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Abstract

Many biological systems perform computations on inputs that have very large dimensionality. Determining the relevant
input combinations for a particular computation is often key to understanding its function. A common way to find the
relevant input dimensions is to examine the difference in variance between the input distribution and the distribution of
inputs associated with certain outputs. In systems neuroscience, the corresponding method is known as spike-triggered
covariance (STC). This method has been highly successful in characterizing relevant input dimensions for neurons in a
variety of sensory systems. So far, most studies used the STC method with weakly correlated Gaussian inputs. However, it is
also important to use this method with inputs that have long range correlations typical of the natural sensory environment.
In such cases, the stimulus covariance matrix has one (or more) outstanding eigenvalues that cannot be easily equalized
because of sampling variability. Such outstanding modes interfere with analyses of statistical significance of candidate input
dimensions that modulate neuronal outputs. In many cases, these modes obscure the significant dimensions. We show that
the sensitivity of the STC method in the regime of strongly correlated inputs can be improved by an order of magnitude or
more. This can be done by evaluating the significance of dimensions in the subspace orthogonal to the outstanding
mode(s). Analyzing the responses of retinal ganglion cells probed with 1=f Gaussian noise, we find that taking into account
outstanding modes is crucial for recovering relevant input dimensions for these neurons.
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Introduction

How do neurons encode sensory stimuli? One of the primary

difficulties in answering this long-standing problem is the fact that

sensory stimuli have high dimensionality. For example, responses

of many visual neurons are affected by image patterns that require

at least a 10|10 pixel grid for their description as well as a

temporal history spanning multiple time bins or basis functions.

Determining what input combinations affect the neural responses

is a key step in characterizing the neural computation. Broadly

speaking, to detect the presence of certain features in the

environment over a range of distances and light conditions, one

needs to disambiguate the presence of this feature at a weak

contrast from the presence of a similar, but different feature

presented at a higher contrast. This can only be achieved with

nonlinear functions that depend on multiple input components,

such as the presence of an edge of correct orientation and the

absence of the edge orthogonal to it [1]. In support of these

arguments, the responses of neurons in different sensory modalities

are found to be sensitive to multiple input combinations. Examples

include vision [2–7], audition [8–10], olfaction [11], somatosensa-

tion [12] and mechanosensation [13]. Neurons respond with all-

or-none responses termed spikes. The goal of different methods for

characterizing neural feature selectivity is to determine how the

probability of eliciting a spike from a neuron depends on its inputs.

The underlying assumption is that this dependence of spike

probability on input parameters will have a low-dimensional

structure. Finding either the linear input dimensions that modulate

the spike probability (we will refer to these dimensions as relevant)

or quadratic forms of inputs [14–16] is the focus of much of the

current research in the field.

Much of the analysis of neural selectivity for multiple input

combinations has been carried out using uncorrelated (‘‘white

noise’’) or weakly correlated inputs. With such inputs, the relevant

input dimensions can be found using a computationally inexpen-

sive method known as spike-triggered covariance (STC) [6,7,17–

22]. The STC method works by comparing the change in variance

along different dimensions in the input space across all stimuli and

across stimuli that elicited a spike. The dimensions along which the

variance is found to be significantly different represent the relevant

input dimensions for the response of a particular neuron. The

method is not limited to strictly Gaussian inputs provided that the

inputs are still circularly symmetric [23], which is another example

of an input distribution without correlations.
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In principle the STC method can also be used with correlated

Gaussian stimuli [7,20]. The case of correlated stimuli - especially

with strong correlations, where the second moment of the

covariance spectrum may be infinite - is important for neural

coding. This is because signals in the sensory environment possess

such correlations in both the second and higher orders [24–30].

Because the properties of a cell’s relevant subspace may change

depending on the stimulus statistics as a result of adaptation

[31,32], it may not be sufficient to study neural coding using

uncorrelated stimuli. Here we show that with strongly correlated

inputs, the significance analysis for determining which of the

dimensions obtained by the STC method are relevant for neural

spiking needs to be modified to take into account a rather

complicated covariance structure of randomly selected inputs

drawn from such input ensembles. The nonuniform covariance

structure, which has properties akin to the graph laplacian in

small-world networks [33], breaks the symmetry in the input

space, and therefore may obscure many significant dimensions.

The most prominent aspect of the natural scenes covariance

structure is the presence of the so-called ‘‘coherent’’ mode [34].

This stimulus dimension approximately corresponds to the zero

frequency input component and has a corresponding eigenvalue

that is at least 10 times larger than the mean eigenvalue of the

input covariance matrix. Even in datasets of fairly large size, the

extremely large variance along the coherent mode obscures many

of the truly relevant dimensions for neural spiking (Fig. 1). These

effects are also reproduced in our analysis of the responses of

ganglion cells from the salamander retina probed with 1=f -type

naturalistic Gaussian stimuli. We identify a close relationship

between the covariance structure derived from natural scenes to

that defined by the Spiked-Wishart matrix model [35,36]. This

allows us to explain the effects in the context of the STC method

using results from random matrix theory, and suggest ways to

bypass sampling variability along the outstanding modes.

Results

Spike triggered covariance
Mathematically, the first step in the STC method is to compute

the covariance matrix of stimuli that lead to a spike Cspike and the

covariance matrix of all stimuli Cstim:

C
spike
ij ~

1

Nspike{1

XNspike

t~1

ŝst
i{SsiTspike

� �
ŝst

j{SsjTspike

� �
ð1Þ

Cstim
ij ~

1

N{1

XN

t~1

st
i{�ssi

� �
st

j{�ssj

� �
: ð2Þ

Here, Nspike is the number of recorded spikes, N is the number of

stimulus frames, st
i is the value of the stimulus along the ith

dimension at time t, the hat denotes that this stimulus triggered a

spike, the bar denotes the average across the input distribution and

SsjTspike is the average across the distribution of inputs that

triggered a spike (the so called ‘‘spike-triggered-average’’).

