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We present results of computer simulations of the effective diffusion coefficient in bulk random

packings of hard monosized spheres with solid volume fraction between 0.54 (random-loose

packing) and 0.634 (maximally random jammed). Six types of sphere packings were generated

with different protocols and parameters resulting in a systematically varied degree of

microstructural heterogeneity. The packing morphology is qualitatively characterized by statistical

analyses of Voronoi cells obtained from spatial tessellation of the packing space. Diffusive

transport of point-like tracers in the pore space of the packings was simulated with a random-

walking particle-tracking technique. Our results indicate that the effective transport characteristics

of the random sphere packings are not fully defined from the solid volume fraction but also depend

on the packing microstructure. For the first time, we compared (i) the values of the effective diffu-

sion coefficient Deff simulated in packings with different morphologies, and (ii) the corresponding

values of Deff obtained from an approximate analytical formula involving the three-point micro-

structural parameter f2. This analysis reveals that this approximation involving f2 clearly reflects

key morphological specificity of individual sphere packings and provides a sufficiently accurate

estimate of the effective diffusion coefficient. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4889821]

I. INTRODUCTION

The determination of the effective physical properties of

an inhomogeneous medium composed of different materials

or phases is a problem of great interest in industrial, biologi-

cal, and environmental processes like catalysis, filtration, oil

recovery, ground water remediation, chromatography, trans-

port through cell membranes, solar energy production, fabri-

cation of composite materials, etc.1–4 Generally, the

determination of effective properties of a multi-phase medium

requires knowledge of the phase interface geometry and phys-

ical properties of the individual phases. Many physical trans-

port properties in a macroscopically (i.e., statistically)

isotropic medium can be described by a linear relationship

between the average of a generalized local “flux” J and the

average of a generalized local “intensity” G1

J / KeffG; (1)

where Keff is an effective property (or effective transport coef-

ficient) of the medium. For instance, for the electrical conduc-

tion and diffusion problems, J represents the average electric

current density and average diffusive flux, respectively, and G

represents the average local electric field and average negative

gradient of the local concentration, respectively. For these two

problems, the coefficient in Eq. (1) is the effective electrical

conductivity and the effective diffusion coefficient, respec-

tively. Linear relationships similar to Eq. (1) can be estab-

lished as well for thermal conduction and magnetostatic

problems. In spite of the functional simplicity of Eq. (1), its

direct application to transport phenomena in microscopically

inhomogeneous media is hampered. In a heterogeneous mate-

rial consisting of several phases, Keff depends not only on

properties and volume fractions of the individual phases but

also on the microstructural details. Complete information on

the morphology of a heterogeneous medium is commonly

very difficult or impossible to be accessed experimentally.

Alternatively, the microstructure can be also completely char-

acterized by an infinite set of correlation functions or n-point

probability functions.3,5 These functions were introduced by

Brown in the context of determining the effective properties

of random heterogeneous media.6 However, such a complete

statistical information is never known even for the simplest

class of disordered composite media, such as random arrays of

parallel hard cylinders.

A useful alternative to predict effective properties of

heterogeneous media is the determination of rigorous lower

and upper bounds on effective coefficients, which require

only limited microstructural information. Bounds which
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incorporate microstructural information up to the n-point

level commonly are referred to as “n-point” or “nth-order”

bounds. As successively more microstructural information is

included, the bounds become progressively narrower.1,5

Several methods and techniques have been developed to

derive bounds on effective transport coefficients, e.g., varia-

tional principles,7–11 the method of Pad�e approximants,12–14

the translation method,15–19 and the field equation recursion

method.20 Specifically for macroscopically isotropic compo-

sites, Hashin and Shtrikman derived the best possible two-

point bounds on the effective magnetic permeability, given

just volume-fraction information.21 For reasons of mathe-

matical analogy, the same bounds can be applied to electrical

or heat conductivity and diffusivity. Later, Beran derived

bounds for two-phase isotropic composites, which involve

sixfold integrals of certain three-point correlation functions

and improve the Hashin-Shtrikman bounds.9 Torquato22 and

Milton23 independently showed that the three-point Beran

bounds can be expressed in terms of the volume fractions

and the single three-point microstructural parameter f2,

which is a multidimensional integral involving the three-

point probability function. The Beran bounds were derived

using trial fields based on the first two terms of the exact per-

turbation expansion. For the special case of a dispersion of

identical penetrable (i.e., overlapping) spherical particles,

Torquato derived three-point bounds, utilizing trial fields

based on the first two terms of the exact cluster expansion.24

It has been shown25 that the Beran and Torquato bounds are

identical for dispersions of monosized hard (impenetrable)

spheres and they both depend on the microstructural parame-

ter f2. The same parameter is involved in an approximate

formula for the effective conductivity of dispersions of inclu-

sions with a polydispersity in size.14 The formula was shown

to be highly accurate provided that the inclusions, generally,

do not form large clusters. This approximation is referred to

as a three-point approximation as it incorporates information

up to three-point correlation functions.

