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ABSTRACT
Machine learning models for the potential energy of multi-atomic systems, such as the deep potential (DP) model, make molecular simulations
with the accuracy of quantum mechanical density functional theory possible at a cost only moderately higher than that of empirical force fields.
However, the majority of these models lack explicit long-range interactions and fail to describe properties that derive from the Coulombic tail
of the forces. To overcome this limitation, we extend the DP model by approximating the long-range electrostatic interaction between ions
(nuclei + core electrons) and valence electrons with that of distributions of spherical Gaussian charges located at ionic and electronic sites.
The latter are rigorously defined in terms of the centers of the maximally localized Wannier distributions, whose dependence on the local
atomic environment is modeled accurately by a deep neural network. In the DP long-range (DPLR) model, the electrostatic energy of the
Gaussian charge system is added to short-range interactions that are represented as in the standard DP model. The resulting potential energy
surface is smooth and possesses analytical forces and virial. Missing effects in the standard DP scheme are recovered, improving on accuracy
and predictive power. By including long-range electrostatics, DPLR correctly extrapolates to large systems the potential energy surface learned
from quantum mechanical calculations on smaller systems. We illustrate the approach with three examples: the potential energy profile of
the water dimer, the free energy of interaction of a water molecule with a liquid water slab, and the phonon dispersion curves of the NaCl
crystal.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0083669

I. INTRODUCTION
Modeling materials in the electronic ground state requires an

accurate description of the Born–Oppenheimer potential energy
surface (PES). First-principles models based on density functional

theory (DFT) have good predictive power, but high computational
complexity. Empirical force fields are more efficient but often less
accurate than DFT and are typically not applicable when chemi-
cal bonds change within a system of interest. PES models based on
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machine learning (ML) offer a promising route to overcome the
dilemma of accuracy vs efficiency.1–16 These models combine force
field efficiency with first-principles accuracy and have been suc-
cessful in a number of applications that could not be tackled with
direct first-principles studies. Here, we focus on one such method,
the deep potential (DP) scheme,13,14 which, upon training with DFT
data, can achieve accuracy comparable to that of ab initio molecu-
lar dynamics (AIMD). On high-performance computer platforms,
deep potential molecular dynamics (DPMD) simulations can model
millions of atoms on timescales of tens of nanoseconds or even
longer.17,18 Successful applications to date include studies of the sig-
natures of a liquid–liquid phase transition in supercooled water,19

nucleation of crystalline Si from the melt,20 phase diagrams of Ga21

and water,22 structural motifs in the growth of quasicrystals,23 the
reactive uptake of N2O5 in interfacial processes,24 reactive processes
in combustion,25 and the dissociative chemisorption of water at the
water–titania interface26 and of the 1D cooperative diffusion in a
simple cubic crystal.27

Most ML models, including DP, assume that the PES can
be represented by a sum of atomic terms describing the many-
body interactions among the atoms within some fixed cutoff dis-
tance. This construction is computationally advantageous as its
complexity scales linearly with system size. On physical grounds,
however, it entails a severe approximation because electrons and
nuclei are charged particles that experience long-range Coulomb
forces. Despite that, local effective interaction models work well in
many cases. In metals, this can be attributed to complete electronic
screening. In insulators, screening is incomplete, yet the interatomic
interactions are often represented satisfactorily by short-range ML
models. These models are trained on DFT data, which include long-
range electrostatics, suggesting that some features of the long-range
interactions may be mimicked by short-range models. While this
treatment is sufficient in many cases, particularly when dealing with
systems that are, on average, homogeneous and neutral at the molec-
ular scale, failures of the short-range models in cluster, interfacial,
and vapor phase properties are well known.28,29 A quintessential
example of a property that cannot be simulated by short-range mod-
els is the longitudinal-transverse splitting of the long-wavelength
optical phonon modes in polar crystals. Long-range electrostat-
ics should be even more important in heterogeneous systems,
where charge separation at large scale may be induced by exter-
nal fields or by chemical potentials. Examples include electrolyte
solutions in contact with electrodes,30 dipolar surfaces,31,32 pro-
tein folding problems,33 and the binding affinity of ligands to
proteins.34

A possible way of incorporating long-range electrostatics
within ML models is to assume that the PES has two contributions.
One accounts for short-range interactions and is constructed as in
standard ML models. The other accounts for long-range interactions
and is approximated by the electrostatic energy of a system of partial
point charges located at the atom sites, with the added constraint
of global charge conservation. The effective charges either can be
defined empirically, as commonly done in the context of force field
models,35 or can be found by machine learning,11,16,36–38 in which
case the partial charges are matched to reference charges extracted
from DFT calculations by partitioning the electronic charge den-
sity among the atoms.36–38 A difficulty with this approach is that
an atom in a molecule, or a material, does not have a well-defined

charge because the charge densities of neighboring atoms over-
lap. As a consequence, different partitioning schemes may lead to
different results.39,40 To reduce this ambiguity, charge partitioning
schemes have been combined with the concepts of electronegativ-
ity and hardness,41 which, however, also lack a rigorous definition.
Interestingly, the accuracy and transferability of molecular ML mod-
els with effective atomic charges were found to improve significantly
when the molecular dipole moment was added to energy and forces
in the training data.41–43 This condition is implemented in Phys-
Net,16 a model in which the partial charges are trained to best
reproduce the total energy and dipole of a system. A more flex-
ible representation than the point charge models is provided by
the long-distance equivariant (LODE) framework, in which the
charge density is approximated by a sum of atom centered spher-
ical Gaussians or other localized functions.44,45 LODE successfully
describes the mutual interaction of charged molecular species at
large separation, a property beyond the reach of short-range ML
models.

The above schemes can be seen as different realizations of
a coarse-graining transformation that approximates the electronic
density with a sum of atom centered spherical contributions. This
representation can provide a good overall fit of the charge density
and of the total dipole of a molecule, but, in general, does not cor-
rectly describe the dipolar fluctuations that couple with the electric
field generated by distant charges in extended systems within peri-
odic boundary conditions. The reason is that the dipole of a periodic
crystal can only be defined modulo a quantum, and the polarization
fluctuations typically include dipolar fluxes across the cell boundary,
originating from the delocalized nature of the quantum mechanical
electronic charge distribution. These fluxes are related to the phase
of the wavefunction and cannot be described, in general, by par-
tial atomic charges (see, e.g., Ref. 46). Interestingly, an exception to
this rule occurs when a crystal is made of nonoverlapping molecular
units because, in this case, the total dipole is the sum of the molecular
dipoles.

In this work, we propose an alternative deep learning model
for insulating systems that overcomes this limitation. As in previ-
ous approaches, we assume that the PES has short- and long-range
contributions. The short-range contribution has the standard form
of the DP model. The long-range contribution is the electrostatic
energy of a system of spherical Gaussian charges, associated with
the ions (nuclei + frozen core electrons) and the valence electrons,
located, respectively, at the ionic and electronic sites. The latter are
defined by the averages of the positions of the maximally localized
Wannier centers (MLWCs)47 associated with specific atoms.48 In
general, ionic and electronic sites do not coincide. The electronic site
coordinates are not independent dynamical variables, but are fixed
by the atomic configuration, as required by the Born–Oppenheimer
adiabatic separation of ionic and electronic dynamics. We assume
that the electronic sites, hereafter also called Wannier centroids,
depend only on the atoms in their neighborhood, a conjecture that
can be rationalized in terms of the so-called nearsightedness of elec-
tronic matter.49 We found that this condition is well satisfied in all
systems we have studied to date. Thus, the environmental depen-
dence of the centroids can be modeled accurately by a deep neural
network (DNN), such as deep Wannier (DW), which was introduced
in Ref. 48 to describe the dielectric response of insulators. By com-
bining DP and DW, we construct a model of the PES that includes
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explicit long-range electrostatic interactions. The new scheme, called
deep potential long-range (DPLR), has several advantages relative to
atom centered models. First, the centroid distributions have integer
charges and automatically conserve the total charge of the system.
Second, their positions derive from a unitary transformation in the
subspace of the occupied Kohn–Sham orbitals. By construction, this
representation rigorously describes molecular dipoles in finite sys-
tems and dipolar fluctuations in condensed media (see, e.g., Ref. 46).
The spherical Gaussian distributions adopted in DPLR differ from
the maximally localized Wannier distributions in the quadrupole
and higher moments. This results in a potential energy error that
converges well with size. In contrast, the errors of atom centered dis-
tributions start at the dipole level, and the potential energy error is
only conditionally convergent with size. The DPLR model is physi-
cally meaningful, symmetry preserving, and smooth so that forces
and virial can be analytically calculated, preserving the conserva-
tive properties of the adopted molecular dynamics scheme. The
approach is also computationally efficient, as fast algorithms for
calculating Ewald sums for Gaussian charges under periodic bound-
ary conditions are well established.50–53 DPLR describes polarization
fluctuations in finite and extended systems. Thus, it also allows
us to model the response of a system to an externally applied
field.