As the second step, one computes the difference between these

covariance matrices:

DC~Cspike{Cstim, ð3Þ

and finds the eigenvalues that are significantly different from zero.

The corresponding eigenvectors span the neuron’s relevant

subspace.

To determine statistical significance of the eigenvalues, they

need to be compared to the null distribution, which is the

distribution of eigenvalues of the matrices DCnull~Cnull{Cstim.

The matrices DCnull,Cnull are formed assuming no association

between the stimulus and the neural response, i.e. by using

random spike times chosen at the same rate found for real

neurons. If the spike train has particular temporal structure (e.g.

bursting, a refractory period), the Cnull is obtained by random

shifts of the spike train with periodic boundary conditions [20].

Significant eigenvalues of DC can be positive or negative. The

procedures for determining statistical significance are detailed in

Materials and Methods.

The final step of the STC method is to remove stimulus

correlations from the estimate of dimensions found to be

significant. This can be done by multiplying them with the

(pseudo)inverse of Cstim (see Materials and Methods). The method

which we use to find the optimal rank of the pseudoinverse matrix

is detailed in [22,37] and for completeness described in Materials

and Methods.

We note that this approach, Eqs. (1)–(3), of finding the relevant

stimulus dimensions by diagonalizing DC is equivalent to seeking

eigenvectors of the following matrix [20]:

D~CCij~
1

Nspike{1

XNspike

t~1

ŝst
i{�ssi

� �
ŝst

j{�ssj

� �
{

1

N{1

XN

t~1

st
i{�ssi

� �
st

j{�ssj

� �
:

ð4Þ

This matrix describes a change in the second moment between the

distributions stimuli that elicit a spike and that of all stimuli, after

subtracting the mean stimulus �ss. Despite the fact that DC=D~CC,

their eigenvectors coincide.

In another formulation, instead of subtracting the matrix Cstim

in Eq. (3), the stimulus is decorrelated (‘‘whitened’’) prior to its

spike triggered characterization [7]. For completeness, the details

of this method are brought in Materials and Methods. Throughout

Author Summary

In many areas of computational biology, including the
analyses of genetic mutations, protein stability and neural
coding, as well as in economics, one of the most basic and
important steps of data analysis is to find the relevant
input dimensions for a particular task. In neural coding
problems, the spike-triggered covariance (STC) method
identifies relevant input dimensions by comparing the
variance of the input distribution along different dimen-
sions to the variance of inputs that elicited a neural
response. While in theory the method can be applied to
Gaussian stimuli with or without correlations, it has so far
been used in studies with only weakly correlated stimuli.
Here we show that to use STC with strongly correlated,
1=f -type inputs, one has to take into account that the
covariance matrix of random samples from this distribu-
tion has a complex structure, with one or more outstand-
ing modes. We use simulations on model neurons as well
as an analysis of the responses of retinal neurons to
demonstrate that taking the presence of these outstand-
ing modes into account improves the sensitivity of the STC
method by more than an order of magnitude.

Spike Triggered Covariance in Correlated Stimuli
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the manuscript, we will refer to this method as the ‘‘one centered’’

method, because the null distribution is centered around the

identity matrix, rather than a matrix of zeros, as in Eq. (3).

Correspondingly, we will refer to the version of the STC method

obtained by diagonalizing Eq. (3) as the ‘‘zero-centered’’ method.

In essence, both the one-centered and the zero-centered versions

are similarly affected by inhomogeneous sampling variability.

The authors of [7] proposed a slightly different definition of the

null distribution and a nested hypothesis technique for significance

testing. For the model cell simulations we used both significance

analysis methods, in both the ‘‘zero-centered’’ and ‘‘one-centered’’

STC formulations, and obtained similar results. For the rest of this

paper we will refer to our significance testing method as the

‘‘global’’ one, and focus mainly on the ‘‘zero-centered’’ formula-

tion of the STC method. Using this combination the important

effects of the strong stimulus correlations on the analysis are more

easily understood.

Model cells presented with strongly correlated noise
We begin with an illustration of the problems that arise when

the STC method is used to analyze neural responses to strongly

correlated Gaussian noise (Fig. 1). We simulated a model neuron

where the neuronal responses were modulated by stimulus

projections onto a single dimension (termed here the relevant

feature). The stimuli were constructed to match the second-order

statistics from the set of images in the van Hateren dataset [38] (see

Materials and Methods). In this example obtained for dataset of a

moderate size, no eigenvalues fell outside of the 98% confidence

intervals (1% significant bounds for the largest and smallest rank-

ordered eigenvalues). Yet, the spike train contains enough signal

about the cell’s input-output function to identify the relevant

feature for this level of significance. Specifically, the variance along

the relevant dimension in the spike-triggered stimulus

(d2
w~var ŝs:wð Þ) is much smaller than can be explained by random

spike times (Fig. 1E).