Though n-point bounds becomes tighter as n increases

and further morphological information is accounted for, the

calculation of even three-point bounds is a challenging task

for real heterogeneous materials. An alternative to theoreti-

cal approaches of evaluating effective properties of heteroge-

neous media is their numerical simulation. The evaluation of

effective properties via computer simulations is commonly a

two-step process. First, one acquires a complete description

of the medium microstructure. It can be obtained either via

computer-generation of a material or by physical reconstruc-

tion of the real structure. Several imaging techniques are

nowadays available to investigate the three-dimensional

structure of porous media.26 Their capabilities range, e.g.,

from nanometer resolution with techniques based on electron

microscopy,27–31 through micron and submicron scale with

X-ray tomography32–35 and confocal laser scanning micros-

copy,36–40 to several tens of micrometers with nuclear mag-

netic resonance imaging.41–44 Second, the effective

properties of a material are determined either by the numeri-

cal solution for the local governing equations describing a

transport phenomenon, or by direct numerical simulation of

the transport process.

In this contribution, we present results of direct numeri-

cal simulations of diffusive transport in bulk, monodispersed,

random hard-sphere packings over a range of the solid vol-

ume fraction /¼ 0.54–0.634, i.e., from random-loose to

random-close packing, the latter of which more recently is

sometimes referred to as the maximally random jammed

packing.45 By a variation of the packing generation algo-

rithm and its parameters, we generated six distinct packing

types that differ in the individual arrangement of the spheres

even at identical /. Diffusion in the void space of the pack-

ings was simulated by a random-walk particle-tracking

(RWPT) technique. Then, the effective diffusion coefficient

Deff was determined for each packing type and solid volume

fraction. This approach allowed us to evaluate how the result-

ing Deff–/ curves reflect the different packing microstructures.

For the first time, the values of Deff obtained by simulation of

diffusive transport in the void space of random sphere packings

characterized by different microstructures are compared with

Deff calculated from a three-point approximation due to

Torquato involving the microstructural parameter f2.
13

The paper is organized as follows. In Sec. II, we

describe briefly one-, two-, and three-point bounds on the

effective diffusion coefficient in a macroscopically isotropic

two-phase medium. A three-point approximation of Deff in

monosized sphere packings, based on the microstructural pa-

rameter f2, is also given. In Sec. III, we provide the simula-

tion details for (i) generation of random sphere packings

with different microstructures, (ii) determination of the

effective diffusion coefficient, and (iii) calculation of the

three-point microstructural parameter f2. In Sec. IV, we

report simulation results for Deff in the random packings and

compare the obtained values with the three-point approxima-

tion. Effective diffusion coefficients simulated in two regular

(simple cubic and face-centered cubic) arrays of spheres are

analyzed to validate the employed numerical approaches,

using analytical results for Deff and f2. Finally, conclusions

and comments are presented in Sec. V.

II. BOUNDS AND APPROXIMATION FOR THE
EFFECTIVE DIFFUSIVITY

Here, we give a brief review of the bounds on the effec-

tive diffusion coefficients in packings of hard spheres. For

reasons of mathematical analogy of effective media prob-

lems, these bounds can be directly obtained from the already

known bounds derived for the effective conductivity (as well

as for the magnetic permeability or dielectric constant) of

two-phase materials. The effective conductivity or effective

diffusion coefficient is characterized by transport properties

of the whole medium, i.e., contributions from both phases to

the overall transport process are explicitly accounted for.

However, if one phase, say phase 2, is impermeable (trans-

port vanishes) and diffusion only occurs in phase 1, then the

effective conductivity or diffusion coefficient must be di-

vided by a factor of (1�/),46 where / is the volume fraction

of phase 2, which we take to be the space occupied by

spheres.