While preparing this article, we became aware of a recent
preprint by Gao and Remsing,54 in which the electronic structure
information encoded in the Wannier centers is used to construct
a ML model of the PES, including long-range electrostatics. This
model, called self-consistent field neural network (SCFNN), differs
from DPLR because the separation between short- and long-range
contributions is not done in the way in which the training data
are handled, but in the way in which they are generated. The
model requires short-range DFT data obtained, in principle, from
calculations with a truncated Coulomb potential. A drawback of
this formulation is that it introduces a self-consistency condition
for the Wannier center positions. As a consequence, the simplic-
ity of the ML construction is lost, and the dynamics of the model
is no longer conservative, unless formulations such as those pro-
posed by Car and Parrinello are introduced.55 In practice, separating
standard DFT data into data for a truncated Coulomb potential
and data for its long-range counterpart is not straightforward, and
the authors overcame this difficulty by invoking linear response
conditions.

In this article, we focus on DPLR and how it compares to the
original DP model. Theory and method are presented in Sec. II.
In Sec. III, we construct the DP, DW, and DPLR models for water
that we use in applications discussed in Sec. IV. In that section, we
compare DPLR, DP, and direct DFT calculations for the binding
energy curve of the water dimer and for the free energy profile of
a water molecule as a function of the distance from a liquid water
slab. In Sec. V, we construct DP and DPLR models for small atomic
displacements around the classical ground state in crystalline NaCl
and use these models to compute the phonon dispersion curves. We
show that the non-analytic contribution to the dynamical matrix,
arising from long-range dipole–dipole interactions, can be calcu-
lated with DW and its polarizability extension.56 We then study
the evolution of the analytical phonon dispersion curves calculated
with finite supercells of increasing size. While the modes calculated
with the DP model do not exhibit size dependence, those calculated

with DPLR depend on size and partially recover the longitudinal-
transverse splitting of the optical modes, within the limitations of
the finite supercells used in the calculations. In Sec. VI, we discuss
how the model can be used to study the response of a system to an
externally applied electric field. Finally, Sec. VII is devoted to our
conclusions.

II. THEORY AND METHOD
We focus on extended systems modeled with a periodically

repeated supercell. Finite systems can be investigated in this way,
provided that the supercell is large enough that interactions between
periodic images can be neglected. With periodic boundary condi-
tions, the system must be electrically neutral. However, the scheme
could be easily extended to different choices of boundary conditions.

A. Electrostatic energy
In the reference DFT model, we adopt a pseudopotential frame-

work. Thus, in what follows, electrons stand for valence electrons
and ions stand for nuclei plus frozen core electrons. However, the
method would be applicable to all-electron DFT methods as well, in
which case ions would stand for nuclei and electrons would include
valence and core. We indicate the charge density of ions and elec-
trons by ρion(r) and ρe(r), respectively. When the system is in the
ionic configuration {RI}, ρion(r) is given by

ρion(r) =∑
I

ρI(r − RI), (1)

where RI indicates ion coordinates and ρI(r) = qIδ(r), in terms of qI ,
the charge of the ion I, and of δ(r), the Dirac delta distribution. In
insulators, the density of the electrons, ρe(r), can be represented by
a sum of local distributions via a unitary transformation of the occu-
pied Bloch orbitals onto maximally localized Wannier functions.47

The centers of the local distributions are called maximally localized
Wannier centers (MLWCs). Often, during molecular evolution, the
same MLWCs can be uniquely assigned to the same atom along a
trajectory. For example, in water systems, the same four MLWCs are
always nearest to the same oxygen atom irrespective of liquid dif-
fusion and molecular dissociation. It is then convenient to define
the nth Wannier centroid (WC), Wn, as the average of the MLWCs
assigned to a given atom, as illustrated in Fig. 1 for a water molecule.
Lumping into a single centroid associated with the O atom, the

FIG. 1. The Wanner centroid (WC) associated with a water molecule is repre-
sented by the purple dot. The maximally localized Wannier Centers (MLWCs)
corresponding to bond pairs and lone pairs are represented by green and blue
dots, respectively. The WC is the geometric center of the four MLWCs. In molecu-
lar dynamics, trajectories of water systems the WCs are uniquely associated with
the oxygen atoms.
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four Wannier centers of a water molecule have the following advan-
tages: (i) it makes straightforward to satisfy, within the deep neural
network (DNN) model, the Born–Oppenheimer constraint of para-
metric dependence of the ground-state electronic properties on the
atomic coordinates; (ii) it eliminates the need for imposing permuta-
tional symmetry between equivalent Wannier centers in a molecule;
and (iii) it is computationally efficient. We note, however, that a
unique association of the Wannier centers with specific atoms is not
possible in the presence of electron transfer between different atoms.
Dealing with these events requires a significant generalization of the
method. Ignoring this possibility, ρe(r) takes the following form:

ρe(r) =∑
n

ρn(r −Wn), (2)

where ρn is the sum of the maximally localized Wannier distribu-
tions associated with the nth WC. For simplicity, we consider spin
saturated systems, in which each maximally localized Wannier dis-
tribution carries a charge of two electrons (−2e). Thus, ρn carries
an integer charge qn, equal to −2e times the number of Wannier
functions associated with the nth centroid. For instance, in the water
examples of this article, qn = −8e. The charge neutrality condition
implies that the total charge density, i.e., ρt(r) = ρion(r) + ρe(r),
satisfies

∫ drρt(r) = ∫ dr(ρion(r) + ρe(r)) = 0. (3)

Thus, the total electrostatic energy is well defined and given by

Et =
1
2 ∫

drdr′ρt(r)v(r − r′)ρt(r′). (4)

Here, v(r) = 1/∣r∣ is the Coulomb interaction, and it is understood
that the (infinite) self-energy of the ionic point charges should be
subtracted from the integral. The energy in Eq. (4) is calculated
exactly in the DFT reference model, while it is approximated, in
the DPLR model, by the electrostatic energy of a system of spher-
ical Gaussian charge distributions gI and gn located at ionic (RI)

and WC (Wn) sites, respectively. In DPLR, one adds to this energy
a short-range contribution described by the DP part of the model,
which takes care of all the additional many-body effects within
rc, the cutoff radius of the model. Thus, all residual errors of the
approximation for the electrostatic energy should be associated with
long-range effects, for which r > rc. The Gaussian distributions gI
and gn integrate to qI and qn, respectively, but are assumed to have
the same spread 1/(

√
2β), with β being an adjustable parameter. The

true distributions, ρI and ρn, differ from gI and gn according to the
following equations:

ρI(r) = gI(r) + ρI(r) − gI(r) = gI(r) + ΔI(r), (5)

