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Abstract: Lightweight session key agreement schemes are expected to play a central role in building
Internet of things (IoT) security in sixth-generation (6G) networks. A well-established approach
deriving from the physical layer is a secret key generation (SKG) from shared randomness (in the
form of wireless fading coefficients). However, although practical, SKG schemes have been shown
to be vulnerable to active attacks over the initial “advantage distillation” phase, throughout which
estimates of the fading coefficients are obtained at the legitimate users. In fact, by injecting carefully
designed signals during this phase, a man-in-the-middle (MiM) attack could manipulate and control
part of the reconciled bits and thus render SKG vulnerable to brute force attacks. Alternatively, a
denial of service attack can be mounted by a reactive jammer. In this paper, we investigate the impact
of injection and jamming attacks during the advantage distillation in a multiple-input–multiple-
output (MIMO) system. First, we show that a MiM attack can be mounted as long as the attacker has
one extra antenna with respect to the legitimate users, and we propose a pilot randomization scheme
that allows the legitimate users to successfully reduce the injection attack to a less harmful jamming
attack. Secondly, by taking a game-theoretic approach we evaluate the optimal strategies available to
the legitimate users in the presence of reactive jammers.

Keywords: physical layer security; secret key generation; injection attacks; jamming attacks;
pilot randomization

1. Introduction

The increasing interest in physical layer security (PLS) has been stimulated by many
practical needs, particularly in the context of Internet of things (IoT) applications [1].
For example, in [2,3], secret key generation (SKG) from wireless fading coefficients was
analyzed, showing its potential as a lightweight alternative to standard security schemes.
In fact, the SKG scheme allows two legitimate parties (Alice and Bob) to extract on-the-
fly secret keys, without the need for significant infrastructure. Furthermore, it has been
information-theoretically proven that by following the SKG process, Alice and Bob can
extract a shared secret over unauthenticated channels [4–6]. Building on that, numerous
practical experiments have demonstrated the feasibility of the scheme [7,8]. Moreover, it has
been shown that SKG can be combined with authenticated encryption (AE) schemes [9,10]
in order to overcome trivial man-in-the-middle (MiM) attacks, similarly to known MiM
attacks on unauthenticated Diffie–Hellman schemes.

The success of the SKG scheme relies on the reciprocity and variability of wireless
channels. On the one hand, the reciprocity property allows both Alice and Bob to measure
an identical channel impulse response during the coherence time of the channel [11–13],
while on the other hand, the variability property of the wireless channel directly affects the
key generation rates [14–17].
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However, the exchange of pilots during the channel estimation phase between Alice
and Bob could allow an adversary (Mallory) to estimate the channels Alice–Mallory and
Bob–Mallory. Having this information, Mallory could inject suitably precoded signals
during the SKG process and could potentially control a significant part of the reconciled
sequence while remaining undetected. To overcome this, instead of transmitting publicly
known pilot signals, we propose a two-way randomized pilot transmission between Alice
and Bob. An earlier work studied this problem for an orthogonal frequency-division
multiplexing (OFDM) system [18]. Here, we investigate the scenario of a multiple-input–
multiple-output (MIMO) system. We prove that if Mallory has one extra antenna with
respect to Alice and Bob, she could always launch an injection attack. Next, through
theoretical analysis, we show that the proposed pilot randomization scheme successfully
reduces an injection attack to a less harmful uncorrelated jamming attack, ensuring that
the extracted key bits are secret from both active and passive adversaries.

In the second part of this paper, we delve deeper into jamming attacks over MIMO
systems. In particular, we focus on denial of service (DoS) in the form of reactive jamming.
We derive the optimal strategies for both the attacker and the legitimate users. Through
numerical evaluation, we demonstrate that, depending on their capabilities, reactive
jammers could provoke legitimate users to transmit at full power in order to achieve a
positive SKG rate.

2. System Model

In this work, we consider a time-division duplex MIMO (TDD–MIMO) system con-
sisting of two legitimate nodes and an active adversary, namely, Alice, Bob, and Mallory,
respectively. On the one hand, Alice and Bob are generating secret keys using the wireless
SKG procedure, while on the other hand, Mallory performs an injection attack on the
MIMO links Mallory–Alice and Mallory–Bob. The number of antennas at Alice NA and
Bob NB are assumed to be equal, i.e., NA = NB = N. To better illustrate the considered
scenario, we give a brief overview of the SKG procedure, and show how an injection attack
could affect the process.

