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Abstract—This paper presents adaptive link selection algo-
rithms for distributed estimation and considers their application
to wireless sensor networks and smart grids. In particular,ex-
haustive search–based least–mean–squares(LMS)/recursive least
squares(RLS) link selection algorithms and sparsity–inspired
LMS/RLS link selection algorithms that can exploit the topology
of networks with poor–quality links are considered. The proposed
link selection algorithms are then analyzed in terms of their sta-
bility, steady–state and tracking performance, and computational
complexity. In comparison with existing centralized or distributed
estimation strategies, key features of the proposed algorithms
are: 1) more accurate estimates and faster convergence speed
can be obtained; and 2) the network is equipped with the ability
of link selection that can circumvent link failures and improve
the estimation performance. The performance of the proposed
algorithms for distributed estimation is illustrated via simulations
in applications of wireless sensor networks and smart grids.

Index Terms—Adaptive link selection, distributed estimation,
wireless sensor networks, smart grids.

I. I NTRODUCTION

D ISTRIBUTED signal processing algorithms have become
a key approach for statistical inference in wireless net-

works and applications such as wireless sensor networks and
smart grids [1], [2], [3], [4]. It is well known that distributed
processing techniques deal with the extraction of information
from data collected at nodes that are distributed over a
geographic area [1]. In this context, for each specific node,
a set of neighbor nodes collect their local information and
transmit the estimates to a specific node. Then, each specific
node combines the collected information together with its local
estimate to generate an improved estimate.

A. Prior and Related Work

Several works in the literature have proposed strategies for
distributed processing which include incremental [1], [5], [6],
[7], diffusion [2], [8], sparsity–aware [3], [9], [10], [11] and
consensus–based strategies [4]. With the incremental strategy,
the processing follows a Hamiltonian cycle, i.e., the informa-
tion flows through these nodes in one direction, which means
each node passes the information to its adjacent node in a
uniform direction. However, in order to determine a cyclic
path that covers all nodes, this method needs to solve an
NP–hard problem. In addition, when any of the nodes fails,
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data communication through the cycle is interrupted and the
distributed processing breaks down [1].

In distributed diffusion strategies [2], [9], the neighbors
for each node are fixed and the combining coefficients are
calculated after the network topology is deployed and starts
its operation. One disadvantage of this approach is that the
estimation procedure may be affected by poorly performing
links. More specifically, the fixed neighbors and the pre–
calculated combining coefficients may not provide an opti-
mized estimation performance for each specified node because
there are links that are more severely affected by noise or
fading. Moreover, when the number of neighbor nodes is large,
each node requires a large bandwidth and transmit power. Prior
work on topology design and adjustment techniques includes
the studies in [12], [13] and [14], which are not dynamic in
the sense that they cannot track changes in the network and
mitigate the effects of poor links.

B. Contributions

This paper proposes and studies adaptive link selection
algorithms for distributed estimation problems. Specifically,
we develop adaptive link selection algorithms that can exploit
the knowledge of poor links by selecting a subset of data
from neighbor nodes. The first approach consists of exhaus-
tive search–based least–mean–squares(LMS)/recursive least
squares(RLS) link selection (ES–LMS/ES–RLS) algorithms,
whereas the second technique is based on sparsity–inspired
LMS/RLS link selection (SI–LMS/SI–RLS) algorithms. With
both approaches, distributed processing can be divided into
two steps. The first step is called the adaptation step, in
which each node employs LMS or RLS to perform the adap-
tation through its local information. Following the adaptation
step, each node will combine its collected estimates from its
neighbors and local estimate, through the proposed adaptive
link selection algorithms. The proposed algorithms resultin
improved estimation performance in terms of the mean–square
error (MSE) associated with the estimates. In contrast to
previously reported techniques, a key feature of the proposed
algorithms is that the combination step involves only a subset
of the data associated with the best performing links.

In the ES–LMS and ES–RLS algorithms, we consider all
possible combinations for each node with its neighbors and
choose the combination associated with the smallest MSE
value. In the SI–LMS and SI–RLS algorithms, we incor-
porate a reweighted zero attraction (RZA) strategy into the
adaptive link selection algorithms. The RZA approach is
often employed in applications dealing with sparse systems
in such a way that it shrinks the small values in the param-
eter vector to zero, which results in better convergence and
steady–state performance. Unlike prior work with sparsity–
aware algorithms [3], [15], [16], [17], the proposed SI–LMS
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and SI–RLS algorithms exploit the possible sparsity of the
MSE values associated with each of the links in a different
way. In contrast to existing methods that shrink the signal
samples to zero, SI–LMS and SI–RLS shrink to zero the links
that have poor performance or high MSE values. By using
the SI–LMS and SI–RLS algorithms, data associated with
unsatisfactory performance will be discarded, which meansthe
effective network topology used in the estimation procedure
will change as well. Although the physical topology is not
changed by the proposed algorithms, the choice of the data
coming from the neighbor nodes for each node is dynamic,
leads to the change of combination weights and results in
improved performance. We also remark that the topology could
be altered with the aid of the proposed algorithms and a
feedback channel which could inform the nodes whether they
should be switched off or not. The proposed algorithms are
considered for wireless sensor networks and also as a tool for
distributed state estimation that could be used in smart grids.

In summary, the main contributions of this paper are:
• We present adaptive link selection algorithms for dis-

tributed estimation that are able to achieve significantly
better performance than existing algorithms.

• We devise distributed LMS and RLS algorithms with link
selection capabilities to perform distributed estimation.

• We analyze the MSE convergence and tracking perfor-
mance of the proposed algorithms and their computa-
tional complexities and we derive analytical formulas to
predict their MSE performance.

• A simulation study of the proposed and existing dis-
tributed estimation algorithms is conducted along with
applications in wireless sensor networks and smart grids.

This paper is organized as follows. Section II describes the
system model and the problem statement. In Section III, the
proposed link selection algorithms are introduced. We analyze
the proposed algorithms in terms of their stability, steady–state
and tracking performance, and computational complexity in
Section IV. The numerical simulation results are provided in
Section V. Finally, we conclude the paper in Section VI.

Notation: We use boldface upper case letters to denote
matrices and boldface lower case letters to denote vectors.We
use(·)T and(·)−1 denote the transpose and inverse operators
respectively,(·)H for conjugate transposition and(·)∗ for
complex conjugate.

II. SYSTEM MODEL AND PROBLEM STATEMENT

k

Nk

Fig. 1. Network topology withN nodes

We consider a set ofN nodes, which have limited pro-
cessing capabilities, distributed over a given geographical
area as depicted in Fig. 1. The nodes are connected and

form a network, which is assumed to be partially connected
because nodes can exchange information only with neighbors
determined by the connectivity topology. We call a network
with this property a partially connected network whereas a
fully connected network means that data broadcast by a node
can be captured by all other nodes in the network in one hop
[18]. We can think of this network as a wireless network,
but our analysis also applies to wired networks such as power
grids. In our work, in order to perform link selection strategies,
we assume that each node has at least two neighbors.

The aim of the network is to estimate an unknown parameter
vectorω0, which has lengthM . At every time instanti, each
nodek takes a scalar measurementdk(i) according to

dk(i) = ω
H
0 xk(i) + nk(i), i = 1, 2, . . . , I, (1)

wherexk(i) is theM×1 random regression input signal vector
andnk(i) denotes the Gaussian noise at each node with zero
mean and varianceσ2

n,k. This linear model is able to capture or
approximate well many input-output relations for estimation
purposes [19] and we assumeI > M . To compute an estimate
of ω in a distributed fashion, we need each node to minimize
the MSE cost function [2]

Jωk(i)

(
ωk(i)

)
= E

∣∣dk(i)− ωH
k (i)xk(i)

∣∣2, (2)

whereE denotes expectation andωk(i) is the estimated vector
generated by nodek at time instanti. Equation (2) is also
the definition of the MSE. To solve this problem, diffusion
strategies have been proposed in [2], [8] and [20]. In these
strategies, the estimate for each node is generated througha
fixed combination strategy given by

ωk(i) =
∑

l∈Nk

cklψl(i), (3)

whereNk denotes the set of neighbors of nodek including
nodek itself, ckl ≥ 0 is the combining coefficient andψl(i)
is the local estimate generated by nodel through its local
information.

There are many ways to calculate the combining coefficient
ckl which include the Hastings [21], the Metropolis [22], the
Laplacian [23] and the nearest neighbor [24] rules. In this
work, due to its simplicity and good performance we adopt
the Metropolis rule [22] given by

ckl =





1
max{|Nk|,|Nl|}

, if k 6= l are linked
1−

∑
l∈Nk/k

ckl, for k = l. (4)

where|Nk| denotes the cardinality ofNk.
The set of coefficientsckl should satisfy [2]

∑

l∈Nk ∀k

ckl = 1. (5)

For the combination strategy mentioned in (3), the choice
of neighbors for each node is fixed, which results in some
problems and limitations, namely:

• Some nodes may face high levels of noise or interference,
which may lead to inaccurate estimates.

• When the number of neighbors for each node is high,
large communication bandwidth and high transmit power
are required.
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• Some nodes may shut down or collapse due to network
problems. As a result, local estimates to their neighbors
may be affected.

Under such circumstances, a performance degradation is likely
to occur when the network cannot discard the contribution
of poorly performing links and their associated data in the
estimation procedure. In the next section, the proposed adap-
tive link selection algorithms are presented, which equip a
network with the ability to improve the estimation procedure.
In the proposed scheme, each node is able to dynamically
select the data coming from its neighbors in order to optimize
the performance of distributed estimation techniques.

III. PROPOSEDADAPTIVE L INK SELECTION ALGORITHMS

In this section, we present the proposed adaptive link
selection algorithms. The goal of the proposed algorithms is
to optimize the distributed estimation and improve the perfor-
mance of the network by dynamically changing the topology.
These algorithmic strategies give the nodes the ability to
choose their neighbors based on their MSE performance. We
develop two categories of adaptive link selection algorithms;
the first one is based on an exhaustive search, while the second
is based on a sparsity–inspired relaxation. The details will be
illustrated in the following subsections.