ρn(r) = gn(r) + ρn(r) − gn(r) = gn(r) + Δn(r). (6)

The distributions ΔI and Δn, in Eqs. (5) and (6), integrate to zero.
ΔI is known, having all its mutipole moments equal to zero, while
Δn has zero dipole moment, but is otherwise unknown. We choose
the spread parameter β so that the Gaussian distributions are at the
same time smooth on the atomic scale and well localized within
rc. More details on the choice of β will be given when discussing

specific examples later in this article. While the electrostatic poten-
tial generated by ΔI , which has spherical symmetry, decays to 0
exponentially for r > rc, the potential generated by Δn decays to
0 algebraically for r > rc because, in general, the distribution Δn
has non-zero quadrupole and higher multipole moments. Thus, the
potential generated by Δn decays at least as fast as r−3 for r > rc and
has magnitude controlled by the quadrupole moments specific to
the system. Typically, we expect quadrupoles on the order of 1 a.u.,
which would correspond to Δn(r = rc) being approximately equal to
1 meV for rc = 6 A. Given that the DP part of the model takes care
of the effects within rc, the error of the above procedure is associated
with effects beyond rc, which are controlled primarily by Δn.

The total ionic and electronic Gaussian distributions are given
by

Gion(r) =∑
I

gI(r − RI), (7)

Ge(r) =∑
n

gn(r −Wn). (8)

The corresponding total Gaussian charge distribution is Gt(r)
= Gion(r) +Ge(r). The electrostatic energy associated with Gt is
easily calculated in Fourier space,50

EGt =
1

2πV ∑
m≠0,∣m∣≤L

exp(−π2m2
/β2
)

m2 S2
(m), (9)

where L is the cutoff in Fourier space and S(m), the structure factor,
is given by

S(m) =∑
I

qIe−2πimRI +∑
n

qne−2πimWn . (10)

Due to the smoothness of the distributions, the Fourier sum in
Eq. (9) converges rapidly. Fast algorithms for calculating the electro-
static energy are available, such as the smooth particle–mesh Ewald
(SPME)52,53 and the particle–particle–particle–mesh (PPPM)51

methods. The latter is adopted in the applications discussed in this
article. The electrostatic energy EGt in Eq. (9) also contains short-
range contributions. To avoid double counting, EGt is subtracted
from the total potential energy when training the DP part of the
DPLR model.

The error E, due to neglecting the contribution of Δn to the
electrostatic energy, is the sum of two terms, E1 and E2, given,
respectively, by

E1 = ∫ drdr′Gt(r)v(r − r′)∑
n

Δn(r′), (11)

E2 = ∫ drdr′∑
m

Δm(r)v(r − r′)∑
n

Δn(r). (12)

The two integrals above are well defined for extended systems as
the corresponding charge distributions are neutral. Since the low-
est non-zero multipole of Δn is the quadrupole, E2 in Eq. (12) is (at
worst) a sum of quadrupole–quadrupole interactions, decaying as
r−5. Only the part of that sum involving terms with (roughly) r > rc
cannot be learned by the DP model. These terms contribute to the
error. Taking 6 Å for a typical rc value, the sum would include terms
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smaller than 1 meV. Due to the fast rate of decay, the double sum
should converge rapidly. We could estimate E1 in Eq. (11) in a sim-
ilar fashion by writing Gt as a sum of local dipole contributions,
resulting in a sum of dipole–quadrupole interactions that decay as
r−4, i.e., still rapidly but less rapidly than the terms in E2. This esti-
mate is, however, affected by the arbitrariness of the local dipole
definition. A better way of estimating E1 is the following. Let EΔ(r)
be the electric field generated by the sum of the Δn distributions,

EΔ(r) = ∫ dr′
r − r′

∣r − r′∣3∑n
Δn(r). (13)

To leading order, the electric field in Eq. (13) is a sum of quadrupole
contributions that decay like r−4 for r > rc. This field is essentially
uniform on the molecular scale. Let us call the corresponding aver-
age field ĒΔ. Then, the average energy error can be written in terms
of the cell dipole (polarization times volume) M as

E1 = −M ⋅ ĒΔ. (14)

In extended systems, M is defined modulo a quantum.46 Thus, the
error in Eq. (14) is only well defined for a change of ionic coordinates
that leads to a change of M.

In summary, the error in the LR contribution to the electro-
static energy, when the true electronic distribution ρe is replaced by
the Gaussian distribution Ge, is given by a sum of small terms that
decay at most as r−4 for r > rc. It would be possible to further reduce
these errors by representing Ge as a sum of non-spherical Gaussian
distributions having the spreads of the Wannier centroid distribu-
tions, which could be learned by an extended DW approach. In this
way, the lowest non-zero multipole of Δn would be the octupole. At
rc = 6 Å, such treatment would reduce the error by approximately
an order of magnitude. However, this formulation would also result
in a significant increase of the computational complexity, which was
deemed unnecessary based on our tests.

We remark that formulations of LR electrostatics based on
effective atomic charges cannot reproduce the fluctuations of M in
the condensed phase. In these formulations, the atom centered elec-
tronic charge distribution differs locally from the true distribution
ρe at the dipole rather than at the quadrupole level. Therefore, the
corresponding error would be associated with dipole–dipole inter-
actions that are only conditionally convergent. It is worth noting
that, in finite systems, the error is reduced by adopting partial charge
models trained to reproduce the molecular dipole.

B. Deep potential long-range model
In DPLR, the PES is given by

E = Esr + EGt , (15)

where the electrostatic energy EGt was introduced in Eq. (9) and Esr is
a short-range contribution constructed as in the standard DP model
(see the Appendix for more details). However, Esr is not equal to the
standard DP energy because the Gaussian electrostatic energy EGt is
subtracted from the DFT training data to avoid double counting.

The forces and the virial are derivatives of the energy with
respect to the atomic positions and the simulation cell tensor,
respectively. Within DPLR, the energy E depends on the atomic
coordinates, both explicitly and implicitly, via the dependence of the

WCs on the atomic coordinates. The implicit dependence makes the
calculations nontrivial.

The force on atom I is given by

FI = −
∂E
∂RI
= −

∂Esr

∂RI
−
∂EGt

∂RI
−∑

n

∂EGt

∂Wn

∂Wn

∂RI
. (16)

Here, the environmental dependence of Wn is given by the DW
model. We recall that there is a one-to-one correspondence between
the Wannier centroid n and its nearest atom, the atom I. This corre-
spondence establishes a bijective mapping between the indices of the
WCs and the indices of a subset of the ions, which we indicate, equiv-
alently, by n = n(I) or by I = I(n). Due to the nearsightedness of
the electronic matter, the position of the WC associated with atom I
depends on the local environment of that atom within a cutoff radius
rc that can be safely assumed to be equal to the cutoff radius of the
DP model. Indicating with Dn the displacement of Wn relative to RI ,
we have

Wn = RI(n) +Dn, (17)

which relates the environmental dependence of Dn to that of Wn.
The latter is smooth by construction in the DW model. Thus,

∂Wn

∂RJ
= δI(n),J +

∂Dn

∂RJ
, (18)

where δI,J is the Kronecker delta and the force on atom I in Eq. (16)
becomes

FI = −
∂Esr

∂RI
−
∂EGt

∂RI
−

∂EGt

∂Wn(I)
−∑

n

∂EGt

∂Wn

∂Dn

∂RI
. (19)

The first term on the right-hand side (RHS) of Eq. (19) is the stan-
dard DP force, and the second and third terms give the electrostatic
force on atom I and its associated WC, respectively, while the fourth
term originates from the environmental dependence of the WC. The
derivatives ∂Dn/∂RI are calculated by back-propagating the DW
model.

