
RESEARCH ARTICLE ECOLOGY OPEN ACCESS

Spreading processes with mutations over multilayer networks
Mansi Sooda , Anirudh Sridharb , Rashad Eletrebyc , Chai Wah Wud ID , Simon A. Levine ID , Osman Yağana,f,1 , and H. Vincent Poorb,1 ID
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A key scientific challenge during the outbreak of novel infectious diseases is to
predict how the course of the epidemic changes under countermeasures that limit
interaction in the population. Most epidemiological models do not consider the role
of mutations and heterogeneity in the type of contact events. However, pathogens
have the capacity to mutate in response to changing environments, especially caused
by the increase in population immunity to existing strains, and the emergence of
new pathogen strains poses a continued threat to public health. Further, in the
light of differing transmission risks in different congregate settings (e.g., schools and
offices), different mitigation strategies may need to be adopted to control the spread of
infection. We analyze a multilayer multistrain model by simultaneously accounting for
i) pathways for mutations in the pathogen leading to the emergence of new pathogen
strains, and ii) differing transmission risks in different settings, modeled as network
layers. Assuming complete cross-immunity among strains, namely, recovery from any
infection prevents infection with any other (an assumption that will need to be relaxed
to deal with COVID-19 or influenza), we derive the key epidemiological parameters
for the multilayer multistrain framework. We demonstrate that reductions to existing
models that discount heterogeneity in either the strain or the network layers may
lead to incorrect predictions. Our results highlight that the impact of imposing/lifting
mitigation measures concerning different contact network layers (e.g., school closures
or work-from-home policies) should be evaluated in connection with their effect on
the likelihood of the emergence of new strains.

network epidemics | multilayer networks | mutations | agent-based models | branching processes

The recent outbreak of the COVID-19 pandemic, fueled by the novel coronavirus SARS-
CoV-2 led to a devastating loss of human life and upended livelihoods worldwide (1).
The highly transmissible, virulent, and rapidly mutating nature of the SARS-CoV-2
coronavirus (2) led to an unprecedented burden on critical healthcare infrastructure. The
emergence of new strains of the pathogen as a result of mutations poses a continued
risk to public health (3, 4). Moreover, when a new strain is introduced to a host
population, pharmaceutical interventions often take time to be developed, tested, and
made widely accessible (5, 6). In the absence of widespread access to treatment and
vaccines, policymakers are faced with the challenging problem of taming the outbreak
with nonpharmaceutical interventions (NPIs) that encourage physical distancing in the
host population to suppress the growth rate of new infections (7–9). However, the
ensuing socioeconomic burden (10, 11) of NPIs, such as lockdowns, makes it necessary
to understand how imposing restrictions in different social settings (e.g., schools, offices,
etc.) alter the course of the epidemic outbreak.

Epidemiological models that analyze the speed and scale of the spread of infection can
be broadly classified under two approaches. The first approach assumes homogeneous
mixing, i.e., the population is well mixed, and an infected individual is equally likely to
infect any individual in the population regardless of location and social interactions (12,
13). The second is a network-based approach that explicitly models the contact patterns
among individuals in the population and the probability of transmission through any
given contact (14–16). Structural properties of the contact network such as heterogeneity
in type of contacts (17), clustering (e.g., presence of tightly connected communities) (18),
centrality (e.g., presence of superspreaders) (19, 20), and degree-degree correlations (21)
are known to have profound implications for disease spread and its control (22, 23). To
understand the impact of NPIs that lead to reduction in physical contacts, network-based
epidemiological models have been employed widely in the context of infectious diseases,
including COVID-19 (24–26).

In addition to the contact structure within the host population, the course of an
infectious disease is critically tied to evolutionary adaptations or mutations in the
pathogen. There is growing evidence for the zoonotic origin of disease outbreaks, includ-
ing COVID-19, SARS, and H1N1 influenza, as a result of cross-species transmission
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and subsequent evolutionary adaptations (27–31). When
pathogens enter new species, they are often poorly adapted to
the physiological environment in the new hosts and undergo
mutations to adapt to the new hosts (27). The resulting variants
or strains of the pathogen have varying risks of transmission, com-
monly measured through the reproduction number or R0, which
quantifies the mean number of secondary infections triggered by
an infected individual (32, 33). Moreover, even when a sizeable
fraction of the population gains immunity through vaccination
or natural infection, the emergence of new variants that can evade
the acquired immunity poses a continued threat to public health
(3, 4). A growing body of work (27, 34–44) has highlighted
the need for developing multistrain epidemiological models
that account for evolutionary adaptations in the pathogen. For
instance, there is a vast literature on phylodynamics (38–41)
which examines how epidemiological and evolutionary processes
interact to impact pathogen phylogenies. The past decade has also
seen the development of network-based models to identify risk
factors for the emergence of pathogens in the light of different
contact patterns (27, 34, 42, 43). Further, a recent study (34)
demonstrated that models that do not consider evolutionary
adaptations may lead to incorrect predictions about spreading
processes with mutations.

Most existing network-based approaches that analyze the
spread of contagions with mutations center on single-layered
contact networks, where transmissibility, i.e., the probability
that an infective individual passes on the infection to a contact,
depends on the type of strain but not on the nature of link/contact
over which the infection is transmitted (27, 34, 43). However,
different congregate settings such as schools, hospitals, offices,
and private social gatherings pose varied transmission risks
(45). Recently, multilayer networks have been used to model
human contact networks (24–26, 33, 46), where each layer
represents a different social setting in which an individual
participates. While multilayer contact networks (20, 47–57)
and multistrain contagions(27, 34–37, 43) have been extensively
studied in separate contexts, there has been a dearth of analysis on
simultaneously accounting for the multistrain network structure
and multistrain spreading.

In this paper, we build upon the mathematical theory for the
multistrain model proposed in refs. 27 and 34 to account for the
multilayer structure typical to human contact networks, where
different network layers correspond to different social settings in
which individuals congregate. Specifically, we assume that the
transmissibility depends not only on the type of strain carried
by an infective individual but also on the social setting (modeled
through a network layer) in which they meet their contacts. The
proposed framework allows us to study how closing/opening
different network layers impacts the spreading characteristics of
a contagion.

While the bulk of our discussion is on spreading processes
with mutations in the context of infectious diseases, our results
also hold promise for applications in modeling social contagions,
e.g., news items circulating in social networks (34, 58). Similar
to different strains of a pathogen arising through mutations,
different versions of the information are created as the content is
altered on social media platforms (59). The resulting variants of
the information may have varying propensities to be circulated
in the social network. Moreover, with the burst of social media
platforms, potential applications of our multilayer analysis of
evolving contagions include analyzing multiplatform spread
of misinformation where the information gets altered across
different platforms.