A. Exhaustive Search–Based LMS/RLS Link Selection
The proposed ES–LMS and ES–RLS algorithms employ

an exhaustive search to select the links that yield the best
performance in terms of MSE. First, we describe how we
define the adaptation step for these two strategies. In the ES–
LMS algorithm, we employ the adaptation strategy given by

ψk(i) = ωk(i−1)+µkxk(i)
[
dk(i)−ω

H
k (i−1)xk(i)

]∗
, (6)

where µk is the step size for each node. In the ES–RLS
algorithm, we employ the following steps for the adaptation:

φ
−1(i) = λ−1φ

−1(i− 1)

−
λ−2φ−1(i− 1)x(i)xH(i)φ−1(i − 1)

1 + λ−1xH(i)φ−1(i− 1)x(i)
, (7)

whereλ is the forgetting factor. Then, we let

P (i) = φ−1(i) (8)

and

k(i) =
λ−1P (i)x(i)

1 + λ−1xH(i)P (i)x(i)
. (9)

ψk(i) = ωk(i− 1) + k(i)
[
dk(i)− ω

H
k (i − 1)xk(i)

]∗
, (10)

P (i+ 1) = λ−1P (i)− λ−1k(i)xH(i)P (i). (11)

Following the adaptation step, we introduce the combination
step for both ES–LMS and ES–RLS algorithms, based on an
exhaustive search strategy. At first, we introduce a tentative
setΩk using a combinatorial approach described by

Ωk ∈ 2Nk\∅, (12)

where the setΩk is a nonempty set with2Nk elements. After
the tentative setΩk is defined, we write the cost function (2)
for each node as

Jψ(i)

(
ψ(i)

)
, E

∣∣dk(i)−ψH(i)xk(i)
∣∣2, (13)

TABLE I
THE ES-LMS ALGORITHM

Initialize: ωk(0)=0
For each time instanti=1,2, . . . , I

For each nodek=1,2, . . . , N
ψk(i) = ωk(i − 1) + µkxk(i)[dk(i) − ω

H
k (i − 1)xk(i)]

∗

end
For each nodek=1,2, . . . , N

find all possible sets ofΩk

eΩk
(i) = dk(i) − [

∑
l∈Ωk

ckl(i)ψl(i)]
Hxk(i)

Ω̂k(i) = argmin
Ωk

|eΩk
(i)|

ωk(i) =
∑

l∈Ω̂k(i)

ckl(i)ψl(i)

end
end

where

ψ(i) ,
∑

l∈Ωk

ckl(i)ψl(i) (14)

is the local estimator andψl(i) is calculated through (6) or
(10), depending on the algorithm, i.e., ES–LMS or ES–RLS.
With different choices of the setΩk, the combining coefficients
ckl will be re–calculated through (4), to ensure condition (5)
is satisfied.

Then, we introduce the error pattern for each node, which
is defined as

eΩk
(i) , dk(i)−

[ ∑

l∈Ωk

ckl(i)ψl(i)

]H
xk(i). (15)

For each nodek, the strategy that finds the best setΩk(i) must
solve the following optimization problem:

Ω̂k(i) = arg min
Ωk∈2Nk\∅

|eΩk
(i)|. (16)

After all steps have been completed, the combination step in
(3) is performed as described by

ωk(i) =
∑

l∈Ω̂k(i)

ckl(i)ψl(i). (17)

At this stage, the main steps of the ES–LMS and ES–RLS
algorithms have been completed. The proposed ES–LMS and
ES–RLS algorithms find the set̂Ωk(i) that minimizes the error
pattern in (15) and (16) and then use this set of nodes to
obtainωk(i) through (17). The ES–LMS/ES–RLS algorithms
are briefly summarized as follows:

Step 1 Each node performs the adaptation through its local
information based on the LMS or RLS algorithm.

Step 2 Each node finds the best setΩk(i), which satisfies
(16).

Step 3 Each node combines the information obtained from
its best set of neighbors through (17).

The details of the proposed ES–LMS and ES–RLS algorithms
are shown in Tables I and II. When the ES–LMS and ES–RLS
algorithms are implemented in networks with a large number
of small and low–power sensors, the computational complexity
cost may become high, as the algorithm in (16) requires an
exhaustive search and needs more computations to examine
all the possible setsΩk(i) at each time instant.
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TABLE II
THE ES-RLS ALGORITHM

Initialize: ωk(0)=0
phi−1(0) = δ−1I, δ = small positive constant

For each time instanti=1,2, . . . , I
For each nodek=1,2, . . . , N

φ−1(i) = λ−1φ−1(i− 1)

−
λ−2φ−1(i− 1)xk(i)x

H
k (i)φ−1(i − 1)

1 + λ−1xH
k
(i)φ−1(i− 1)xk(i)

P (i) = φ−1(i)

k(i) =
λ−1P (i)xk(i)

1 + λ−1xH
k
(i)P (i)xk(i)

ψk(i) = ωk(i − 1) + k(i)[dk(i) − ω
H
k (i − 1)xk(i)]

∗

P (i + 1) = λ−1P (i) − λ−1k(i)xH
k (i)P (i)

end
For each nodek=1,2, . . . , N

find all possible sets ofΩk

eΩk
(i) = dk(i) − [

∑
l∈Ωk

ckl(i)ψl(i)]
Hxk(i)

Ω̂k(i) = argmin
Ωk

|eΩk
(i)|

ωk(i) =
∑

l∈Ω̂k(i)

ckl(i)ψl(i)

end
end

B. Sparsity–Inspired LMS/RLS Link Selection
The ES–LMS/ES–RLS algorithms previously outlined need

to examine all possible sets to find a solution at each time
instant, which might result in high computational complexity
for large networks operating in time–varying scenarios. To
solve the combinatorial problem with reduced complexity,
we propose sparsity-inspired based SI–LMS and SI–RLS
algorithms, which are as simple as standard diffusion LMS or
RLS algorithms and are suitable for adaptive implementations
and scenarios where the parameters to be estimated are slowly
time–varying. The zero–attracting strategy (ZA), reweighted
zero–attracting strategy (RZA) and zero–forcing (ZF) are
reported in [25], [3], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39], [40] as for sparsity
aware techniques. These approaches are usually employed in
applications dealing with sparse systems in scenarios where
they shrink the small values in the parameter vector to zero,
which results in better convergence rate and steady–state
performance. Unlike existing methods that shrink the signal
samples to zero, the proposed SI–LMS and SI–RLS algorithms
shrink to zero the links that have poor performance or high
MSE values. To detail the novelty of the proposed sparsity–
inspired LMS/RLS link selection algorithms, we illustratethe
processing in Fig.2.

MSE Value

Sparsity Aware

Technique

MSE Value

Nodes
a ) Sparsity Aware Technique

MSE Value

Nodes

SILMS/SIRLS

Algorithms

MSE Value

Nodes
b ) SILLS and SIRLS Algorithms

Nodes

Fig. 2. Sparsity aware signal processing strategies

Fig. 2 (a) shows a standard type of sparsity–aware process-
ing. We can see that, after being processed by a sparsity–
aware algorithm, the nodes with small MSE values will be
shrunk to zero. In contrast, the proposed SI–LMS and SI–RLS
algorithms will keep the nodes with lower MSE values and
shrink the nodes with large MSE values to zero as illustrated

in Fig. 2 (b). In the following, we will show how the proposed
SI–LMS/SI–RLS algorithms are employed to realize the link
selection strategy automatically.

In the adaptation step, we follow the same procedure in
(6)–(10) as that of the ES–LMS and ES–RLS algorithms for
the SI–LMS and SI–RLS algorithms, respectively. Then we
reformulate the combination step. First, we introduce the log–
sum penalty into the combination step in (3). Different penalty
terms have been considered for this task. We have adopted
a heuristic approach [3], [41] known as reweighted zero–
attracting strategy into the combination step in (3) because this
strategy has shown an excellent performance and is simple
to implement. The regularization function with the log–sum
penalty is defined as:

f1(ek(i)) =
∑

l∈Nk

log
(
1 + ε|ekl(i)|

)
, (18)

where the error patternekl(i)(l ∈ Nk), which stands for the
neighbor nodel of nodek including nodek itself, is defined
as

ekl(i) , dk(i)−ψ
H
l (i)xk(i) (19)

andε is the shrinkage magnitude. Then, we introduce the vec-
tor and matrix quantities required to describe the combination
step. We first define a vectorck that contains the combining
coefficients for each neighbor of nodek including nodek itself
as described by

ck , [ckl], l ∈ Nk. (20)

Then, we define a matrixΨk that includes all the estimated
vectors, which are generated after the adaptation step of SI–
LMS and of SI–RLS for each neighbor of nodek including
nodek itself as given by

Ψk , [ψl(i)], l ∈ Nk. (21)

Note that the adaptation steps of SI–LMS and SI–RLS are
identical to (6) and (10), respectively. An error vectorêk
that contains all error values calculated through (19) for each
neighbor of nodek including nodek itself is expressed by

êk , [ekl(i)], l ∈ Nk. (22)

Here, we use a hat to distinguisĥek defined above from the
original errorek. To devise the sparsity–inspired approach, we
have modified the vector̂ek in the following way:

1) The element with largest absolute value|ekl(i)| in êk
will be employed as|ekl(i)|.

2) The element with smallest absolute value will be set
to −|ekl(i)|. This process will ensure the node with
smallest error pattern has a reward on its combining
coefficient.

3) The remaining entries will be set to zero.

At this point, the combination step can be defined as [41]

ωk(i) =

|Nk|∑

j=1

[
ck[j]− ρ

∂f1(êk[j])

∂êk[j]

]
Ψk[j], (23)

where ck[j], êk[j] and Ψk[j] stand for thejth element in
the ck, êk and Ψk. The parameterρ is used to control the
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algorithm’s shrinkage intensity. We then calculate the partial
derivative ofêk[j]:

∂f1(êk[j])

∂êk[j]
=

∂
(
log(1 + ε|ekl(i)|)

)

∂
(
ekl(i)

)

= ε
sign(ekl(i))

1 + ε|ekl(i)|
l ∈ Nk

= ε
sign(êk[j])

1 + ε|êk[j]|
. (24)

To ensure that
|Nk|∑
j=1

(
ck[j] − ρ∂f1(êk[j])

∂êk[j]

)
= 1, we replace

êk[j] with ξmin in the denominator, where the parameterξmin

stands for the minimum absolute value ofekl(i) in êk. Then,
(24) can be rewritten as

∂f1(êk[j])

∂êk[j]
= ε

sign(êk[j])

1 + ε|ξmin|
. (25)

At this stage, the MSE cost function governs the adaptation
step, while the combination step employs the combining
coefficients with the derivative of the log-sum penalty which
performs shrinkage and selects the set of estimates from
the neighbor nodes with the best performance. The function
sign(a) is defined as

sign(a) =

{
a/|a| a 6= 0
0 a = 0.

