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Abstract
An extension of the Ising spin configurations to continuous functions is used for an exact
representation of the random field Ising model’s order parameter in terms of disagreement
percolation. This facilitates an extension of the recent analyses of the decay of correlations
to positive temperatures, at homogeneous but arbitrarily weak disorder.

Keywords Random field Ising model · Quenched disorder · 2D · Disagreement
percolation · Exponential decay · Anti-concentration bounds

1 Introduction

1.1 The Imry–Ma Phenomenon and the Question Discussed Here

In the Imry–Ma phenomenon, first-order phase transitions of two-dimensional statistical
mechanics systems are turned continuous under the incorporation of quenched disorder in
the suitably conjugate field variable [18]. This is exemplified by the rounding of the Ising
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model’s famed discontinuity of magnetization as a function of the external field h, through
the addition of a random field of arbitrarily weak strength ε > 0.
The random-field Isingmodel (RFIM) is a spin system on a finite graphwith the Hamiltonian

H(σ ) := −
∑

{u,v}∈E(G)

Ju,v σuσv −
∑

v∈V(G)

(h + ε ηv)σv . (1.1)

where {σv}v∈V(G) are the Ising ±1-valued variables, {Ju,v} are positive coupling constants,
{ηv}v∈V(G) are independent, identically distributed, non-constant external fields, E(G) is the
graph’s edge set, and ε is the disorder strength parameter.

For a fixed realization of the random field, η, the Gibbs equilibrium state is described by
the probability measure

PG(σ ) := 1

ZG

exp (−βH(σ )) , (1.2)

where β = 1/T ∈ [0,∞) is the inverse temperature and ZG is the normalizing factor, which
is referred to as the partition function. In finite volumes the Gibbs measure depends also
on the boundary conditions, e.g. the imposition of specific values on the spins along the
boundary. Given A ⊂ G, and a function τ : A → {−1,+1}, we denote by P

A,τ
G

the Gibbs
measure on G restricted to configurations such that σ = τ on A; its normalizing factor is

Z A,τ
G

:=
∑

σ∈{−1,+1}V(G)

exp (−βH(σ )) · 1[σ = τ on A]. (1.3)

If G is a subset of Z2, A is its internal vertex boundary (denoted ∂vG), and τ is identically
+1, we will abbreviate PA,τ

G
by P+

G
; the negative case is defined analogously. The associated

expectation operators will be denoted by 〈·〉+
G
and 〈·〉,−

G
.

For the RFIM, the + and − boundary conditions are of particular interest, since, for any
A, the Gibbs states corresponding to all other values of τ are bracketed by these two (through
the FKG inequality). In this case, the formal expression of the rounding effect is the statement
that, in two dimensions and for arbitrarily weak disorder strength ε �= 0, there is no residual
symmetry breaking, in the sense that

lim
�→Z2

P
+
� = lim

�→Z2
P

−
� (1.4)

as probability measures (or, equivalently, as expectation value functionals) describing the
system in the infinite volume limit.

For the Ising model, equality of the limiting ± states is equivalent to the uniqueness
of the infinite volume Gibbs state. To place this in a broader context, let us add that, for
systems which are not endowed with an FKG-type monotonicity property, one has only the
weaker statement that the free energy function is differentiable in h, or, equivalently, that all
Gibbs states assign a common value to the volume-averaged magnetization [4,5]. However,
the robustness of the thermodynamic version of the statement has enabled its extension to
quantum systems [2].

For spin models with rotational symmetry, such as the O(N ) models, the rounding effect
(at any ε > 0) extends to three and four dimensions, provided the probability distribution of
η ∈ R

N is rotationally invariant [4,5]. Furthermore, all the statements also hold in the limit
β → ∞, in which case they refer to the model’s infinite-volume ground state(s).

