parentheses on the LHS of (27 a) comes
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from

1
|Cψ∆,E|

∑
ψone

∆ ∈Ψone
∆

∑
d∈O

ψone
∆

S(1)

f (d) =
1

|Cψ∆,E|

(

Nb ∑
d∈(ΛCur)

⋄

f (d)
)

(28)

where we collect all points belonging to cosetsO
ψone

∆
S (1) over all possible mapped codebooksCψone

∆
as

(ΛCur)
⋄ ,

{

d ∈ ΛCur : d ∈O
ψone

∆
S (1) ,Cψone

∆
∈ Cψ∆,E

}

. For (28), it comes from the fact thatCψ∆,E is a balanced

set as follows, where(CCψ∆,E
)∗ is the collection of non-zero codewords inCψ∆,E, by setting(CCE)

∗ in

Definition 6 with CE = Cψ∆,E ((T1.15) in Table I ). Consider two different vectorsc andc′ belonging to

(CCψ∆,E
)∗. For each mapped-codebookCψone

∆
∈ Cψ∆,E containingc but notc′, with the corresponding mapper

ψone
∆ , we can easily form anotherC(ψone

∆ )′ ∈ Cψ∆,E containingc′ by forming a new one-to-one mapper(ψone
∆ )′

from ψone
∆ . Therefore,c and c′ are symmetric, and thus each vector in(CCψ∆,E

)∗ is contained in equal

number, denoted byNb, of Cψone
∆

from Cψ∆,E. ThenCψ∆,E is a balanced set as in Definition 6. Together

with the fact that(CCψ∆,E
)∗ is the set of coset leaders of(ΛCur)

⋄, that is,(CCψ∆,E
)∗ = {d̄ : d ∈ (ΛCur)

⋄}, then

(28) follows. Finally, with(τK+1)
nK+1 being the relay codebook size, since the differential mapper ψone

∆

is one-to-one, each nonzero user codeword can possibly be mapped to(τK+1)
nK+1 −1 relay codewords.

Also the mapped nested-codebook ensembleCψ∆,E is a balanced set with balanced numberNb, we have

that |Cψ∆,E|/Nb = (τK+1)
nK+1 −1. Then we obtain (27 a) from (28).

For (27 b), we define(ΛCur)
⋆ formed from the super coding-latticeΛCur ((T1.9) in Table I) as

(ΛCur)
⋆ ,

{

d ∈ ΛCur : di 6= 0,∀i ∈ S (1)
}

. (29)

From the definition of(ΛCur)
⋄ right after (28), we have(ΛCur)

⋄ ⊂ (ΛCur)
⋆. Together with the fact that the

indicator function f (·), defined right before (25), is a nonnegative function, (27 b)is obtained.

Finally, the second inequality of (16) can be obtained from (25 b) by following steps similar to those in

[10] and [16]. The key observation is that asT → ∞, the shaping latticesΛSi from Definitions 1 and 5 will

be good for minimum square error quantization [22], so that their Voronoi regionsVf (ΛSi ) will make the

signal behave like an optimal Gaussian signal. Thus the term1
LT log

∫
R

∑K+1
i=1 ni

f (d)dd/∏i∈{S (1),K+1}Vf (ΛSi )

in (25 b) will approach− 1
LT Rdst

unG(H
{S(1),K+1}

dst ) in (16). With (τK+1)
nK+1 = 2RK+1LT as defined in Appendix

A-(I), we then have the second inequality of (16). The details are given in Appendix C.
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B. Proof of the rate region of the K-stage MS-MLC in Theorem 2

The proof for the rate region of MS-MLC is similar to the proofof Theorem 1. Here we show only the

principal difference, which results from the fact that the balanced set structure exploited in Appendix A

(to obtain (28)) is no longer valid for MS-MLC. We solve this problem by introducing a new 2-partition

balanced set defined in Definition 7 below. Specifically, we will show a counterpart of (25) for the first

stage as follows: For MS-MLC, with the relay-mapper and linear-code ensembleEψ,CLo of {ψmod,CLo
ur }

andS (1) = {1, ...,K}, we have

1
|Eψ,CLo|

∑
(ψmod,CLo

ur )∈Eψ,CLo

∣

∣

∣

∣

O
ψmod

∆
S (1) ∩Rβ

∣

∣

∣

∣

≤
(τK+1)

nK+1 ∏i∈S (1) 2RiLT

((τK+1)nK+1 −1)