(26)

Then, by inserting (25) into (23), the proposed combination
step is given by

ωk(i) =

|Nk|∑

j=1

[
ck[j]− ρε

sign(êk[j])

1 + ε|ξmin|

]
Ψk[j]. (27)

Note that the conditionck[j] − ρε sign(êk[j])
1+ε|ξmin|

≥ 0 is enforced

in (27). Whenck[j] − ρε sign(êk[j])
1+ε|ξmin|

= 0, it means that the
corresponding node has been discarded from the combination
step. In the following time instant, if this node still has the
largest MSE, there will be no changes in the combining
coefficients for this set of nodes.

To guarantee the stability, the parameterρ is assumed to
be sufficiently small and the penalty takes effect only on
the element inêk for which the magnitude is comparable
to 1/ε [3]. Moreover, there is little shrinkage exerted on the
element inêk whose |êk[j]| ≪ 1/ε. The SI–LMS and SI–
RLS algorithms perform link selection by the adjustment of
the combining coefficients through (27). At this point, it should
be emphasized that:

• The process in (27) satisfies condition (5), as the penalty
and reward amounts are the same for the nodes with
maximum and minimum error pattern, respectively.

• When computing (27), there are no matrix–vector mul-
tiplications. Therefore, no additional complexity is in-
troduced. As described in (23), only thejth element in
ck, êk andΨk are used for calculation.

For the neighbor node with the largest MSE value, after the
modifications ofêk, its ekl(i) value in ek will be a positive
number which will lead to the termρε sign(êk[j])

1+ε|ξmin|
in (27) being

positive too. This means that the combining coefficient for this

TABLE III
THE SI-LMS AND SI-RLS ALGORITHMS

Initialize: ωk(−1)=0
P (0) = δ−1I, δ = small positive constant

For each time instanti=1,2, . . . , I
For each nodek=1,2, . . . , N

The adaptation step for computingψk(i)
is exactly the same as the ES-LMS and ES-RLS
for the SI-LMS and SI-RLS algorithms respectively

end
For each nodek=1,2, . . . , N

ekl(i) = dk(i) − x
H
k (i)ψl(i) l ∈ Nk

ck = [ckl] l ∈ Nk

Ψk = [ψl(i)] l ∈ Nk

ek = [ekl(i)] l ∈ Nk

Find the maximum and minimum absolute terms inek
Modified ek asek=[0· · ·0,|ekl(i)|︸ ︷︷ ︸

max

,0· · ·0,−|ekl(i)|︸ ︷︷ ︸
min

,0· · ·0]

ξmin = min
(
|ekl(i)|

)

ωk(i) =
|Nk|∑
j=1

[
ck[j] − ρε

sign(ek[j])

1+ε|ξmin|

]
Ψk[j]

end
end

node will be shrunk and the weight for this node to buildωk(i)
will be shrunk too. In other words, when a node encounters
high noise or interference levels, the corresponding MSE value
might be large. As a result, we need to reduce the contribution
of this group of nodes.

In contrast, for the neighbor node with the smallest MSE,
as itsekl(i) value inek will be a negative number, the term
ρε sign(êk[j])

1+ε|ξmin|
in (27) will be negative too. As a result, the

weight for this node associated with the smallest MSE to build
ωk(i) will be increased. For the remaining neighbor nodes, the
entry ekl(i) in ek is zero, which means the termρε sign(êk[j])

1+ε|ξmin|
in (27) is zero and there is no change for the weights to build
ωk(i). The main steps for the proposed SI–LMS and SI–RLS
algorithms are listed as follows:

Step 1 Each node carries out the adaptation through its local
information based on the LMS or RLS algorithm.

Step 2 Each node calculates the error pattern through (19).
Step 3 Each node modifies the error vectorek.
Step 4 Each node combines the information obtained from

its selected neighbors through (27).
The SI–LMS and SI–RLS algorithms are detailed in Table

III. For the ES–LMS/ES–RLS and SI–LMS/SI–RLS algo-
rithms, we design different combination steps and employ
the same adaptation procedure, which means the proposed
algorithms have the ability to equip any diffusion–type wire-
less networks operating with other than the LMS and RLS
algorithms. This includes, for example, the diffusion conjugate
gradient strategy [42].

IV. A NALYSIS OF THE PROPOSED ALGORITHMS

In this section, a statistical analysis of the proposed al-
gorithms is developed, including a stability analysis and an
MSE analysis of the steady–state and tracking performance.
In addition, the computational complexity of the proposed
algorithms is also detailed. Before we start the analysis, we
make some assumptions that are common in the literature [19].

Assumption I: The weight-error vectorεk(i) and the input
signal vectorxk(i) are statistically independent, and the
weight–error vector for nodek is defined as

εk(i) , ωk(i)− ω0, (28)
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whereω0 denotes the optimum Wiener solution of the actual
parameter vector to be estimated, andωk(i) is the estimate
produced by the proposed algorithms at time instanti.

Assumption II: The input signal vectorxl(i) is drawn from
a stochastic process, which is ergodic in the autocorrelation
function [19].

Assumption III: TheM ×1 vectorq(i) represents a station-
ary sequence of independent zero–mean vectors and positive
definite autocorrelation matrixQ = E[q(i)qH(i)], which is
independent ofxk(i), nk(i) andεl(i).

Assumption IV (Independence): All regressor input signals
xk(i) are spatially and temporally independent.

A. Stability Analysis
In general, to ensure that a partially-connected network

can converge to the global network performance, information
should be propagated across the network [43]. The work in
[12] shows that it is central to the performance that each node
should be able to reach the other nodes through one or multiple
hops [43]. In this section, we discuss the stability analysis of
the proposed ES–LMS and SI–LMS algorithms.

First, we substitute (6) into (17) and obtain

ωk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)ψl(i+ 1)

=
∑

l∈Ω̂k(i)

[ωl(i) + µlxl(i+ 1)e∗l (i+ 1)]ckl(i)

=
∑

l∈Ω̂k(i)

[ω0 + εl(i) + µlxl(i+ 1)e∗l (i+ 1)]ckl(i)

=
∑

l∈Ω̂k(i)

ω0ckl +
∑

l∈Ω̂k(i)

[εl(i) + µlxl(i+ 1)e∗l (i+ 1)]ckl(i)

subject to
∑

l

ckl(i) = 1

= ω0 +
∑

l∈Ω̂k(i)

[εl(i) + µlxl(i+ 1)e∗l (i+ 1)]ckl(i).

(29)

Then, we have

εk(i+ 1) = ω0 − ω0 +
∑

l∈Ω̂k(i)

[εl(i) + µlxl(i + 1)e∗l (i + 1)]ckl(i)

=
∑

l∈Ω̂k(i)

[εl(i) + µlxl(i+ 1)e∗l (i+ 1)]ckl(i).

(30)

By employingAssumption IV, we start with (30) for the ES–
LMS algorithm and define the global vectors and matrices:

ε(i+ 1) , [ε1(i+ 1), · · · , εN(i + 1)]T (31)

M , diag{µ1IM , ..., µNIM} (32)

D(i+1) , diag{x1(i+1)xH
1 (i+1), ...,xN (i+1)xH

N (i+1)}
(33)

and theNM × 1 vector

g(i+ 1) = [x1(i+ 1)n1(i+ 1), · · · ,xN (i+ 1)nN (i+ 1)]T .
(34)

We also define anN × N matrix C where the combining
coefficients{ckl} correspond to the{l, k} entries of the matrix
C and theNM×NM matrixCG with a Kronecker structure:

CG = C ⊗ IM (35)

where⊗ denotes the Kronecker product.
By insertingel(i + 1) = e0−l − εHl (i)xl(i + 1) into (33),

the global version of (30) can then be written as

ε(i+1) = CT
G

[
I−MD(i+1)

]
ε(i)+CT

GMg(i+1), (36)

where e0−l is the estimation error produced by the Wiener
filter for nodel as described by

e0−l = dl(i)− ω
H
0 xl(i). (37)

If we define

D , E[D(i+ 1)]

= diag{R1, ...,RN}
(38)

and take the expectation of (36), we arrive at

E{ε(i+ 1)} = CT
G

[
I −MD

]
E{ε(i)}. (39)

Before we proceed, let us defineX = I−MD and introduce
Lemma 1:

Lemma 1: LetCG andX denote arbitraryNM×NM ma-
trices, whereCG has real, non-negative entries, with columns
adding up to one. Then, the matrixY = CT

GX is stable for
any choice ofCG if and only if X is stable.

Proof: Assume thatX is stable, it is true that for every
square matrixX and everyα > 0, there exists a submulti-
plicative matrix norm|| · ||τ that satisfies||X||τ ≤ τ(X)+α,
where the submultiplicative matrix norm||AB|| ≤ ||A||·||B||
holds andτ(X) is the spectral radius ofX [44], [45]. Since
X is stable,τ(X) < 1, and we can chooseα > 0 such that
τ(X) + α = v < 1 and ||X||τ ≤ v < 1. Then we obtain [8]

||Y i||τ = ||(CT
GX)i||τ

≤ ||(CT
G)

i||τ · ||Xi||τ

≤ vi||(CT
G)

i||τ .