Materials and Methods
Contact Network. We consider a population of size n with members in the set
N = {1, . . . , n}. Patterns of interaction in the host population are encoded in
the contact network where an edge is drawn between two nodes if they can come
in contact and potentially transmit the infection. To account for variability in
transmission risks associated with different social settings (e.g., neighborhood,
school, workplace), we consider a multilayer contact network (47), where each
network layer corresponds to a unique social setting. For simplicity, we focus on
the case where each individual can participate independently in two network
layers denoted by F and W, respectively. For instance, the network layer F can
be used to model the spread of infection between friends residing in the same
neighborhood, while the network layer W can model the spread of infections
among individuals who congregate for work.

In order to model participation in each network layer, we first independently
label each node as nonparticipating in network layer a with probability αa and
participating in network layer a with probability 1 − αa, where 0 ≤ αa ≤ 1,
and where a ∈ {f, w}. Next, for each node that participates in network layer
a, the number of its neighbors in layer a is drawn from a degree distribution,
denoted by {p̃a

k , k = 0, 1, . . . , n}, where a ∈ {f, w}. Under this formulation,
the degree of a node in layer a, denoted by {pa

k , k = 0, 1, . . .}, with a ∈ {f, w},
is given by

pa
k = (1− αa)p̃a

k + αa1{k = 0}, k = 0, 1, . . . , [1]

where1{}denotes the indicator random variable, admitting the value one when
k = 0 and zero when k ≥ 1. We generate both layers independently according
to the configuration model (60, 61) with the degree distribution given through
Eq. 1. For notational simplicity, we say that edges in network F (respectively,
H) are of type f (respectively, type w). The multilayer contact network, denoted
as H, is constructed by taking the disjoint union (q) of network layers W and
F (Fig. 1). We assume that the network H is static and focus on the emergent
spreading behavior in the limit of infinite population size (n→∞).

Spreading Process. We adopt a multistrain spreading process (27) to the
multilayernetwork settingas follows. Foreach layer, theevolutionaryadaptations
in the pathogen are modeled by corresponding mutation matrices. Let m denote
the number of pathogen strains coexisting in a population. For network layer
F (respectively, W), the mutation matrix, denoted by �f (respectively, �w)
is a m × m matrix. The entry µf

ij (respectively, µw
ij ) denotes the probability

that strain i mutates to strain j within a host who got infected through a type
f (respectively, type w) link, with

∑
j µ

f
ij = 1 (respectively,

∑
j µ

w
ij = 1).

Given that an individual carrying strain i makes an infectious contact through
a type f (respectively, type w) edge, the newly infected individual acquires
strain j with probability µf

ij (respectively, µw
ij ). For infectious diseases where

the epidemiological and evolutionary processes occur at a similar timescale and
mutations of the pathogen occur within the host and each new infection offers

Fig. 1. Multilayer network model: An illustration of a two-layer con-
tact network for modeling the spread of an infection over the friend-
ship/neighborhood network F and work network W. The resultant contact
network H = FqW. Neighboring nodes in H can transmit infections to their
neighbors either through links in the F network (i.e., through type f links) or
W network (through type w links).
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an opportunity for mutation (27), the mutation matrices do not depend on the
network structure (27) and �w = �f *. In the succeeding discussion, we focus
on the setting where two strains of the pathogen are dominant and assume
m = 2. We denote

�f =

[
µf

11 µf
12

µf
21 µf

22

]
, �w =

[
µw

11 µw
12

µw
21 µw

22

]
.

We consider a SIR spreading process wherein each individual is susceptible
(S), meaning that they have not yet been exposed to the contagion; infectious
(I), meaning that they have received the contagion and are currently spreading
it to their contacts; or recovered (R), meaning that they are no longer spreading
the contagion. We first describe how the time scale of interactions are modeled
for on a single-layer network (14, 15) with a single strain and later extend it to
the multilayer setting. We assume that an infectious individual vx transmits the
infection to a susceptible contact vy with probability Txy , which is given by

Txy = 1− e−rxyτx ,

where rxy denotes the average rate of being in close-enough contact over the
link from vx to vy , and τx is the time vx keeps spreading the contagion; i.e., the
time it takes for vx to become recovered.

In a multilayer setting, the spread of a contagion is expected to vary across
different layers due to different interaction rates rxy , resulting in different
probabilities Txy across the layers. For example, due to different time scales
or rates of interactions across layers, two nodes vx and vy may have a very
different rate of being in close-enough contact in the school layer versus the
neighborhood layer. In the context of viral propagation, it would be expected
that the recovery time τx of individuals is the same across different layers. With
this model, we can also see that the emergence of a new strain will affect the
transmissibility across a given link between nodes vx and vy , potentially by the
modification of both the rate of interaction and the recovery time. For example, a
new strain may have better spreading capabilities in certain distances between
individuals, which may change the rate at which vx and vy come into close-
enough contact (given that the threshold of being close enough depends on
the characteristics of the strain). Similarly, a new strain may cause individuals to
have a shorter or longer recovery period.

We let the probability that an infective individual passes on the infection to
their neighbor be a function of the type of strain and the type of link over which
the infection is transmitted. For each strain i, we let Ta,i

xy stand for the probability
of transmission over a link (between vx and vy ) in network layer a, where
a ∈ {f, w}. For simplicity, we assume that the random variables corresponding to
the interactions and recovery rates (ra,i

xy and τ a,i
x ) are independent and identically

distributed (i.i.d.) with probability densities Pa,i(r) and Pa,i(τ ), respectively.
Finally, we define Ta

i as the mean probability of transmission of strain i in network
layer a, i.e.,

Ta
i :=< Ta,i

xy >

= 1−
∫
∞

0

∫
∞

0
e−ra,i

xy τ
a,i
x Pa,i(ra,i

xy )Pa,i(τ a,i
x )dra,i

xy dτ a,i
x .

We refer to Ta
i as the transmissibility of strain i over network layer a and note

that 0 ≤ Ta
i ≤ 1. With these definitions, it has been shown in refs. 15 and

14 that, under certain assumptions, the contagion propagates over network
layer a as if transmission probabilities across all edges in layer a were equal to
the transmissibility of that layer for the purposes of computing the threshold,
probability, and expected size of epidemics. In fact, this mean-field approach
has been shown in ref. 15 (by proving that the SIR process is isomorphic to
bond percolation) to give the same results as the SIR process for the epidemic
threshold and the final size of an epidemic in all cases. For the probability of
epidemics, it has been shown in ref. 15 that the mean-field approach provides
the same results as the SIR process as long as the recovery time of nodes follows

* In the context of information propagation, different strains (34) may correspond to
different versions of the information. Therefore, we let the mutation probabilities depend
on the network layer to provide a more general contagion model.

Fig. 2. Multistrain spreading model: An illustration of the multistrain model
with 2 strains on a contact network comprising 2 layers—(A) An arbitrarily
chosen seed node acquires strain 1; (B) The seed node independently infects
their susceptible neighbors connected through type f (respectively, type w)
links with probability T f1 (respectively, Tw1 ); (C) After infection, the pathogen
mutates to strain 2 within the hosts with probabilities given by mutation
matrices �f and �w ; (D) The infected nodes in turn infect their neighbors
with transmission probabilities governed by the strain that they are carrying
(i.e., strain 1 or strain 2) and the type of edge used to infect their neighbors
(i.e., type 1 or type 2). The process terminates when no further infections are
possible.

a degenerate probability distribution (i.e., as long as the recovery times are
deterministic across different nodes).