Outstanding modes in covariance matrices derived from
natural stimuli

To understand the origin of such masking of the relevant

feature(s), we consider the eigenstructure of covariance matrices

for stimulus ensembles with strong pairwise correlations. For

example, in the case of natural scenes that exhibit long range

correlations over a very wide range of spatial scales [27,39],

principal component analysis (PCA) yields one outstanding

Figure 1. Spike triggered covariance analysis of simulated spike trains of a model with a single feature orthogonal to the coherent
mode. (A) Inputs are plotted when projected on the eigenvectors corresponding to the largest eigenvalues of DC (in units of pixel illumination).
Marginal distributions are plotted for each dimension. Inputs that elicited a spike are shown in red, and those that did not in blue. By construction,
the change in variance is larger along the first dimension. (B) The empirical eigenvalue distribution of DC (black) compared to the null distribution
(blue). No eigenvalues of DC are found to be significant (shaded area indicates 98% confidence intervals for the support of the null distribution) (C)
Rank ordered eigenvalues (black) plotted with the null distribution (blue). (D) Nested rank-wise significance testing. The highest ranked eigenvalues
of DC are within the 98% confidence intervals derived from the null distribution constructed for each rank separately (see Materials and Methods for

details). (E) For each random spike train we computed d2
w, the variance of the projection of the spike-triggered stimulus on the relevant feature w

(distribution shown in yellow). The purple line indicates d2
w for the real spike train, suggesting the spike train contains enough signal to determine the

relevant feature as significant. Inset shows the relevant feature, a 16|16 image patch (p~256). Simulation details: N~1189, Nspike~329, 250

repetitions to find DCnull .
doi:10.1371/journal.pcbi.1003206.g001

Spike Triggered Covariance in Correlated Stimuli
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eigenvalue (for example, see eigenvalue marked l1 in Fig. 2A). The

corresponding eigenvector has all positive components [28,30] and

is often referred to as the ‘‘coherent mode’’ [34]. To understand

why such a coherent mode appears, one can consider the case

where the correlations decrease only slightly over the range of

image patches used to compute the covariance matrix. In this case,

the correlation values in different image patches will be

approximately the same. Such a matrix will have one outstanding

eigenvalue with a corresponding eigenvector that has equal weights

for all stimulus dimensions [40]. Small differences in the amount of

covariation for pixel pairs with different spatial separation will lead

to deviations in components of the coherent mode from each other,

but the basic structure will remain the same as long as the mean of

the correlation values exceeds the standard deviation of their

fluctuations [40]. In fact, shuffling entries in the sample covariance

matrices of natural stimuli yields matrices whose spectra follow the

analytical predictions exactly [40,41]. These analytical predictions

generalize the Wigner semicircle law [42] for matrices whose

elements have a non-zero mean:

gTKW lð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2{l2

p
2ps2

z
0 mj jvs

1
N

d l{ mz s2

m

� �h i
mj jws

(
, ð5Þ

where m and s2 are the mean and variance of matrix elements. The

distribution gTKW lð Þ follows the semicircle law with the addition of

one outstanding mode that appears once the mean of matrix

elements exceeds their standard deviation. The eigenvector

corresponding to the outstanding eigenvalue is 1ffiffi
p
p 1, . . . ,1ð Þ. The

semicircle law appears because matrices are no longer positive-

definite after shuffling. However, the outstanding eigenvalue is

located at exactly the same value as the outstanding eigenvalue of

the natural scenes covariance matrix Cpop (see Fig. 2C).

In our analysis of the van Hateren database, the largest

eigenvalue tends to be at least 3{4 times larger than the second

largest eigenvalue. This shows how strong the coherent mode is

compared to other modes. The principal components ranked

below the coherent mode form a collection of orthogonal ‘‘edge

detectors’’, some of which correspond to an eigenvalue still much

larger than the mean eigenvalue of Cstim, a signature of the

stimulus’ heavy-tailed covariance spectrum. Such large disparities

in variance along the different dimensions in the stimulus space

make it problematic to directly compare changes in variance

induced by the observation of spikes along these different

dimensions.

The detailed structure of sampling variability in the estimation

of eigenvectors and eigenvalues can be understood in terms of the

Spiked Wishart ensemble [35,36]. In the Spiked Wishart matrix

model, the true (population) covariance eigenvalues are all equal to

one, except for a small number n%p of outstanding modes with

eigenvalues larger than one 1zt1,1zt2, . . . ,1ztn,1, . . . ,1ð Þ,
where p is the stimulus dimensionality. The distribution of sample

covariance eigenvalues gsw lð Þ for a finite number of inputs has a

positive bias, with the following analytical expressions [36]:

gSW lð Þ! p{nð ÞgMP lð Þz
Xn

i~1

ri ð6Þ

ri*N 1ztið Þ 1z
1

cti

� �
,
ŝs2

i

N

	 

ð7Þ

ŝs2
i ~2 1ztið Þ2 1{

1

ct2
i

� �
ð8Þ

where c:N=p and N is the number of samples. The distribution

gMP representing the ‘‘bulk’’ of eigenvalues is the so called

Marčenko-Pastur distribution given by:

gMP lð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lz{lð Þ l{l{ð Þ

p
2pl=c

ð9Þ

l+~ 1+
1ffiffiffi
c
p

� �2

: ð10Þ

This distribution corresponds to the sample covariance eigenval-

ues obtained when the true covariance is the identity matrix. Using

Figure 2. Spectra of the population covariance, sample
covariance, and symmetric random matrices with matched
element distribution. (A) Eigenvalue distribution of an example
population covariance matrix Cpop (p~256) computed from the van
Hateren data set. The largest eigenvalue (marked with an arrow)
corresponds to an eigenvector with only positive components, and is
&10 times larger than the second largest eigenvalue (also marked) and
&100 times larger than the mean eigenvalue. (B) Eigenvalue
distribution of a collection of sample covariance matrices computed
from stimuli randomly drawn from a multivariate Gaussian distribution
N 0,Cpopð Þ. In gray is the analytic prediction for the outstanding
eigenvalue. The spread of these eigenvalues (black, inset) is in
agreement with the prediction in Eq. (8). (C) Eigenvalue distribution
of symmetric random matrices with elements randomly drawn from a
distribution given by the elements in the sample covariance matrices. In
gray is the complete prediction (semicircle and outstanding eigenvalue)
given by Eq. (5). Diagonal and off-diagonal elements are drawn
separately from the distribution of matrix elements in panel B.
doi:10.1371/journal.pcbi.1003206.g002

Spike Triggered Covariance in Correlated Stimuli
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numerical simulations we verified that, although the Spiked

Wishart ensemble is only an approximation to the covariance

matrices derived from natural stimuli, Eqs. (7) and (8) accurately

describe the scaling of the variance and the mean of sample

eigenvalues as N increases.