(40)

SinceCT
G has non–negative entries with columns that add up

to one, it is element–wise bounded by unity. This means its
Frobenius norm is bounded as well and by the equivalence of
norms, so is any norm, in particular||(CT

G)
i||τ . As a result,

we have
lim
i→∞

||Y i||τ = 0, (41)

where Y i converges to the zero matrix for largei. This
establishes the stability of(CT

GX)i.
A square matrixX is stable if it satisfiesXi → 0 as i →

∞. In view of Lemma 1and (82), we need the matrixI−MD
to be stable. As a result, it requiresI−µkRk to be stable for
all k, which holds if the following condition is satisfied:

0 < µk <
2

λmax

(
Rk

) (42)

whereλmax

(
Rk

)
is the largest eigenvalue of the correlation

matrix Rk. The difference between the ES–LMS and SI–
LMS algorithms is the strategy to calculate the matrixC.



7

Lemma 1indicates that for any choice ofC, only X needs
to be stable. As a result, SI–LMS has the same convergence
condition as in (42). Given the convergence conditions, the
proposed ES–LMS/ES–RLS and SI–LMS/SI–RLS algorithms
will adapt according to the network connectivity by choosing
the group of nodes with the best available performance to
construct their estimates. Comparing the results in (42) with
the existing algorithms, it can be seen that the proposed link
selection techniques change the set of combining coefficients,
which are indicated inCG, as the matrixC employs the
chosen set̂Ωk(i).

B. MSE Steady–State Analysis

In this part of the analysis, we devise formulas to predict
the excess MSE (EMSE) of the proposed algorithms. The error
signal at nodek can be expressed as

ek(i) = dk(i)− ω
H
k (i)xk(i)

= dk(i)− [ω0 − εk(i)]
Hxk(i)

= dk(i)− ω
H
0 xk(i) + ε

H
k (i)xk(i)

= e0−k + ε
H
k (i)xk(i).

(43)

With Assumption I, the MSE expression can be derived as

Jmse−k(i) = E[|ek(i)|
2]

= E

[(
e0−k + ε

H
k (i)xk(i)

)(
e∗0 + x

H
k (i)εk(i)

)]

= Jmin−k + E[εHk (i)xk(i)x
H
k (i)εk(i)]

= Jmin−k + tr{E[εk(i)ε
H
k (i)xk(i)x

H
k (i)]}

= Jmin−k + tr{E[xk(i)x
H
k (i)]E[εk(i)ε

H
k (i)]}

= Jmin−k + tr{Rk(i)Kk(i)}, (44)

where tr(·) denotes the trace of a matrix andJmin−k is the
minimum mean–square error (MMSE) for nodek [19]:

Jmin−k = σ2
d,k − p

H
k (i)R−1

k (i)pk(i), (45)

Rk(i) = E[xk(i)x
H
k (i)] is the correlation matrix of the inputs

for node k, pk(i) = E[xk(i)d
∗
k(i)] is the cross–correlation

vector between the inputs and the measurementdk(i), and
Kk(i) = E[εk(i)ε

H
k (i)] is the weight–error correlation matrix.

From [19], the EMSE is defined as the difference between the
mean–square error at time instanti and the minimum mean–
square error. Then, we can write

Jex−k(i) = Jmse−k(i)− Jmin−k

= tr{Rk(i)Kk(i)}.
(46)

For the proposed adaptive link selection algorithms, we will
derive the EMSE formulas separately based on (46) and
we assume that the input signal is modeled as a stationary
process.

1) ES–LMS:To update the estimateωk(i), we employ

ωk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)ψl(i + 1)

=
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + µlxl(i+ 1)e∗l (i+ 1)]

=
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + µlxl(i + 1)(dl(i + 1)

− xH
l (i+ 1)ωl(i))]. (47)

Then, subtractingω0 from both sides of (47), we arrive at

εk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + µlxl(i + 1)(dl(i + 1)

− xH
l (i+ 1)ωl(i))]−

∑

l∈Ω̂k(i)

ckl(i)ω0

=
∑

l∈Ω̂k(i)

ckl(i)

[
εl(i) + µlxl(i + 1)

(
dl(i + 1)

− xH
l (i+ 1)(εl(i) + ω0)

)]

=
∑

l∈Ω̂k(i)

ckl(i)

[
εl(i) + µlxl(i + 1)

(
dl(i + 1)

− xH
l (i+ 1)εl(i)− x

H
l (i+ 1)ω0

)]

=
∑

l∈Ω̂k(i)

ckl(i)

[
εl(i)− µlxl(i + 1)xH

l (i+ 1)εl(i)

+ µlxl(i+ 1)e∗0−l(i+ 1)

]

=
∑

l∈Ω̂k(i)

ckl(i)

[(
I − µlxl(i+ 1)xH

l (i+ 1)
)
εl(i)

+ µlxl(i+ 1)e∗0−l(i+ 1)

]
. (48)

Let us introduce the random variablesαkl(i):

αkl(i) =

{
1, if l ∈ Ω̂k(i)
0, otherwise.

(49)

At each time instant, each node will generate data associated
with network covariance matricesAk with sizeN ×N which
reflect the network topology, according to the exhaustive
search strategy. In the network covariance matricesAk, a value
equal to 1 means nodesk andl are linked and a value 0 means
nodesk and l are not linked.

For example, suppose a network has 5 nodes. For node
3, there are two neighbor nodes, namely, nodes 2 and 5.
Through Eq. (12), the possible configurations of setΩ3 are
{3, 2}, {3, 5} and {3, 2, 5}. Evaluating all the possible sets
for Ω3, the relevant covariance matricesA3 with size 5 × 5
at time instanti are described in Table IV.

Then, the coefficientsαkl are obtained according to the
covariance matricesAk. In this example, the three sets of
αkl are respectively shown in Table V.

The parametersckl will then be calculated through Eq. (4)
for different choices of matricesAk and coefficientsαkl. After
αkl andckl are calculated, the error pattern for each possible
Ωk will be calculated through (15) and the set with the smallest
error will be selected according to (16).

With the newly definedαkl, (48) can be rewritten as

εk(i+ 1) =
∑

l∈Nk

αkl(i)ckl(i)

[(
I − µlxl(i+ 1)xH

l (i + 1)
)
εl(i)
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TABLE IV
COVARIANCE MATRICESA3 FOR DIFFERENT SETS OFΩ3

(a) {3, 2}

1 2 3 4 5
1 0
2 1
3 0 1 1 0 0
4 0
5 0

(b) {3, 5}

1 2 3 4 5
1 0
2 0
3 0 0 1 0 1
4 0
5 1

(c) {3, 2, 5}

1 2 3 4 5
1 0
2 1
3 0 1 1 0 1
4 0
5 1

TABLE V
COEFFICIENTSαkl FOR DIFFERENT SETS OFΩ3

(a) {3, 2}


















α31 = 0

α32 = 1

α33 = 1

α34 = 0

α35 = 0

(b) {3, 5}


















α31 = 0

α32 = 0

α33 = 1

α34 = 0

α35 = 1

(c) {3, 2, 5}


















α31 = 0

α32 = 1

α33 = 1

α34 = 0

α35 = 1

+ µlxl(i+ 1)e∗0−l(i + 1)

]
. (50)

Starting from (46), we then focus onKk(i+ 1).

Kk(i+ 1) = E[εk(i+ 1)εHk (i+ 1)]. (51)

In (50), the termαkl(i) is determined through the network
topology for each subset, while the termckl(i) is calculated
through the Metropolis rule. We assume thatαkl(i) andckl(i)
are statistically independent from the other terms in (50).Upon
convergence, the parametersαkl(i) and ckl(i) do not vary
because at steady state the choice of the subsetΩ̂k(i) for
each nodek will be fixed. Then, under these assumptions,
substituting (50) into (51) we arrive at:

Kk(i+ 1) =
∑

l∈Nk

E

[
α2
kl(i)c

2
kl(i)

]((
I − µlRl(i + 1)

)
Kl(i)

×
(
I − µlRl(i+ 1)

)
+ µ2

l e0−l(i+ 1)e∗0−l(i+ 1)

×Rl(i+ 1)

)
+

∑

l,q∈Nk

l 6=q

E

[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×

((
I − µlRl(i+ 1)

)
Kl,q(i)

(
I − µqRl(i+ 1)

)

+ µlµqe0−l(i+ 1)e∗0−q(i + 1)Rl,q(i+ 1)

)

+
∑

l,q∈Nk

l 6=q

E

[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×

((
I − µqRq(i + 1)

)
KH

l,q(i)
(
I − µlRl(i+ 1)

)

+ µlµqe0−q(i+ 1)e∗0−l(i + 1)RH
l,q(i+ 1)

)
(52)

whereRl,q(i + 1) = E[xl(i + 1)xH
q (i + 1)] andK l,q(i) =

E[εl(i)ε
H
q (i)]. To further simplify the analysis, we assume that

the samples of the input signalxk(i) are uncorrelated, i.e.,
Rk = σ2

x,kI with σ2
x,k being the variance. Using the diagonal

matricesRk = Λk = σ2
x,kI andRl,q = Λl,q = σx,lσx,qI we

can write

Kk(i+ 1) =
∑

l∈Nk

E

[
α2
kl(i)c

2
kl(i)

]((
I − µlΛl

)
Kl(i)

(
I − µlΛl

)

+ µ2
l e0−l(i+ 1)e∗0−l(i + 1)Λl

)

+
∑

l,q∈Nk

l 6=q

E

[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×

((
I − µlΛl

)
K l,q(i)

×
(
I − µqΛq

)
+ µlµqe0−l(i + 1)e∗0−q(i+ 1)Λl,q

)

+
∑

l,q∈Nk

l 6=q

E

[
αkl(i)αkq(i)ckl(i)ckq(i)

]((
I − µqΛq

)
KH

l,q(i)

×
(
I − µlΛl

)
+ µlµqe0−q(i+ 1)e∗0−l(i + 1)ΛH

l,q

)
.