2.1. Secret Key Generation from Fading Coefficients

As illustrated in Figure 1, the standard SKG procedure consists of three phases [19]:
(1) advantage distillation: the legitimate nodes exchange pilot signals, each using N
transmit and N receive antenna elements, in order to estimate their reciprocal channel state
information (CSI).

zA = Hx + nA (1)

zB = HTx + nB, (2)

where H represents the channel matrix of size Nr × Nt = N × N such that its (i, j) entry
represents the channel linking the i-th receive antenna, and the j-th transmit antenna, z
represents the received vector of length Nr, x denotes the transmitted vector consisting of
Nt = Nr = N elements, nA and nB are the received noise vectors at Alice and Bob, each of
length Nr, respectively. Note that, due to the reciprocity of the wireless channel, Alice and
Bob observe H and HT , respectively. To conclude this step, zA and zB are passed through
suitable quantizers [20], generating binary vectors rA and rB, respectively; (2) information
reconciliation: discrepancies, due to imperfect channel estimation in the quantizer local
outputs, are reconciled through a public exchange of helper data sA (see Figure 1), e.g.,
by using Slepian–Wolf reconciliation techniques [10,21]; (3) privacy amplification: the
legitimate nodes apply universal hash functions to the reconciled information rA and
obtain key k. This step ensures that the generated key k is uniformly distributed and
completely unpredictable by an adversary.
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During the process above, an eavesdropping adversary could obtain channel observa-
tions, given as follows:

zAM = HAMx + nAM, (3)

zBM = HBMx + nBM, (4)

where the channel matrices in the links Alice–Mallory and Bob–Mallory are denoted by
HAM and by HBM, respectively, while the received noise vectors are demoted by nAM and
nBM. Afterward, the SKG capacity between Alice and Bob is expressed as the conditional
mutual information between the observations of Alice, Bob, and Mallory.

I(zA; zB|zAM, zBM). (5)
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Figure 1. Secret key generation process between Alice and Bob.

2.2. Injection Attacks during SKG

One of the most critical threats to the SKG model, given in Figure 1, is MiM in the
form of an injection attack [11,22,23]. The main components of the injection attack are
captured in Figure 2. While, the legitimate nodes Alice and Bob exchange pilot signals
during the advantage distillation phase, Mallory injects signals p. Based on the results
in [22], we assume that Mallory has perfect knowledge of the channel vectors in the MIMO
links Mallory–Alice, HMA = HT

AM and Mallory–Bob, HMB = HT
BM. This is a reasonable

assumption since Mallory can estimate the channel vectors while Alice and Bob exchange
pilot signals, as long as the channel’s coherence time is respected (a plausible scenario in
slow-fading, low-mobility environments). Finally, Mallory chooses the vector p such that
the same signal is “injected“ at both Alice and Bob, i.e., HMAp = HMBp.

Alice

Bob distillation

Advantage

distillation

Advantage

6

?
Pilot

Pilot

z′A = Hx + w + nA

z′B = HTx + w + nB

XXX
XXXy

w = HMAp

������9
w = HMBp

Mallory

Figure 2. Injection attack performed by Mallory: While Alice and Bob exchange pilot signals x over a
Rayleigh fading channel with realization H, Mallory injects a signal p such that the received signals
at both Alice and Bob coincide w = HMAp = HMBp.

3. Analysis of Injection Attacks in MIMO SKG

In this section, we first prove that if Mallory has one extra antenna, with respect to
Alice and Bob, she could always launch an injection attack. Next, we propose a pilot
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randomization scheme and show that when employed, legitimate users could successfully
reduce the attack to a jamming attack.

Lemma 1. While Alice and Bob perform advantage distillation using N antennas, Mallory could
always launch an injection attack, as long as she has at least N + 1 antennas.