In addition to biases in eigenvalue estimates, there are also

biases in the estimation of eigenvectors. The dot product between

the true (population) ith eigenvector f̂f (i) and the ith eigenvector

f (i) of the sample covariance approaches

f (i):f̂f (i)
��� ��� DCA

N??

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{1=(ct2

i )

1z1=(cti)

s
: ð11Þ

In other words, the ‘‘mixing’’ of the outstanding sample

eigenvectors seen in Eq. (11) (note the dependence of this mixing

on N through c) as well as the variance and bias in the sample

eigenvalues seen in Eq. (7) means that whitening cannot be exact.

In the context of the spike triggered covariance the conse-

quences of such properties of the distribution of sample

eigenvalues are twofold. First, Eq. (8) indicates that the variance

of the outstanding eigenvalues around their mean increases with

the square of their value and is inversely proportional to the

number of samples. Thus, for sample sizes that are not much

larger than the stimulus dimensionality (1vcspikev* 1 0 in the

simulation results presented in Fig. 3A), the increased variance of

the outstanding sample eigenvalue means that Cnull and Cstim will

not cancel each other exactly along that vector. Second, the mean

estimate contains a positive bias relative to the population values,

cf. Eq. (7). The combination of these two effects widens the null-

distribution used to test the significance of the resulting

eigenvectors, effectively masking features that should otherwise

be identified as being relevant.

Pre-whitening
One way to compensate for the symmetry breaking effects

caused by strong correlations in the input space is to equalize

variances before applying the STC method. This is the essence of

the ‘‘one-centered’’ formulation of the STC method [7]. In

principle, this ‘‘whitening’’ should work with Gaussian stimuli with

any covariance structure. However, as discussed above, in the case

of strongly correlated stimuli, the estimation of eigenvalues (i.e

variances along different dimensions in the input space) possesses

strong variability, cf. Eq. (7). As a consequence, normalization by a

variance estimated from one part of the dataset does not fully

remove correlations in a different subset of the data. With

increasing dataset size, the estimate of the variance along the

coherent mode improves. However, because the absolute value of

variance is not relevant in the pre-whitening method, dimensions

with smaller variance can cause just as much contamination as the

coherent mode. In addition, the estimation of variance along

dimensions corresponding to ti just larger than 1=
ffiffiffi
c
p

remains

poor for large N. If ti~1=
ffiffiffi
c
p

ze the sample eigenvalue estimation

error diverges as
ffiffiffi
c
p

e, as follows from Eq. (8). In other words, as

the number of samples N and c increase, the bulk of the

distribution narrows, and new eigenvalues separate from the bulk.

It is these eigenvalues with intermediate values that are poorly

determined and make it problematic to equalize variance along

different dimensions. Another signature of this phenomenon is that

f (i):f̂f (i)&0 for these dimensions, as follows from Eq. (11). Thus,

these dimensions are poorly estimated from the sample covariance

and, as a consequence, the variance along one stimulus dimension

in the training set will be inappropriately used to normalize

variance along a different stimulus dimension in the test set.

Altogether, we observed that pre-whitening stimuli did not

improve the estimation of relevant stimulus features compared to

the zero-centered method, compare panels A and B in Fig. 3.

Intuitively, in the zero-centered method the dimensions with the

largest variance provide the largest uncertainty in variance

estimation, whereas in the one-centered version the problematic

dimensions change depending on the dataset size, and are not

easily identified a priori.

We have also explored the possibility of using a pseudoinverse of

the covariance matrix instead of the full inverse to normalize

variance along different dimensions (see Materials and Methods

for details). When using the pseudoinverse (instead of the inverse),

stimulus dimensions with small variance in the stimulus ensemble

are removed to avoid noise amplification along these dimensions

(see Materials and Methods for details). However, an immediate

consequence of choosing a small pseudoinverse order k (&p=10)
is that the stimulus dimensionality is reduced to k. This implies

that the effective c of the problem is now ck~N=k, i.e. p=k times

larger than c. This could work well in some cases as illustrated in

Fig. 3I. Here, in simulations based on a small number of spikes,

the use of pseudoinverse can help recover one or two significant

features while the standard zero-centered method fails to find any.

However, the use of pseudoinverse only helps within a very narrow

band of small pseudoinverse orders. This band may be difficult to

determine when analyzing real neural data. In addition, this

procedure limits the reconstruction to a linear combination of only

a few leading stimulus dimensions. In many cases, the relevant

features do include components along stimulus dimensions with

smaller variance, and in those cases, the effective increase in c will

not improve the performance of the STC method. Indeed, one

observes that in cases where two significant dimensions are

obtained by using substantial reduction in dimensionality of the

pseudoinverse, the resulting dimensions have the subspace

projection onto the model features of &0:6 whereas this value is

&0:8 when using the full inverse and a larger number of spikes to

obtain for a comparable effective c (Fig. 3I).

Finally, in the regime where k&p (i.e. ‘‘almost full’’ inverse), the

prewhitening approach works just as well as the ‘‘zero-centered’’

formulation, and a relatively high value of the signal-to-noise ratio

parameter cspike is required for recovery of the full relevant

subspace.