We indicate the cell tensor by h = {hαβ}, with hαβ being the βth
component of αth cell vector. The virial is defined by

Ξαβ = −
∂E
∂hγα

hγβ, (20)

where summation over repeated indices is assumed. By using
Eq. (15), we have

Ξαβ = −
∂Esr

∂hγα
hγβ −

∂EGt

∂hγα
hγβ = Ξsr

αβ −
∂EGt

∂hγα
hγβ. (21)

The first term on the RHS of Eq. (21) is the short-range virial contri-
bution, Ξsr

αβ, which is calculated as in the standard DP model. The
remaining term is the electrostatic virial contribution, whose cal-
culation is non-trivial, as we detail below. First, it is convenient to
define the reciprocal cell tensor h−1

= {h−1
βα}, in which h−1

βα is the βth
component of αth reciprocal cell vector. The direct and reciprocal
cell tensors define linear scaling transformations in direct space and
reciprocal space that are useful in MD simulations with a variable
cell. In direct space, a scaled coordinate s is related to its non-scaled
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counterpart R by R = sh, and in reciprocal space, the lattice vector m
is related to its scaled counterpart k by m = h−1k. As a consequence,
the scalar product mR = sk is independent of the cell tensor h, and
so is the factor e2πimRI in Eq. (10). However, the factor e2πimWI in the
same equation does depend on the cell vector h because, in general,
the positions of the WCs do not change linearly with a cell defor-
mation. Then, we can write for the electrostatic contribution to the
virial,

−
∂EGt

∂hγα
hγβ = Ξrec

αβ + Ξc
αβ (22)

with

Ξrec
αβ = −

∂

∂hγα
(

1
2πV
)hγβ∑

m≠0
f (m)S2

(m)

−
1

2πV ∑m≠0

∂ f (m)
∂hγα

hγβS2
(m), (23)

Ξc
αβ = −

1
πV ∑m≠0

f (m)S(m)
∂S(m)
∂hγα

hγβ, (24)

where we used the definition f (m) = 1
m2 exp(−π2m2

/β). Ξrec
αβ in

Eq. (23) is the standard reciprocal virial contribution of the Ewald
method, while the correction term in Eq. (24) accounts for the non-
linear dependence of the WCs on the cell tensor. The correction term
Ξc

αβ is calculated as follows:

Ξc
αβ = −

1
πV ∑m≠0

f (m)S(m)∑
n

qne2πiWnm

× 2πi(
∂Wnδ

∂hγα
mδ +Wnδ

∂mδ

∂hγα
)hγβ, (25)

where the terms in parentheses are given by

∂Wnδ

∂hγα
mδhγβ =∑

J

∂Wnδ

∂RJϵ

∂RJϵ

∂hγα
mδhγβ =∑

J

∂Wnδ

∂RJα
RJβmδ

= Rnβmα +∑
J

∂Dnδ

∂RJα
RJβmδ ,

Wnδ
∂mδ

∂hγα
hγβ =Wnδ

∂h−1
δϵ

∂hγα
kϵhγβ = −Wnδh−1

δη
∂hηζ

∂hγα
h−1

ζϵ kϵhγβ

= −Wnδh−1
δγ h−1

αϵ kϵhγβ

= −Wnβmα.

Thus, the correction virial term in Eq. (25) becomes

Ξc
αβ = −

1
πV ∑m≠0

f (m)S(m)∑
n

qne2πiWnm

× 2πi
⎛

⎝
Dnβmα +∑

J

∂Dnδ

∂RJα
RJβmδ

⎞

⎠
. (26)

Given that

−
∂EGt

∂Wnα
= −

1
πV ∑m≠0

f (m)S(m)2πimαqne2πiWnm, (27)

FIG. 2. Drift of the total energy of DP and DPLR models in a 100 ps NVE simulation
of 128 water molecules. The time step is set to 0.5 fs. Two mesh spacings of the
PPPM method, i.e., η = 0.98 Å and η = 0.49 Å, are used in the DPLR model.

the correction virial simplifies to

Ξc
αβ = −∑

n

∂EGt

∂Wnα
Dnβ −∑

nJ

∂EGt

∂Wn

∂Dn

∂RJα
RJβ. (28)

Finally, using Eqs. (21)–(23) and (28), the virial takes the more
compact form

Ξαβ = Ξsr
αβ + Ξrec

αβ −∑
nJ

∂EGt

∂Wn

∂Dn

∂RJα
RJβ −∑

n

∂EGt

∂Wnα
Dnβ. (29)

We checked that the above formulas are correct by comparing
the analytical derivatives in the formulas to the numerical derivatives
calculated with finite differences. As a consequence, in molecular
dynamics simulations, the conservation laws associated with the
equations of motion should be satisfied within the accuracy of the
adopted numerical implementation. We find, for instance, that in
NVE trajectories of liquid water with 128 molecules, the total energy
shows a small drift of ∼0.4 meV/H2O (∼1 K) per 100 ps with the
DPLR approach, when using a mesh spacing η = 0.98 Å in the calcu-
lation of the Ewald sum. As shown in Fig. 2, this is small but greater
than the drift of a DP trajectory for the same system, which is almost
not observable in a 100 ps trajectory. The total energy drift in the
DPLR trajectory is controlled by the numerical accuracy of the fast
algorithm for computing the Ewald sum, here the PPPM method,
and can be further reduced by using a finer mesh. As shown in Fig. 2,
the drift of DPLR is not observable when the mesh spacing η is set
equal to 0.49 Å.

III. DEEP POTENTIAL LONG-RANGE MODEL
FOR WATER

We construct a DPLR model for water based on the
Perdew–Burke–Ernzerhof (PBE) functional approximation of
DFT.57 It is well known that PBE substantially overestimates the
strength of the hydrogen bonds in water. As a consequence, it fails
to describe correctly some important thermodynamic properties,
such as the relative density of ice and water at ambient pressure.58
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However, here, we are not interested in constructing a state-of-
the-art water model, but rather we intend to demonstrate that
DPLR can capture long-range electrostatic effects missing in the
DP model. For this purpose, the choice of the exchange–correlation
functional is not a critical issue. It would be straightforward to
adopt more accurate functionals than PBE by simply replacing PBE
with any other functional of choice, in the labeling steps whereby
energy, force, and virial tensor are calculated at selected atomic
configurations. In Subsections III A–III C, we construct DP, DW,
and DPLR models based on the PBE functional approximation.

A. Training data and DP model
We use the concurrent learning scheme Deep Potential GEN-

erator (DP-GEN).59,60 DP-GEN iteratively enlarges the training
dataset of labeled DFT data and refines a representative ensemble
of DP models by learning from a growing dataset. In this work, the
representative ensemble consists of four models that differ in the
random initialization of the network parameters but are otherwise
trained on the same data. In the DP-GEN protocol, the four DP
models are used to sample the relevant thermodynamic space with
deep potential molecular dynamics (DPMD) trajectories. The DP
construction includes three stages. In the first one (iteration 1–7),
bulk configurations in the thermodynamics space 200 ≤ T ≤ 400 K
and 1 ≤ P ≤ 104 bars are explored with isothermal–isobaric (NPT)
DPMD. The initial configurations for bulk NPT DPMD simulations
are snapshots of DPMD simulations with 128 molecules in the liquid
state obtained with the DP model developed in Ref. 13. The second
stage extends from iteration 8 to iteration 15. In this stage slab, con-
figurations are explored with canonical (NVT) DPMD simulations
in the temperature range 200 ≤ T ≤ 400 K. The initial configurations
are prepared by adding a vacuum region on top of bulk liquid config-
urations. Different surface structures with thickness of the vacuum
region ranging from 0.5 to 7.0 Å are considered. In the third stage,
from iterations 16–23, low density bulk configurations are explored
by NVT simulations for 200 ≤ T ≤ 400 K. Initial configurations are
created by randomly removing 64, 96, 112, and 120 molecules from
the initial configurations of stage 1. At each stage, the time span
of the DPMD simulations is gradually increased over the iterations,
from 1 to 10 ps. The maximal deviation of the forces predicted by the
ensemble of DP models is monitored along the trajectories and used
to classify the explored configurations. Configurations with devia-
tion between 0.15 and 0.30 eV/Å are labeled training data, following
the protocol detailed in Ref. 60. Single-shot DFT calculations are
performed at these configurations.

