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Catalogue of flat-band stoichiometric 
materials

Nicolas Regnault1,2,11 ✉, Yuanfeng Xu3,11 ✉, Ming-Rui Li4,11, Da-Shuai Ma5,11, Milena Jovanovic6, 
Ali Yazdani1, Stuart S. P. Parkin3, Claudia Felser7, Leslie M. Schoop6, N. Phuan Ong1, 
Robert J. Cava6, Luis Elcoro8,11, Zhi-Da Song1,11 & B. Andrei Bernevig1,9,10,11 ✉

Topological electronic flattened bands near or at the Fermi level are a promising route 
towards unconventional superconductivity and correlated insulating states. 
However, the related experiments are mostly limited to engineered materials, such as 
moiré systems1–3. Here we present a catalogue of the naturally occuring 
three-dimensional stoichiometric materials with flat bands around the Fermi level.  
We consider 55,206 materials from the Inorganic Crystal Structure Database 
catalogued using the Topological Quantum Chemistry website4,5, which provides 
their structural parameters, space group, band structure, density of states and 
topological characterization. We combine several direct signatures and properties of 
band flatness with a high-throughput analysis of all crystal structures. In particular, we 
identify materials hosting line-graph or bipartite sublattices—in either two or three 
dimensions—that probably lead to flat bands. From this trove of information, we 
create the Materials Flatband Database website, a powerful search engine for future 
theoretical and experimental studies. We use the database to extract a curated list of 
2,379 high-quality flat-band materials, from which we identify 345 promising 
candidates that potentially host flat bands with charge centres that are not strongly 
localized on the atomic sites. We showcase five representative materials and provide a 
theoretical explanation for the origin of their flat bands close to the Fermi energy 
using the S-matrix method introduced in a parallel work6.

Electrons whose energy dispersion is bound within a narrow window are 
conjectured to show a wide range of interesting physics phenomena.  
Such electrons form a high density of states ‘flat band’, where many- 
body effects dominate over the kinetic energy and where Fermi-surface 
physics gives way to strongly interacting, non-Fermi liquid behaviour7. 
The archetypal—and until recently the only experimentally discov-
ered—system is the fractional quantum Hall effect8,9 where anyonic 
(potentially non-Abelian10) quasiparticle excitations can appear 
under a fractional filling of an electronic flat band that develops in 
the presence of a large magnetic field. Developments in engineered 
solid-state materials have now shown that flat bands can exist even 
in the absence of a large magnetic field. In moiré materials such as 
(but not limited to) twisted bilayer graphene (TBG)1–3, flat electronic 
bands are obtained by creating large, many nanometre-size moiré unit 
cells, which folds and flattens the initial band structure of the material. 
This flatness has a crucial role in the physics of TBG, leading to, for 
example, both the correlated insulator states and the strong-coupling 
superconductivity that renders the TBG phase diagram akin to that of 
the high-temperature cuprates. However, as the unit cell is large, the 
electron density in moiré samples is necessarily low, which prevents the 

type of physics associated with high electron density11,12. This renders 
the yet elusive prediction of flat bands in non-moiré, stoichiometric 
crystals of immediate importance.

Here we address the question of predicting and classifying the flat 
bands in the stoichiometric crystals currently present in nature, keep-
ing in mind that not all flat bands are created equal. Extremely local-
ized orbitals—or large unit cells with well separated atoms—can easily 
give rise to mundane flat atomic bands (FABs), as the kinetic energy 
is suppressed by the vanishing overlap between atomic wavefunc-
tions, as schematically shown in Fig. 1a. FABs are common in layered 
and heavy fermion systems. At the opposite side of the spectrum are 
the flat topological bands (FTBs) created by completely extended 
wavefunctions (such as is the case in TBG), as schematically shown in 
Fig. 1b. (See Supplementary Section B for a more detailed discussion of 
the FABs and FTBs.) There, the quenching of the kinetic energy arises 
from interference effects despite large electron orbital overlaps and 
hopping. FTBs can host many exotic quantum phenomena, includ-
ing magnetism, the fractional quantum Hall effect at zero field13–16, 
unconventional superconductivity2,17,18, non-Fermi liquid behaviour7 
and anomalous Landau levels beyond Onsager’s rule19. Such topological 
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bands can enhance the superfluid weight in TBG20,21 and could lead to 
high-temperature superconductivity. An ideal FTB near the Fermi level 
in crystalline materials has not yet been found; the only experimentally 
found FTBs are in engineered TBG. A third type, the flat obstructed 
atomic band (FOAB), lies at the interface between the polar opposites 
FAB and FTB: although the electron’s symmetric Wannier function can 
be localized in real space, the Wannier center is pinned and centred 
at an empty site22,23 and hence delocalized from the atomic sites, as 
illustrated in Fig. 1c.