Correction scheme
As another way to compensate for the symmetry breaking

effects caused by strong correlations in the input space, we propose

to modify the ‘‘zero-centered’’ formulation of the STC method in

the following way. Because the largest drop in variance is between

the coherent mode and other dimensions, we propose here to test

the significance of changes in variance separately along the

coherent mode and in the subspace orthogonal to it. Explicitly, to

do the analysis in the p{1 dimensional subspace, the coherent

mode f (1) is projected out of all stimuli. If s is a stimulus vector and

f (1) normalized to length 1, one can perform the STC analysis

using s instead of s where:

si~si{f
(1)

i

Xp

j~1

f
(1)

j sj : ð12Þ

In this approach the correct number of relevant dimensions is

determined by evaluating significance in the subspace orthogonal

Spike Triggered Covariance in Correlated Stimuli
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Figure 3. Spike triggered covariance analysis of a model neuron with two relevant features orthogonal to the coherent mode.
Spectra of DC for increasing dataset size in the case of strongly correlated Gaussian noise (A–C) and white noise (D). (A–D) The range of spikes
covered is from Nspike&p to Nspike&22p. Panel B shows the results using the pre-whitening (‘‘one-centered’’) method, and panel C shows the results
after evaluating significance in the subspace orthogonal to the coherent mode. Each vertical line shows the result of a single simulation. Significant
(insignificant) eigenvalues are shown in red (black), and the range of the null distribution (1000 evaluations of DCnull, 98% confidence interval) is
shown in gray. (E–H, left) Gray shaded area is the support of the null distribution, which itself is plotted in blue. The significant (insignificant) portion
of the spectrum of DC is plotted in red (black). These example spectra, with the corresponding significant vectors, are for conditions with a small
number of spikes (indicated by an orange star in A–D) for which both of the formulations find no significant dimensions. N~1189, Nspike~300 for
the correlated stimulus condition in panels E–G, N~1189, Nspike~280 for the white stimulus condition in panel H. (E–H, right) Results of the nested
significance testing. We note that the second ranked eigenvalue in panel E is outside of its confidence interval, but still cannot be found to be
significant. This happens because of the noise along the coherent mode. (I) STC analysis using all pseudoinverse orders using the nested significance
testing with 99% confidence intervals (large box) compared to the analysis using our proposed correction scheme. Black means no significant
features were found for that combination of cspike and pseudoinverse order. Cold (hot) colors indicate that one (two) features were found to be

significant. The corresponding color bars on the right indicate the geometric average of the feature projections on the two model dimensions (cold
colors) or the subspace overlap with the model, cf. Eq. (36) (hot colors). (J) Results when STC is performed using the proposed correction scheme. The
two relevant dimensions (black frame) and the decorrelated significant features (red frame) have subspace overlap of 0.82. The models were defined
such that the mean firing rate remained unchanged between the two stimulus conditions.
doi:10.1371/journal.pcbi.1003206.g003

Spike Triggered Covariance in Correlated Stimuli
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to the coherent mode and then adding back their projections on

the coherent mode from the corresponding eigenvectors evaluated

in the full input space (see below).

We find that considering the coherent mode separately from the

rest of stimulus dimensions reduces the value of cspike for which the

full relevant subspace is found to be significant by a factor of 10
(Fig. 3C). This improvement can be approximated from Eqs. (7)

and (8). Assuming the cell’s relevant subspace is exactly orthogonal

to the coherent mode, the extremal values of the null distribution

are distributed as Vl c,cspike,t1

� �
. The variance of Vl is:

SV2
l{SVlT2T&2 1zt1ð Þ2 1

N
z

1

Nspike

� �
: ð13Þ

This implies that the number of stimuli N,Nspike sufficient for

identifying the relevant features as significant increases with ti as:

N,Nspike! 1zt1ð Þ2: ð14Þ

Upon removal of the coherent mode, the minimum value of N for

which the signal to noise ratio will be high enough to identify the

relevant dimensions scales as (1zt2)2 corresponding to the

stimulus’ second principal component. Therefore the improve-

ment is proportional to
1zt1

1zt2

� �2

&
t1

t2

� �2

. In our simulations

(Fig. 3A,C) this corresponds to a predicted 17:8 fold improvement.

Given that our model features were not exactly orthogonal to the

coherent mode, and that the spectrum obtained from the van

Hateren dataset has a heavy tail and does not conform exactly to

the Spiked Wishart ensemble, an approximate 10 fold improve-

ment represents a good agreement with the prediction.

It is noteworthy that the minimum requirement on the dataset

size for obtaining the correct number of relevant dimensions is

actually smaller with correlated stimuli than it is for white noise

stimuli for the same neuron (compare Fig. 3 panels A–D) when the

model parameters were matched such that the firing rate remains

constant across different stimuli statistics. Another important point

is that considering the coherent mode separately is different from

simply discarding a ‘‘DC-like’’ component that could be found to

be significant by the STC. This is because when N is small, no

dimensions are found to be significant with the coherent mode as

part of the stimulus ensemble (Fig. 1).

An important consideration is that the final analysis can include

the components of the relevant dimensions onto the coherent

mode. This is possible for two reasons. First, the coherent mode

does not represent an arbitrary dimension in the input space but is

one of the eigenvectors of the sample covariance matrix. Second,

the significant eigenvectors of DC have a form
Pp

n~1 lnf
(n)

i f
(n)

j wj ,

where ln is the nth eigenvalue corresponding to the nth eigenvector

f (n) of the sample covariance matrix, and w describes one of the

relevant features [20]. Because of these two properties, eigenvectors

evaluated in the full input space and in the subspace orthogonal to

the coherent mode differ only in their components along the

coherent mode (see Materials and Methods for the details of the

derivation). This makes it possible to analyze cells with features that

have nonzero components along the coherent mode.

We have verified that this approach also works in a large

number of cases where the relevant stimulus dimensions have a

large projection on the coherent mode (Fig. 4). One concern is that

when such neurons are probed with a relatively small number of

stimuli, then projecting the coherent mode out may ‘‘push’’ the

relevant feature into the null eigenvalue distribution. This does not

appear to be a problem in our simulations for cspikew1:3 (Fig. 4B).