We define m × m diagonal matrices T f (respectively, Tw), with [T f
i ]

(respectively, [Tw
i ]) representing the transmissibility of strain i over a type f

link (respectively, type w link), for i = 1, . . . , m. For m = 2 strains, we have

T f =

[
T f

1 0
0 T f

2

]
, Tw =

[
Tw

1 0
0 Tw

2

]
.

We consider the following multistrain spreading process (Fig. 2). The process
starts when a randomly chosen seed node is infected with strain 1. We refer
to such a seed node as the initial infective and the subsequently infected
nodes as later-generation infectives. The seed node independently infects their
susceptible neighbors connected through type f (respectively, type w) links with
probability T f

1 (respectively, Tw
1 ). We assume that coinfection is not possible, and

after infection, the pathogen mutates to strain i within the hosts with probabilities
given by mutation matrices�f and�w . Further, in line with (27, 34), we assume
that once an individual becomes recovered after being infected with either strain,
then they can not be reinfected with any strain. The infected nodes in turn infect
their neighbors independently with transmission probabilities governed by the
strain they are carrying (i.e., strain 1 or strain 2) and the type of edge used to
infect their neighbors (i.e., type f or type w). The process terminates when no
further infections are possible.

We note that this paper is the first effort to develop a framework for the
multiscale process discussed. In it, we assume complete cross-immunity between
strains: Recovery from any infection prevents infection with any other. This is a
good assumption, for example, for myxomatosis but is not a good assumption for
influenza or COVID, for which the emergence of new strains is driven by escape
from population immunity. The case of incomplete cross-immunity, which is
an essential feature of the current pandemic, therefore will be the subject of
a follow-up paper. Additional details regarding the Materials and Methods are
presented in SI Appendix, 1.

Results

Summary of Key Contributions. We provide analytical results for
characterizing epidemic outbreaks caused by mutating contagions
over multilayer contact networks using tools from multitype
branching processes. In particular, we derive three key metrics
to characterize the epidemic outbreak. i) The probability of
emergence of an epidemic is defined as the probability that a
randomly chosen infectious seed node leads to an epidemic, i.e., a
positive fraction of nodes get infected in the limit of large network
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size. ii) The epidemic threshold defines the critical boundary of
the region in the parameter space where a phase transition occurs,
leading to the possibility of an epidemic outbreak. Specifically,
the epidemic threshold defines a region in the parameter space
inside which the outbreak dies out after a finite number of
transmissions, while outside that region, the epidemic occurs with
a positive probability. iii) Finally, we derive the epidemic size as
the conditional mean of the fraction of individuals infected by
each type of strain, given that an epidemic outbreak has occurred.

We supplement our theoretical findings with analytical case
studies and simulations for different patterns of interaction in
the host population and different types of mutation patterns in
the pathogens. The multilayer multistrain modeling framework
allows for understanding trade-offs, such as the relative impact of
countermeasures, including lockdowns that alter the network lay-
ers on the emergence of highly contagious strains. For cases where
the spread of infection starts with a moderately transmissible
strain, we study how imposing/lifting mitigation measures across
different layers can alter the course of the epidemic by increasing
the risk of mutation to a highly contagious strain. We derive the
probability of mutation to a highly transmissible strain which in
turn provides a lower bound on the probability of emergence.
Through a case study for one-step irreversible mutation patterns,
our results highlight that reopening a new layer in the contact
network may be considered low-risk based on the transmissibility
of the current strain. Still, even a modest increase in infections
caused by the additional layer can lead to an epidemic outbreak
to be triggered with a much higher probability. Therefore, it is
important to evaluate mitigation measures concerning different
network layers in connection with their impact on the likelihood
of the emergence of new pathogen strains.

Next, we unravel conditions under which we can reduce the
multilayer multistrain model to simpler models for accurately
characterizing the epidemic outbreak. We show that while a
reduction to a single-layer model can accurately predict the
epidemic characteristics when the network layers are purely
Poisson, a departure from Poisson distribution can lead to
incorrect predictions with single-layer models. Moreover, we
show that the success of approaches that coalesce the multilayer
structure to an equivalent single layer is critically dependent
on the dispersion indices of the network layers being perfectly
matched. However, in practice, different network layers (rep-
resenting different congregate settings) are expected to have
different structural characteristics, further highlighting the need
for considering multilayer network models for predicting the
course of an outbreak. Our results further underscore the
need for developing epidemiological models that account for
heterogeneity among the variants of the contagions as well as the
contact network layers.

Probability of Emergence. The first question that we investigate
is whether a spreading process started by infecting a randomly
chosen seed node with strain 1 causes an outbreak infecting
a positive fraction of individuals, i.e., an outbreak of size
�(n). Our results are based on multitype branching processes
(27, 34, 62, 63). For computing the probability of emergence, we
first define probability generating functions (PGFs) of the excess
degree distribution. Let d = (d f , dw) denote the joint degree
over layer f and layer w. We define g(zf , zw) as the PGF for joint
degree distribution pd = pf

d f · pw
dw of a randomly selected seed

node, where the parameters zf (respectively, zw) correspond to
its degree d f (respectively, dw) in layer f (respectively, layer w):

g(zf , zw) =
∑
d

pd
(

zf
)d f

(zw)dw
. [2]

For a ∈ {f, w}, we define, Ga(zf , zw) as the PGF for excess joint
degree distribution for the number of type f and type w contacts
of a node reached by following a randomly selected type a edge
(later-generation infective/ intermediate host). While computing
Ga(zf , zw), we discount the type a edge that was used to infect
the given node. We have

G f (zf , zw) =
∑
d

d f pd
〈d f 〉

(
zf
)d f
−1

(zw)dw
, [3]

Gw(zf , zw) =
∑
d

dwpd
〈dw〉

(
zf
)d f

(zw)dw
−1
. [4]

The factor d f pd/〈d f
〉 (respectively, dwpd/〈dw

〉) gives the nor-
malized probability that an edge of type f (respectively, type w)
is attached (at the other end) to a vertex with colored degree
d = (d f , dw) (14). Suppose, an arbitrary node u carries strain
1 and transmits the infection to one of its susceptible neighbors,
denoted as node v. Since there are two types of links/edges in the
contact network and two types of strains circulating in the host
population, there are four types of events that lead to the transmis-
sion of infection from node u to v, namely, whether edge (u, v) is

(i) type f and no mutation occurs in host v;
(ii) type f and mutation to strain 2 occurs in host v;

(iii) type w and no mutation occurs in host v;
(iv) type w and mutation to strain 2 occurs in host v.