We present and implement algorithms for the detection and clas-
sification of flat bands near the Fermi level. Using the materials in 
our Topological Quantum Chemistry Database website (TQCDB; 
https://www.topologicalquantumchemistry.com), which contains 
most of the Inorganic Crystal Structure Database (ICSD) stoichio-
metric structures and was obtained in previous studies4,5,22, we build 
the complementary Materials Flatband Database website (MFBDB; 
https://www.topologicalquantumchemistry.fr/flatbands/), where 
different algorithms and search options for flat bands are provided 
to the user. First, we perform a brute-force search based on comple-
mentary ‘flatness’ criteria such as bandwidth and density of states 
(DOS), to predict all the (thousands) flat-band materials in the ICSD 
database. We classify these bands based on their topologies. Second, 
using a theory that we have developed in ref. 6 encompassing generic 
orbital systems with or without spin–orbit coupling (SOC), we perform 
a targeted search of flat-band materials based on the lattice geometry 
(such as Kagome, pyrochlore, Lieb, bipartite or split sublattices) of the 
compounds, taken from the X-ray diffraction data on TQCDB or ICSD.  
We show that geometry-based theoretical models based on the S-matrix 
method6 fit our ab initio calculations of the flat bands remarkably well. 
Third, we perform a manual check of thousands of materials for the best 
flat bands and select 2,379 materials with high-quality flat bands near 
the Fermi level. We showcase our methods, theoretical understanding 
and predictive power for five representative flat-band materials, and in 
the Supplementary Information we present thousands of others. Our 
classification and predictions take into account the different flat-band 
natures, including their topological character, and our database is cou-
pled to the Materials Project (https://materialsproject.org/) and NIMS 
Materials Database (https://mits.nims.go.jp/en/), providing informa-
tion about the magnetic and superconducting properties (including 
high-temperature superconductivity) of the candidate materials.

Database of flat-band materials
Here we have used the TQCDB4,5 as our materials database. We sum-
marize its main features in Methods and provide a detailed overview 
in Supplementary Section C1. As we are interested in flat bands near 
the Fermi energy, we discard materials containing rare-earth elements 

(with the exception of the lanthanum atom) and actinides as these  
elements usually lead to spurious flat bands owing to f electrons in the 
ab initio calculations. In total, 55,206 ICSD entries were considered for 
our high-throughput search for flat bands. The automated search is 
based on two main, complementary, approaches: the detection of flat 
bands in the band structure and the DOS, and the identification of spe-
cial sublattices that lead to band flattening. We now detail each of them.

High-throughput search for flat bands
To determine band flatness, we rely on calculations where the SOC 
is neglected. Although SOC has an important role in the topological 
features near the Fermi level, it does not drastically affect the band 
structure nor the DOS around the Fermi energy EF = ±2 eV region where 
we focus our search. For each ICSD entry, our database provides the 
ab initio paramagnetic-phase electronic band structure along paths 
made of straight lines in the Brillouin zone connecting high-symmetry 
points (‘high-symmetry lines’). Each high-symmetry line is well defined 
in every space group (SG) and it has been discretized, irrespective of its 
length, into 20 equally distant k-points (that is, points in the Brillouin 
zone). As we are interested in low-energy physics, we focus our investi-
gations on the flatness of the two highest/lowest occupied/empty bands 
around EF, which is reached when the occupation number of bands 
equals half the number of valence electrons. Although paramagnetic 
calculations would fail to capture (anti-)ferromagnetic ground states, 
we discuss four representative ferromagnetic compounds in Supple-
mentary Section G. Our ferromagnetic calculations both match the 
experimental results and, while preserving the flat bands obtained in 
the paramagnetic calculations, remain near the Fermi level.