∫
R

∑K+1
i=1 ni

f (d)dd

∏i∈{S (1),K+1}Vf (ΛSi )
+

∫
R

∑K
i=1ni

f S (1)
(dS (1))ddS (1)

(τK+1)nK+1 ∏i∈S (1)Vf (ΛSi )



 ,

(30)

which, compared with (25), has an additional term (second term) in the RHS, (30) where we letdS (1) =

[dT
i1
, ...,dT

i
|S(1)|

]T , i1 < · · · < i|S (1)|,∀i j ∈ S (1), and the indicator functionf S (1)
(dS (1)) = 1 if dS (1) ∈ R S (1)

β ,

with R S (1)

β ,

{

vS (1) ∈ R
2|S (1)|MuLT : v ∈ Rβ,vi = 0,∀i ∈

{

{1, ...,K+1}\S (1)
}

}

and the decision regionRβ

given in Lemma 1. This additional term results in the additional rate constraint (20) compared with

Theorem 1. Similar to the derivations of (25 a) and (26), the LHS of (30) equals

1
|Eψ,CLo|

∑
(ψmod,CLo

ur )∈Eψ,CLo

∣

∣

∣

∣

O
ψmod

∆
S (1) ∩Rβ

∣

∣

∣

∣

=
1

|CLoe|
∑

CLo
ur ∈CLoe









1
|Cψ∆,E|

∑
ψmod

∆ ∈Ψmod
∆

∑
d∈O

ψmod
∆

S(1)

f (d)









. (31)

Compared with (26), only the (differential) one-to-one mapperψone
∆ is replaced byψmod

∆ in (31). However,

unlike O-MLC in Appendix A, nowCψ∆,E is not a balanced set, which makes simplifying (31) more

difficult compared with (27 a). To solve this problem, we needto extend Definition 6 as follows.

Definition 7: (2-partition balanced set):Following the notation in Definition 6, we say that the set

CE is 2-partition balanced if the non-zero vector set(CCE)
∗ can be partitioned as(CCE)

∗ = {C ∗
CE,1

,C ∗
CE,2

},

where every element inC ∗
CE,1

is contained in the same number, denoted byNb,1, of C from CE while every

element inC ∗
CE,2

is also contained in the same number, denoted byNb,2, of C from CE.

For simplifying the RHS of (31), now we explore the properties of the ensembleCψ∆,E using the

2-partition balanced set in Definition 7. Recall thatCψ∆,E is the ensemble of all mapper-codebooks

(differential)Cψmod
∆

with mapperψmod
∆ ∈ Ψmod

∆ , where the differential super-codewords inCψmod
∆

satisfy the
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mapping rules ofψmod
∆ . For any user setS⊆ {1, ...,K}, let C S

ψ∆,E
be the set of mapper-codebooks formed

by collecting every codebook belonging toCψ∆,E, but excluding codewords̄d /∈ DS whereDS, {d̄ : d̄i 6=

0,∀i ∈ S}. The fact that for every user setS, C S
ψ∆,E

is a 2-partition balanced set in Definition 7 follows

from the following observations. According to whether the differential codewords of the relaȳdr = 0 or

not, we can categorize them into two partitions. The differential codewords in each partition are symmetric

according to the proof in Appendix A. Note thatd̄r =0 occurs only in the MS-MLC due to the modulo-sum

operation in Definition 3. In O-MLC, the one-to-one mapper guarantees̄dr 6= 0, and results in simpler (25)

compared with our target (30). Now for the first stage, we setS= S (1) and the two partitions ofC S (1)

ψ∆,E
can

be formed as follows. LetC ∗

C S(1)
ψ∆,E

,1
andC ∗

C S(1)
ψ∆,E

,2
be the codeword partitions corresponding toC ∗

CE,1
andC ∗

CE,2

in Definition 7 withCE = C S (1)

ψ∆,E
respectively, whereC ∗

C S(1)
ψ∆,E,1

= {d̄∈C∗
ψmod

∆
: d̄r 6= 0, d̄∈ DS (1),ψmod

∆ ∈Ψmod
∆ },

where the codewords of the relay are distinguishable sinced̄r 6= 0; C ∗

C S(1)
ψ∆,E

,2
is defined similarly but with

d̄r 6= 0 replaced byd̄r = 0. Also let the corresponding balanced numbers ofC ∗
CE,1

and C ∗
CE,2

be Nb,1 and

Nb,2 respectively. Now we can simplify the RHS of (31) using the aforementioned 2-partition balanced

set property and following the proof of the O-MLC counterpart (28), while in (28)Cψ∆,E is a balanced

set. Corresponding to (28), the term inside the parentheseson the RHS of (31) now equals