In cases (i) and (iii), there is no mutation in the host node v, and
v infects their neighbors in layer f (respectively, layer w) with
T f

1 (respectively, T w
1 ). In cases (ii) and (iv), strain 1 mutates to

strain 2, and v infects its neighbors in layers f and w with trans-
missibility T f

2 and T w
2 , respectively. For applying a branching

process argument (14, 64) and writing recursive equations using
PGFs, it is crucial to keep track of both the types of edges used
to transmit the infection and the types of strain acquired after
mutation. Therefore, we keep a record of the number of newly
infected individuals who acquire strain 1 or strain 2 and the type
of edge through which they acquired the infection. We define the
joint PGFs for transmitted infections over four random variables
corresponding to the four infection events (i) to (iv) as follows:

γ1(z
f
1 , zf

2 , zw
1 , zw

2 ) =

g

1− T f
1 + T f

1

 2∑
j=1

µ
f
1jz

f
j

 , 1− T w
1 + T w

1

 2∑
j=1

µw
1jz

w
j

.
For a ∈ {f, w} and i ∈ {1, 2}, denote

0a
i (z

f
1 , zf

2 , zw
1 , zw

2 ) =

Ga

1− T f
i + T f

i

 2∑
j=1

µ
f
ijz

f
j

 , 1− T w
i + T w

i

 2∑
j=1

µw
ij z

w
j

.
We show that the quantity γ1(z

f
1 , zf

2 , zw
1 , zw

2 ) represents the PGF
for the number of infection events of each type induced among
the neighbors of a seed node when the seed node is infected with
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strain 1; SI Appendix, 1.A. Furthermore, for a ∈ {f, w} and i ∈
{1, 2}, we show that0a

i (z
f
1 , zf

2 , zw
1 , zw

2 ) is the PGF for the number
of infection events of each type caused by a later-generation infec-
tive (i.e., a typical intermediate host in the process) that received
the infection through a type a edge and carries strain i. Our first
main result characterizes the probability of emergence when the
outbreak starts at an arbitrary node infected with strain 1.

Theorem 1 (Probability of Emergence). It holds that

P[Emergence] = 1− γ1(q
f
1 , qf

2 , qw
1 , qw

2 ), [5]

where,
(

qf
1 , qf

2 , qw
1 , qw

2

)
are the smallest nonnegative roots of the

fixed point equations:

qf
1 = 0

f
1(qf

1 , qf
2 , qw

1 , qw
2 ) [6]

qf
2 = 0

f
2(qf

1 , qf
2 , qw

1 , qw
2 ) [7]

qw
1 = 0w

1 (qf
1 , qf

2 , qw
1 , qw

2 ) [8]

qw
2 = 0w

2 (qf
1 , qf

2 , qw
1 , qw

2 ). [9]

Here, for a ∈ {w, f } and i ∈ {1, 2}, the term qa
i can be interpreted

as the probability of extinction starting from one later-generation
infective carrying strain i (after mutation) which was infected
through a type a edge; see SI Appendix, 1.A for a detailed proof.
Therefore, the probability of emergence of an epidemic is given
by the probability that at least one of the infected neighbors of
the seed triggers an unbounded chain of transmission events.
We note that Theorem 1 provides a strict generalization for the
probability of emergence of multistrain spreading on a single
layer (27), and we can recover the probability of emergence for
the case of single layer by substituting T f = T w and �f = �w

in Eqs. 6– 9.

Epidemic Threshold. Next, we characterize the epidemic thresh-
old, which is commonly studied as a metric to characterize an
epidemic and ascertain risk factors (65). Let λf and λw denote the
first moments of the distributions {pf

d f } and {pw
dw}, respectively.

Let 〈d2
f 〉 and 〈d2

w〉 denote the corresponding second moments for

distributions {pf
d f } and {pw

dw}. Further, define βf and βw as the
mean of the excess degree distributions respectively in the two
layers. We have

βf :=
〈d2

f 〉 − λf

λf
and βw :=

〈d2
w〉 − λw

λw
. [10]

Theorem 2 (Epidemic Threshold). For

J =


T f

1 µ
f
11βf T f

1 µ
f
12βf T w

1 µ
w
11λw T w

1 µ
w
12λw

T f
2 µ

f
21βf T f

2 µ
f
22βf T w

2 µ
w
21λw T w

2 µ
w
22λw

T f
1 µ

f
11λf T f

1 µ
f
12λf T w

1 µ
w
11βw T w

1 µ
w
12βw

T f
2 µ

f
21λf T f

2 µ
f
22λf T w

2 µ
w
21βw T w

2 µ
w
22βw

 ,

[11]

let ρ(J ) denote the spectral radius of J . The epidemic threshold is
given by ρ(J ) = 1.

The above theorem states that the epidemic threshold is tied
to the spectral radius of the Jacobian matrix J , i.e., if ρ(J ) > 1,
then an epidemic occurs with a positive probability, whereas if
ρ(J ) ≤ 1, then with high probability, the infection causes a self-
limited outbreak, where the fraction of infected nodes vanishes
to 0 as n→∞. The matrix J is obtained while determining the
stability of the fixed point of the recursive equations in Theorem 1
by linearization around qf

1 = qf
2 = qw

1 = qw
2 = 1 (SI Appendix,

1.B). We note that when the mutation matrix is indecomposable,
meaning that each type of strain eventually may lead to the
emergence of any other type of strain with a positive probability,
the threshold theorem for multitype branching processes (27)
guarantees if ρ(J ) ≤ 1, then qa

i = 1, whereas if ρ(J ) > 1,
then 0 ≤ qa

i < 1, where i ∈ {1, 2} and a ∈ {f, w}. For
decomposable processes, the threshold theorem (27) guarantees
extinction (qa

i = 1) if ρ(J ) ≤ 1; however, the uniqueness of the
fixed-point solution does not necessarily hold when ρ(J ) > 1.

Our next result reveals the interplay of the network structure
and the transmission parameters in determining the threshold for
emergence of an epidemic outbreak.

Lemma 1. When T w
1 /T

f
1 = T w

2 /T
f
2 = c, where c > 0, and let

� = �f = �w, we get,

ρ(J ) = ρ

([
βf cλw
λf cβw

])
× ρ(T f �). [12]

Lemma 1 follows from the observation that with T w
1 /T

f
1 =

T w
2 /T

f
2 = c, we can express J as a Kronecker product of two

matrices (denoted by ⊗), as below.

J =


T f

1 µ11βf T f
1 µ12βf T w

1 µ11λw T w
1 µ12λw

T f
2 µ21βf T f

2 µ22βf T w
2 µ21λw T w

2 µ22λw

T f
1 µ11λf T f

1 µ12λf T w
1 µ11βw T w

1 µ12βw

T f
2 µ21λf T f

2 µ22λf T w
2 µ21βw T w

2 µ22βw


=
[
βf cλw
λf cβw

]
⊗ (T f �).

The first assumption T w
1 /T

w
2 = T f

1 /T
f
2 is consistent with

scenarios where the ratio of the transmissibility of the two
strains in each layer is a property of the contagion, not the
contact networks. This is supported by the assumption (26)
that interventions such as social distancing measures reduce the
transmissibility of the disease by a specific coefficient for the entire
network layer. The second assumption (�f = �w) in Lemma 1
is motivated by the occurrence of mutations within individual
hosts (27).