An intuitive explanation of the effect’s dependence on dimension can be found by com-
paring the contribution of two possibly conflicting terms to the difference of free energies
between two ordered states in a box of linear size L . One term is the couplingwith the random
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306 M. Aizenman et al.

field throughout the volume of the box, and the other is the coupling with the neighboring
regions. The first produces a local magnetization bias, while the second tends to keep the
local magnetizations aligned. It seems natural to guess that the effect of the local field is a
Gaussian variable of scale εLd/2, while the boundary pull is of the order of Ld−1, or, in the
presence of rotational symmetry, Ld−2. At the critical dimension, which is d = 2 in case of
the RFIM [7,9,16], the two scale similarly. However, for any given site u ∈ Z

2, fluctuations
will cause the random field in a box centered at u to eventually exceed the boundary pull.
This suggests that, even at weak disorder (ε 	 J ), the Gibbs state resembles a patchwork of
locally ordered states.

Since the early works on the subject, questions have been raised concerning the decay rate
of the resulting state’s correlation functions. These relate to the decay of correlations among
the local spin magnetizations, which are quasi-local functions of the quenched random field,
as well as to the typical decay of spin correlations within the quenched state. As presented
in [3], both are dominated by the function

m(L) ≡ m(L; T ,J , h, ε) := 1

2

[
E[〈σ0〉+�(L)] − E[〈σ0〉−�(L)]

]
(1.5)

where

�u(L) := {v ∈ Z
2 : d(u, v) ≤ L} , �(L) := �0(L) , (1.6)

with d(u, v) the graph distance on Z2 and 0 := (0, 0).
It has been early recognized, and since then proven in a variety of ways, that at high

disorder and/or high temperatures, m(L) decays exponentially fast [6,10,17]. The more
interesting question is the nature of the decay at weak disorder, and in particular, whether
there is a qualitative difference between weak and very weak disorder, with transition from
exponential decay at weak disorder to power-law decay at very weak disorder [8,13,15]. It
is convenient and natural to focus on the case of Gaussian disorder. This special case is fully
expected to be indicative of more general distributions.

Recent results on the subject include: (i) an initial bound m(L) ≤ C(ε)/
√
log log L [11],

(ii) power-law bounds for all ε > 0 and T ≥ 0, including also all finite-range ferromagnetic
interactions [3], and, more recently, (iii) exponentially-decaying upper bounds for all ε > 0
[14], limited to the nearest-neighbor case and T = 0. The latter result answers (in the
negative) the question of possible transition in ε for the RFIM’s ground state, but stops short
of addressing the additional effect of thermal fluctuations.

The main result of this paper, which is being produced in parallel to an ongoing extension
of [14] by its authors to positive temperatures, is the proof of the following statement.

Theorem 1.1 In the random-field Ising model on Z
2 with the standard nearest-neighbor

interaction of strength J and independent standard Gaussian random field (ηv), for any
temperature T ≥ 0, uniform external field h ∈ R, and disorder intensity ε > 0,

m(L; T , J , h, ε) ≤ C(J/ε) · e−c(J/ε)L , (1.7)

with c,C > 0 that do not depend on T , h or L.

1.2 Key Ingredients

Following is an informal summary of the key concepts used in the proof. These are presented
more explicitly in the sections which follow.
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Continuous Extension of the Ising Model We introduce an extension of the model in which
the original binary spin variables are extended to random continuous functions supported
on the graph’s edges. The extended functions are restricted to ±1 values only at the graph’s
vertices, and their measure’s restriction to this collection of variables yields the Ising model’s
standard Gibbs state.

Disagreement Percolation The term has already been invoked as offering a clarifying per-
spective on questions of the type considered here. In this paper, we will invariably refer to
a version which is based on the extended formulation of the model. The continuity of the
extended spin function allows to identify the order parameter m(L) as the suitably averaged
probability that, in �(L), the origin is connected to the boundary by a path along edges on
which σ+

u > σ−
u , with the pair (σ+, σ−) sampled independently with the indicated boundary

conditions.