As motivated in Supplementary Section I, we investigate bands that 
are flat in parts of the (but not necessarily over the entire) Brillouin 
zone. Thus for each ICSD entry, we search for flat-band segments: a 
series of L consecutive k-points along the high-symmetry lines of the 
band structure (we use L = 10, L = 20, L = 30, L = 40 or L = 50), where 
the energy band width is smaller than a tunable threshold ω (ranging 
from 25 meV to 150 meV). The number of such flat segments for every 
band analysed provides a convenient signature of band flatness. In 
Supplementary Section C2a, we provide a full discussion of the defini-
tion, the algorithm and the statistics of flat-band segments around EF.

The presence of a flat-band segment alone is not sufficient to pre-
dict the presence of interesting physics associated with it: a (quasi) 
one-dimensional system would equally show a flat-band segment in the 
directions perpendicular to its dispersive direction. However, peaks 
(or their absence) in the DOS offer a simple and efficient way to filter 
out such pathological cases. Thus for each ICSD entry, we map the posi-
tion and width of all DOS peaks in an energy region of ±5 eV around EF. 
More details about the DOS peak detection are given in Supplementary 
Section C2b.

Automated identification of sublattices
Geometric frustration in (line-graph and bipartite) lattices is known to 
give rise to exact FTBs24–29. Although initially predicted for s orbitals,  
this property was recently generalized to a slew of other possible 
orbital–lattice combinations6. This provides a crucial starting point 
to understand and predict flat bands in crystalline materials: if a mate-
rial hosts a line-graph or bipartite lattice as a part of its lattice structure  
(a ‘sublattice’), and if this sublattice is only weakly perturbed or 
deformed by the remaining atoms or orbitals, we expect to observe FTBs.  
To explain the origin of the flat bands found in our high-throughput 
search, we have automated, using the structural parameters of every 
ICSD entry, the detection of five types of line-graph or bipartite sub-
lattice: the Kagome, pyrochlore, Lieb, bipartite or split sublattices as 
detailed in Supplementary Sections D, E.

In three dimensions, the Kagome, pyrochlore and Lieb lattices can 
be mathematically characterized by special occupied Wyckoff posi-
tions in certain SGs. Using the crystalline structures of materials, we 

FAB FOABFTBa b c

(r – t – Ri)
–e– (r – Ri) e– /(r – t – Ri)

Fig. 1 | An illustration of the three possible types of flat band. a, FABs: the 
Wannier functions associated with the flat bands are exponentially localized 
on the atoms’ sites. b, FTBs: the Bloch states are extended (with potentially a 
power-law decay) in at least one direction of the lattice. c, FOABs: as opposed to 
FABs, the corresponding Wannier functions are exponentially localized but on 
an empty site. The atom sites of the two-dimensional lattices are shown with 
red spheres. Below the lattices are the Bloch wave functions at position r of the 
flat bands associated with their decay law, where Ri is the position of atom i, t is 
a fractional lattice vector and α is a positive coefficient.

https://www.topologicalquantumchemistry.com
https://www.topologicalquantumchemistry.fr/flatbands/
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have developed an SG method to detect the line-graph and Lieb sublat-
tices (Methods). Although the SG method provides a fast way to find 
the symmetric Kagome, pyrochlore and Lieb sublattices in crystalline 
materials, the exact sublattice might be spoiled by the presence of other 
atoms of the same element on (or close to) this sublattice. Moreover, 
the SG method discards approximate sublattices, which could also 
exhibit quasi-flat bands. To solve these issues, we have further devel-
oped a geometric method that solely relies on the geometric features of 
these three sublattice types (discussed in Supplementary Section D2)  
and ignores the exact SG restrictions. In Supplementary Section D3, we 
provide a detailed presentation of our algorithms implementing the 
geometric method for each type of sublattice. Equipped with these 
methods, we sort all the possible sublattices in a material in two cat-
egories: the rigorous sublattices, which satisfy both methods, and the 
approximate sublattices, which satisfy only the geometric method but 
capture weak distortions of rigorous sublattices.