(53)

Due to the structure of the above equations, the approximations
and the quantities involved, we can decouple (53) into

Kn
k (i + 1) =

∑

l∈Nk

E

[
α2
kl(i)c

2
kl(i)

]((
1− µlλ

n
l

)
Kn

l (i)
(
1− µlλ

n
l

)

+ µ2
l e0−l(i + 1)e∗0−l(i+ 1)λn

l

)

+
∑

l,q∈Nk

l 6=q

E

[
αkl(i)αkq(i)ckl(i)ckq(i)

]((
1− µlλ

n
l

)
Kn

l,q(i)

×
(
1− µqλ

n
q

)
+ µlµqe0−l(i + 1)e∗0−q(i+ 1)λn

l,q

)

+
∑

l,q∈Nk

l 6=q

E

[
αkl(i)αkq(i)ckl(i)ckq(i)

]((
1− µqλ

n
q

)
(Kn

l,q)
H(i)

×
(
1− µlλ

n
l

)
+ µlµqe0−q(i + 1)e∗0−l(i+ 1)λn

l,q

)
,

(54)

whereKn
k (i + 1) is thenth element of the main diagonal of

Kk(i + 1). With the assumption thatαkl(i) and ckl(i) are
statistically independent from the other terms in (50), we can
rewrite (54) as

Kn
k (i + 1) =

∑

l∈Nk

E

[
α2
kl(i)

]
E

[
c2kl(i)

]((
1− µlλ

n
l

)2
Kn

l (i)

+ µ2
l e0−l(i + 1)e∗0−l(i+ 1)λn

l

)

+ 2×
∑

l,q∈Nk

l 6=q

E

[
αkl(i)αkq(i)

]
E

[
ckl(i)ckq(i)

]((
1− µlλ

n
l

)
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TABLE VI
COVARIANCE MATRIX A3 UPON CONVERGENCE

1 2 3 4 5
1 0
2 1
3 0 1 1 0 1
4 0
5 1

×
(
1− µqλ

n
q

)
Kn

l,q(i) + µlµqe0−l(i+ 1)e∗0−q(i + 1)λn
l,q

)
.

(55)

By taking i → ∞, we can obtain (56). It should be noticed
that with the assumption that upon convergence the choice of
covariance matrixAk for nodek is fixed, which means it is
deterministic and does not vary. In the above example, we
assume the choice ofA3 is fixed as show in Table VI.

Then the coefficientsαkl will also be fixed and given by




α31 = 0
α32 = 1
α33 = 1
α34 = 0
α35 = 1

as well as the parametersckl that are computed using the
Metropolis combining rule. As a result, the coefficientsαkl

and the coefficientsckl are deterministic and can be taken out
from the expectation.

The MSE is then given by

Jmse−k = Jmin−k +Mσ2
x,k

M∑

n=1

Kn
k (ES-LMS). (57)

2) SI–LMS: For the SI–LMS algorithm, we do not need
to consider all possible combinations. This algorithm simply
adjusts the combining coefficients for each node with its
neighbors in order to select the neighbor nodes that yield
the smallest MSE values. Thus, we redefine the combining
coefficients through (27)

ckl−new = ckl − ρε
sign(|ekl|)

1 + ε|ξmin|
(l ∈ Nk). (58)

For each nodek, at time instanti, after it received the
estimates from all its neighbors, it calculates the error pattern
ekl(i) for every estimate received through Eq. (19) and find the
nodes with the largest and smallest error. An error vectorêk
is then defined through (22), which contains all error pattern
ekl(i) for nodek.

Then a procedure which is detailed after Eq. (22) is
carried out and modifies the error vectorêk. For example,
suppose node5 has three neighbor nodes, which are nodes
3, 6 and 8. The error vector̂e5 has the form described by
ê5 = [e53, e55, e56, e58] = [0.023, 0.052,−0.0004,−0.012].
After the modification, the error vector̂e5 will be edited as
ê5 = [0, 0.052,−0.0004, 0]. The quantityhkl is then defined
as

hkl = ρε
sign(|ekl|)

1 + ε|ξmin|
(l ∈ Nk), (59)

and the term ’error pattern’ekl in (59) is from the modified
error vectorêk.

From [41], we employ the relationE[sign(ekl)] ≈
sign(e0−k). According to Eqs. (1) and (37), when the proposed
algorithm converges at nodek or the time instanti goes to
infinity, we assume that the errore0−k will be equal to the
noise variance at nodek. Then, the asymptotic valuehkl can
be divided into three situations due to the rule of the SI–LMS
algorithm:

hkl =





ρε sign(|e0−k|)
1+ε|e0−k|

for the node with the largest MSE

ρε
sign(−|e0−k|)
1+ε|e0−k|

for the node with the smallest MSE
0 for all the remaining nodes.

(60)
Under this situation, after the time instanti goes to infinity, the
parametershkl for each neighbor node of nodek can be ob-
tained through (60) and the quantityhkl will be deterministic
and can be taken out from the expectation.

At last, removing the random variablesαkl(i) and inserting
(58), (59) into (56), the asymptotic valuesKn

k for the SI-LMS
algorithm are obtained as in (61). At this point, the theoretical
results are deterministic.

Then, the MSE for SI–LMS algorithm is given by

Jmse−k = Jmin−k +Mσ2
x,k

M∑

n=1

Kn
k (SI-LMS). (62)

3) ES–RLS:For the proposed ES–RLS algorithm, we start
from (10), after inserting (10) into (17), we have

ωk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)ψl(i+ 1)

=
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + kl(i+ 1)e∗l (i+ 1)]

=
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + kl(i+ 1)(dl(i+ 1)

− xH
l (i + 1)ωl(i))]. (63)

Then, subtracting theω0 from both sides of (47), we arrive at

εk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + kl(i+ 1)(dl(i + 1)

− xH
l (i+ 1)ωl(i))]−

∑

l∈Ω̂k(i)

ckl(i)ω0

=
∑

l∈Ω̂k(i)

ckl(i)

[
εl(i) + kl(i+ 1)

(
dl(i+ 1)

− xH
l (i+ 1)(εl(i) + ω0)

)]

=
∑

l∈Ω̂k(i)

ckl(i)

[(
I − kl(i + 1)xH

l (i + 1)
)
εl(i)

+ kl(i+ 1)e∗0−l(i+ 1)

]
. (64)

Then, with the random variablesαkl(i), (64) can be rewritten
as

εk(i+ 1) =
∑

l∈Nk

αkl(i)ckl(i)

[(
I − kl(i+ 1)xH

l (i+ 1)
)
εl(i)
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Kn
k (ES-LMS) =

∑
l∈Nk

α2
klc

2
klµ

2
l Jmin−lλ

n
l + 2

∑
l,q∈Nk

l 6=q

αklαkqcklckqµlµqe0−le
∗
0−qλ

n
l,q

1 −
∑

l∈Nk

α2
kl
c2
kl
(1 − µlλn

l
)2 − 2

∑
l,q∈Nk

l 6=q

αklαkqcklckq(1 − µlλn
l
)(1 − µqλn

q )
. (56)

Kn
k (SI-LMS) =

∑
l∈Nk

(ckl − hkl)
2µ2

lJmin−lλ
n
l + 2

∑
l,q∈Nk

l 6=q

(ckl − hkl)(ckq − hkq)µlµqe0−le
∗
0−qλ

n
l,q

1 −
∑

l∈Nk

(ckl − hkl)2(1 − µlλn
l
)2 − 2

∑
l,q∈Nk

l 6=q

(ckl − hkl)(ckq − hkq)(1 − µlλn
l
)(1 − µqλn

q )
. (61)

+ kl(i + 1)e∗0−l(i+ 1)

]
. (65)

Sincekl(i + 1) = Φ
−1
l (i + 1)xl(i + 1) [19], we can modify

the (65) as

εk(i+ 1) =
∑

l∈Nk

αkl(i)ckl(i)

[(
I −Φ

−1
l (i + 1)xl(i+ 1)xH

l (i + 1)
)
εl(i)

+Φ
−1
l (i + 1)xl(i+ 1)e∗0−l(i+ 1)

]
.

(66)

At this point, if we compare (66) with (50), we can find that
the difference between (66) and (50) is, theΦ

−1
l (i+1) in (66)

has replaced theµl in (50). From [19], we also have

E[Φ−1
l (i+ 1)] =

1

i−M
R−1

l (i+ 1) for i > M + 1. (67)

As a result, we can arrive

Kk(i + 1) =
∑

l∈Nk

E

[
α2
kl(i)c

2
kl(i)

]((
I −

Λ
−1
l Λl

i−M

)
K l(i)

×
(
I −

ΛlΛ
−1
l

i−M

)
+

Λ
−1
l ΛlΛ

−1
l

(i−M)2
e0−l(i+ 1)e∗0−l(i+ 1)

)

+
∑

l,q∈Nk

l 6=q

E

[
αkl(i)αkq(i)ckl(i)ckq(i)

]((
I −

Λ
−1
l Λl

i−M

)

×Kl,q(i)
(
I −

ΛqΛ
−1
q

i−M

)
+

Λ
−1
l Λl,qΛ

−1
q

(i−M)2
e0−l(i + 1)

× e∗0−q(i + 1)

)
+

∑

l,q∈Nk

l 6=q

E

[
αkl(i)αkq(i)ckl(i)ckq(i)

]

×

((
I −

ΛqΛ
−1
q

i−M

)
KH

l,q(i)
(
I −

Λ
−1
l Λl

i−M

)

+
Λ

−1
q Λ

H
l,qΛ

−1
l

(i −M)2
e0−q(i+ 1)e∗0−l(i+ 1)

)
. (68)

Due to the structure of the above equations, the approximations
and the quantities involved, we can decouple (68) into

Kn
k (i+ 1) =

∑

l∈Nk

E

[
α2
kl(i)c

2
kl(i)

]((
1−

1

i−M

)2
Kn

l (i)

+
e0−l(i + 1)e∗0−l(i+ 1)

λn
l (i−M)2

)

+
∑

l,q∈Nk

l 6=q

E

[
αkl(i)αkq(i)ckl(i)ckq(i)

]((
1−

1

i−M

)2

×Kn
l,q(i) +

λn
l,qe0−l(i + 1)e∗0−q(i+ 1)

(i−M)2λn
l λ

n
q

)

+
∑

l,q∈Nk

l 6=q

E

[
αkl(i)αkq(i)ckl(i)ckq(i)

]((
1−

1

i−M

)2

× (Kn
l,q(i))

H +
λn
l,qe0−q(i+ 1)e∗0−l(i+ 1)

(i−M)2λn
q λ

n
l

)

(69)

whereKn
k (i + 1) is thenth elements of the main diagonals

of Kk(i + 1). With the assumption that, upon convergence,
αkl and ckl do not vary, because at steady state, the choice
of subsetΩ̂k(i) for each nodek will be fixed, we can rewrite
(69) as (70). Then, the MSE is given by

Jmse−k(i+ 1) = Jmin−k +Mσ2
x,k

M∑

n=1

Kn
k (i+ 1)(ES-RLS).