DFT calculations are carried out with the Vienna ab initio
simulation package (VASP) version 5.4.461,62 using the PBE
exchange–correlation energy. The kinetic energy cutoff for the plane
wave basis is set to 1500 eV. The self-consistent field procedure is
stopped when the energy difference between the last two iterations
is less than 10−6 eV.

The DP models are trained with the DeePMD-kit package.63

The cutoff radius rc for the atomic environments is set to 6 Å.
The size of the embedding and that of the fitting network are set
to (25, 50, 100) and (240, 240, 240), respectively. The DP mod-
els are trained with the Adam stochastic gradient descent scheme64

using 106 steps, during which the learning rate exponentially decays
from 10−3–3.5 × 10−8. At each training step, a subset of the training

dataset, referred to as the mini-batch, is used to calculate the gradi-
ent of the loss function. The size of the minibatch is 1, i.e., only one
configuration is used for calculating the gradient.

At the end of each training stage, the fraction of configurations
with gradient deviation larger than 0.15 eV/Å is reduced to less than
0.1%, indicating satisfactory convergence of the DP-GEN cycle. A
total of 448 configurations are selected as training data during the
DP-GEN protocol. They include 323 bulk, 94 surface, and 31 low
density configurations. The dataset used for training the initial DP
models has 135 configurations; thus, the total training data include
583 configurations.

B. DW model
For each water configuration, the DW model gives the posi-

tion of the WC associated with a given molecule relative to the O
atom of that molecule. The training data are the same data used
to generate the DP model. Each WC is uniquely associated with
a particular O atom and depends on the atomic environment of
that atom within a cutoff radius, which is set here to 6 Å, i.e., it
is the same cutoff rc of the DP model. We use the standard DP
descriptor D = Da (see the Appendix for details). The sizes of the
embedding and fitting networks are (25, 50, 100) and (100, 100, 100),
respectively. The model is trained with the Adam stochastic gradient
descent method64 using 106 steps. The batch size is set equal to 1. The
learning rate exponentially decays from 1.0 × 10−2 to 5.6 × 10−8.

The training accuracy of the DW model is 1.7 × 10−3 Å, which
is much smaller than the typical distance D of a WC from its
reference O atom. The test accuracy is 1.9,×, 10−3 Å. Thus, the
generalization gap between test and training errors is almost negligi-
ble. The correlation between labeled and predicted D is graphically
illustrated in Fig. 3.

C. DPLR model
The DPLR model is trained on the dataset generated by DP-

GEN. In DPLR, the spread parameter β, i.e., the inverse spread of
the Gaussian charge distribution, needs to be fixed. In the limit of
β going to 0, the Gaussian width is infinite and DPLR reduces to
the standard DP model. On the other hand, for β going to infinity,
the Gaussian charges become point charges. In this limit, the magni-
tude of the intramolecular Coulomb force between the oxygen ion
(qI = 6e) and its associated WC (qn = −8e), for a typical separa-
tion distance (D ≈ 0.07 Å), is about 104 eV/Å, which is about four
orders of magnitude larger than the average atomic force. This situ-
ation would create serious numerical problems due to the difficulty
in resolving a labeled force from the strong intramolecular Coulomb
force. Therefore, there should be an optimal β, neither too small to
avoid reduction to the standard DP model nor too large to avoid
distributions too close to point charges.

To study the effect of the spread parameter on the accuracy of
the DPLR models, we train different DPLR models with different
spread parameters (β = {0.1, 0.2, . . . , 0.6} Å−1). To ensure proper
convergence of the Ewald sum in Eq. (9), the mesh spacing η is set
equal to the largest value compatible with the constraint η ⋅ β ≤ 0.4.
In DP and in the short-range part of the DPLR models, we adopt a
hybrid descriptor (see the Appendix for details) D = (Da,Dr

), and
the cutoff of Da is set to ra

c = 4 Å, while the cutoff of Dr is set to
rc = 6 Å. The size of the embedding net of Da is (25, 50, 100), and
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FIG. 3. Training accuracy of the DW model for water. The three panels report the three Cartesian displacements of the Wannier centroids (WCs) relative to their nearest
oxygen atom predicted by DW (vertical axis) and by DFT (horizontal axis).

that of Dr is (10, 20, 40). Training and test errors, as a function of β,
are shown in Fig. 4. The training dataset is divided into two parts,
one consisting only of bulk configurations and the other consist-
ing only of surface configurations. The test dataset includes surface
configurations with 128 molecules with a vacuum region of 7 or
12 Å, generated along a 100 ps DPLR molecular dynamics
(DPLRMD) trajectory for each of the two widths of the vacuum
region. Configurations are recorded every 10 ps and are labeled with
ab initio DFT calculations. Thus, the test dataset includes 20 surface
configurations in total.

In Fig. 4, one can see that the energy training error for the
bulk configurations is smaller than the corresponding error for the
surface configurations in both DP and DPLR models, reflecting the
more difficult task of interpolating the PES for surface than for bulk
configurations due to the larger variance of the local environments
in the former case. For β < 0.5 Å−1, the DPLR training errors are
close to those of DP, but for β ≥ 0.5 Å−1, they gradually increase and
become notably larger than the corresponding DP errors, a behavior

FIG. 4. Root mean square error (RMSE) of the energy predicted by the DPLR
model as a function of the spread parameter β. The training error of bulk (solid
squares connected by a red solid line) and surface configurations (solid circles
connected by a red dashed line) and the test error of surface configurations (open
circles connected by a red dotted line) are shown (see the text for more details).
The corresponding errors for the DP model are plotted as a black solid line (bulk
training error), a black dashed line (surface training error), and a black dotted line
(test error).

that we attribute to numerical difficulties with Gaussian charges that
are too localized.

The test dataset is composed of independent configurations not
included in the training dataset and serves to assess the capability
of the models to deal with unforeseen situations. In the case of the
standard DP model, the test error (2.0 meV/H2O) is larger than the
surface training error (1.2 meV/H2O). The gap, usually called gener-
alization gap, between test and training errors indicates that a model
overfits the training data and loses accuracy when generalized to
cases not included in the training dataset. The DPLR model with
a small β has a generalization gap comparable to that of the standard
DP model, as expected because for β→ 0 Å−1, DPLR reduces to DP.
However, for β ≈ 0.4 Å−1, the generalization gap is minimal. In this
case, the training error and the test error are 1.3 and 1.5 meV/H2O,
respectively, indicating that inclusion of long-range electrostatics
contributes to the model’s generalization ability. For β ≥ 0.5 Å−1, the
test error increases with β, as expected from numerical difficulties
with charge distributions that are too strongly localized.

Based on the above analysis, the optimal spread parameter β
should have a value of about 0.4 Å−1. It is interesting to note that,
with this value of the spread parameter, the radial extent of the Gaus-
sian distribution gn(r) about the oxygen atom is close to the physical
extent of the (valence) electron density of a water molecule, as mea-
sured by the radius of the surface on which the electron density is
approximately one order of magnitude smaller than its maximum
value. Thus, with the optimal β, the spherical Gaussian distribution
gn(r) approximates (roughly) the physical WC distribution ρn(r)
and the error Δn(r) in Eq. (6) is minimized.