Let us consider a packing of hard spheres as a material

composed of two phases, phase 1 (space outside of the
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spheres) and phase 2 (spheres). Each constituting phase is

characterized with the corresponding volume fraction,

(1�/) and /, respectively, and the diffusion coefficients D1

and D2. In a two-phase composite material, the one-point

lower and upper bounds (DL
(1) and DU

(1), respectively) on

the effective diffusion coefficient are1,21,47

D
ð1Þ
L ¼

D1D2

1� /ð ÞD2 þ /D1½ � 1� /ð Þ and

D
ð1Þ
U ¼

D1 1� /ð Þ þ D2/
1� /

: (2)

Adapting Eqs. (2) to packings of impermeable hard spheres

(i.e., assuming D2¼ 0), we obtain

0 � Deff � D1: (3)

Obviously, the one-point bounds Eqs. (2) and (3) provide

no useful information for the estimation of Deff in this

case.

Hashin and Shtrikman derived improved bounds for an

isotropic two-phase medium,21 which are the best possible

bounds given just /. Although only volume-fraction infor-

mation is explicitly involved in the expressions for these

bounds, it has been shown that they incorporate implicitly

the two-point probability function in a trivial manner: For

isotropic media, the integral which is used to calculate the

bounds, involving the two-point probability function, just

depends on the integration interval, i.e., / and /2.1 Thus,

these bounds are actually contain two-point information. The

Hashin–Shtrikman lower and upper bounds (DL
(2) and DU

(2),

respectively) for the effective diffusion coefficient are given

by

D 2ð Þ
L ¼

D2

1� /
1þ 2 1� /ð Þb12

1� 1� /ð Þb12

and

D 2ð Þ
U ¼

D1

1� /
1þ 2/b21

1� /b21

(4)

with

bij ¼
Di � Dj

Di þ 2Dj
: (5)

For packings impermeable hard spheres, Eqs. (4) and (5) are

reduced to the following two-point bounds:

0 � Deff �
D1

1þ 0:5/
: (6)

Although the upper two-point bound in Eq. (6) depends on

the sphere volume fraction, it was shown that this bound is

substantially restrictive only in a relatively small range of

/.48,49 Further improvement of the bounds can be achieved

if a more detailed description of packing morphology is

involved. Three-point bounds account for phase arrangement

in a heterogeneous medium. Beran9 developed three-point

bounds on the electric conductivity of an isotropic two-phase

composite, subsequently simplified independently by

Torquato22 and Milton,23 which can be adapted for the effec-

tive diffusion coefficient as follows:

0 � Deff � D1 1� /
/þ 2 1� f2ð Þ

� �
; (7)

where f2 is the three-point microstructural parameter defined

by the expression

f2 ¼ 1� 1

16/ 1� /ð Þp2

ð ð
dr12dr13

P2 cos hð Þ
r3

12r3
13

� S3 r12; r13; r23ð Þ �
S2 r12ð ÞS2 r13ð Þ

S1

� �
: (8)

The quantities S2(r12) and S3(r12, r13, r23) are, respectively,

the probabilities of finding in the interparticle void space the

end points of a line segment of length r12 and the vertices of

a triangle with sides of length r12, r13, and r23; h is the angle

opposite to the side of length r23 and P2 is the Legendre

polynomial of order two.

We want to point out that the one-, two-, and three-point

lower bounds in Eqs. (3), (6), and (7) are equal to zero

because they correspond to microstructures in which the

nondiffusive phase 2 (D2¼ 0) is topologically connected

while the diffusive phase 1 (D1 6¼ 0) is disconnected.1 In

packings of hard spheres, the ratio between the diffusion

coefficients within and outside the spheres is equal to zero.

As a consequence, only the upper bounds remain finite and

may provide a reasonable estimate of the effective diffusion

coefficient in hard-sphere packings.

Torquato developed an accurate approximation formula

for the effective conductivity of a broad class of particle dis-

persions,13 including sphere packings, that involves the

three-point parameter f2. In the special limit corrresponding

to an impermeable particle phase (D2¼ 0), this formula leads

to the following analytical approximation for the effective

diffusion coefficient:13

Deff �
D1

1� /
1þ 2/b21 � 2 1� /ð Þf2b

2
21

1� /b21 � 2 1� /ð Þf2b
2
21

: (9)

It was shown13 that the value of Deff calculated with Eq. (9)

does not exceed the three-point upper bound (cf. Eq. (7)).