Proof. The precoding vector of Mallory p of size (N + 1)× 1 is represented as

p =

 p1
...

pN+1

. (6)

The channel matrices HMA and HMB have size N × (N + 1), such that

HMA =

HMA1,1 · · · HMA1,N+1
... · · ·

...
HMAN,1 · · · HMAN,N+1

, (7)

and

HMB =

HMB1,1 · · · HMB1,N+1
... · · ·

...
HMBN,1 · · · HMBN,N+1

. (8)

Next, we can represent the equation

HMAp = HMBp, (9)

as
(HMA −HMB)p = 0, (10)

where HM = HMA −HMB is equal to:

HM =

 HMA1,1 − HMB1,1 · · · HMA1,N+1 − HMB1,N+1
... · · ·

...
HMAN,1 − HMBN,1 · · · HMAN,N+1 − HMBN,N+1

. (11)

Given the above, Equation (10) can be rewritten as HMp = 0, where HM is given in
Equation (11). The equality HMp = 0 is equivalent to solving the following linear system
of equations: 

HM1,1 p1 + HM1,2 p2 + · · ·+ HM1,N+1 pN+1 = 0
...

HMN,1 p1 + HMN,2 p2 + · · ·+ HMN,N+1 pN+1 = 0.

(12)

Due to the fact that Mallory has an additional degree of freedom (one extra antenna), as
compared to Alice and Bob, she can treat one of the elements in p as a constant and solve
for the others in terms of it. Based on this, we let pN+1 be a constant and rewrite the system
in (12) as 

HM1,1 p1 + HM1,2 p2 + · · ·+ HM1,N pN = −HM1,N+1 pN+1
...

HMN,1 p1 + HMN,2 p2 + · · ·+ HMN,N pN = −HMN,N+1 pN+1.

(13)

The system of equations in (13) can be represented as Ax = b, where the N×N matrix A is
the N×N matrix containing the first N lines and N columns of HM, x = (p1, p2, . . . , pN)

T, and
b contains the right-hand side of the system, i.e., b = (−HM1,N+1 pN+1, . . . ,−HMN,N+1 pN+1)

T .
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Finally, since det(A) 6= 0 almost surely, (i.e., under the assumptions in Section 2, det(A)
is a continuous random variable, hence det(A) 6= 0 with probability 1) and therefore the
system’s solution is unique and given by

(p1, p2, . . . , pN)
T = A−1b. (14)

Note that if Mallory has the same number of antennas as Alice and Bob, she will not have
one extra degree of freedom and the transition from the system in Equation (12) to the
system in Equation (13) would not be possible. However, as shown here, if Mallory has
one extra antenna, with respect to Alice and Bob, she can treat one of the elements in p
as constant, which allows her to find the rest of the elements as in Equation (14). This
concludes the proof of Lemma 1.

Based on Lemma 1, the observations of Alice and Bob are now given by

zA = Hx + w + nA (15)

zB = HTx + w + nB, (16)

where w = HMAp = HMBp denotes the observed injected signals at Alice and Bob, which
are identical due to the precoding vector p. By injecting w, Mallory controls the secret key
rate, which is now upper bounded by [18,24]

L ≤ I(zA, zB; w). (17)

Pilot Randomization as a Countermeasure to Injection Attacks

It has been shown that a countermeasure to injection attacks can be built by random-
izing the pilot sequence exchanged between Alice and Bob [18,23,24]. In this work, we
propose a MIMO pilot randomization scheme in which pilots are drawn from a (scaled)
QPSK modulation. Specifically, Alice and Bob do not transmit the same pilot signal x;
instead, they transmit independent, random pilot signals x and y drawn from i.i.d. zero-
mean discrete uniform distributions in which the individual elements of the vectors have
probability mass functions as U ({±r± jr}, . . . , {±r± jr}), where j =

√
−1, r =

√
P/2, so

that E[x] = E[y] = (0, . . . , 0)T , (E
[
|x1|2

]
, . . . ,E

[
|xN |2

]
)T = (E

[
|y1|2

]
, . . . ,E

[
|yN |2

]
)T =

(P, . . . , P)T and (E[x1y1], . . . ,E[xNyN ])
T = (0, . . . , 0)T , i.e., the pilots are randomly chosen

QPSK signals. Given that Alice’s and Bob’s observation zA and zB are modified as

zA = Hy + w + nA, (18)

zB = HTx + w + nB. (19)

Finally, to generate shared randomness, Alice and Bob post-multiply zA and zB by
their own randomized pilot signals, such as z̃A = xTzA and z̃B = yTzB (unobservable by
Mallory). Given this, the modified observations are expressed as

z̃A = xTHy + xTw + xTnA, (20)

z̃B = yTHTx + yTw + yTnB, (21)

where the shared randomness between Alice and Bob is now represented by xTHy =
xHTyT . Furthermore, the independence of x and y ensures the following:

L ≤ I(z̃A, z̃B; w) = 0. (22)

4. Jamming Attacks on SKG

In this section, we focus on reactive jamming attacks in SKG systems and examine the
scenario in which Mallory reactively jams Alice (note that the scenario in which Mallory
jams Bob is identical). A reactive jamming attack is an intelligent approach in which the
jammer initially senses the spectrum and jams only if a transmission is detected. Due to



Entropy 2021, 23, 960 6 of 11

the difficulty to be detected, reactive jamming attacks are considered to be a great threat
to legitimate transmission [25,26]. Next, we assume that Alice and Bob perform SKG
in a TDD–MIMO system with a spatially uncorrelated channel. It has been proven that
the optimal power strategy for Alice and Bob in this scenario is to employ equal power
distribution [27], which is also assumed for this study, i.e.,(

E
[
|x1|2

]
, . . . ,E

[
|xN |2

])T
= (p, . . . , p)T with p ∈ [0, P]. (23)

In the following, we assume that Mallory has N antennas, and as a reactive jammer,
she senses the spectrum and jams in the link Mallory–Alice only if she detects a power
greater than a certain threshold pth. Thus, instead of considering Mallory’s power allocation
matrix, we work with the sum jamming power for all antennas, which can be represented
as a power allocation vector γ = (γ1, . . . , γN). By denoting the available jamming power
by NΓ, the following short-term power constraint is considered:

γ ∈ RN
+ ,

N

∑
i=1

γi ≤ NΓ. (24)

Assuming that H is uncorrelated with HAM, HBM and that all channel matrices have
independent and identically distributed elements that are drawn from circularly symmetric
zero-mean Gaussian distributions of variances σ2 and σ2

J , respectively, then the SKG
capacity can be expressed as [27]

CK(p, γ) = N
N

∑
i=1

log

1 +
pσ2

2(1 + γiσ
2
J ) +

(1+γiσ
2
J )

2

pσ2

. (25)

4.1. Optimal Power Allocation Strategies

In the following, we take a game-theoretic approach in order to evaluate the optimal
strategies of Alice, Bob and Mallory. Throughout the following Alice and Bob’s common
objective is to maximize CK(p, γ) with respect to (w.r.t.) p, while Mallory wants to minimize
CK(p, γ) w.r.t. γ. Due to the reversed objectives, we formulated a noncooperative zero-sum
game, which studies the strategic interaction between the legitimate users and the jammer:
G = ({L, J}, {AL,AJ(p)}, CK(p, γ)). The game G has three components: (i) there are two
players, namely, L, denoting the legitimate users (Alice and Bob act as a single player), and
J being the jammer (Mallory); (ii) player L has a set of possible actions AL = [0, P], while
player J’s set of actions is

AJ(p)=

{
{(0, . . . , 0)}, if p ≤ pth,{

γ ∈ RN
+ |∑N

i=1 γi ≤ NΓ
}

, if p > pth.
(26)

Lastly, CK(p, γ) denotes the payoff function of player L.
Given the fact that player J is a reactive jammer, i.e, first observes the transmit power of

player L and subsequently chooses a strategy, we study a hierarchical game in which player
L is the leader, and player J is the follower. In this game, the solution is the Stackelberg
equilibrium (SE)—rather than Nash—and it is defined as a strategy profile (pSE, γSE) where
player L chooses their optimal strategy first, by anticipating the strategic reaction of player
J (i.e., its best response). This is expressed as:

pSE , arg max
p∈AL

CK(p, γ∗(p)), and γSE , γ∗(pSE), (27)

where γ∗(p) defines the best response (BR) of player J to any strategy p ∈ AL chosen by
player L, and it is defined as follows:
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γ∗(p) , arg min
γ∈AJ(p)

CK(p, γ). (28)

Finally, based on the detection capabilities at player L, two scenarios are considered:
(i) when the detection threshold pth is fixed (defined by the sensing capability of Mallory’s
receiver); (ii) when pth is part of player L’s strategy and could vary.