∑
ψmod

∆ ∈Ψmod
∆

∑
d∈Oψmod

∆,S(1)

f (d)
|Cψ∆,E|

=
Nb,1

|Cψ∆,E|
∑

d∈(ΛCur,1)
⋄

f (d)+
Nb,2

|Cψ∆,E|
∑

d∈(ΛCur,2)
⋄

f (d) (32)

where(ΛCur ,1)
⋄ and (ΛCur,2)

⋄ are the lattice codeword sets for the 2-partitions corresponding to (ΛCur)
⋄

in (28), respectively.

Unfortunately, the balanced numbers in (32) cannot be easily computed as in the proof of (27 a) and

vary with C S
ψ∆,E

for different setsS. Thus we alternatively show two upper-bounds as

Nb,1

|Cψ∆,E|
≤

1
(τK+1)nK+1 −1

, and
Nb,2

|Cψ∆,E|
≤

1
(τK+1)nK+1 −1

, (33)

where (τK+1)
nK+1 is the relay codebook size from Definition 1. Then following similar arguments as

those used in proving (27 a), (27 b) and (25 b) (steps after (28)), we can prove (30) from (32) and

(33) with the details omitted. For proving (33), we start with the single user case where|S (1)| = 1

(S (1) = {1, . . . ,K}= {1} when the number of usersK = 1), and then extend to the case|S (1)|= 2 as the

upcoming (34) and (35). By repeating this procedure recursively, we obtain the formulation of balanced
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numbers in (33) as (36) in the next paragraph and then derive the upper-bound. When|S (1)|= 1, Cψ∆,E is a

balanced set, and thus balanced numbers (normalized) are given by
(

Nb,1/|Cψ∆,E|
)

|S (1)|=1 =
1

((τK+1)
nK+1−1)

from the proof of (27 a), and
(

Nb,2/|Cψ∆,E|
)

|S (1)|=1 = 0 by definition. Here the subscript|S (1)| = 1 is

added to the notation of the normalized balanced numbers to represent the upcoming (34) and (35). For

|S (1)|= 2, the corresponding balanced number for the partition withd̄r = 0 is
(

Nb,2

|Cψ∆,E|

)

|S (1)|=2
=

1
((τ3)n3 −1)

(

((τ3)
n3 −1)

(

Nb,1

|Cψ∆,E|

)

|S (1)|=1

)

. (34)

To show (34), we count the occurrence of a particular super-codeword (differential)̄d1× d̄2×0 (d̄r = 0)

in the overall two-user mapped-codebook ensembleCψ∆,E, where useri’s codeword (coset leader) is

d̄i , i = 1,2. Let ψmod
∆,i (d̄i) be the (differential) mapper corresponding to useri as in Definition 3. First, we

compute

(

Nb,2

)

|S(1)|=2
(

Nb,1

)

|S(1)|=1

. From Definition 6, given a particular̄d1× d̄r,1 with d̄1 6= 0 such that̄dr,1 =ψmod
∆,1 (d̄1),

there will be
(

Nb,1
)

|S (1)|=1 possible mappersψmod
∆,1 . Now from Definition 3, for this partition to have

d̄r = ∑2
i=1ψmod

∆,i (d̄i) = 0, the mappers corresponding to user 2 must satisfy(d̄r,1+ψmod
∆,2 (d̄2)) modΛSr = 0

since d̄r,1 = ψmod
∆,1 (d̄1). Thus for a fixedd̄r,1, the vectorψmod

∆,2 (d̄2) for the given d̄2 is also fixed from

the definition of the codomainCnest
r of ψmod

∆,2 (·) given in Definition 2. Also from Definition 4,̄d2 6= 0

since the user messages (encoded in cosets) are with set-S (1) errors, whereS (1) = {1,2}. Then for a

fixed d̄r,1, excluding the given̄d2 and the zero vector, by assigning the mapping rules for the remaining

(τ2)
n2 − 2 points in the domain ofψmod

∆,2 (·), there are∏(τ2)
n2−1

i=2 ((τ3)
n3 − i) possible injective mappers

ψmod
∆,2 where(τi)

ni is transmitteri’s (users and relay) codebook size. Note that to make(ψmod
∆,2 (d̄2)+ d̄r,1)

modΛSr = 0, it is required thatd̄r,1 6= 0 since d̄2 6= 0. As there are a total of((τ3)
n3 − 1) possible

d̄r,1 6= 0 in the relay’s (differential) codebook, we have

(

Nb,2

)

|S(1)|=2
(

Nb,1

)

|S(1)|=1

= ((τ3)
n3 − 1)∏(τ2)

n2−1
i=2 ((τ3)

n3 − i).