III. NUMERICAL SIMULATIONS

A. Packing generation and microstructure
characterization

Isotropic random packings of monosized, hard, imper-

meable spheres were generated in rectangular simulation

boxes with dimensions of �10� 10� 70 sphere diameters

(dp) and with periodic boundary conditions which ensure

continuity at all box boundaries. The number of spheres in

the packings varied from 7219 up to 8476 depending on the

targeted solid volume fraction /. For packing generation,

two approaches based on the Jodrey–Tory50 and Monte

Carlo (MC)51–53 algorithms were employed.

The Jodrey–Tory (JT) algorithm is a collective-

rearrangement generation method,54 which yields geometri-

cally jammed, but mechanically unstable packings. The rele-

vant feature of the JT-algorithm is that it yields

macroscopically isotropic packings where partial

034904-3 Liasneuski et al. J. Appl. Phys. 116, 034904 (2014)



crystallization is avoided.55 For this study, we used a modi-

fied JT-algorithm52 allowing to vary systematically the

degree of heterogeneity (DOH) of the packing microstructure

through the generation parameters. Packing generation with

the modified JT-algorithm starts from a random distribution

of points representing sphere centers in a simulation box,

where sphere overlap is typical. Then, the iterative packing

procedure starts. Each iteration consists of two steps: (i) the

search for two sphere centers ci and cj with minimum

pair-wise distance dij,min that defines the maximal sphere di-

ameter at which no sphere-overlap occurs in the current

configuration, and (ii) symmetrical spreading apart of these

two sphere centers along a line cicj up to the new distance

dij,max¼ dij,minþDij determined as

dij;max ¼ dij;min þ Dij ¼ dij;min 1þ a log10

dp

dij;min

� �
; (10)

where a is a scaling constant for the spreading length. As

dij,min asymptotically approaches dp, the current solid volume

fraction approaches the targeted (final) value of /. Four dif-

ferent JT-packing types were generated by varying (i) the

initial distribution scheme of the sphere centers and (ii) the

value of the scaling constant a. Generation of R-packings

started from a random and uniform distribution of sphere

centers in the simulation box, whereas for S-packings the

simulation box was first divided into N equal cubes (where N
is the number of spheres) and then each sphere center was

placed in a random position into a cube. The scaling constant

was set to a¼ 0.001 (these packings are referred to as

R� 0.001 packings), a¼ 1 (R� 1 and S� 1 packings), or

a¼ 2 (S� 2 packings). With a small spreading length, the

sphere centers remain close to their initial positions during

packing generation, preserving the randomness of the initial

distribution. A larger spreading length yields a more homoge-

neous distribution of sphere centers in the final configuration.

To illustrate the effect of the varied JT-packing genera-

tion parameters on the final packing microstructure, we use a

two-dimensional representation, i.e., random packings of

uniform disks instead of spheres. Figure 1 visualizes the

two-step parameter variation used for packing generation

with the Jodrey–Tory algorithm to yield the four JT-packing

types R� 0.001, R� 1, S� 1, and S� 2. (The S� 2 packing

is replaced by an S� 6 packing in Fig. 1 to achieve a stron-

ger visual effect.) S-packing generation starts from a more

ordered (lattice-based) initial distribution of sphere centers

than R-packing generation, and the value of the constant for

scaling the displacement length a¼ 6 (a¼ 2 for sphere pack-

ings), a¼ 1, or a¼ 0.001 determines how well inhomogene-

ities in the initial distribution of sphere centers are balanced

out in the final packing microstructure. It is important to rec-

ognize from Fig. 1 that the parameter variation used with the

JT-algorithm operates on two different length scales: the ini-

tial ordered or random distribution of the sphere centers con-

cerns the whole packing, whereas the value of the scaling

constant a affects the local environment of the individual

spheres in a packing.