If this does happen, the relevant subspace should be the one

spanned by both the eigenvectors found to be significant in the full

stimulus space and those found to be significant in the subspace

orthogonal to the coherent mode.

Application to retinal ganglion cells
We now demonstrate the importance of this correction scheme

by analyzing recordings of 22 salamander retinal ganglion cells

(RGCs). These neurons were probed with a correlated noise

stimulus whose covariance matrix was matched to that of natural

visual stimuli. Without correcting for the presence of the coherent

mode, the STC analysis yielded no significant dimensions for a

third of the cells, and very few for the rest (Fig. 5). This happens

because the eigenvalue corresponding to the coherent mode injects

large eigenvalues into the null eigenvalue distribution (as seen in

Eq. (8)), thus masking the cell’s true relevant features. Following

the correction, the number of significant dimensions per cell

increased from 1:1+0:2 to 4:6+0:5 (see Fig. 5A for the full

population values). The dimensionality of the relevant subspace

increased for 21 out of 22 cells. For one cell, we were unable to

find a significant dimension either before or after the correction of

the method. The distributions of null eigenvalues used to

determine which of the eigenvectors of DC are significant

(Fig. 5B,C) became much more narrow when evaluated in the

subspace orthogonal to the coherent mode.

Discussion

The goal of this work was to extend the range of applicability of

a computationally simple method of spike-triggered covariance to

strongly correlated stimuli. While the STC method in principle

can be used with strongly correlated Gaussian stimuli, our results

show that the inhomogeneous sampling variability can in practice

make it difficult to recover the correct relevant subspace. We have

characterized the effects generated by strong Gaussian correlations

using simulations of two model neurons in a wide range of dataset

sizes (which could also be viewed as an inverse measure of the

neuron’s level of internal noise). Results from random matrix

theory, and specifically the Wigner and Spiked Wishart ensembles,

suggest that the origin of these issues can be traced to the

estimation bias and variance of covariance matrices with vastly

different eigenvalues. We demonstrate that by considering the

coherent mode, which corresponds to the largest eigenvalue,

separately from the rest of stimulus dimensions, one can improve

the method’s sensitivity by t1=t2ð Þ2.

One qualitative lesson offered by these analyses is that while the

bulk of the eigenvalues of DC is a good proxy for the width of the

null distribution in the case of white noise inputs, but not in the

case of strongly correlated inputs.

Furthermore, our analysis suggests that sampling variability

along the secondary outstanding modes corresponding to the next

few principal components may have similar masking effects to the

ones reported here for the coherent mode. Possible solutions to the

full problem may include performing a sequence of analyses in

subspaces of decreasing dimensionality, orthogonal to several

leading principal components. However, the payoff from this

procedure is (at most) of order t2=t3ð Þ2 which in our case is 1:4. At

the same time, one runs the risk of losing the ability to resolve the

remaining dimensions because of the reduced signal to noise ratio.

Another potential solution is to correct for the estimation bias

and variance in eigenvalues and eigenvectors, described by Eqs. (7)

and (8). However, this procedure is difficult computationally and

Spike Triggered Covariance in Correlated Stimuli
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in most cases can only be done for simple eigenvalue distributions

[43].

The treatment of the artifacts caused by a large coherent mode

present in the data has been previously discussed in analyses of

stock-markets [44,45], evolution of proteins [46], and Human

Immunodeficiency Virus (HIV) mutations [34]. In these cases, the

extra dimension was removed and the resulting covariance

structure was compared against the Marčenko-Pastur eigenvalue

distribution that assumes no correlation between the variables and

uniform variable variances. The case of reverse correlation

Figure 4. Spike triggered covariance analysis of a model neuron with one relevant feature that has a large component along the
coherent mode. Spectra of DC for increasing dataset size in the case of strongly correlated Gaussian noise (A,B) and white noise (C). (A–C) The
range of spikes covered is from Nspike&1:3p to Nspike&34p. Panel B shows the results after evaluating significance in the subspace orthogonal to the
coherent mode. Each vertical line shows the result of a single simulation. Significant (insignificant) eigenvalues are shown in red (black), and the ½1,99�
percentile range of the null distribution (1000 evaluations of DCnull) is shown in gray. (D–F) Gray shaded area is the support of the null distribution,
which itself is plotted in blue. The correct feature is found using both stimulus conditions and both the original formulation of the STC method and
our proposed correction. N~1995, Nspike~655 for the correlated stimulus condition in panels D and E, N~1995, Nspike~630 for the white stimulus
condition in panel F (indicated by an orange star in panels A–C). Insets to panels D–F show the recovered feature (decorrelated in panels D,E) and the
nested significance testing which does not affect the results. Black framed inset to panel D shows the model feature. The models were defined such
that the mean firing rate remained unchanged between the two stimulus conditions.
doi:10.1371/journal.pcbi.1003206.g004
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experiments discussed here is different from these analyses because

the spike triggered ensemble is compared to the full stimulus

distribution. In addition, our analyses provide two important novel

contributions. First, we show there is a crucial difference between

discarding the coherent mode and projecting it out. This is

because of the way the coherent mode injects noise into the null

distribution. Second, the approach described here also permits the

inclusion of the components of the relevant dimensions along the

coherent mode in the final results. We hope that the ideas for

treating the coherent mode presented here will also be relevant in

other areas of computational biology.

Materials and Methods

Ethics statement
Experimental data were collected using procedures approved by

the Institutional Animal Care and Use Committee of Princeton

University, and in accordance with National Institutes of Health

guidelines. Experimental and surgical procedures have been

described previously [47].