A bipartite lattice with chiral symmetry is formed by two sublattices 
L and 

∼
L with the kinetic hopping only between L and L

∼
. As proposed in 

ref. 6 and briefly introduced in Methods and Supplementary Section 
E1, a general method, namely the S-matrix method, can be used to 
explain the origin of flat bands in crystalline materials whose lattice 
contains a bipartite or split sublattice. We have developed an algorithm 
(detailed in Supplementary Section E) to search for bipartite lattices 
from the structural parameters of each ICSD entry with the following 
necessary simplifying assumptions for a high-throughput analysis. 
For each crystal structure in the MFBDB, we solely rely on the geomet-
ric distance between two atoms to infer the amplitude of kinetic hop-
ping between them. By ignoring the small hopping terms based on a 
tunable cut-off, we identify whether a crystalline material has a bipar-
tite sublattice with a different number of atoms in its L and L

∼
 sublattices. 

In the algorithm, a special case of bipartite sublattice, namely the split 
sublattice, which has been proposed to host FTBs28, is also detected 
and tagged.

High-throughput search results
We now summarize the main results obtained in the present high- 
throughput search. First, we discuss the number of geometric 

sublattices detected by our algorithms and the public website we have 
developed to search for materials with flat bands based on the crite-
rion in Supplementary Section II. We discuss a manually curated list of 
2,379 materials potentially hosting FTBs, obtained using our toolset. 
Then, we showcase the five best representative flat-band materials 
and explain the flat-band segments in their band structures using the 
S-matrix method6.

Statistics and website
By applying the automated analysis of the lattice structure to the 55,206 
ICSD entries of the MFBDB, we have performed a high-throughput 
search of the rigorous and approximate Kagome, Lieb and pyrochlore 
sublattices, and the bipartite/split lattice with different numbers of 
atoms on their further sublattices. We found 6,120 ICSDs with at least 
one Kagome (rigorous or approximate) sublattice, including 4,192 
ICSDs with a Kagome sublattice labelled as rigorous, 1,666 ICSDs with 
a pyrochlore sublattice (rigorous or approximate) and 1,541 ICSDs with 
a rigorous pyrochlore sublattice. For the Lieb lattice, there are 1,590 
ICSDs hosting such a sublattice, including 1,202 ICSDs with rigorous 
Lieb sublattices. At least one bipartite sublattice (irrespective of the 
cut-offs) is found among 21,175 ICSDs and split sublattices are found 
in 8,224 ICSDs. A breakdown of these statistics per SG is provided in 
Supplemenatry Section C3. The brute-force scan of the band structures 
along the high-symmetry lines was performed for several threshold 
parameters. The number of ICSDs exhibiting flat-band segments var-
ies strongly on these parameters; for a detailed statistical analysis, see 
Supplemenatry Section C2a.

The data generated through the automated algorithms discussed in 
Supplemenatry Section II are available through our MFBDB (see Supple-
menatry Section C2 for an overview of the search engine). We used this 
website to perform an extensive investigation of promising candidate 
materials exhibiting flat bands or a large segment of flat bands close 
to the Fermi energy. The outcome of our search is provided as a list 
of curated flat-band materials in Supplemenatry Section H1. This list 
contains 6,338 ICSD entries that can be regrouped into 2,379 unique 
materials, that is, ICSDs sharing the same stoichiometric formula, SG 
and topological properties at the Fermi energy (as defined in Supple-
menatry Section C1). The complete set of criteria applied to select these 
materials is provided in Supplemenatry Section H1, and it includes the 
distance to the Fermi energy, the flat band width and topology, and the 
presence of a peak in the DOS. We have excluded cases where the flat 
bands were clear FABs from the list of curated flat-band materials, and 
they are listed in Supplemenatry Section H2. The statistics of detected 
sublattices among the curated materials are provided in Table 1.