The MC method51–53 provides a complementary

approach to the JT-algorithm for generating dense, random

sphere packings. This method is similar to that developed by

Metropolis et al. to investigate equations of state for systems

with hard interacting particles.56,57 MC-packing generation

starts from a uniform distribution of spheres arranged in a

dilute cubic array constructed from expanding a simple cubic

lattice.51,52 We used an expansion factor of 2, resulting in an

eight times larger volume of the initial packing compared

with a simple cubic packing. The packing spheres are moved

in random directions and each move that does not result in a

collision with another sphere is accepted. The desired solid

volume fraction / is reached by compression of the coordi-

nate system, executed every 5000 movement attempts. For

this purpose, the minimal distance between sphere centers

dmin is determined and the simulation box is scaled by the

factor dp/[dpþX(dmin� dp)] while keeping the sphere diam-

eters constant. Here, X is the compression rate. By using

X¼ 0.95 (fast compression) or X¼ 0.05 (slow compression),

we generated two different MC-packing types, X� 0.95 and

X� 0.05, respectively. The values of X were chosen from

the ends of the possible range (0<X� 1) to create a maxi-

mum of microstructural variety with the two MC-packing

types. The MC-algorithm is known to incorporate crystalline

regions into a packing, if low compression rates and large

solid volume fractions are combined.55,58

By variation of the packing generation algorithms and

their parameters, we generated six distinct types (S� 2,

S� 1, R� 1, R� 0.001, X� 0.05, and X� 0.95) of mono-

disperse, bulk, random sphere packings. Each packing type

was generated at six solid volume fractions (/¼ 0.54, 0.56,

0.58, 0.60, 0.62, 0.634) with one exception: we were not able

to generate S� 2 packings at /¼ 0.634. To account for sta-

tistical variations, ten realizations of each packing type and

solid volume fraction were generated, 350 packings in total.

Results reported for a packing of a given type and solid vol-

ume fraction refer to the mean value from the ten individual

realizations. The number of realizations together with the

extended packing dimensions ensured a thorough sampling

of the structural variations among individual packings of the

same type and porosity.

To evaluate the DOH of the generated packings, we

employ Voronoi tessellation, which is widely accepted as a

powerful tool to analyze the microstructure of disordered

systems.59–65 Voronoi tessellation surrounds each sphere in a

monodisperse packing by a polyhedron that contains all

points closer to this sphere center than to any other. The

packing space is thus divided into a set of non-overlapping

polyhedra with associated Voronoi volumes VV. It was

shown that the packing structure can be characterized by the

properties of Voronoi polyhedra. Oger et al. investigated the

topological and metric properties of Voronoi polyhedra in

random sphere packings as a function of /.66 They showed

that the VV-distribution becomes narrower and more sym-

metric at higher packing density. Gil Montoro and Abascal67

employed Voronoi tessellation to study the microstructure of

several simple fluids, such as the Lennard–Jones fluid at two

thermodynamic points corresponding to solid and liquid

phases, two differently quenched supercooled states obtained

from the liquid, and ideal gas. The authors revealed that the

skewness of the VV-distributions properly reflects the
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heterogeneity of the particle neighborhood and clearly dis-

criminates between systems: The more homogeneous a sys-

tem the smaller is the skewness of the VV-distribution.

Figures 2(a) and 2(b) show standard deviation r and

skewness c, respectively, of the VV-distributions for the gener-

ated packings. The two parameters r(VV) and c(VV) are quan-

titative measures for the microstructural DOH of a packing.

Each of the six packing types has a unique /-scaling of the

DOH. For the four JT-packing types, it reflects their relative

packing-scale disorder: R� 0.001>R� 1>S� 1>S� 2,

i.e., the higher the packing-scale disorder, the higher the val-

ues of r(VV) and c(VV) at a given solid volume fraction and

the steeper the rise of these two parameters at decreasing /.

MC-packings are more homogeneous than the most homoge-

neous JT-packing type (S� 2) at low to intermediate solid

volume fractions (/¼ 0.54–0.6) and for the X� 0.95 packing

type this remains the case also at high solid volume fractions

(/¼ 0.62–0.634). Given that MC-packing generation starts

from a lattice-based distribution of sphere centers, this result

is not unexpected. Whereas the X� 0.95 packing type follows

essentially the same trend upon densification as the JT-

packing types, i.e., the DOH decreases, only with a smaller

slope, the X� 0.05 packing type behaves quite differently: Its

DOH goes through a minimum at /¼ 0.60 and then increases

again, so that at /¼ 0.634 the X� 0.05 packing has the high-

est DOH among all packing types. This high DOH is

explained by the irregular distribution of dense and more

loosely packed regions, which translates to increased disorder

on the packing scale.