(71)
On the basis of (70), we have that wheni tends to infinity,
the MSE approaches the MMSE in theory [19].

4) SI–RLS:For the proposed SI–RLS algorithm, we insert
(58) into (70), remove the random variablesαkl(i), and
following the same procedure as for the SI–LMS algorithm,
we can obtain (72), wherehkl andhkq satisfy the rule in (60).
Then, the MSE is given by

Jmse−k(i + 1) = Jmin−k +Mσ2
x,k

M∑

n=1

Kn
k (i+ 1)(SI-RLS).

(73)
In conclusion, according to (61) and (72), with the help of
modified combining coefficients, for the proposed SI–type
algorithms, the neighbor node with lowest MSE contributes
the most to the combination, while the neighbor node with
the highest MSE contributes the least. Therefore, the proposed
SI–type algorithms perform better than the standard diffusion
algorithms with fixed combining coefficients.

C. Tracking Analysis

In this section, we assess the proposed ES–LMS/RLS and
SI–LMS/RLS algorithms in a non–stationary environment, in
which the algorithms have to track the minimum point of
the error–performance surface [46], [47]. In the time–varying
scenarios of interest, the optimum estimate is assumed to vary
according to the modelω0(i + 1) = βω0(i) + q(i), where
q(i) denotes a random perturbation [44] andβ = 1 in order to
facilitate the analysis. This is typical in the context of tracking
analysis of adaptive algorithms [19], [48], [49].

1) ES–LMS: For the tracking analysis of the ES–LMS
algorithm, we employAssumption III and start from (47).
After subtracting theω0(i + 1) from both sides of (47), we
obtain

εk(i+ 1) =
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + µlxl(i + 1)(dl(i + 1)
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Kn
k (i + 1)(ES-RLS) =

∑
l∈Nk

α2
klc

2
kl

Jmin−l

λn
l
(i− M)2

+ 2
∑

l,q∈Nk
l 6=q

αklαkqcklckq

λn
l,qe0−le

∗
0−q

(i − M)2λn
l
λn
q

1 −
∑

l∈Nk

α2
kl
c2
kl

(
1 −

1

i − M

)2

− 2
∑

l,q∈Nk
l 6=q

αklαkqcklckq

(
1 −

1

i − M

)2
. (70)

Kn
k (i + 1)(SI-RLS) =

∑
l∈Nk

(ckl − hkl)
2 Jmin−l

λn
l
(i− M)2

+ 2
∑

l,q∈Nk
l 6=q

(ckl − hkl)(ckq − hkq)
λn
l,qe0−le

∗
0−q

(i− M)2λn
l
λn
q

1 −
∑

l∈Nk

(ckl − hkl)2

(
1 −

1

i − M

)2

− 2
∑

l,q∈Nk
l 6=q

(ckl − hkl)(ckq − hkq)

(
1 −

1

i− M

)2
. (72)

− xH
l (i+ 1)ωl(i))]−

∑

l∈Ω̂k(i)

ckl(i)ω0(i + 1)

=
∑

l∈Ω̂k(i)

ckl(i)[ωl(i) + µlxl(i + 1)(dl(i+ 1)

− xH
l (i+ 1)ωl(i))]−

∑

l∈Ω̂k(i)

ckl(i)

(
ω0(i) + q(i)

)

=
∑

l∈Ω̂k(i)

ckl(i)

[
εl(i) + µlxl(i + 1)

(
dl(i + 1)

− xH
l (i+ 1)(εl(i) + ω0)

)]
− q(i)

=
∑

l∈Ω̂k(i)

ckl(i)

[(
I − µlxl(i+ 1)xH

l (i+ 1)
)
εl(i)

+ µlxl(i+ 1)e∗0−l(i + 1)

]
− q(i).

(74)

Using Assumption III, we can arrive at

Jex−k(i+ 1) = tr{Rk(i+ 1)Kk(i + 1)}+ tr{Rk(i + 1)Q}.
(75)

The first part on the right side of (75), has already been
obtained in the MSE steady–state analysis part in Section IV
B. The second part can be decomposed as

tr{Rk(i+ 1)Q} = tr

{
E
[
xk(i+ 1)xH

k (i+ 1)
]
E
[
q(i)qH(i)

]}

= Mσ2
x,ktr{Q}. (76)

The MSE is then obtained as

Jmse−k = Jmin−k+Mσ2
x,k

M∑

n=1

Kn
k (ES-LMS)+Mσ2

x,ktr{Q}.

(77)
2) SI–LMS: For the SI–LMS recursions, we follow the

same procedure as for the ES-LMS algorithm, and obtain

Jmse−k = Jmin−k+Mσ2
x,k

M∑

n=1

Kn
k (SI-LMS)+Mσ2

x,ktr{Q}.

(78)
3) ES–RLS:For the SI–RLS algorithm, we follow the same

procedure as for the ES–LMS algorithm and arrive at

Jmse−k(i + 1) = Jmin−k +Mσ2
x,k

M∑

n=1

Kn
k (i+ 1)(ES-RLS)

+Mσ2
x,ktr{Q}. (79)

TABLE VII
COMPUTATIONAL COMPLEXITY FOR THE ADAPTATION STEP PER NODE PER TIME

INSTANT

Adaptation Method Multiplications Additions Divisions
LMS 8M + 2 8M
RLS 4M2 + 16M + 1 4M2 + 12M − 1 1

TABLE VIII
COMPUTATIONAL COMPLEXITY FOR COMBINATION STEP PER NODE PER TIME

INSTANT

Algorithms Multiplications Additions Divisions

ES–LMS/RLS M(t + 1)
T !

t!(T − t)!
Mt

T !

t!(T − t)!
SI–LMS/RLS (2M + 3)|Nk| (M + 2)|Nk| |Nk|

4) SI–RLS:We start from (73), and after a similar proce-
dure to that of the SI–LMS algorithm, we have

Jmse−k(i+ 1) = Jmin−k +Mσ2
x,k

M∑

n=1

Kn
k (i + 1)(SI-RLS)

+Mσ2
x,ktr{Q}. (80)

In conclusion, for time-varying scenarios there is only one
additional termMσ2

x,ktr{Q} in the MSE expression for all
algorithms, and this additional term has the same value for
all algorithms. As a result, the proposed SI–type algorithms
still perform better than the standard diffusion algorithms
with fixed combining coefficients, according to the conclusion
obtained in the previous subsection.

D. Computational Complexity

In the analysis of the computational cost of the algorithms
studied, we assume complex-valued data and first analyze the
adaptation step. For both ES–LMS/RLS and SI–LMS/RLS
algorithms, the adaptation cost depends on the type of re-
cursions (LMS or RLS) that each strategy employs. The
details are shown in Table VII. For the combination step,
we analyze the computational complexity in Table VIII. The
overall complexity for each algorithm is summarized in Table
IX. In the above three tables,T is the total number of nodes
linked to nodek including nodek itself andt is the number of
nodes chosen fromT . The proposed algorithms require extra
computations as compared to the existing distributed LMS and
RLS algorithms. This extra cost ranges from a small additional
number of operations for the SI-LMS/RLS algorithms to a
more significant extra cost that depends onT for the ES-
LMS/RLS algorithms.

V. SIMULATIONS

In this section, we investigate the performance of the
proposed link selection strategies for distributed estimation
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TABLE IX
COMPUTATIONAL COMPLEXITY PER NODE PER TIME INSTANT

Algorithm Multiplications Additions Divisions

ES–LMS

[
(t + 1)T !

t!(T − t)!
+ 8

]
M + 2

[
T !

(t − 1)!(T − t)!
+ 8

]
M

ES–RLS 4M2 +

[
(t + 1)T !

t!(T − t)!
+ 16

]
M + 1 4M2 +

[
T !

(t − 1)!(T − t)!
+ 12

]
M − 1 1

SI–LMS (8 + 2Nk)M + 3|Nk| + 2 (8 + |Nk|)M + 2|Nk| |Nk|
SI–RLS 4M2 + (16 + 2|Nk|)M + 3|Nk| + 1 4M2 + (12 + |Nk|)M + 2|Nk| − 1 |Nk| + 1
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Fig. 3. Diffusion wireless sensor networks topology with 20nodes

in two scenarios: wireless sensor networks and smart grids.
In these applications, we simulate the proposed link selection
strategies in both static and time–varying scenarios. We also
show the analytical results for the MSE steady–state and
tracking performances that we obtained in Section IV.

A. Diffusion Wireless Sensor Networks

In this subsection, we compare the proposed ES–LMS/ES–
RLS and SI–LMS/SI–RLS algorithms with the diffusion LMS
algorithm [2], the diffusion RLS algorithm [50] and the single–
link strategy [51] in terms of their MSE performance. The net-
work topology is illustrated in Fig. 3 and we employN = 20
nodes in the simulations. The length of the unknown parameter
vectorω0 is M = 10 and it is generated randomly. The input
signal is generated asxk(i) = [xk(i) xk(i− 1) ... xk(i−
M + 1)] and xk(i) = uk(i) + αkxk(i − 1), whereαk is a
correlation coefficient anduk(i) is a white noise process with
varianceσ2

u,k = 1 − |αk|2, to ensure the variance ofxk(i) is
σ2
x,k = 1. The noise samples are modeled as circular Gaussian

noise with zero mean and varianceσ2
n,k = 0.001. The step

size for the diffusion LMS ES–LMS and SI–LMS algorithms
is µ = 0.045. For the diffusion RLS algorithm, both ES–RLS
and SI–RLS, the forgetting factorλ is set to 0.97 andδ is
equal to 0.81. In the static scenario, the sparsity parameters
of the SI–LMS/SI–RLS algorithms are set toρ = 4 × 10−3

and ε = 10. The Metropolis rule is used to calculate the
combining coefficientsckl. The MSE and MMSE are defined
as in (2) and (45), respectively. The results are averaged over
100 independent runs.