Surface TensionWeextend the past observations of [3] on the different relations of the surface
tensionwith disagreement percolation. In particular, we present an upper bound on the surface
tension between two surfaces in terms of the amount of the disagreement percolation flux
through an arbitrary non-anticipatory random set separating the two.

Tortuosity of the Disagreement Paths The improvement presented in this paper over [3] is
based on the quantification of the observation, which was expressed in [3] at only a heuristic
level, that the disagreement percolation is weakened by the fractality of its connected clusters.
A path from this suggestion to a proof was pointed out, in a somewhat modified context, in
the aforementioned work of Ding–Xia [14]. As there, this part of the argument makes an
essential use of the sufficient condition for tortuosity of Aizenman–Burchard [1]. Verifying
the condition’s assumptions is a somewhat technical part of the analysis, and the only step for
which the arguments employed here are limited to the nearest-neighbor models, i.e. restricted
to strictly planar interactions, and not just short-range 2D models.

Through the tortuosity condition, we establish that, for some α > 0, the probability that
a regular annulus of scale 
 is traversed by a path of disagreement percolation with less than

1+α lattice steps vanishes as 
 tends to infinity.

A Bootstrap Argument The last step in the proof is a bootstrap argument which extracts
an exponential upper bound on the function m(L) from the above estimates. Use is made
of the fact that, like in the case of other percolation models, fast enough power law decay
implies exponential decay (cf. [3]). Anti-concentration bounds play a role in the analysis,
as well as concentration bounds which control the contribution of exceptional random field
configurations.

The above outline offers also the plan of the paper.

2 A Continuous Extension of the IsingModel

While spins of a general Ising model are naturally associated with the vertices of a graph,
which will generically be denoted G, we find that, for a faithful disagreement percolation
picture, it is convenient to extend their definition to functions supported along the graph’s
edges. For ease of notation, this construction is presented for the standard nearest-neighbor
interaction. We extend G into a metric graph, i.e. substitute metric intervals for the edges.
The resulting metric space of lines linked at the vertices of G will be denoted LG. We shall
use �e to denote the midpoint of the edge e.
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308 M. Aizenman et al.

Fig. 1 A possible configuration of the extended spin function σ̄ . Dots represent lattice sites, on which σ̄v takes
only the values ±1. Squares represent edge midpoints, on which σ̄

�e
takes values in {−1, 0, 1}

The construction given below extends the notion of spin configurations on G to a set of
highly-constrained continuous functions on LG, each being completely determined by its
values on the vertices and the edge midpoints of G, where the function is allowed to take
values only in {−1, 0,+1}.

Formally, we let �G be the set of continuous functions σ̄ such that

(i) at the graph’s vertices σ̄ ∈ {−1,+1},
(ii) at edge midpoints, σ̄ ∈ {−1, 0,+1}, and
(iii) along each edge, σ̄ is given by the linear interpolation between its value at the center

and at the nearest of the two edge ends.

Thus, σ̄ is determined by its restriction to the vertices of G and to the midpoints of its
edges, whichwe denote by {σv}v∈V(G) and {κ

�e
}e∈E(G), respectively. Let Ḡ be the graphwhose

vertex set is the disjoint union of V(G) and the midpoints of the edges of G. The edge set of
Ḡ is {{v,�e} : v ∈ e}. We refer to it as the extended graph.

On a finite graph G, given a realization η of the external field, let P̄
Ḡ

be the unique
probability measure on the set of functions �G with

P̄
Ḡ
(σ̄ ) := 1

Z̄
Ḡ

∏

v∈V(G)
e∈E(G)

v∈e

W (σv, κ�e
) · e−βU (σ ) (2.1)

where

U (σ ) :=
∑

v∈V(G)

(h + εηv)σv, (2.2)

and, for each a ∈ {−1, 1} and b ∈ {−1, 0, 1},

W (a, b) := λ
(
δa,b + tδb,0

)
= λ ·

⎧
⎪⎨

⎪⎩

1 b = a,

t b = 0,

0 b = −a

(2.3)

and (t, λ) are related to the inverse temperature by

t := (e2Jβ − 1)−
1
2 , λ = 2 sinh(Jβ)1/2 . (2.4)

One may note that if e = {u, v} and σu �= σv , the value of κ
�e
is constrained to be zero;

furthermore, κ
�e

= +1 implies that σu = σv = +1, with an analogous statement holding
for −1. We call these conditions the ‘hard’ constraints of the extended Ising model (Figs. 1,
2).