In the rest of this article, we set β = 0.4 Å−1, unless stated
otherwise. We note that simply increasing the cutoff radius of the
standard DP model to 8 Å only marginally reduces training and
test errors. Indeed, when using rc = 8 Å in place of rc = 6 Å, the
bulk and surface training errors are reduced from 1.02 and 1.26 to
1.01 and 1.18 meV/H2O, respectively, while the test error is reduced
from 2.14 to 2.08 meV/H2O. This indicates that the long-range effect
is non-trivial and can only be captured by including explicitly the
long-range electrostatic interaction.

IV. APPLICATION TO TWO WATER SYSTEMS
We compare the performance of DPLR and DP in two test

cases. In one, we compute the potential energy of interaction of two
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water molecules as a function of the relative distance. In the other,
we compute the free energy profile of a water molecule vs its dis-
tance from a liquid water slab. The second example requires the
calculation of a thermal property of a relatively complex system. In
both cases, long-range electrostatic interactions among the electric
dipoles of the water molecules play a role. These interactions, absent
in the DP model, are described with sufficient accuracy by DPLR.

A. Water dimer
The potential energy curve of a water dimer as a function of

the separation distance dO between the two molecules is reported in
Fig. 5. Both DP and DPLR models describe equally well the potential
energy at short distance. The DP model does not correctly predict
the energy curve at a distance beyond the cutoff radius. Due to the
finite range of the DP model, the corresponding potential energy
curve misses the 1/d3

O tail of the DFT reference, which is due to
dipole–dipole interactions. By contrast, the long-range Coulomb tail
is recovered accurately by the DPLR model, as shown in both panels
of Fig. 5. The accuracy at intermediate distance improves by increas-
ing the cutoff in all the models, as expected. Although DPLR has
a higher ability of representing the energy surface, it is marginally
less accurate than the DP model between 3.5 and 4.0 Å. This can be
explained by the fact that dimer configurations were not included
in the training dataset. From Fig. 5, one concludes that DPLR is a
superior model with both cutoffs.

FIG. 5. Potential energy of the water dimer as a function of the separation distance
between the two water molecules. The standard deviation of four independently
trained DPLR models with the same spread parameter β = 0.4 Å−1 is shown by
the error bars in the plot. The top panel compares DFT with DP and DPLR models
with cutoff radii ra

c = rc = 4 Å. The bottom panel compares DFT with DP and DPLR
models with cutoff radii ra

c = 4 Å and rc = 6 Å. All energies are referred to the
potential energy minimum Emin.

B. Free energy profile of a molecule at varying
distance from a liquid slab

In this subsection, we test the performance of DPLR in a calcu-
lation of the free energy profile of a water molecule as a function of
its distance from a liquid water slab. The model has cutoff radii of
ra

c = 4 Å and rc = 6 Å, a spread parameter of 0.4 Å−1, and an Ewald
mesh spacing of 1 Å. We simulate the slab and the adjacent vacuum
region on a periodic box of size 50 × 11 × 11 Å3. The slab contains
64 molecules, let to equilibrate with a long canonical MD run at a
temperature of 300 K starting from an initial bulk liquid configura-
tion. After equilibration, the half width of the slab is ∼7.9 Å and the
adjacent vacuum region has a width of ∼34.2 Å. We insert an addi-
tional molecule to this system, initially near the center of the vacuum
region where it interacts weakly with the slab. Then, we vary the dis-
tance of the molecule from the slab and we calculate the free energy
profile as a function of the distance, while keeping the whole system
in equilibrium at 300 K. The distance of the molecule from the slab
is defined by the distance of the respective centers of mass. A typi-
cal configuration is illustrated in the inset of Fig. 6 for a distance s
between the molecule and the liquid slab. In the atomic configura-
tion {R}, the distance of the molecule from the slab is represented
by the collective variable σ({R}). In MD simulations, an holonomic
constraint, such as σ({R}) = s, is easily imposed by a Lagrange mul-
tiplier. We set the initial distance to sfar = 17 Å. At this distance, the
molecule experiences weak long-range dipolar interactions with the
slab. We indicate by F the projection of the force on the molecule
along the direction connecting the center of mass of the molecule
and that of the slab. When the molecule is displaced from sfar to s,
the corresponding free energy change, A(s), is given by

A(s) = ∫
sfar

s
⟨F⟩τdτ,

⟨F⟩τ =
1
Z ∫

Fe−βH({R})δ(σ({R}) − τ)d{R}.
(30)

FIG. 6. The free energy of water molecule absorption to a water slab. (a) The free
energy calculated by DFT, DPLR, and DP models. (b) The error in free energy of
the DPLR and DP models with respect to DFT. The error bar in the plot is given
by the standard deviation of four independently trained models. The inset is a
schematic plot of the system configuration.
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Here, H({R}) and Z are the Hamiltonian and the partition func-
tion of the system. For each value of τ, the ensemble average in
Eq. (30) is calculated with canonical MD at 300 K for configurations
that satisfy the constraint σ({R}) = τ. We compute the ensemble
average at a discrete set of τ values using 1000 ps long MD tra-
jectories, the first 200 ps of which serve for equilibration and are
not included in the observation time. During observation, configu-
rations are recorded every 10 ps. By varying s from sfar to snear = 9 Å,
we obtain the blue free energy profile reported in panel (a) of Fig. 6
for the DPLR model. We divide the interval [snear, sfar] into eight
equal intervals and calculate the corresponding free energy changes
by evaluating the integrals in Eq. (30) numerically with the trape-
zoidal rule. For s in the vicinity of snear, the tagged molecule forms
hydrogen bonds with neighboring molecules in the slab, suggesting
that incorporation into the slab is taking place.

We use a simple approximation to estimate the deviation of
the calculated DPLR profile from the DFT reference. Instead of
re-weighting with the DFT energy the configurations along DPLR
trajectories, which would be expensive given the large number of
configurations needed for statistical accuracy, we keep the DPLR
weights and approximate the ensemble average with the following
expression, which only requires DFT calculations at a relatively small
number of configurations:

⟨FDFT⟩
τ
DFT ≈ ⟨FDFT⟩

τ
DPLR. (31)

This procedure can be justified because DPLR reproduces accurately
DFT energies with an average error of ∼1 meV/H2O. We find that 80
configurations, equally spaced in time along an equilibrated 800 ps
long trajectory, are sufficient to compute the average force at each
τ value. The results are reported in panel (b) of Fig. 6, where the
baseline DFT reference corresponds to ΔA(s) = 0. The deviations
of DPLR from the baseline, calculated at discrete distances in the
interval [snear, sfar], appear in Fig. 6(b) as blue points connected by
blue lines. The blue points represent the average of four independent
DPLR models trained on the same data with same hyper-parameters
but different random initialization of the model parameters. The
blue error bars are the corresponding standard deviations of the pre-
dictions of the four models. Overall, the deviation of DPLR from
DFT is quite small and the uncertainty of the model, estimated from
the standard deviation of the four models, is even smaller.

We now consider a DP model with same cutoff radius of
DPLR but without explicit long-range Coulomb interactions. To
estimate the deviation of this model from DPLR, we adopt a sim-
ilar approximation to the one adopted in Eq. (31), i.e., we assume
that

⟨FDP⟩
τ
DP ≈ ⟨FDP⟩

τ
DPLR (32)

and use the same configurations as before to calculate the ensem-
ble averages and the free energy differences. The deviations of DP
from DPLR and from the baseline DFT reference are reported as
red points with error bars connected by red lines in panel (b) of
Fig. 6. As before, the DP points are averages of four independent
models trained on the same data with different random initializa-
tion. The average free energy profile obtained in this way is reported
as a red line in panel (a) of Fig. 6, showing that when the molecule
approaches the slab, the gain in free energy is smaller for DP than for

DPLR, a result consistent with the missing attractive dipolar inter-
actions in the DP model. However, the most important outcome of
this analysis is that the DP model is affected by a large uncertainty.
When evaluated along DPLR trajectories, the standard deviation of
the independent DP models grows rapidly as the tagged molecule
approaches the slab to become almost an order of magnitude larger
than the uncertainty of the corresponding DPLR model when the
tagged molecule is near the slab. We attribute this behavior to the
absence of long-range electrostatic interactions in the DP model as
opposed to DPLR and DFT.