Also
|Cψ∆,E||S(1)|=2

|Cψ∆,E||S(1)|=1
= ((τ3)

n3 −1)∏(τ2)
n2−1

i=2 ((τ3)
n3 − i) by counting all possible injective mappersψmod

∆,2 of

user 2. Thus (34) is valid. Similar to (34), for|S (1)| = 2, the corresponding balanced number for the

partition with d̄r 6= 0 is
(

Nb,1

|Cψ∆,E|

)

|S (1)|=2
=

1
((τ3)n3 −1)

(

((τ3)
n3 −2)

(

Nb,1

|Cψ∆,E|

)

|S (1)|=1
+1 ·

(

Nb,2

|Cψ∆,E|

)

|S (1)|=1

)

. (35)

The proof of (35) is similar to that for (34), but now(ψmod
∆,2 (d̄2)+ d̄r,1) modΛSr 6= 0. The first term in

the parenthesis on the RHS of (35) corresponds to the cased̄r,1 6= 0 while the second term corresponds

to the casēdr,1 = 0. The details are omitted.
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Finally, by repeating the arguments in the previous paragraph we can find the balanced numbers for

|S (1)|= 3 with (34) and (35), and so on. Then for the balanced numbers when |S (1)|= K , we have

Nb,1

|Cψ∆,E|
=

1

(τK+1)nK+1((τK+1)nK+1 −1)|S (1)|

(

((τK+1)
nK+1 −1)|S

(1)|+(−1)|S
(1)|+1

)

Nb,2

|Cψ∆,E|
=

1

(τK+1)nK+1((τK+1)nK+1 −1)|S (1)|

(

((τK+1)
nK+1 −1)|S

(1)|+((τK+1)
nK+1 −1)(−1)|S

(1)|
)

, (36)

where(τK+1)
nK+1 is the relay codebook size. On noting that 1

((τK+1)
nK+1−1)|S

(1)|
≤ 1

((τK+1)
nK+1−1) for |S (1)| ≥

1, together with (36), one can show that (33) is valid. Then our proof for (30) is complete.

C. Proof of (25 b) and(16)

We can rewrite (27) as

1
((τK+1)nK+1 −1)|CLoe|

∑
CLo

ur ∈CLoe

∑
d∈(ΛCur)

⋆

f (d) (37)

=
1

((τK+1)nK+1 −1) ∑
z∈(Zn)⋆:z̄p=0

f (γz)+
1

|CLoe|
∑

CLo
ur ∈CLoe

∑
a∈(CLo

ur )
∗



 ∑
z∈(Zn)⋆:z̄p=a

f (γz)



 , (38)

whereγz is defined in (T1.23) in Table I. In (38), we define(Zn)⋆ , {z∈ Z
n : zi 6= 0,∀i ∈ {1, ...,K+1}}

and z̄p is formed by applying modulopi operation on elements ofzi ((T1.22) in Table I). Now for

summation in the second term of (38), we separate the summation overa∈ (CLo
ur )

∗ by the cases{au 6=

0,ar = 0}, {ar 6= 0,au = 0} and{ar 6= 0,au 6= 0}. By averaging overCLoe for these three cases, we have

(39), (40) and (41), respectively,

1
|CLoe|

∑
CLo

ur ∈CLoe

∑
a∈(CLo

ur )
∗



 ∑
z∈(Zn)⋆:z̄p=a

f (γz)





= ∑
S⊆{1,...,K},S6=φ





∏i∈S(p
ki
i −1)

∏i∈S(p
ni
i −1)

· ∑
z∈(Zn)⋆:(z̄p)i 6=0,i∈S,(z̄p)i′=0,i′∈{Sc,K+1}

f (γz)



 (39)

+





(pkK+1
i −1)

(pnK+1
i −1)

· ∑
z∈(Zn)⋆:(z̄p)K+16=0,(z̄p)i′=0,i′∈S (1)

f (γz)



 (40)