4.2. Stackelberg Equilibrium with Fixed Detection Threshold

In this section, we evaluate SE, when player J’s detection threshold pth is predefined
and constant. Note that the case P ≤ pth is trivial as γSE = (0, . . . , 0), and the legitimate
users will optimally use their maximum available power, i.e., (pSE = P). Indeed, due
to the poorly chosen threshold pth or low sensing capabilities of Mallory, the legitimate
transmission will not be detected and therefore will not be jammed. In the following, we
assume that P > pth.

Lemma 2. The BR of player J for any p ∈ AL chosen by player L defined in (28) is the uniform
power allocation, given as

γ∗(p) ,
{

(Γ, . . . , Γ), if p > pth,
(0, . . . , 0), if p ≤ pth.

(29)

Proof. Note that CK(p, γi) is a monotonically decreasing convex function w.r.t γi, i =
1, . . . , N for any p > 0. Based on the principles of convexity in order to minimize CK,
Mallory has to transmit with full power from all antennas. The detailed proof can be found
in [18].

Based on the result from Lemma 1, the SKG rate can have the following two forms:

CK(p, γ∗(p)) =
{

CK(p, (0, . . . , 0)), if p ≤ pth,
CK(p, (Γ, . . . , Γ)), if p > pth,

(30)

which simplifies the players’ options.

Theorem 1. Depending on their available power P for SKG, Alice and Bob will either transmit at
P or pth. The SE point of the game is unique when P 6= pth(Γσ2

J + 1) and is given by

(pSE, γSE)=

{
{(pth, (0, . . . , 0))}, if P < pth(σ

2
J Γ+1),

{(P, (Γ, . . . , Γ))}, if P > pth(σ
2
J Γ+1).

(31)

When P = pth(σ
2
J Γ+ 1), the game G has two SEs: (pSE, γSE) ∈ {(pth, (0, . . . , 0)), (P, (Γ, . . . , Γ))}.

Proof. Given the BR of player J defined in (29), the legitimate users want to identify their
optimal p ∈ AL that maximizes

CK(p, γ∗(p)) =
{

CK(p, (0, . . . , 0)), if p ≤ pth,
CK(p, (Γ, . . . , Γ)), if p > pth,

(32)

Given the fact that CK(p, γ) is monotonically increasing with p for fixed γ, two cases are
distinguished: (a) p ∈ [0, pth], (b) p ∈ (pth, P]. The optimal p in each case is given by
(a) arg max

p∈[0,pth]

CK(p, γ∗(p)) = arg max
p∈[0,pth]

CK(p, (0, . . . , 0) = pth,

(b) arg max
p∈(pth,P]

CK(p, γ∗(p)) = arg max
p∈(pth,P]

CK(p, (Γ, . . . , Γ) = P.
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From (a) and (b), it can be concluded that the overall solution is pSE =

arg max
p∈AL

CK(p, γ∗(p)) =


pth, if CK(P, Γ) < CK(pth, 0),
P, if CK(P, Γ) > CK(pth, 0),
{pth, P}, if CK(P, Γ) = CK(pth, 0).

To simplify the above possibilities, we focus on the case when the utility function
CK(P, Γ), i.e., being detected and jammed, equals the utility function when player L is
transmitting at threshold pth (player J is silent), i.e., CK(P, Γ) = CK(pth, 0). Using this
equality, by substituting appropriately into (25), we obtain a quadratic equation in P.

P2(2σ2 pth+1)−P(2pth
2σ2+2σ2

J Γpth
2σ2)− (1+σ2

J Γ)2 pth
2=0.

Note that Equation (33) has a unique positive root equal to pth(σ
2
J Γ + 1). Furthermore,

due to the fact that the leading coefficient of (33): (2σ2 pth + 1) ≥ 0 and P > 0, we can
state that the inequalities CK(P, Γ) > CK(pth, 0) and CK(P, Γ) < CK(pth, 0) are equivalent
to P > pth(σ

2
J Γ + 1) and P < pth(σ

2
J Γ + 1), respectively.

A numerical evaluation of the SKG rate is presented in Figure 3. The parameters used
are N = 10, pth = 2, Γ = 3, and σ2 = σ2

J = 1. Figure 3 compares the achievable SKG rates
of the SE strategy, i.e., p = pSE with the two alternative strategies, i.e., p = P or p = pth. It
can be seen that if player L deviates from the SE point the achievable SKG rate can decrease
by up to 40%.
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Figure 3. SE policy, compared to always transmitting with either full power or with pth. Used
parameters pth = 2, Γ = 3, N = 10, σ2 = σ2

J = 1.