Lastly, we observe that Lemma 1 provides a unified analysis for
the epidemic threshold for the case with a single strain or a single
layer (27, 47). To obtain the epidemic threshold for multistrain
spreading on a single-layer network, we first obtain the spectral
radius of J , denoted by ρMS-SL. Next, invoking Eq. 12 with
T f

i = T w
i and setting the mean degree of one of the layers

as zero gives ρMS-SL. For instance, we can set λw = βw = 0,
yielding

ρMS-SL = βf × ρ(T f �), [13]

where βf corresponds to the mean of the excess degree distri-
bution for the contact network with a single layer f . For single
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strain spreading on a multilayer contact network, we substitute
T f

1 = T f
2 in Eq. 12, which gives ρ(T f �) = T f ρ(�) = T f ,

yielding the corresponding spectral radius, denoted as ρSS-ML,

ρSS-ML = ρ

([
βf cλw
λf cβw

])
× T f . [14]

The corresponding epidemic thresholds are obtained by setting
the above spectral radii ρMS-SL and ρSS-ML to one.

Mean Epidemic Size. Next, we compute the mean epidemic size
and the mean fraction of nodes infected by each strain. Knowing
the fraction of individuals infected by each strain is vital for cases
when different pathogen strains have different transmissibility
and virulence. In such cases, predicting the expected fraction
of the population hit by the more severe strain can help scale
healthcare resources in time.

For computing the mean epidemic size, we consider the zero-
temperature random-field Ising model on Bethe lattices (66), as
done in ref. 34. We refer to a node as being active if it is infected
with either of the two strains (strain 1 or strain 2), and inactive
otherwise. Since H is locally tree-like (67), we consider the
following hierarchical structure, such that at the top level, there is
a single node (the root). The probability that an arbitrarily chosen
root node is infected with strain 1 (respectively, strain 2), gives
the mean fraction of individuals infected by strain 1 (respectively,
strain 2). Let Q1 (respectively, Q2) denote the probability that the
root node is active and carries strain 1 (respectively, strain 2). We
label the levels of the tree from level ` = 0 at the bottom to level
` = ∞ at the top, i.e., the root. We assume that coinfection
is not possible. Specifically, if a node receives xf

1 (respectively,
xw

1 ) infections of strain 1 through type f (respectively, type w)
links and xf

2 (respectively, xw
2 ) infections of strain 2 through type

f (respectively, type w) links, then after mutation, it becomes
infected by strain i with probability

µ
f
1ix

f
1 + µ

f
2ix

f
2 + µw

1ix
w
1 + µw

2ix
w
2

xf
1 + xf

2 + xw
1 + xw

2

,

where i ∈ {1, 2}. For a ∈ {f, w}, and i ∈ {1, 2}, let qa
`+1,i denote

the probability that a node at level `+ 1 is active, carries strain i,
and is connected to a node at level `+ 2 through a type a edge.
Our next result characterizes the mean fraction of individuals
infected by each type of strain during an epidemic outbreak.
As a crucial step toward deriving the mean fraction of infected
individuals, we first show that for i = 1, 2, we have

qf
`+1,i =

∑
d

d f pd
〈d f 〉

fi(q
f
`,1, qf

`,2, qw
`,1, qw

`,2, d f
− 1, dw), [15]

qw
`+1,i =

∑
d

dwpd
〈dw〉

fi(q
f
`,1, qf

`,2, qw
`,1, qw

`,2, d f , dw
− 1)., [16]

We let qa
∞,i denote the limit of qa

`,i as `→∞.

Theorem 3 (Epidemic Size). For i = 1, 2, we have

Qi =
∑
d

pd fi(q
f
∞,1, qf

∞,2, qw
∞,1, qw

∞,2, d f , dw), [17]

with the mean epidemic size

Q = Q1 + Q2,

where fi(u
f
1, uf

2, uw
1 , uw

2 , zf , zw) is given in SI Appendix, 1.C.

Here, fi(u
f
1, uf

2, uw
1 , uw

2 , zf , zw) denotes the probability that an
arbitrary node u at level `+ 1 gets infected with strain 1 through
neighbors in level ` such that there are zf and zw neighbors of
node u in layers f and w, respectively. A precise definition of
fi(u

f
1, uf

2, uw
1 , uw

2 , zf , zw) and a proof of Theorem 3 is presented
in SI Appendix, 1.C.

Experimental Evaluation. In this section, we present numerical
studies on different contact structures and transmission patterns.
We focus on the setting where the fitness landscape consists
of two types of strains and two types of network layers.
The two network layers are independently generated using the
configuration model after sampling degree sequences from the
distributions {pf

k , k = 0, 1, . . .} and {pw
k , k = 0, 1, . . .}. We first

investigate the case when the network layers follow a Poisson
degree distribution. Additionally, we consider the power-law
degree distribution (SI Appendix, 1.D), which is widely used
(68) in modeling the structure of several real-world networks,
including social networks. Further, to account for mitigation
measures that limit the number of people who can congregate
in the different layers, we let the degree distributions for the
two layers follow the power law degree distribution with an
exponential cutoff; SI Appendix, 1.D.

The spreading process starts when a randomly chosen node is
selected as the seed carrying strain 1 (Fig. 2). In subsequent time
steps, each node independently infects their neighbors with a
transmission probability that depends on both the type of strain
carried and the nature of link through which contact occurs.
After infection, the pathogen mutates within the hosts with
probabilities given by the mutation matrices. In cases where
a susceptible node comes in contact with multiple infectious
neighbors, we resolve exposure to multiple infections as follows.
If a node receives xf

1 (respectively, xw
1 ) infections of strain 1

through type f (respectively, type w) links, and xf
2 (respectively,

xw
2 ) infections of strain 2 through type f (respectively, type w)

links, with probability µ
f
1ix

f
1+µ

f
2ix

f
2+µ

w
1ix

w
1 +µw

2ix
w
2

xf
1+xf

2+xw
1 +xw

2
, after mutation,

it is infected with strain i, which it spreads to its neighbors in
layer a with probability T a

i , where i ∈ {1, 2} and a ∈ {f, w}.
The process reaches a steady state and terminates when no new
infections are possible. Throughout, we let Q denote the mean
epidemic size and Q1 and Q2, respectively, denote the final
fraction of individuals infected by each strain in the steady state.

Next, we compare our analytical results for the probability
of emergence and expected epidemic size (Theorems 1–3) with
empirical values obtained by simulating the spread of infection
over multiple independent experiments. We consider a contact
network where the degree distribution for each layer is Poisson
with parameters λf and λw, respectively. To model scenarios
where there is a risk of the emergence of a new, more transmissible
strain (strain 2) starting from strain 1, we set T f

1 = 0.6, T f
2 =

0.8, T w
1 = 0.7, T w

2 = 0.9,µf
11 = µw

11 = 0.1, and µf
22 =

µw
22 = 0.95, and we fix the number of nodes n = 10,000.