Stimulus
Each stimulus frame st was randomly drawn from a multivariate

Gaussian distribution with zero mean and covariance matrix Cpop,

st*N 0,Cpopð Þ[Rp: In the correlated stimulus case, the popula-

tion covariance Cpop was computed from the covariance of

16|16 pixels patches from the van Hateren image database [38]

(with no downsampling). In the uncorrelated (‘‘white’’) case, Cpop

was the identity matrix.

Testing for significance
We describe two approaches for determining significance of

candidate features that were previously described in the literature:

global and nested. When applied to our datasets, both of the

approaches yielded similar results.

Global null distribution. Eigenvalues of DC are identified

as significant if they lie outside the a,100{a½ � percentile interval of

the null distribution, where parameter a specifies the level of

significance. The null distribution is constructed by computing

many realizations of the matrix DCnull~Cnull{Cstim.

If a~0 is used, the number of randomized spike trains is

inversely proportional to the confidence interval with which

significance is determined.

To describe how matrix Cnull is computed, we recall that

Cspike~
1

Nspike{1

XNspike

k~1

st̂tk
i {SsiTt̂t

� �
st̂tk

j {SsjTt̂t

� �
, ð15Þ

where SsiTt̂t is the spike-triggered average of the ith stimulus

component and spike times are denoted as

t̂tkf g
Nspike
k~1 ~ t̂t1,̂tt2, . . . ,̂ttNspike

n o
.

The matrix Cnull is computed in the exact same manner, but

instead of the spike train t̂tkf g
Nspike

k~1 , we use random spike trains

~ttkf gNspike

k~1 :

Cnull~
1

Nspike{1

XNspike

k~1

s
~ttk
i {SsiT~tt

� �
s
~ttk
j {SsjT~tt

� �
: ð16Þ

Note that there are just as many random spike times ~tt as real spike

times t̂t. Moreover, when the spike train has a meaningful temporal

structure, the random spike train can be obtained by a random

shift of t̂tkf g
Nspike
k~1 , defined for all k~1 . . . Nspike and for a random

integer m chosen uniformly between 1 and N [20]:

~ttk~ t̂tkzmð Þmod N: ð17Þ

Figure 5. Analysis of salamander retinal ganglion cells. (A)
Number of significant dimensions for 22 RGCs presented with a strongly
correlated stimulus, before (left) and after (right) using our correction
scheme. Gray lines represent single cells, and red lines represent the
standard deviation. (B) Significant (insignificant) eigenvalues of DC in
red (black) and the null eigenvalue distribution (blue) for an example
cell. Null distribution were constructed using the global approach with
500 shuffled spike trains. Without the correction scheme there is only
one significant dimension. The corresponding visual feature is shown in
the inset before decorrelation. (C) Same for the corrected covariance

matrix D ~CC. Here there are six significant dimensions with spots likely
representing the subunits within the cell’s receptive field. The gray
shade indicates the range of the null distribution used to determine
significance.
doi:10.1371/journal.pcbi.1003206.g005
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Using all the realizations of Cnull computed (i.e. all the randomly

chosen m’s), the eigenvalues of DCnull compose the null

distribution.

Nested significance testing. Significance can also be tested

in a nested fashion using p rank-ordered null distributions. This

method is detailed in [7]. For completeness we briefly describe it

here. For each of the randomized spike trains the eigenvalues of

DCnull (or CD
null for the pre-whitened formulation, see Eq. (25)

below) are rank ordered. The eigenvalues of each order from all

the randomized spike train compose a separate null distribution.

Then, for each of these p distributions we found a confidence

interval. If the smallest eigenvalue of DC (or CD) is smaller than

the lower bound of its relevant confidence interval (or if the largest

eigenvalue is larger than the upper bound) the corresponding

eigenvectors are determined to be significant. These eigenvectors

are then projected out of the stimulus and the analysis is repeated

until no eigenvalues are found to be significant. Note that

according to this method some eigenvalues of DC (or CD) can

identified as insignificant but still be outside of the confidence

interval computed for their rank if the largest eigenvalue lies within

its confidence intervals (see Fig. 3E, right).

Decorrelation within the STC method
Within the STC method, stimulus correlations need to be

removed from the estimates of eigenvectors obtained by diagonal-

izing matrix dC. This correction is needed, because the eigenvectors

of DC have a form
Pp

j~1 Cijwj , where wj describe components of

one of the relevant features [20]. As described above, one may wish

to use a pseudoinverse, instead of the full inverse of the matrix C to

minimize noise amplification at higher spatial frequencies. Assum-

ing that the eigenvalues are ordered to be monotonically decreasing,

the pseudoinverse of order k is given by

C{1
ij kð Þ~

Xk

n~1

1

ln

f
(n)

i f
(n)

j : ð18Þ

In the analysis of data from retinal ganglion cells, the optimal

order of the pseudoinverse was determined in the following way.

The dataset was divided into the training and test sets. The features

were computed by diagonalizing the matrix DC, cf. Eq. (3), in either

the full input space or in the space orthogonal to the coherent mode

using the training set. Following that, the optimal pseudoinverse

order k? was selected as the one that yielded decorrelated features

that convey the most information about, or give the largest

predictive power for, the neural response. Explicitly,

k?~ argmax
k[ 1,...,pf g

I(k), ð19Þ

I(k)~

ð
d~xxPk ~xxDspikeð Þlog

Pk ~xxDspikeð Þ
Pk ~xxð Þ

, ð20Þ

where Pm(~xx) is the probability distribution of the projections of

stimuli onto the d significant eigenvectors (qi), decorrelated by

C{1(k?). �qqi~C{1(k?)qi are the decorrelated significant features,

and:

~xx~ x1, . . . ,xdð Þ, ð21Þ

xi~�qqi
:s: ð22Þ

Pre-whitening
As an alternative to removing stimulus correlations from the

eigenvectors of DC, one can remove stimulus correlations from

each of the stimulus vectors, prior to the diagonalization of DC, a

procedure that is known as pre-whitening [7].