4.3. Stackelberg Equilibrium with Strategic pth

Finally, we investigate the case when Mallory could optimally adjust pth and show
how her choice impacts Alice’s and Bob’s strategies. Allowing pth to vary modifies the
game under study as follows Ĝ = ({L, J}, {AL, ÂJ(p)}, CK(p, γ, pth)), where

ÂJ(p) ,

{
{((0, . . . , 0), pth), pth ≥ 0}, if pth ≥ p,{
(γ, pth) ∈ RN

+ | ∑N
i=1 γi ≤ NΓ

}
, if pth < p.

(33)
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The BR of the jammer can then be defined as

(γ̂∗(p), p̂th
∗(p)) , arg min

(γ,pth)∈ÂJ(p)
CK(p, γ, pth). (34)

Lemma 3. Mallory’s BR in this scenario is a set of strategies as follows:

(γ̂∗(p), p̂th
∗(p)) ∈ { ((Γ, . . . , Γ)ε), ε ∈ [0, p)}. (35)

Proof. The problem that the jammer wants to solve is min
(γ,pth)∈ÂJ(p)

CK(p, γ, pth), which can

be split as follows:

min
pth≥0

min
γ∈ÂJ(p)

CK(p, γ(p), pth). (36)

The solution of the inner minimization is known from (29). For the outer problem, we have
to find the optimal pth ≥ 0 that minimizes CK(p, γ̂∗(p), pth). Given that

min
pth≥0

CK(p, γ̂∗(p), pth)=

{
CK(p, Γ, pth), if pth < p,
CK(p, 0, pth), if pth ≥ p,

(37)

and that CK(p, Γ, pth) < CK(p, 0, pth), player J can optimally choose any pth such that
pth = ε, ∀ε < p. This allows the jammer to detect any ongoing transmission and to
perform a jamming attack.

Theorem 2. The game Ĝ has an infinite number of SEs as follows:

( p̂SE, γ̂SE, p̂th
SE) ∈ { (P, (Γ, . . . , Γ)ε), ∀ε < P}. (38)

Proof. Given Mallory’s BR, we evaluate the SE of the game Ĝ. The definition for p̂SE is
given as follows:

p̂SE , arg
p∈AL

max CK(p, γ̂∗(p), p̂th(p)∗). (39)

Since Mallory will act as in (35), we have

CK(p, γ̂∗(p), p̂th(p)∗) = CK(p, Γ, ε), ∀ε < p, (40)

and the fact that CK(p, Γ, ε) is monotonically increasing with p results in p̂SE = P.

Figure 4 illustrates the achievable SKG rate when pth is part of player J’s strategy. As
in Figure 3, the parameters are chosen as Γ = 3, N = 10 and σ2

J = 1. It can be seen that due
to a strategically chosen threshold from player J the legitimate users have no other choice
but to transmit at full power p = P = pSE. In fact, if the legitimate users deviate from the
SE strategy and transmit with low power p = pth, player J could successfully disrupt their
SKG process and decrease their achievable SKG rate by up to 97%.
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Figure 4. The effect to the SE policy when pth is part of player J strategy. Comparison of the
achievable SKG rate when player L chooses p = pSE with the case when transmitting with power pth.
Used parameters Γ = 3, N = 10, σ2 = σ2

J = 1.

5. Conclusions

In this study, injection and reactive jamming attacks were analyzed in MIMO SKG
systems. With respect to injection attacks, the study demonstrated that a trivial advantage in
the form of one extra antenna allows a MiM to mount such an attack. As a countermeasure,
we showed that a pilot randomization scheme can successfully reduce injection attacks to
jamming attacks. With respect to jamming attacks, using a game-theoretic approach, we
showed that an intelligent reactive jammer should optimally jam with full power when a
transmission is sensed. Finally, by strategically choosing her jamming threshold, i.e., just
below the power level used by the legitimate users, Mallory could perform a much more
effective attack. In fact, our theoretical analysis suggests that in this case, Alice and Bob
have no choice but to use their full power available for SKG. An important topic for further
research in this area is an examination of these initial findings in practical scenarios.
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