In Fig. 4, we can see that ES–RLS has the best performance
for both steady-state MSE and convergence rate, and obtains
a gain of about 8 dB over the standard diffusion RLS algo-
rithm. SI–RLS is a bit worse than the ES–RLS, but is still
significantly better than the standard diffusion RLS algorithm
by about 5 dB. Regarding the complexity and processing time,
SI–RLS is as simple as the standard diffusion RLS algorithm,
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Fig. 4. Network MSE curves in a static scenario
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Fig. 5. Network MSE curves in a time-varying scenario

while ES–RLS is more complex. The proposed ES–LMS and
SI–LMS algorithms are superior to the standard diffusion
LMS algorithm. In the time–varying scenario, the sparsity
parameters of the SI–LMS and SI–RLS algorithms are set to
ρ = 6× 10−3 andε = 10. The unknown parameter vectorω0

varies according to the first–order Markov vector process:

ω0(i+ 1) = βω0(i) + z(i), (81)

where z(i) is an independent zero–mean Gaussian vector
process with varianceσ2

z = 0.01 andβ = 0.98.
Fig. 5 shows that, similarly to the static scenario, ES–RLS

has the best performance, and obtains a 5 dB gain over the
standard diffusion RLS algorithm. SI–RLS is slightly worse
than the ES–RLS, but is still better than the standard diffusion
RLS algorithm by about 3 dB. The proposed ES–LMS and SI–
LMS algorithms have the same advantage over the standard
diffusion LMS algorithm in the time-varying scenario. Notice
that in the scenario with large|Nk|, the proposed SI-type
algorithms still have a better performance when compared with
the standard techniques. To illustrate the link selection for the
ES–type algorithms, we provide Figs. 6 and 7. From these
two figures, we can see that upon convergence the proposed
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algorithms converge to a fixed selected set of linksΩ̂k.

B. MSE Analytical Results
The aim of this section is to validate the analytical results

obtained in Section IV. First, we verify the MSE steady–state
performance. Specifically, we compare the analytical results in
(57), (62), (71) and (73) to the results obtained by simulations
under different SNR values. The SNR indicates the signal
variance to noise variance ratio. We assess the MSE against
the SNR, as show in Figs. 8 and 9. For ES–RLS and SI–
RLS algorithms, we use (71) and (73) to compute the MSE
after convergence. The results show that the analytical curves
coincide with those obtained by simulations and are within
0.01 dB of each other, which indicates the validity of the
analysis. We have assessed the proposed algorithms with SNR
equal to 0dB, 10dB, 20dB and 30dB, respectively, with 20
nodes in the network. For the other parameters, we follow the
same definitions used to obtain the network MSE curves in
a static scenario. The details have been shown on the top of
each sub figure in Figs. 8 and 9. The theoretical curves for
ES–LMS/RLS and SI–LMS/RLS are all close to the simulation
curves and remain within 0.01 dB of one another.

The tracking analysis of the proposed algorithms in a time–
varying scenario is discussed as follows. Here, we verify that
the results (77), (78), (79) and (80) of the subsection on
the tracking analysis can provide a means of estimating the
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Fig. 8. MSE performance against SNR for ES–LMS and SI–LMS
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Fig. 9. MSE performance against SNR for ES–RLS and SI–RLS

MSE. We consider the same model as in (81). In the next
examples, we employN = 20 nodes in the network and the
same parameters used to obtain the network MSE curves in a
time–varying scenario. A comparison of the curves obtained
by simulations and by the analytical formulas is shown in
Figs. 10 and 11. From these curves, we can verify that the gap
between the simulation and analysis results are within 0.02dB
under different SNR values. The details of the parameters are
shown on the top of each sub figure in Figs. 10 and 11.

C. Smart Grids

The proposed algorithms provide a cost–effective tool that
could be used for distributed state estimation in smart grid
applications. In order to test the proposed algorithms in a
possible smart grid scenario, we consider the IEEE 14–bus
system [52], where 14 is the number of substations. At every
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Fig. 10. MSE performance against SNR for ES–LMS and SI–LMS ina
time-varying scenario
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Fig. 11. MSE performance against SNR for ES–RLS and SI–RLS ina
time-varying scenario

time instanti, each busk, k = 1, 2, . . . , 14, takes a scalar
measurementdk(i) according to

dk(i) = Xk

(
ω0(i)

)
+ nk(i), k = 1, 2, . . . , 14, (82)

whereω0(i) is the state vector of the entire interconnected
system,Xk(ω0(i)) is a nonlinear measurement function of
busk. The quantitynk(i) is the measurement error with mean
equal to zero and which corresponds to busk.

Initially, we focus on the linearized DC state estimation
problem. The system is built with 1.0 per unit (p.u) voltage
magnitudes at all buses and j1.0 p.u. branch impedance. Then,
the state vectorω0(i) is taken as the voltage phase angle vector
ω0 for all buses. Therefore, the nonlinear measurement model
for state estimation (82) is approximated by

dk(i) = x
H
k (i)ω0 + nk(i), k = 1, 2, . . . , 14, (83)

wherexk(i) is the measurement Jacobian vector for busk.
Then, the aim of the distributed estimation algorithm is to
compute an estimate ofω0, which can minimize the cost
function given by

Jωk(i)(ωk(i)) = E|dk(i)− x
H
k (i)ωk(i)|

2. (84)

We compare the proposed algorithms with theM–CSE algo-
rithm [4], the single link strategy [51], the standard diffusion
RLS algorithm [50] and the standard diffusion LMS algorithm
[2] in terms of MSE performance and the Phase Angle Gap.
The MSE comparison is used to determine the accuracy of the
algorithms, and the Phase Angle Gap is used to compare the
rate of convergence. In our scenario, ’Phase Angle Gap’ refers
to the phase angle difference between the actual parameter
vector or targetω0 and the estimateωk(i) for all buses. We
define the IEEE–14 bus system as in Fig. 12.
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Fig. 12. IEEE 14–bus system for simulation

All buses are corrupted by additive white Gaussian noise
with equal varianceσ2 = 0.001. The step size for the
standard diffusion LMS [2], the proposed ES–LMS and SI–
LMS algorithms is 0.018. The parameter vectorω0 is set to
an all–one vector. For the diffusion RLS, ES–RLS and SI–
RLS algorithms the forgetting factorλ is set to 0.945 andδ is
equal to 0.001. The sparsity parameters of the SI–LMS/RLS
algorithms are set toρ = 0.07 and ε = 10. The results are
averaged over 100 independent runs. We simulate the proposed
algorithms for smart grids under a static scenario.
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Fig. 13. MSE performance curves for smart grids.

From Fig. 13, it can be seen that ES–RLS has the best
performance, and significantly outperforms the standard diffu-
sion LMS [2] and theM–CSE [4] algorithms. The ES–LMS is
slightly worse than ES–RLS, which outperforms the remaining
techniques. SI–RLS is worse than ES–LMS but is still better
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than SI–LMS, while SI–LMS remains better than the diffusion
RLS, LMS,M–CSE algorithms and the single link strategy.

0  10 20 30 40 50 60 70 80 90 

−0.5

−0.4

−0.3

−0.2

−0.1

0

Time,i

P
ha

se
 A

ng
le

 G
ap

Phase Angle Gap Comparision For Bus 5

 

 

Diffusion RLS[28]
SI−−RLS
Diffusion LMS[2] 
SI−−LMS
M−−CSE[4]
ES−−LMS
Single Link Strategy[29]
ES−−RLS

Fig. 14. Phase Angle Gap comparison for Bus 5.

In order to compare the convergence rate, we employ the
’Phase Angle Gap’ to describe the results. We choose bus 5
and the first 90 iterations as an example to illustrate our results.
In Fig. 14, ES–RLS has the fastest convergence rate, while SI–
LMS is the second fastest, followed by the standard diffusion
RLS, ES–LMS, SI–LMS, and the standard diffusion LMS
algorithms. TheM–CSE algorithm and the single link strategy
have the worst performance. The estimatesωk(i) obtained by
the proposed algorithms quickly reach the targetω0, which
means the Phase Angle Gap will converge to zero.

VI. CONCLUSIONS

In this paper, we have proposed ES–LMS/RLS and SI–
LMS/RLS algorithms for distributed estimation in applications
such as wireless sensor networks and smart grids. We have
compared the proposed algorithms with existing methods. We
have also devised analytical expressions to predict their MSE
steady–state performance and tracking behavior. Simulation
experiments have been conducted to verify the analytical
results and illustrate that the proposed algorithms significantly
outperform the existing strategies, in both static and time–
varying scenarios, in examples of wireless sensor networks
and smart grids.

VII. A CKNOWLEDGEMENTS

The authors wish to thank the anonymous reviewers, whose
comments and suggestions have greatly improved the presen-
tation of these results.

REFERENCES

[1] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over
distributed networks,”IEEE Trans. Signal Process., vol. 48, no. 8, pp.
223–229, Aug 2007.

[2] ——, “Diffusion least-mean squares over adaptive networks: Formula-
tion and performance analysis,”IEEE Trans. Signal Process., vol. 56,
no. 7, pp. 3122–3136, July 2008.

[3] Y. Chen, Y. Gu, and A. Hero, “Sparse LMS for system identification,”
Proc. IEEE ICASSP, pp. 3125–3128, Taipei, Taiwan, May 2009.

[4] L. Xie, D.-H. Choi, S. Kar, and H. V. Poor, “Fully distributed state
estimation for wide-area monitoring systems,”IEEE Trans. Smart Grid,
vol. 3, no. 3, pp. 1154–1169, September 2012.

[5] D. Bertsekas, “A new class of incremental gradient methods for least
squares problems,”SIAM J. Optim, vol. 7, no. 4, p. 913926, 1997.

[6] A. Nedic and D. Bertsekas, “Incremental subgradient methods for
nondifferentiable optimization,”SIAM J. Optim, vol. 12, no. 1, p.
109138, 2001.

[7] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for
distributed optimization,”IEEE J. Sel. Areas Commun, vol. 23, no. 4,
p. 798808, Apr 2005.

[8] F. S. Cattivelli and A. H. Sayed, “Diffusion lms strategies for distributed
estimation,” IEEE Trans. Signal Process., vol. 58, p. 10351048, March
2010.