B. Simulation of diffusion

Diffusion in the generated packings was simulated by a

RWPT technique,68 employing a multiple-rejection bound-

ary condition at the solid-liquid interface.69 Initially, an en-

semble of 5� 106 point-like tracer particles was randomly

distributed within the void space of a packing, and then dis-

placed due to random motion calculated from a Gaussian

FIG. 1. Bulk random packings of monosized hard disks at / � 0.54 generated with the Jodrey–Tory algorithm following different packing protocols. Shown

are the initial distributions of the disks for S- and R-packings (top) and final distributions for S� 6, S� 1, R� 1, and R� 0.001 packings (bottom). Colored

circles aid the comparison between the initial and final packing microstructures.

FIG. 2. Standard deviation (a) and skewness (b) of the Voronoi volume distributions for the generated sphere packings as a function of the solid volume

fraction.
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distribution with a mean of zero and a standard deviation of

(2D1dt)1/2 around each spatial coordinate. The position of all

tracers was monitored at each time step dt, defined such that

the maximum tracer displacement at each iteration did not

exceed a distance of dp/60. Diffusion coefficients D(t) in a

given direction were calculated from the tracer displace-

ments70 as

Dx tð Þ ¼ 1

2N

d

dt

XN

i¼1

Drxi � hDrxið Þ2; (11)

where Drxi and hDrxi denote the corresponding Cartesian

components of the displacement of the ith tracer and the av-

erage displacement of the tracer ensemble after time t,
respectively, in x-direction. Isotropic diffusion behavior was

observed for all packing types. The effective diffusion coeffi-

cients Deff were determined from asymptotes of the D(t)/D1-

curves, shown for selected packings in Fig. 3.

The program realization of the RWPT-algorithm was

implemented as a parallel code in C language using the

Message Passing Interface (MPI) standard.71 The total simu-

lation time for all packings was �24 h on 512 BlueGene/P

processor cores.

C. Determination of f2

The determination of the three-point correlation function

S3 needed to calculate f2 is a nontrivial computational task.

In this study, we used a numerical approach proposed by

Miller and Torquato to determine f2 for packings of identical

hard spheres.72 The authors showed that this three-point

microstructural parameter can be calculated as

f2 ¼
hE � EIi

2/ 1� /ð Þb2
21hEi � hEi

� 1� /
2

: (12)

In Eq. (12), I(r) is the indicator function, defined to be

IðrÞ ¼ 1; if r 2 interior of the spheres

0; otherwise

�
(13)

and E(r) is the trial fluctuation field defined for a system of

N spheres centered at positions r
N 	 r1,r2,…,rN as

Eðr; rNÞ ¼
XN

i¼1

KðxiÞ � hEi �
ð

dr1qKðx1Þ � hEi; (14)

where q is the number density of the spheres and K is the

single-body operator

KðrÞ ¼
b21d3

p=8r3ð3r̂r̂ � AÞ; r > dp=2

�b21A; r < dp=2
:

(
(15)

Here, xi¼ r – ri, r¼ jrj, r̂¼ r/r, and A is the unit dyadic. The

angular brackets in Eqs. (12) and (14) denote an average

over the sphere ensemble. Equations (12)–(15) provide a

mean to determine f2, which does not require direct sampling

of the three-point probability function S3.

Sampling for f2 was carried out with 5 different sets of

200 000 points randomly distributed in each individual pack-

ing. The periodic boundary condition was employed to ap-

proximate an infinite system. First, the value of K is

calculated for each random point and each of the N spheres

in a packing according to Eq. (15). After all spheres have

been sampled, the quantities E and E�EI are calculated and

the next sample point is chosen. f2 is then determined by use

of Eq. (12). The values of f2 for a given sphere packing and

5 different point sets differ by less than 0.1%.

IV. RESULTS AND DISCUSSION

A. Regular packings

To validate the numerical approaches we used to simu-

late the effective diffusion coefficients and determine f2, we

started from the analysis of Deff in regular arrays of spheres.

The values of Deff and f2 for periodic arrangement of hard

spheres can be determined analytically. Specifically,

McPhedran and Milton computed f2 for three cubic lattices

of spheres as a function of /.73 In Figs. 4(a)–4(b), we com-

pare values of f2 for SC and FCC sphere arrays calculated by

the numerical approach described in Sec. III C (open circles)

and the values obtained analytically by McPhedran and

Milton (solid circles).73 The data in Fig. 4 indicate that the

numerical approach by Miller and Torquato72 allows one to

determine f2 with high accuracy over a wide range of the

solid volume fraction, including the close packing limit, / �
0.524 and 0.741 for SC and FCC, respectively.