Flat-band material candidates
Among the 2,379 high-quality flat-band materials, we select 345 best 
representative flat-band materials in Supplemenatry Section H3 for 
further experimental investigation. Most of the 345 materials host one 
(or more than one) of the Kagome, pyrochlore, Lieb, bipartite and split 
sublattices in their crystal structures. For each of the five types of sublat-
tice, we select one representative material that hosts the best flat-band 
segments on (or close to) the Fermi level, and explain its physical origin 
using the S-matrix method6. All of the five representative flat-band 
materials are chemically realistic, experimentally paramagnetic and not 
Mott insulators, which is consistent with our paramagnetic calculations.

The five typical materials are KAg(CN)2 (ICSD 30275, SG 163 (P31c)) 
with an approximate Kagome sublattice formed by silver atoms, 
Pb2Sb2O7 (ICSD 27120, SG 227 (Fd3m)) with a pyrochlore sublattice 
formed by lead atoms, Rb2CaH4 (ICSD 65196, SG 139 (I4/mmm)) with a 
Lieb sublattice formed by calcium and hydrogen atoms, Ca2NCl (ICSD 
62555, SG 166 (R3m)) with a bipartite sublattice formed by calcium and 
nitrogen atoms, and WO3 (ICSD 108651, SG 221 (Pm3m)) with a split 
sublattice formed by tungesten and oxygen atoms. Their crystal struc-
tures are shown in Fig. 2a–e and the orbital characters of the flat bands 

Table 1 | Statistics of the ICSD entries in the database hosting 
at least one sublattice for each lattice type

All ICSDs Curated Best

Number of 
ICSDs

55,206 6,338 949

Number of 
materials

28,169 2,379 345

Kagome 6,120 (11.09%) 1,699 (26.81%) 516 (54.37%)

Pyrochlore 1,666 (3.02%) 296 (4.67%) 77 (8.11%)

Lieb 1,590 (2.88%) 721 (11.38%) 151 (15.91%)

Bipartite 21,175 (38.36%) 3,138 (49.51%) 432 (45.52%)

Split 8,224 (14.90%) 1,920 (30.29%) 354 (37.30%)

None 31,154 (56.43%) 2,582 (40.74%) 248 (26.13%)

In the first row, we give the number of ICSD entries for the database (first column), for the 
list of curated flat-band materials (second column) and for the best representative flat-band 
materials (third column). The second line provides the number of unique materials for 
the database, the list of curated flat-band materials and the best representative flat-band 
materials. The third, fourth, fifth, sixth and seventh rows are the statistics for the Kagome, 
pyrochlore, Lieb, bipartite (with different numbers of atoms on sublattices) and split lattices, 
respectively. An ICSD entry is considered as hosting a given type of lattice if the algorithms 
discussed in Supplementary Section IIB have found at least one such lattice irrespective of 
the cut-offs or being a rigourous or approximate sublattice. Note that an ICSD entry might 
host more than one type of sublattice. The eighth row provides the statistics for the ICSDs 
where no sublattices have been detected. For each column, the percentages are calcuated 
with respect to the number of ICSDs provided in the first row.

https://www.topologicalquantumchemistry.com/#/detail/30275
https://www.topologicalquantumchemistry.com/#/detail/27120
https://www.topologicalquantumchemistry.com/#/detail/65196
https://www.topologicalquantumchemistry.com/#/detail/62555
https://www.topologicalquantumchemistry.com/#/detail/62555
https://www.topologicalquantumchemistry.com/#/detail/108651
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in the five materials are shown in the orbital-projected band structures 
in Fig. 2f–j. As detailed in Supplemenatry Section F, on the basis of the 
crystal structure and orbital-projected bands of these materials, we 
have constructed effective tight-binding Hamiltonians using the 
S-matrix method6 and found that they can successfully explain the 
origins of flat bands. The flat bands of other materials of similar crystal 
structures can be found in the MFBDB. In Methods, we use Ca2NCl to 
showcase the application of the S-matrix method in explaining the 
origin of flat bands.