+ ∑
S⊆{1,...,K},S6=φ





∏i∈{S,K+1}(p
ki
i −1)

∏i∈{S,K+1}(p
ni
i −1)

· ∑
z∈(Zn)⋆:(z̄p)i 6=0,i∈{S,K+1},(z̄p)i′=0,i′∈Sc

f (γz)



 (41)

→
1

((τK+1)nK+1 −1)∏i∈{S (1),K+1}Vf (ΛCi )

∫
Rn

f (d)dd (42)
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aspi →∞, γi → 0 (Definition 5). Sincef has a bounded support (f vanishes at infinity), with the definition

of (Zn)⋆, the first term in (38) vanishes for sufficiently largeγi pi → ∞ as shown in [10], [17]. The terms in

(39) also vanish by noting that at least one of elements ofzK+1 is equal to the multiples ofpK+1, which

results in f (γz)→ 0 in (39). The term in (40) follows similarly. Finally, the term in (41) approaches to

(42) for S= S (1), and vanish otherwise in a way similar to (39), (40), asγi → 0 with pni−ki
i γni

i =Vf (ΛCi)

fixed as in those [10]. From Definition 1,Vf (ΛSi )/Vf (ΛCi ) = 2RiLT = (τi)
ni , then (25 b) can be obtained

from (42). Finally, (16) can be obtained from (25 b) by following the footsteps in [16].

D. Proof of (22)

Proof: For the K users, we use the self-similar nested lattice (Definition 1)where ΛSi = τiΛCi ,

τi = ⌊ρ
ri

2Mu
d ⌋ in order to satisfy the transmission rate constraintRi(ρd)

.
= r i logρd. The ensembleEψ,CLo

defined in the proof of Theorem 1 withki = 1 (Definition 5) is considered, on which the corresponding

lattices ensemble is then expurgated in a way similar to thatin the proof of Theorem 6 in [16]. We denote

the expurgated ensemble of codebooks,Ccode (i.e.,Cψone given the corresponding lattices in the expurgated

lattices ensemble), asC exp
code. Then the average error probability,Pe(ρd) in (T1.20) of Table I, can be upper

bounded by

Pe(ρd), EC
exp
code,Hdst

[Pr(Er|Ccode,Hdst)]≤ Pr(O)+EC
exp
code,Hdst

[Pr(Er,Oc|Ccode,Hdst)] (43)

wherePr(Er|Ccode,Hdst) is the probability of the event that given a{Ccode,Hdst}, not all users are correctly

decoded at the destination andO denotes for the outage event set ofHdst (Hdst does not satisfy (15)).

For the second term on the RHS of the inequality in (43), by averaging the termPr(Er,Oc|Ccode,Hdst)

overCcode∈ C
exp
code and then overHdst ∈ Oc, we will show

EHdst [Pr(Er,Oc|Hdst)]=̇Pr(O) (44)

Following the steps similar to those in [10] and [16], considering a tuple of multiplexing gains,r i, to

meet a diversity requirementd for each user as in [20], given aHdst, we have,

Pr(Er,Oc|Hdst)≤̇(1+δ)
τnK+1

K+1

τnK+1
K+1 −1

(

∑
S⊆{1,...,K},S6=φ

ρLT ∑i∈Sr i
d

(

KMu+Mr

|S|Mu+Mr

)(|S|Mu+Mr)LT

·det

(

I2(|S|Mu+Mr )LT +
(

H{S,K+1}
dst

)H
H{S,K+1}

dst

)−1
)

,

(45)
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wherepi → ∞,∀i andδ > 0.

Let Pr(O)
.
= ρ−d(r)

d . AlthoughPr(O) does not necessarily guarantee the minimum outage probability, it

suffices for the DMT analysis as indicated in [23]. The explicit formulation ofd(r) is generally difficult to

obtain since the joint probability density function (pdf) of eigenvalues of(H{S,K+1}
dst )HH{S,K+1}

dst is generally

not easy to evaluate. However, from Theorem 3.2.17 of [24], it can be seen that the joint pdf of these

eigenvalues is a continuous function. Therefore, by choosing a sufficiently large, but finiteT, such that

the term on the RHS in (45) decays fast enough, we can prove that EHdst[Pr(Er,Oc|Hdst)] is exponentially

equal toPr(O) using the techniques similar to those in [10], [16], [20] and[23]. Together with (43), we

obtain (22). Note the rate loss terms in (45) are exponentially negligible (independent ofρd) in the DMT

analysis.
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