Further, we employed the calculated values of f2 to esti-

mate effective diffusion coefficients in the SC and FCC

sphere arrays according to Eq. (9). Alternatively, effective

diffusion coefficients in SC and FCC sphere packings can be

determined with an analytical approach developed by Blees

and Leyte.74 In Figs. 5(a) and 5(b), we compare Deff in SC

and FCC sphere arrays (i) obtained by the analytical

approach, (ii) determined with Eq. (9), and (iii) simulated by

the RWPT method described in Sec. III B. For both types of

FIG. 3. Time-evolution of the normalized diffusion coefficient D(t)/D1 for

selected packings at /¼ 0.56. Elapsed time is given in units of the diffusive

time defined as tdiff¼ 2Deff/d
2
p, where Deff is the asymptotic (long-time)

value of the diffusion coefficient in a sphere packing and dp is the sphere di-

ameter. One diffusive time unit is the time it takes for a tracer to travel an

average distance equal to one sphere diameter.
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regular packings, the results obtained by the RWPT simula-

tions are in excellent agreement with those calculated using

the analytical approach by Blees and Leyte74 over the whole

range of /. This enables us to conclude that our simulation

approach can determine accurately effective diffusion coeffi-

cients of these ordered spheres packings. At low values of /,

Eq. (9) also provides a quite precise approximation of Deff.

The accuracy decreases slightly with increasing packing den-

sity such that it slightly overestimates such values of Deff.

B. Random packings

We employed the RWPT simulations to determine the

effective diffusion coefficient in six types of random sphere

packings, generated with different packing algorithms and

parameters (S� 2, S� 1, R� 1, R� 0.001, X� 0.05, and

X� 0.95). Fig. 6 presents the results for the simulated Deff

normalized by D1 as a function of /. At the first glance, the

Deff-/ data of the JT-packing types reflect their relative

packing-scale disorder (Figs. 2(a) and 2(b)), with very simi-

lar values of the effective diffusive coefficient (Deff/D1 �

0.67) at /¼ 0.634 and maximal difference at /¼ 0.54,

where the most homogeneous JT-packing type (S� 2) has

the highest value of Deff/D1¼ 0.73 and the most heterogene-

ous JT-packing type (R� 0.001) the lowest value of Deff/

D1¼ 0.71. R- and S-packings, however, have almost identi-
cal values of Deff (within statistical variation) throughout the

investigated packing density range. Because the common pa-

rameter in their generation is the value for the displacement

length scaling-constant (a¼ 1), the identical Deff-/ curves

for the R- and S-packings suggest that the influence of the

packing microstructure on diffusion is restricted to the opera-

tive length scale of a, i.e., to the local environment of the

individual spheres. Expressed in terms of the packing void

space, the value of a affects the pores and the pathways to

adjacent pores, the pore throats.

MC-packings are generally less tortuous than JT-

packings, with Deff/D1 values between �0.75 at /¼ 0.54

and Deff/D1¼ 0.70 (X� 0.05) or Deff/D1¼ 0.69 (X� 0.95) at

/¼ 0.634. Differences between the two MC-packing types

emerge and increase upon densification, as was observed for

the DOH (Figs. 2(a) and 2(b)), but the X� 0.05 packing type

FIG. 4. Comparison of the values for the three-point microstructural parameter f2 obtained by the numerical approach (Ref. 72; open circles) and calculated

with the analytical approach (Ref. 73; solid circles) for SC and FCC sphere arrays as a function of the solid volume fraction.

FIG. 5. Normalized effective diffusion coefficient Deff/D1 in SC (a) and FCC (b) sphere arrays, obtained from the analytical solution (Ref. 74; solid circles),

with RWPT simulation (open circles), and by Eq. (9) (open squares).
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maintains the highest Deff among all packing types through-

out the whole range of /. This contrasts with the observation

that at high / (0.62 and 0.634) the X� 0.05 packing type

has the largest DOH of all packing types (Figs. 2(a) and

2(b)), and is thus another indicator that the packing-scale dis-

order is not the determining factor for Deff.

Figure 6 demonstrates that the microstructure of bulk,

monodisperse, random sphere packings influences the effec-

tive diffusion coefficient. Although the effect is small �2%

difference between the extreme JT-packing types S� 2 and

R� 0.001 at /¼ 0.54, and similarly ca. 2% difference

between the two MC-packing types at /¼ 0.634—it is genu-

ine and not due to statistical variations among individual

packings of a given type and sphere volume fraction, as the

confidence intervals for Deff do not exceed 1% of the Deff

values.