The sample stimulus covariance matrix from Eq. (2) can be

written in terms of eigenvalues ln and eigenvectors f (n) as

Cstim
ij ~

Xp

n~1

lnf
(n)

i f
(n)

j : ð23Þ

We can now define a matrix Cw
ij ~

Pp
n~1 l{1=2

n f
(n)

i f
(n)

j . Then, the

analogue of DC in the ‘‘one-centered’’ formulation is given by:

CD~CwCspikeCw: ð24Þ

This procedure is equivalent to whitening each of the stimulus

frames independently (by multiplying it with Cw) and then

computing the spike-triggered covariance.

In the limit of infinite data, the null hypothesis corresponds to

Cspike~Cstim. In this case CD~I. For a dataset of finite size, the

null distribution is computed from many realizations of the matrix

CD
null~CwCnullCw ð25Þ

where Cnull is defined by Eq. (16). The eigenvalues of CD (most of

which are close to 1) can then be compared to the null eigenvalue

distribution, using either the nested or global comparison tests

described above.

In Fig. 3 we analyzed the simulated spike trains using every

pseudoinverse order of Cstim. The prewhitening is then done using

this matrix C{1(k?) Eq. (18) instead of the full rank matrix

C{1 pð Þ.
Performing the pre-whitened STC analysis using all pseudoin-

verse orders is equivalent to testing p models. Therefore, the

confidence interval of the null distribution should be adjusted from

the ½a,100{a� percentile range to ½aDS ,100{aDS�, where aDS is

the Dunn-Šidák correction:

aDS~100 1{ 1{
a

100

� �1
p

" #
&

a

p
ð26Þ

Relevant features in the full stimulus space
We recall that according to Ref. [20], the significant eigenvec-

tors of DC can be written as

ei~
Xp

n~1

lnf
(n)

i f
(n)
j wj : ð27Þ

Thus, the eigenvectors of DC represent a sum of projection

operators onto the principal components of the stimulus ensemble.
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When we perform the STC method in the subspace orthogonal to

the first principal component of the stimulus, the eigenvectors of

DC can be written as

~eei~
Xp

n~2

lnf
(n)
i f

(n)
j wj ð28Þ

(the coherent mode is exactly the vector f (1)).

Comparing expressions for the eigenvectors of DC and D~CC,

one observes that there is a one-to-one correspondence between

them. This correspondence can be identified based on propor-

tionality in components along second, third, and other principal

components:

~ee:f (2)

e:f (2)
~

~ee:f (3)

e:f (3)
~ . . . ~

~ee:f (i)

e:f (i)
ð29Þ

for any iw1. In sum, once the eigenvector ~ee is found to be

significant in the subspace orthogonal to f1, the eigenvector that

should be identified as significant in the full stimulus space is e
that satisfies the condition of Eq. (29).

Model neurons
The nonlinearity was chosen to be a logistic function because

such functions maximize the cell’s noise entropy and thus

minimize the assumptions imposed on the cell’s response [48].

Using the models, we generated simulated spike trains in response

to either a white or a correlated noise stimulus.

The model used in Fig. 3 (model ‘‘A’’) had a two dimensional

relevant subspace with features orthogonal to the coherent mode.

The probability of spiking was modeled to increase when the

projection of the stimulus on either of the preferred features was

large in absolute value (representing a logical OR function). If

wA
1 ,wA

2

h i
are the preferred model features and st is the stimulus

presented at time t (here, the w’s and st are p~256 dimensional

vectors) then the probability of a spike at time t is:

pA
t spikejstð Þ~1{ P

i~1,2
1{

1

1ze
hA{ wA

i
:st

�� ��� ��
dA

" #
ð30Þ

where dA and hA are parameters that determine the width and

(soft) thresholds of the sigmoid nonlinearities for the model.

We have also considered the case where the projection of the

stimulus on the features was not taken in absolute value,

corresponding to a monotonic nonlinearity. In that case (model

‘‘A1’’, used in Fig. 1) the model was one dimensional, so the

probability of a spike is

p
A1
t spikejstð Þ~ 1

1ze
hA1 {wA

1
:st

� �.
dA1

: ð31Þ

The effects described above were observed for both symmetric

(Fig. 3) and monotonic (Fig. 1) nonlinearities.

The second model had one relevant input feature wB
with a

large component along the coherent mode. In this case, the

probability of a spike was modeled as:

pB
t spikeDstð Þ~ 1

1ze hB{wB :stð ÞdB
ð32Þ

where dB and hB are the width and the threshold of the sigmoid

nonlinearity of this model.

In units of the standard deviation of the projection of the

stimulus on the model features (swhite, scorr) the model parameters

were chosen to be:

hA
corr

sA
corr

~
hA

white

sA
white

~2:3,
dA

corr

sA
corr

~
dA

white

sA
white

~0:73 ð33Þ

h
A1
corr

s
A1
corr

~1:02,
d

A1
corr

s
A1
corr

~0:85 ð34Þ

hB
corr

sB
corr

~
hB

white

sB
white

~0:89,
dB

corr

sB
corr

~
dB

white

sB
white

~0:28 ð35Þ

Subspace overlap
The overlap measure we use when the dimensionality of the

relevant subspace is greater than one is given by [49]:

O W,Yð Þ~
detWTY
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detWTW
� �

detYTY
� ��� ��q

0
B@

1
CA

1
d

, ð36Þ

where W and Y are p|d matrices that hold the model and

computed features, respectively, p is the input dimensionality, and

d is the number of relevant features in the model.
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