We plot the probability of emergence and epidemic size in
Fig. 3. We indicate the epidemic threshold as the vertical dashed
line where we observe a phase transition, with the probability
and expected epidemic size sharply increasing from zero to one
as the epidemic threshold is exceeded. We plot the expected
fraction of individuals infected by each strain (Q1 and Q2). The
total epidemic size Q is the sum of the fraction of individuals
infected by each strain (Q = Q1 + Q2). In Fig. 4, we consider
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Fig. 3. Probability of emergence and the fraction of individuals infected with
each strain (Q1 , Q2) for a contact network comprising two Poisson layers
with mean degrees �f and �w . We set T f1 = 0.6, T f2 = 0.8, Tw1 = 0.7, Tw2 =

0.9,�f11 = �w11 = 0.1, �f22 = �w22 = 0.95, and n = 10000. We set �f = 1 and
vary �w in [0,5] . The theoretical probability, epidemic size, and transition
points are derived from Theorems 1–3, respectively, while the experimental
results correspond to averaging over 500 independent experiments.

a different initialization for the transmission parameters with
T f

1 = 0.5, T f
2 = 0.7, T w

1 = 0.3, T w
2 = 0.4,µf

11 = µw
11 = 0.2,

n = 10000, and µf
22 = µw

22 = 0.5. To demonstrate the impact
of increasing edge density in the contact network, we vary the
mean node degree while keeping transmission and mutation
parameters fixed. In Figure 4, we vary λf and λw in [1, 3] and
plot the probability of emergence and epidemic size averaged over
1000 independent experiments. We observe a good agreement
between our analytical results in Theorems 1–3 and simulations
in Figs. 3 and 4.

Discussion

Joint Impact of Layer Openings and Mutations. In this section,
we discuss the interplay of layer openings and mutations on the
probability of emergence of epidemic outbreaks. We consider
the case where the fitness landscape consists of two strains. The
process starts when the population is introduced to the first
strain (strain 1) which is moderately transmissible and initially
dominant in the population. In contrast, the other strain (strain
2) is highly transmissible and initially absent in the population
but has the risk of emerging through mutations in strain 1. For
modeling mutations that occur within hosts, we assume that the

mutation probabilities depend on the type of strain but not on the
type of link over which the infection was transmitted. We let �
denote the mutation matrices in the two layers (� = �f = �w),
and let µ22 → 1, wherein with high probability, once the
pathogen mutates to strain 2, it does not mutate back to strain 1.
In particular, we consider the mutation and transmission matrices
below:

� =
[
µ11 1− µ11
0 1

]
, 0 < µ11 < 1, [18]

[
T w

1 0
0 T w

2

]
= c

[
T f

1 0
0 T f

2

]
, c ≥ 1; T w

1 < T w
2 , T f

1 < T f
2 .

[19]

The above mutation and transmission parameters in Eq. 18
correspond to the one-step irreversible mutation scheme, which is
used widely (27, 69) to model scenarios where a simple change is
required for the contagion to evolve to a highly transmissible
variant. We first derive a result characterizing the epidemic
threshold for one-step irreversible mutations.

Lemma 2. For the one-step irreversible mutation matrix given
by Eq. 18 and transmissibilities satisfying Eq. 19, the epidemic
threshold does not depend on µ11 or T f

1 . Specifically,

ρ(J ) = T f
2 × ρ

([
βf cλw
λf cβw

])
. [20]

A proof for Lemma 2 is provided in SI Appendix, 2.A.
In cases where the initial strain by itself is not transmissible

enough to cause an epidemic and the course of the epidemic is tied
to the emergence of a highly transmissible strain, it is of interest
to ascertain the probability that at least one mutation to strain 2
occurs in the chain of infections initiated by the introduction of
strain 1 to a susceptible population. Note that the above quantity
is different from the probabilities given by the mutation matrix
Eq. 18, which defines the probability of mutation to a different
strain (within each host) after every transmission event.

Lemma 3. For the one-step irreversible mutation matrix given by
Eq. 18 and transmissibilities satisfying Eq. 19, we have

P[at least 1 mutation to strain 2 ]

= 1− g(1− T f
1 + T f

1 µ11qf , 1− T w
1 + T w

1 µ11qw), [21]

where

qf = G f (1− T f
1 + T f

1 µ11qf , 1− T w
1 + T w

1 µ11qw), [22]

qw = Gw(1− T f
1 + T f

1 µ11qf , 1− T w
1 + T w

1 µ11qw). [23]

Here, for a ∈ {f, w}, qa corresponds to the probability of there
being no mutation to strain 2 in the chain of infections emanating
from a later generation infective that was infected through a type
a edge (SI Appendix, 2.B). Using Lemma 3, we derive a lower
bound on the probability of emergence highlighting the role of
mutations in SI Appendix, 2.C.

Next, we provide a parametrization of the multilayer multi-
strain model to jointly characterize the transition from a single
layer to a multilayer setting and a single strain to a multistrain
setting. We note that under the one-step irreversible mutation
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Fig. 4. Probability of emergence and the expected epidemic size for a contact network comprising two Poisson layers with mean degrees �f and �w , respectively.

The fixed parameters are T f1 = 0.5, T f2 = 0.7, Tw1 = 0.3, Tw2 = 0.4,�f11 = �w11 = 0.2, �f22 = �w22 = 0.5, n = 10,000, and we vary �f and �w in the interval [1,3].

matrix Eq. 18, as µ11 approaches one, it corresponds to the
case of the spread of contagions without mutations. Thus, the
deviation ofµ11 away from one provides a way to characterize the
departure from the case where no mutations take place. Similarly,
to characterize the transition from a single layer to a multilayer
network, we consider the following degree distributions for the
two layers:

d f
∼

{
0 w.p. αf
Poisson(νf ) w.p. 1− αf ,

dw
∼ Poisson(νw). [24]

As αf → 1, no nodes participate in layer f , and the contact
network H comprises only a single layer W. While, whenµ11 →
1, no mutations to strain 2 appear with high probability (whp)
starting from strain 1 as described in Fig. 5.

Next, we investigate the joint impact of layer openings and
mutations on the probability of emergence of an epidemic
outbreak. For the domain (αf ,µ11) ∈ [0, 1)×[0, 1) in Fig. 5, we
plot the corresponding probability of emergence of an epidemic
as given by Theorem 1 in Fig. 6. We set the degree distribution
of the two layers as per Eq. 24 with νf = νw = 1.2. We let
c = 1, 1.5 and plot the probability of emergence for different
transmissibility values. In the light of Lemma 2, which states that
the epidemic threshold is not affected byµ11, it may be tempting
to consider a single-strain model as being sufficient to capture
the epidemic characteristics. However, in Fig. 6, we observe
that adding an additional network layer can increase the risk
of an epidemic by providing additional pathways for mutation.