V. PHONONS IN CRYSTALLINE SODIUM CHLORIDE
In this section, we consider the phonon dispersion curves in

the sodium chloride (NaCl) crystal, as a further example to illus-
trate the importance of long-range electrostatic interactions. For the
reference DFT model, we adopt the PBE exchange–correlation func-
tional and use pseudopotentials for the electron–ion interactions.
DP and DPLR models for NaCl are trained on DFT data gener-
ated in a 200 ps DPMD NPT trajectory of a 2 × 2 × 2 supercell (64
atoms) at 100 K and 1 bar. In the DFT data, we use Brillouin Zone
(BZ) sampling with a 4 × 4 × 4 Monkhorst Pack mesh to calculate
the interatomic potential and the maximally localized Wannier dis-
tributions. The hyper-parameters of the DP and DPLR models are
the same as in the water models discussed earlier in this article.
Using the same arguments of Sec. III C, we find that the optimal
value of the spread parameter for NaCl is β = 0.2 Å−1. The smaller β
of NaCl compared to water reflects the fact that the electron den-
sity distribution about the Cl atom in NaCl is more delocalized
than the one about the O atom in the water molecule. The train-
ing accuracy of the DP model is 7.6 × 10−4 eV/atom for energy and
2.0 × 10−3 eV/Å for atomic forces, similar to that of the DPLR model,
which is 7.7 × 10−4 eV/atom for energy and 2.6 × 10−3 eV/Å for
atomic forces.

To compute the phonons, we calculate numerically the force
constants from the second derivatives of the PES with respect to
atomic displacements. We then obtain the phonon frequencies at a
generic point q of the BZ of the crystal with the phonopy package,66

by diagonalizing the dynamical matrix given by a Fourier expan-
sion of the force constants at wavevector q. This approach would
be adequate in non-polar materials where the force constants have
a finite range. In polar materials, such as NaCl, long-range electro-
static interactions yield a non-analytic contribution to the dynamical
matrix, which should be added to the analytic contribution calcu-
lated with the above procedure. We report in panel (a) of Fig. 7
the phonon dispersion curves along the Γ–X segment of the BZ
obtained from the analytical part of the dynamical matrix by using
a 2 × 2 × 2 supercell for the force constants. DP and DPLR curves
coincide within the accuracy of the calculation and are very close to
the corresponding DFT curves, as one could have expected, given
that a 2 × 2 × 2 supercell was used for training the models. Experi-
mental frequencies are also reported in the same panel, from which
we see that, while the calculated acoustic and transverse optical
(TO) modes agree with the experiment, the calculated longitudinal
optical (LO) modes deviate considerably from the experiment, par-
ticularly in the long-wavelength limit, where the calculated modes
fail to exhibit an LO–TO splitting. Adding the non-analytic contri-
bution to the dynamical matrix restores agreement between theory
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FIG. 7. The LO–TO splitting of the phonon spectra of the NaCl crystal. DPLR, DP, DFT, and experiment (Expt.)65 are compared. (a) Spectra obtained from the analytical
dynamical matrix (see the text) on a 2 × 2 × 2 (64 atoms) supercell. (b) Spectra obtained from the full dynamical matrix, including analytical and non-analytical correction
(NAC) terms (see the text), on a 2 × 2 × 2 supercell. Spectra obtained from the analytical dynamical matrix on a 3 × 3 × 3 (216 atoms) (c), 5 × 5 × 5 (1000 atoms) (d), and
6 × 6 × 6 (1728 atoms) (e) supercell, respectively.

and experiment, as illustrated in panel (b) of Fig. 7. The non-analytic
contribution to the dynamical matrix is given by67

D̃NA
κα,κ′β(q) =

4π
Ω
√

MκMκ′

(∑γqγZ∗κ,γα)(∑γ′qγ′Z∗κ′ ,γ′β)

∑αβqαϵ∞αβqβ
. (33)

Here, Ω is the volume, κ, κ′ are atom indices, α, β, γ are Cartesian
directions, Mκ, Mκ′ are atomic masses, Z∗κ , Z∗κ′ are Born dynami-
cal charge tensors, and ϵ∞ is the dielectric tensor that describes
the static response of the electrons at fixed ions. We recall that the
dynamical Born charges are the derivatives of the polarization with
respect to atomic displacements and are therefore directly acces-
sible from the DW network within DPLR. The dielectric tensor
is related to the dielectric susceptibility or polarizability tensor χ
via ϵ∞ = 1 + 4πχ. The susceptibility is defined by the derivatives
of the polarization with respect to an applied electric field and is
accessible within a DW extension introduced to model the polar-
izability surface.56 Thus, all the quantities needed for calculating the
phonons in polar materials are accessible within the extended DP
methodology.

It is interesting to monitor the evolution of the analytical
phonon modes calculated within DP and DPLR when the size of the
supercell used to compute the force constants is increased. This is
shown in panels (c)–(e) of Fig. 7 for a 3 × 3 × 3 supercell (216 atoms),
a 5 × 5 × 5 supercell (1000 atoms), and a 6 × 6 × 6 supercell (1728
atoms), respectively. The DP modes are essentially independent of
size, indicating that, with the chosen cutoff radius (rc = 6 Å), the
force constants for atomic distances larger than those probed in a
2 × 2 × 2 supercell are negligible. By contrast, the LO mode of DPLR
is strongly size dependent, reflecting the appearance of not negligible
force constants on larger supercells due to long-range dipolar inter-
actions. With larger supercells, the analytical spectra from DPLR
recover a larger portion of the correct LO modes. However, the con-
vergence is slow as the non-analytic behavior for q→ 0 cannot be

recovered from numerical Fourier interpolation. At small wavevec-
tors, we observe an upward bump in the LO and TO modes that
becomes sharper and moves to smaller q values as the size of the
supercell increases. The bump is a manifestation of the Gibbs oscilla-
tions that are expected to occur in place of the LO–TO splitting when
attempting to reproduce the non-analytic behavior of the dynamical
matrix with a Fourier sum.68

The long-range contributions that are responsible for the spec-
tral changes in panels (c)–(e) of Fig. 7 derive from the Ewald
contribution to the PES within DPLR. This example illustrates an
essential advantage of DPLR over DP in materials where long-range
electrostatic effects are important. While the DP model can describe
well such materials on the supercell used for training, it is unable to
extrapolate the PES to larger supercells, a drawback that is absent in
the DPLR model.

VI. EXTERNAL FIELDS
In this article, we have considered the electrostatic fields origi-

nating from internal charges, but, in the linear regime, it is straight-
forward to include the effect of an external time dependent field
Eext(t) that couples with the polarization P({R}). In this situation,
the PES takes the following form:

E({R}) = EDPLR/DP({R}) − P({R}) ⋅ Eext(t). (34)

In Eq. (34), the PES in the absence of an external field can be pro-
vided either by DPLR or by DP depending on whether the size
dependence of the electrostatic energy should be included explicitly
or not. Equation (34) makes possible non-equilibrium MD simu-
lations of an insulating system driven by an external electric field.
The response of the system to the external field can also be studied
with equilibrium MD using the Kubo formalism, as done in Ref. 48
to study the infrared absorption spectra of liquid water. In that
work, the standard DP model for the PES was used, which was ade-
quate because at the infrared frequencies, long-range electrostatic
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effects can be ignored as the dominant correlations are between
neighboring molecular dipoles.69 Long-range correlations among
the molecular dipoles become important in the static ionic limit.70

In that limit, which is relevant to study the static dielectric constant
of water, one should use the DPLR model for the PES in Eq. (34).