[9] P. D. Lorenzo, S. Barbarossa, and A. H. Sayed, “Sparse diffusion
LMS for distributed adaptive estimation,”Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing, pp. 3281–
3284, Kyoto, Japan, March 2012.

[10] S. Xu, R. C. de Lamare, and H. V. Poor, “Distributed compressed
estimation based on compressive sensing,”IEEE Signal Processing
Letters, vol. 22, no. 9, pp. 1311–1315, Sept 2015.

[11] ——, “Adaptive link selection algorithms for distributed estimation,”
EURASIP Journal on Advances in Signal Processing, vol. 2015, no. 1,
pp. 1–22, October 2015.

[12] C. Lopes and A. Sayed, “Diffusion adaptive networks with changing
topologies,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing, Las Vegas, 2008, pp. 3285–3288.

[13] B. Fadlallah and J. Principe, “Diffusion least-mean squares over adaptive
networks with dynamic topologies,”in Proc. IEEE International Joint
Conference on Neural Networks, Dallas, TX, USA 2013.

[14] T. Wimalajeewa and S. Jayaweera, “Distributed node selection for
sequential estimation over noisy communication channels,” IEEE Trans.
Wirel. Commun., vol. 9, no. 7, pp. 2290–2301, July 2010.

[15] R. C. de Lamare and R. Sampaio-Neto, “Adaptive reduced-rank process-
ing based on joint and iterative interpolation, decimationand filtering,”
IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2503–2514, July 2009.

[16] R. C. de Lamare and P. S. R. Diniz, “Set-membership adaptive al-
gorithms based on time-varying error bounds for CDMA interference
suppression,”IEEE Trans. Vehi. Techn., vol. 58, no. 2, pp. 644–654,
February 2009.

[17] L. Guo and Y. F. Huang, “Frequency-domain set-membership filtering
and its applications,”IEEE Trans. Signal Process., vol. 55, no. 4, pp.
1326–1338, April 2007.

[18] A. Bertrand and M. Moonen, “Distributed adaptive node–specific signal
estimation in fully connected sensor networks–part II: Simultaneous and
asynchronous node updating,”IEEE Trans. Signal Process., vol. 58,
no. 10, pp. 5292–5306, 2010.

[19] S. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River, NJ,
USA: Prentice Hall, 2002.

[20] L. Li and J. A. Chambers, “Distributed adaptive estimation based on
the APA algorithm over diffusion networks with changing topology,”
in Proc. IEEE Statist. Signal Process. Workshop, pp. 757–760, Cardiff,
Wales, September 2009.

[21] X. Zhao and A. H. Sayed, “Performance limits for distributed estimation
over lms adaptive networks,”IEEE Trans. Signal Process., vol. 60,
no. 10, pp. 5107–5124, October 2012.

[22] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, no. 1, pp. 65–78, September 2004.

[23] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,”IEEE Trans. Autom.
Control., vol. 49, pp. 1520–1533, September 2004.

[24] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,”IEEE Trans. Autom.
Control, vol. 48, no. 6, pp. 988–1001, June 2003.

[25] R. C. de Lamare and R. C. de Lamare, “Adaptive reduced-rank mmse
filtering with interpolated fir filters and adaptive interpolators,” IEEE
Signal Processing Letters, vol. 12, no. 3, March 2005.

[26] R. Meng, R. C. de Lamare, and V. H. Nascimento, “Sparsity-aware
affine projection adaptive algorithms for system identification,” in Proc.
Sensor Signal Processing for Defence Conference, London, UK, 2011.

[27] Z. Yang, R. de Lamare, and X. Li, “Sparsity-aware space-time adaptive
processing algorithms with l1-norm regularisation for airborne radar,”
Signal Processing, IET, vol. 6, no. 5, pp. 413–423, July 2012.

[28] ——, “L1-regularized stap algorithms with a generalized sidelobe can-
celer architecture for airborne radar,”Signal Processing, IEEE Transac-
tions on, vol. 60, no. 2, pp. 674–686, Feb 2012.

[29] R. C. de Lamare and R. C. de Lamare, “Sparsity-aware adaptive
algorithms based on alternating optimization and shrinkage,” IEEE
Signal Processing Letters, vol. 21, no. 2, pp. 225–229, January 2014.



16

[30] R. C. de Lamare and R. Sampaio-Neto, “Reduced–rank adaptive filtering
based on joint iterative optimization of adaptive filters,”IEEE Signal
Process. Lett., vol. 14, no. 12, pp. 980–983, December 2007.

[31] ——, “Reduced-rank space–time adaptive interference suppression with
joint iterative least squares algorithms for spread-spectrum systems,”
IEEE Transactions Vehicular Technology, vol. 59, no. 3, pp. 1217–1228,
March 2010.

[32] ——, “Adaptive reduced-rank equalization algorithms based on al-
ternating optimization design techniques for MIMO systems,” IEEE
Transactions on Vehicular Technology, vol. 60, no. 6, pp. 2482–2494,
July 2011.

[33] ——, “Adaptive reduced-rank processing based on joint and iterative
interpolation, decimation, and filtering,”IEEE Transactions on Signal
Processing, vol. 57, no. 7, pp. 2503–2514, July 2009.

[34] R. Fa, R. C. de Lamare, and L. Wang, “Reduced-rank stap schemes
for airborne radar based on switched joint interpolation, decimation and
filtering algorithm,” IEEE Transactions on Signal Processing, vol. 58,
no. 8, pp. 4182–4194, August 2010.

[35] S. Li, R. C. de Lamare, and R. Fa, “Reduced-rank linear interference
suppression for ds-uwb systems based on switched approximations of
adaptive basis functions,”IEEE Transactions on Vehicular Technology,
vol. 60, no. 2, pp. 485–497, Feb 2011.

[36] R. C. de Lamare, R. Sampaio-Neto, and M. Haardt, “Blind adap-
tive constrained constant-modulus reduced-rank interference suppression
algorithms based on interpolation and switched decimation,” IEEE
Transactions on Signal Processing, vol. 59, no. 2, pp. 681–695, Feb
2011.

[37] M. L. Honig and J. S. Goldstein, “Adaptive reduced-rankinterference
suppression based on the multistage wiener filter,”IEEE Transactions
on Communications, vol. 50, no. 6, June 2002.

[38] R. C. de Lamare, M. Haardt, and R. Sampaio-Neto, “Blind adaptive
constrained reduced-rank parameter estimation based on constant mod-
ulus design for cdma interference suppression,”IEEE Transactions on
Signal Processing, vol. 56, no. 6, June 2008.

[39] N. Song, R. C. de Lamare, M. Haardt, and M. Wolf, “Adaptive widely
linear reduced-rank interference suppression based on themulti-stage
wiener filter,” IEEE Transactions on Signal Processing, vol. 60, no. 8,
August 2012.

[40] H. Ruan and R. de Lamare, “Robust adaptive beamforming using a
low-complexity shrinkage-based mismatch estimation algorithm,” Signal
Processing Letters, IEEE, vol. 21, no. 1, pp. 60–64, Jan 2014.

[41] Y. Chen, Y. Gu, and A. Hero, “Regularized least-mean-square algo-
rithms,” Technical Report for AFOSR, December 2010.

[42] S. Xu and R. C. de Lamare, “Distributed conjugate gradient strategies
for distributed estimation over sensor networks,”in Proc. Sensor Signal
Processing for Defence 2012, London, UK, 2012.

[43] F. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed kalman
filtering and smoothing,”IEEE Trans. Autom. Control, vol. 55, no. 9,
pp. 2069–2084, September 2010.

[44] A. H. Sayed,Fundamentals of Adaptive Filtering. Hoboken, NJ, USA:
John Wiley&Sons, 2003.

[45] T. Kailath, A. H. Sayed, and B. Hassibi,Linear Estimation. Englewood
Cliffs, NJ, USA: Prentice-Hall, 2000.

[46] R. C. de Lamare and P. S. R. Diniz, “Blind adaptive interference
suppression based on set-membership constrained constant-modulus
algorithms with dynamic bounds,”IEEE Trans. Signal Process., vol. 61,
no. 5, pp. 1288–1301, March 2013.

[47] Y. Cai and R. C. de Lamare, “Low–complexity variable step-size
mechanism for code-constrained constant modulus stochastic gradient
algorithms applied to cdma interference suppression,”IEEE Trans.
Signal Process., vol. 57, no. 1, pp. 313–323, January 2009.

[48] B. Widrow and S. D. Stearns,Adaptive Signal Processing. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1985.

[49] E. Eweda, “Comparison of RLS, LMS, and sign algorithms for tracking
randomly time-varying channels,”IEEE Trans. Signal Process., vol. 42,
p. 29372944, November 1994.

[50] F. Cattivelli, C. Lopes, and A. Sayed, “Diffusion recursive least-squares
for distributed estimation over adaptive networks,”IEEE Trans. Signal
Process., vol. 56, no. 5, pp. 1865–1877, May 2008.

[51] X. Zhao and A. H. Sayed, “Single-link diffusion strategies over adaptive
networks,”in Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 3749–3752, Kyoto, Japan, March 2012.

[52] A. Bose, “Smart transmission grid applications and their supporting
infrastructure,” IEEE Trans. Smart Grid, vol. 1, no. 1, pp. 11–19, Jun
2010.


	I Introduction
	I-A Prior and Related Work
	I-B Contributions

	II System Model and Problem Statement
	III Proposed Adaptive Link Selection Algorithms
	III-A Exhaustive Search–Based LMS/RLS Link Selection 
	III-B Sparsity–Inspired LMS/RLS Link Selection 

	IV Analysis of the proposed algorithms
	IV-A Stability Analysis
	IV-B MSE Steady–State Analysis
	IV-B1 ES–LMS
	IV-B2 SI–LMS
	IV-B3 ES–RLS
	IV-B4 SI–RLS

	IV-C Tracking Analysis
	IV-C1 ES–LMS
	IV-C2 SI–LMS
	IV-C3 ES–RLS
	IV-C4 SI–RLS

	IV-D Computational Complexity

	V Simulations
	V-A Diffusion Wireless Sensor Networks
	V-B MSE Analytical Results
	V-C Smart Grids

	VI Conclusions
	VII Acknowledgements
	References