Moreover, there is a spectrum of intermediate values that the
probability of emergence admits across the domain, with the
single-layer or single-strain cases capturing only the limiting cases
where αf and µ11 respectively approach one. We observe that
for regions where there is effectively just a single layer (αf → 1),
the probability of emergence remains relatively low despite the
possible emergence of a highly contagious strain. Likewise,
in cases where only a single, moderately transmissible strain

Fig. 5. A parameterization of the multilayer multistrain model as it transi-
tions from the presence of one layer to two layers and one strain to two
strains. Here, �f → 1 corresponds to the case when there are no links in layer
f , and the contact network H effectively has a single layer W, whereas �11 → 1
corresponds to the case where no mutations to a different strain occur
starting from strain 1 with high probability. The horizontal lines correspond
to contours with a constant epidemic threshold (Lemma 2).
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Fig. 6. For the case of one-step irreversible mutations Eq. 18, we plot the analytical probability of emergence of an epidemic as obtained from Theorem 1. We
vary (�f ,�11) ∈ [0,1)× [0,1) as characterized in Fig. 5. A smaller value of �f and �11, respectively, correspond to a case with a greater participation in layer f and

a higher probability of mutation to strain 2. We set T f1 = 0.4, T f2 = 0.8, c = Tw1 /T
f
1 = Tw2 /T

f
2 = 1.0,1.5, and �f = �w = 1.2. We observe a relatively low probability

of emergence when i) there is a single layer present, i.e., �f → 1 (even with the highly contagious strain circulating), and ii) with a single strain circulating, i.e.,
�11 → 1 (even when the f layer is added). However, when both layers are open and mutations occur with a positive probability, we see a higher probability of
emergence.

circulates with a high probability (µ11 → 1), even the addition of
another layer f does not lead to a high probability of emergence.
In contrast, when both network layers are present, and there is
a nonzero probability of mutation to strain 2, the probability of
emergence is high. In Fig. 6, for the network parameters under
consideration, this effect is particularly pronounced in certain
transmissibility values, e.g., with c = 1, T f

1 = 0.4, T f
2 = 0.8,

where with only a single layer open (αf → 1) or a single
circulating strainµ11 → 1, the probability of emergence remains
zero. However, as layer f is opened (αf < 1) and there is a
positive probability of mutation to strain 2 (µ11 < 1), the
probability of emergence rises to greater than 0.5 asµ11,αf → 0.
Likewise, when c = 1.5, with T f

1 = 0.3, T f
2 = 0.5, we observe

that the probability jumps to over 0.4 when µ11,αf → 0. In SI
Appendix, 2.D, we demonstrate that for a more general class of
network parameters, there exists a range of transmissibility values
where we observe the above phenomenon under the conditions
in Eqs. 18 and 19.

The observations in Fig. 6 shed light on the impact of im-
posing/lifting mitigation measures concerning different contact
network layers (e.g., school closures or many companies adopting
work-from-home policies) on the emergence of more transmis-
sible variants. For example, opening a new layer in the contact
network may be deemed safe based on the transmissibility of the
initial strain, but even a modest increase in infections caused by
the new layer might increase the chances of a more transmissible
strain to emerge, which in turn can make an epidemic more likely.
Thus, by studying the mutations over a multilayer network, our
results can help understand the comprehensive impact of layer
closures/openings.

Reductions to Simpler Models. In this section, we propose and
analyze approaches to reduce the multistrain multilayer (MS-ML)
model into a corresponding single-strain multilayer (SS-ML) or
a multistrain single-layer (MS-SL) model.

We first investigate whether, under arbitrary distributions for
the network layers, we can systematically reduce the MS-ML
model into an equivalent (yet simpler) MS-SL model (27) and
get accurate predictions for key epidemiological quantities. In
what follows, we show that when the degree distribution for
the two network layers is Poisson with parameters λf and λw,
respectively, the following transformation to a MS-SL model can
accurately predict the probability of emergence of an epidemic
(SI Appendix, 3.A)

λ← λf + λw. [25]

T1 ←
λf T f

1 + λwT w
1

λf + λw
; T2 ←

λf T f
2 + λwT w

2
λf + λw

. [26]

Next, we illustrate the potential pitfall of mapping a multilayer
network to a single-layer structure using the transformations
Eqs. 25–26 when the Poisson assumption no longer holds.
Specifically, we study how well the reduction to a single layer
allows us to predict the epidemic threshold for a multilayer
network for a more general family of distributions. We first
consider the case when the ratio of the transmissibilities in the
two network layers is one for both strains, i.e., T w

1

T f
1

= T w
2

T f
2

= 1.

In other words, the transmissibilities only depend on the type of
strain and are agnostic of the type of link. Throughout, we let ρ(.)
denote the spectral radius of the matrix supplied as its argument.
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Fig. 7. A comparison of the predictions made by reduction to a single-strain (SS-ML) through mapping the spectral radius (denoted as Tx − �) and mapping
the mean matrix for infections (denoted as Tx− J). (A) We set �22 = 1− � with � = 10−10 and vary �11. Next, we set T f2 = 0.8 and vary the ratio T f1/T

f
2 = Tw1 /T

w
2 ,

denoted as T1/T2 on the X-axis. (B) We set �11 = 0.2 and �22 = 1 − �. (C) We set �11 = 0.9 and �22 = 0.4. (D) We set �11 = 0.5 and �22 = 0.5. We observe
that neither transformation accurately predicts the probability of emergence, and the gap in prediction is more pronounced when the difference in strain
transmissibilities is higher.

Let the single-layer network obtained by taking the sum of node
degrees in the two layers be denoted by H̃. Since the layers in
the multilayer network have independent degree distributions,
the degree distribution for H̃ is given by p̃ = pf

∗ pw, where ∗
denotes the convolution operator. For a ∈ {f, w}, recall that λa
and βa, respectively, denote the mean degree distribution and
the mean excess degree of distribution for network layer a. Note
that for network H̃, the mean degree and mean excess degree,
respectively, denoted by λ̃ and β̃ are given as

λ̃ = λw + λf , [27]

β̃ =
βf λf + βwλw + 2λf λw

λf + λw
. [28]

From Eq. 12, it follows that for the multilayer network H =
W ∪ F , the critical threshold for the emergence of the epidemic
outbreak is

ρ

([
βf λw
λf βw

])
× ρ

(
T f �

)
> 1. [29]

Upon mapping the transmissibilities as per Eq. 26, the critical
threshold for the emergence of the epidemic outbreak in H̃
(constructed using the configuration model with degree drawn
from the distribution pf

∗ pw) is given by
βf λf + βwλw + 2λf λw

λf + λw
× ρ

(
T f �

)
> 1. [30]

Comparing the above thresholds in Eqs. 29 and 30, we see that
the predicted thresholds are identical if and only if

ρ

([
βf λw
λf βw

])
=
βf λf + βwλw + 2λf λw

λf + λw
. [31]

In SI Appendix, 3.B, we show that with λf , λw,βf ,βw > 0,
Eq. 31 holds if and only if

βf − λf = βw − λw. [32]