Equation (34) can be further extended by including the
quadratic response of the electrons via the susceptibility tensor χ,

E({R}) = EDPLR/DP({R}) − P({R}) ⋅ Eext(t)

+
1
2
Eext(t) ⋅ χ({R}) ⋅ Eext(t). (35)

This approach was used in the context of the Kubo formalism
to compute the Raman spectra of water in Ref. 56, a study that
required the environmental dependence of the electric susceptibil-
ity. The latter was modeled by a DNN extending the DW approach
to the polarizability tensor. The polarizability tensor is defined by
the derivatives (i.e., the response) of the Wannier centroid positions
with respect to an applied electric field in the limit of zero field. These
derivatives are described by an extension of the DW model trained
on DFT calculations in the presence of a small, i.e., numerically
infinitesimal, electric field, as discussed in Ref. 56. The Raman scat-
tering response is dominated by short-range correlations between
molecular polarizabilities, and the standard DP model was sufficient
for the PES.

VII. CONCLUSIONS
In this article, we examined a fundamental limitation of the

local representation of the PES common to most ML models. These
models are trained on quantum mechanical data, typically DFT
data, on relatively small systems. They are then used in molecu-
lar simulations on larger systems that become accessible in view
of the computational efficiency of the models. While successful in
many cases, this procedure may lead to errors for physical proper-
ties affected by long-range electrostatic interactions. We have shown
that these effects can be modeled accurately by the DPLR model,
which extends the DP methodology using information on the cen-
ters of the electronic charge. The latter is encoded in the location of
the Wannier centroids, which are averages of the Wannier centers
uniquely associated to specific atoms. The environmental depen-
dence of the Wannier centroids is described by DW, a DNN model,
which we introduced in previous work to describe the dielectric
polarization of insulators. Using the information from DW, DPLR
augments the local representation of the PES of the standard DP
model with the long-range electrostatic energy of ions and elec-
trons, modeled by spherical Gaussian charge distributions centered
at ions and Wannier centroids, respectively. The width of the Gaus-
sian distributions is fixed by the value of the spread parameter β.
Interestingly, the optimal β that minimizes the generalization gap
in the ML procedure is close to the physical value expected from
the spatial delocalization of the reference Wannier centroid distri-
bution within DFT, as illustrated in our water and NaCl examples.
The variation in size of the long-range electrostatic contribution,
ignored in the standard DP model, is approximated accurately in the
DPLR model under the assumption that the electrostatic fields from
which this contribution originates are a weak perturbation that can
be treated within linear response theory. Because of that, it is possible

to learn the environmental dependence of the Wannier centroids,
ignoring the size dependence of the electrostatic energy as done in
the DW scheme.

DPLR uses two DNN models to represent the PES: the stan-
dard DP network for the short-range interactions and the DW
network for computing long-range electrostatic interactions with the
Ewald method. Because of the complex architecture of the DPLR
network, whereby force calculations require backward propagation
within both DP and DW, and because of the need for Ewald cal-
culations, DPLR simulations are more expensive than standard DP
calculations. Based on our experience, an increase of the compu-
tational burden of approximately a factor of 5 should be expected
when using DPLR in place of DP. The decision on which of the two
models should be used in a given application should be guided by
the physical properties of interest, whether long-range correlations
originating by Coulomb forces are important or not.

In developing the DPLR model, we assumed that long-range
electrostatic effects beyond the cutoff radius of the DP model orig-
inate a weak dependence on size that can be described within the
linear response regime. This seems a reasonable assumption based
on our experience and on the examples discussed in this article.
We cannot exclude, however, that effects of long-range electro-
statics beyond the linear response regime may manifest in some
circumstances. In these cases, the assumption made here that the
environmental dependence of the Wannier centroids is not affected
by size should be revisited and one should envision a self-consistent
condition for the centroids under the action of the long-range elec-
trostatic field along lines similar to those developed in Ref. 54. We
expect that a better understanding of all these issues should emerge
from widespread application of the DPLR model.

The major simplifying assumption of the current DPLR model
is that the WCs are uniquely associated with specific atoms. Thus,
they cannot split or recombine along molecular dynamics trajec-
tories. This assumption limits the capability of the model to deal
with chemical reactions: proton transfer reactions such as those dis-
cussed, for example, in Refs. 26 and 48, are allowed, but not, in
general, electron transfer reactions in which an electron is donated
by one atomic entity to another. The centroid assumption shall be
relaxed, within the limits of adiabatic ground-state dynamics, in a
future generalization of the DPLR model.
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APPENDIX: MODELING THE SHORT-RANGE PART

In this appendix, we briefly recall how the short-range DP
model is constructed. The short-range part Esr is given by a sum of
atomic contributions,

Esr =∑
I

Esr
I , Esr

I = F(D(RI)), (A1)

whereRI is an environment matrix whose rows record the positions,
relative to atom I, of the neighbors of that atom, within a specified
cutoff radius rc. We consider two sets of neighboring atoms N a

I
= {RJ : ∣RJ − RI ∣ ≤ ra

c , J ≠ I} and NI = {RJ : ∣RJ − RI ∣ ≤ rc, J ≠ I},
where ra

c and rc denote two cutoff radii, typically satisfying ra
c ≤ rc.

The number of neighbors of atom I in the two sets is corre-
spondingly denoted by Na

(I) and N(I). The two sets are used for
constructing descriptors with angular and radial information.

The environment matrix R̃a
I is derived from the neighbor set

N a
(I) and has dimension equal to Na

(I) × 4, with each row being
a four-dimensional vector s(RIJ) × (1, xIJ/∣RIJ ∣, zIJ/∣RIJ ∣, zIJ/∣RIJ ∣).
Here, the relative positions are defined as RIJ = RI − RJ , and their
Cartesian components are denoted by RIJ = (zIJ , yIJ , zIJ). s(RIJ) is
defined as w(∣RIJ ∣)/∣RIJ ∣, with w being a switch function that decays
smoothly from 1 to 0 at the cutoff radius. The embedding matrix Ga

I
has dimension equal to Na

(I) ×Ma, with each row mapping s(RIJ)

to an Ma dimensional vector via a feed forward DNN. A subma-
trix of Ga

I that includes its first M1 columns (Ma
1 <Ma

) is denoted
by Ga,<

I . The descriptor defined by Da
= 1
(Na(I))2 (Ga,<

I )
TR̃a

I (R̃a
I )

TGa
I

contains angular and radial information, and one proves that it pro-
vides a symmetry preserving representation of the local environment
of atom I.

The environment matrix R̃I includes only radial neighbor
information. It is set up from the neighbor set NI and has dimension
equal to N(I) × 1, with each row being s(RIJ). The correspond-
ing embedding matrix is denoted by GI and has dimension equal
to N(I) ×M. It should be noted that the embedding net used to
map s(RIJ) to GI is usually different from the one used to gener-
ate Ga

I . The descriptor with only radial information is defined as
Dr
= 1

N(I)∑j(GI)jk, i.e., it is the average of the embedding matrix GI

with respect to its first index. The descriptor Da contains radial and
angular information on the environment, while Dr contains only
radial information. Typically, combined angular and radial informa-
tion is more important for close neighbors, while radial information
alone is sufficient to describe the more distant neighbors. We thus
define a hybrid descriptor as the concatenation of the radial and
angular descriptors, i.e., D = (Da,Dr

). Relative to the descriptor
D = Da, the hybrid descriptor D = (Da,Dr

) has usually a stronger
ability of generalization.

The hybrid descriptor is proved to be a symmetry preserving
representation of the local environment of atom I. F in (A1) denotes
the fitting network, which is implemented by a feed forward DNN
with skip connections. The DNNs used in the standard DP construc-
tion are trained in an end-to-end way by stochastic gradient descent
schemes such as Adam.64
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