Discussion
We have performed a high-throughput search for flat electronic bands 
near the Fermi level and for the detection of line-graph and bipartite 
sublattices from the crystal structures of stoichiometric crystalline 
materials. We have further classified the flat bands by their topology, 
DOS, length of band flatness and the types of lattice formed by the 
atoms whose orbitals contribute to the flat band. By successfully apply-
ing our algorithms to 55,206 ICSD entries, we have found that 24,052 
(43.57%) out of all the ICSD entries host at least one of the Kagome, 
pyrochlore, Lieb, bipartite or split sublattices in their crystal structures. 
This proportion is raised to 59.26% for our manually curated list of 6,338 
ICSDs (2,379 unique materials) and 73.87% for the best representative 
flat-band materials. The appearance of flat bands in materials can be, 
in large but non-exhaustive part, theoretically understood using the 
S-matrix method6, as we have exemplified in five prototypical com-
pounds. All the results obtained in this study and detailed in the Supple-
mentary Information can be accessed on the MFBDB. Our results pave 
the way for future theoretical and experimental studies on flat-band 
materials combining topology and interactions and leading to exotic 
quantum phenomena, such as magnetism, non-Fermi liquid behaviour 
and superconductivity. Such flat-band investigations are, at present, 
confined to engineered twisted moire lattices in two dimensions. 

Although the present work studies flat bands in paramagnetic band 
structures of three-dimensional materials, our methods can be adapted 
to detect flat bands in magnetic band structures, two-dimensional 
monolayer materials, phonons and photonic crystals. Furthermore, 
the further classification of FOABs will enlarge the set of flat bands 
whose centre of charge is away from the atomic positions.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-022-04519-1.
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bands are provided at the top of each panel.
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Methods

Topological Quantum Chemistry website
The TQCDB was used as the input for the structural parameters of the 
stoichiometric materials reported in the ICSD30. For each entry, ab 
initio calculations were performed using density functional theory31,32 
and its implementation in the Vienna Ab-initio Simulation Package33,34, 
with and without accounting for the SOC. The database provides the 
structural parameters, the band dispersion along high-symmetry lines, 
the DOS and the topological characterization for each set of bands 
in the material’s band structure for each of the 55,206 ICSD entries.

SG method of detecting line-graph and Lieb sublattices
To detect a Kagome, pyrochlore or Lieb sublattice in crystalline materi-
als, we first identified the minimal SGs that support these three lattices 
and the corresponding Wyckoff positions (see details in Supplementary 
Section D1). Then, through group–subgroup relations and the split 
relations between the sets of Wyckoff positions on the Bilbao Crystal-
lographic Server (https://www.cryst.ehu.es/)35,36, we obtained all the 
SGs that host these lattices. The results are tabulated in Supplementary 
Tables IV, V in Supplementary Section D. We dub the detection of sublat-
tices using this tabulated information as the SG method.

A brief introduction of the S-matrix method
Denoting L  and L

∼
 as the number of atoms or orbitals in the L and 

∼
L 

further sublattices of the bipartite or split sublattice of a material 
(assuming L L≥

∼
), the Bloch Hamiltonian associated with a bipartite 

sublattice of a material reads









k

k
k

H
S

S
( ) =

0 ( )
( ) 0

. (1)
†

Here S(k) is a matrix with dimension L L×
∼

 and k is the momentum 
in the Brillouin zone. A bipartite lattice with 

∼
L L≠  hosts flat bands 

in its band structure. For example, the Hamiltonian of equation (1) 
has at least L L S+ − 2 × rank( ( ))

∼ k  zero-energy states, that is, the band 
structure has at least k∼

L L S+ − 2 × rank( ( )) exact flat bands. It is also 
likely that these bands exhibit non-trivial topology6. Although the 
other S2 × rank( ( ))k  bands are dispersive, they are related by chiral 
symmetry. Although in real crystalline materials the chiral symmetry 
is generally broken by the intra-sublattice hopping, we find in ref. 6 
that this S-matrix method goes beyond the chiral symmetry. For a 
generalized bipartite lattice including the intra-sublattice cou-
pling, namely an upper (lower) diagonal block A(k) (B(k)) in H(k) for 
the sublattice L(L

∼
), if A(k) has a momentum-independent eigenvalue E0 

with degeneracy n0 and L n L< ≤0
∼ , then H(k) also has at least n L−0

∼  
perfectly flat bands at energy E = E0 irrespective of B(k). Moreover, 
the eigenstates of these ∼

n L−0  flat bands are identical to those of the 
system with chiral symmetry6.