The condition Eq. 32 is equivalent to the dispersion indices of the
constituent network layers being the same, where the dispersion
index is defined as the ratio of the variance and mean of a
degree distribution. For cases when the degree distribution of the
constituent network layers is not from the same parametric family
of distributions, depending on the magnitude of the dispersion
index relative to one, the condition Eq. 32 may not hold. For
instance, if the degree distribution of the two layers is respectively
Poisson and Binomial, regardless of the choice of parameters
of the distributions, the condition βf − λf = βw − λw will
never hold since the dispersion index of the Poisson distribution
and the Binomial distribution are respectively = 1 and > 1.
Likewise for the parameterization of the degree that accounts for
nonparticipation in layer f through Eq. 24, as long as αf > 0,
the dispersion indices of layers f and w do not match and thus
reductions to MS-SL models can yield inaccurate predictions for
the epidemic threshold.
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So far, we have investigated reductions to a multistrain single-
layer model (MS-SL). Then, a natural question is whether we
can alternatively use a reduction to a single-strain multilayer
(SS-ML) model to characterize the epidemic. It is known
(15, 34) that when there are correlations between infection
events, the predictions made by models that assume independent
transmission events can lead to incorrect predictions. For
the multistrain transmission model, the infection events are
conditionally independent given the type of strain carried by
a node and dependent otherwise. Therefore, models that do not
account for correlation in infection events, such as single-strain
spreading on multilayer networks (47), can lead to inaccurate
predictions for multistrain settings; see ref. 34 for a detailed
discussion. We evaluate reductions to SS-ML models, assuming
T w

1 /T
f
1 = T w

2 /T
f
2 = c, by considering the following two

approaches. The first approach, denoted as Tx − ρ, involves
using Eq. 12 and defining the equivalent transmissibilities for
the two layers as

ρ(T f �)→ T̃ f , ρ(Tw�)→ T̃ w(≡ cρ(T f �)→ T̃ w). [33]

Through Eq. 12, the transformation Eq. 33 ensures that the
epidemic threshold predicted by the corresponding SS-ML
reduction is the same as the MS-ML model. The second
approach, denoted as Tx − J , is based on transforming to a
single layer by directly matching the mean matrix, i.e., we ensure
that the mean number of secondary infections stemming from
any given type of infected individual is the same across the models
(SI Appendix, 4).

Next, we evaluate the above reductions to SS-ML models.
Following the network distribution in Eq. 24, we set αf = 0.2,
αw = 0, νf = νw = 1.2, T f

2 = 0.8, and we assume
T w

1 /T
f
1 = T w

2 /T
f
2 = c = 1.2. In Fig. 7A, we fix the

transmissibility parameters and plot the predictions made by the
above transformations to SS-ML models. We set µ22 = 1 − ε
with ε = 10−10 and vary µ11 in the interval [0, 1]. From
Lemma 2, we know that as µ22 → 1, ρ(T f �) remains
constant, and thus, the prediction made by the SS-ML under
the Tx−ρ mapping remains constant. We note that one general
shortcoming of the SS-ML transformations is that they predict
the same probability of emergence and epidemic size; they can
at best only predict one of these metrics accurately. Moreover,
they do not shed light on the fraction of individuals infected
by each strain type. Substituting T f

1 = T f
2 = ρ(T f �) and

T w
1 = T w

2 = cρ(T f �) and�f = �w = I2 in Theorem 1, we get
the predictions for the SS-ML model under the Tx−ρ. We note
that while the SS-ML reduction through mapping the spectral
radius (Tx−ρ) captures the size, it fails to predict the probability
of emergence. This observation is consistent with the observation
that reducing an MS-SL model to a bond-percolation model
leads to inaccurate prediction for the probability of emergence
but correctly predicts the total epidemic size (34).

In Fig. 7 B–D, we vary the ratio T f
1 /T

f
2 = T w

1 /T
w
2 , denoting

it by T1/T2 while keeping T f
2 constant at 0.8. We observe

that mapping through Tx − J neither accurately predicts the
epidemic size nor the probability of emergence. We observe
that the gap in the prediction of the probability of emergence
by the SS-ML models is less pronounced when T1/T2 → 1.
Further, when µ22 → 1, the predictions made by mapping the
spectral radius are constant in line with Lemma 2. As above,
the SS-ML model under the Tx − ρ transformation captures
the size and the epidemic threshold while failing to predict

the probability of emergence accurately. We note that both the
transformations (matching the epidemic threshold and the mean
mutation matrix) critically relied on the decoupling Eq. 12,
which only holds when T f

1 /T
w
1 = T f

2 /T
w
2 . Our observations

further highlight the importance of developing epidemiological
models that account for the heterogeneity in network structure
and pathogen strains.

Conclusion

This work analyzed the spreading characteristics of mutating
contagions over multilayer networks. We derived the funda-
mental epidemiological quantities for the proposed multilayer
multistrain model: the probability of emergence, the epidemic
threshold, and the mean fraction of individuals infected with
each strain. Our findings underscore that we should evaluate
the impact of imposing/lifting mitigation measures concerning
different contact network layers in relation to their effect on
the emergence of new strains. We showed that transformations
to existing models can inaccurately characterize the multilayer
multistrain setting while also unraveling conditions under which
simpler models can help make predictions.

An important future direction is to extend the network-based
analysis of multistrain spreading (27) to allow for the case when
the previous infection with one strain confers full immunity only
with respect to that strain while leaving the individual susceptible
to other strains, although possibly at a reduced level. While cross-
immunity among different pathogen strains has been studied (37)
in multispreading models that do not account for the contact
network structure, it is of interest to research cross-immunity
interference in the light of different contact patterns. Such an
analysis will pave the way for evaluating the risk of the emergence
of new strains that can evade immunity acquired from previous
infections or vaccination in the light of different policy measures
that alter the contact network.

Future work might also focus on extending the contact
network model used in this paper to better capture the real-
world spreading events. While the framework proposed here
allows us to model networks with arbitrary degree distributions,
future work can explore extending the framework to incorporate
more modes of node heterogeneity, such as tunable clustering
(18) and community structures (70). Further investigation of
the multilayer framework can also shed light on the impact of
superspreading events such as concerts and sports games. We
can utilize the multilayer framework to model such events by
incorporating an extra layer with a high degree of connectivity to
the existing contact network. For a more realistic representation,
the additional layer can be dynamic because nodes that participate
in the layer may change over time, or the layer may exist only for
a short period of time. The multilayer network model can also be
leveraged to represent different connectivity patterns that might
exist among different subgroups of individuals. More generally,
we can construct a model where a base network layer includes
every individual, with a certain level of connectivity among them.
Overlaying this, we might have multiple layers, each representing
a specific age group or a demographic to represent the additional
connectivity we expect among that group. It is also of interest to
investigate the impact of rare events of untraceable contacts and
develop models to account for untraceable nodes and contacts
in contact-tracing tools (71). Finally, in the context of social
networks, a promising future application is to leverage models
for multistrain spreading to combat the spread of misinformation
across different social media platforms.
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Data, Materials, and Software Availability. The code for the simulations in
the paper is available in ref. 72, and all proofs are available in SI Appendix.
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