In Fig. 7, we compare the normalized Deff simulated for

the MC-packing types (X� 0.05 and X� 0.95) with values

calculated according to Eq. (9). Both the simulated data and

the data obtained with Eq. (9) demonstrate the same behavior

regarding packing density: Deff decreases with /. However,

X� 0.05 and X� 0.95 packings are characterized by differ-

ent Deff at a given /. At the lowest solid volume fraction we

analyzed (/¼ 0.54), the values of Deff are almost identical,

whereas Deff values become distinct at higher /. This dis-

tinction can be explained only by the difference in micro-

structures of X� 0.05 and X� 0.95 packings. During the

RWPT simulations, the local diffusive displacements of the

tracers directly reflect the specificity of the packing micro-

structure. For a given value of /, the only parameter affect-

ing the value of Deff in Eq. (9) is f2. Figure 7 indicates that

this microstructural parameter is very sensitive to the pack-

ing morphology.

Figures 8 and 9 present a comparison of normalized

effective diffusion coefficients simulated in the R- and

S-packings with the values of Deff/D1 obtained by the

approximation formula Eq. (9). Though, similar to the MC-

packings, Eq. (9) overestimates the value of Deff by a few

percent enabling one to obtain a good estimate for the effec-

tive diffusion coefficient of an individual packing.

In Fig. 10, we summarize the data for all six packing

types, obtained by the computer simulations and with the

FIG. 6. Normalized effective diffusion coefficient Deff/D1 simulated with

the RWPT approach in random sphere packings as a function of the solid

volume fraction.

FIG. 7. Normalized effective diffusion coefficient Deff/D1 for the MC-

packings obtained with RWPT simulation (symbols) and calculated by Eq.

(9) (dashed lines) as a function of the solid volume fraction.

FIG. 8. Normalized effective diffusion coefficient Deff/D1 for the R-

packings obtained with RWPT simulation (symbols) and calculated by Eq.

(9) (dashed lines) as a function of the solid volume fraction.

FIG. 9. Normalized effective diffusion coefficient Deff/D1 for the S-packings

obtained with RWPT simulation (symbols) and calculated by Eq. (9) (dashed

lines) as a function of the solid volume fraction.
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approximation formula Eq. (9). The results shown in Fig. 10

indicate that approximation (9) for the effective diffusion

coefficient is able to distinguish microstructural differences

in the various packing arrangements, as was originally

shown by Torquato for the effective conductivity of packings

of spheres.13 Though Eq. (9) provides slightly overestimated

values of Deff in the random sphere packings (the relative

error does not exceed 3.4%, 4.7%, and 4.9% for the MC-, S-,

and R-packings, respectively), the use of this expression

allows to determine effective diffusion coefficients with suf-

ficiently high accuracy by accounting for packing geometry

via the three-point parameter f2 the packing geometry.

V. CONCLUSIONS

This work reports on numerical simulations of the effec-

tive diffusion coefficient in bulk random packings of mono-

sized hard spheres. Six packing types were generated with

different algorithms and parameters, resulting in a systemati-

cally varied degree of microstructural heterogeneity. We have

verified that the corresponding predictions of Torquato’s

approximation formula (9), that the effective diffusion coeffi-

cient in random sphere packings is not fully defined by the

solid volume fraction, but also depends on the packing type.

These results demonstrate that a characterization of effective

transport properties of sphere packings exclusively from the

volume fraction can lead to an erroneous estimation of their

effective transport parameters. The effective transport proper-

ties of sphere packings are also influenced by the morphology

of a packing, which must be accounted for with an adequate

description of the structure–transport relationships. For the

first time, we have compared simulated effective diffusion

coefficients for random sphere packings with corresponding

predictions obtained from Torquato’s approximation formula

(9), which involves the three-point microstructural parameter

f2.13 The comparison shows that this microstructure-sensitive

parameter reflects the specificity of the morphology in individ-

ual sphere packings and, as a result, Eq. (9) provides accurate

estimates of the effective diffusion coefficient for the wide

class of random packings considered in this paper. The pre-

sented approach provides a straightforward route to quantita-

tive structure–transport relationships for heterogeneous

materials in general.
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