Application of the S-matrix method for Ca2NCl
As shown in Fig. 2d, the three-dimensional crystal structure of Ca2NCl is 
stacked, composed of alternating Ca2N and Cl layers. In each Ca2N layer, 
the Ca and N atoms occupy honeycomb (with buckling) and triangular 
sublattices, respectively. The Cl layer also forms a triangular lattice.  
As shown in Fig. 2i, the flat band and the lower dispersive bands next to 
it are mainly contributed by the p orbitals of the N atoms. By construct-
ing the maximal localized Wannier functions37, we extract an effective 
tight-binding model for these p bands and find that its hoppings—which 
are computed from ab intio methods without any additional theoretical 
input—obey a set of fine-tuned conditions, which in turn give rise to 
flatness of the top p band. As an example, the amplitude of the σ bond 
is almost exactly −3 times that of the π bond. (See Supplementary Sec-
tion F4 for more details.) Similar flat bands exist in many other mate-
rials of the same structure (for example, Ca2NBr and Sr2NCl), and are 

described by similar fine-tuned ab tight-binding initio models, pointing 
to a deeper reason for the fine-tuning conditions.

This deep reason is the S-matrix theory. We notice that the nearest 
neighbours of the N atoms are the Ca atoms and hence that Ca and N 
atoms form a bipartite sublattice if only the nearest-neighbour hop-
pings are considered in a theoretical model of the bands. As analysed 
in Fig. 2i, the conduction bands around E = 3 eV are mainly contributed 
by the s and d orbitals on the Ca atoms, and the three valence bands in 
the energy window of roughly −3 eV to 0 eV are mainly contributed by 
the p orbitals on the N atoms and partially contributed by the hybrid-
ized orbitals consisting of s and d z 2  orbitals on Ca. As the s and d z 2 
orbitals form the same representation (A1) of the point group sym-
metry C3v isomorphic to the site-symmetry group of Ca sites, they 
hybridize with each other to form two hybridized orbitals. It is a reason-
able simplification to take into account only the hybridized orbital 
with the lowest energy, which we refer to as the s orbital in the follow-
ing. A tight-binding model including both the N and Ca atoms is natu-
rally an S-matrix theory of a bipartite lattice, where the L sublattice of 
the bipartite (sub)-lattice consists of p orbitals at the triangular lattice 
formed by N, and the L

∼
 sublattice consists of (hybridized) s orbitals at 

the honeycomb lattice (with buckling) formed by Ca. The on-site energy 
of s orbitals (Δs) is about 3 eV. Following the argument below equa-
tion (1), there must be 

∼ kL L S+ − 2 × rank( ( )) = 3 + 2 − 4 = 1 flat bands 
at E = 0. (See Supplementary Section F4 for the explicit form of S(k).) 
As detailed in Supplementary Section F4, the S-matrix band structure 
matches the first-principles band structure well. Furthermore, the 
S-matrix theory also explains the fine-tuning conditions in the extracted 
tight-binding Hamiltonian from the maximum localized Wannier func-
tions: the perturbative effective Hamiltonian for the p bands, 

S S Δ− ( ) ( )/ s
†k k , perfectly reproduces the fine-tuning conditions of the 

ab initio model. Therefore, the S-matrix theory is a faithful explanation 
for the flat band in Ca2NCl.

Data availability
All data are available in the Supplementary Information and through 
our public website, the Materials Flatband Database (https://www.
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Code availability
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herein is available from the authors upon reasonable request.
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