Given a subset A ⊂ Ḡ, we call τ : A → {−1, 0, 1} an allowed configuration if there exists
σ̄ which is equal to τ on A and satisfies the hard constraints described above. For any A and
allowed configuration τ , we denote the corresponding restricted probability measure P̄A,τ

Ḡ
.

When β < ∞, this measure is equivalent to conditioning P̄
Ḡ
on the event {σ = τ on A}.

The partition function Z̄ A,τ

Ḡ
is defined analogously.
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Fig. 2 Disagreement percolation
in �, for a pair (σ+, σ−). The
disagreement is marked in thick
[orange] lines, along which
σ̄+ > σ̄− and which connect to
the set boundary ∂v�. The loop
[in blue] passes through sites at
which σ̄+ − σ̄− = 0, and marks
the outer vertex boundary of the
disagreement cluster of ∂v�.
(Colors referring to the original
PDF)

Lemma 2.1 For any finite graph G and a realization of the external field η, at positive
temperatures:

(i) The probability measure P̄
Ḡ
has the domain Markov property on the extended graph Ḡ.

(ii) The measure’s restriction to V(G) coincides with the Gibbs measure PG on G.
(iii) For any Av ⊂ V(G) and τ : Av → {−1,+1}, the marginal distribution of the restricted

measure P̄Av,τ

Ḡ
on V(G) coincides with the correspondingly restricted measure PAv,τ

G
.

(iv) For any Ae ⊂ V(G), and allowed configuration τ such that τ |Ae = 0, the marginal
distribution of P̄A,τ

Ḡ
on V(G) coincides with the corresponding Gibbs measure on the

reduced graph obtained by limiting the edge set to E(G)\Ae (without changing the
vertex set).

(v) The extension does not affect the partition function, i.e.

ZG = Z̄
Ḡ

and Z A,τ
G

= Z̄ A,τ

Ḡ
for any A ⊂ V(G). (2.5)

Proof The statement can be readily deduced from the definition, paying attention to the
following key observations, listed by the claim number.

(i) The domain Markov property follows from the multiplicative structure of P̄
Ḡ
.

(ii) For each edge of G, e = {u, v}, the summation over the values of κ
�e
yields

∑

κ
�e

(
δσu ,κ

�e
+ tδκ

�e
,0

) (
δσv,κ

�e
+ tδκ

�e
,0

)
= δσv,σu + t2. (2.6)

A consultation with (2.4) implies that
∑

κ
�e
W (σu, κ�e

)W (σv, κ�e
) = eβ Jσuσv . (2.7)

(iii) Since all hard constraints involve at least one mid-edge variable, restricting the value
of σ on A ⊂ V(G) cannot violate any of them.

(iv) For each edge {u, v} ∈ E(G) the factor [W (σu, 0)W (σv, 0)] in (2.1), is spin independent
and thus can be omitted.

(v) The last claim (and the only one for which the value of λ in (2.3) is of relevance) follows
readily from (2.7).

As a corollary, we note that, in the limit β → ∞, the probability distribution of {σv}v∈V(G)

concentrates on the ground-state configurations of H(σ ), and at edge midpoints the values
are rigidly constrained to equal the mean of the value of the two endpoints.
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310 M. Aizenman et al.

Another corollary is that the extended Ising model inherits the standard FKG-type
monotonocity properties of the (non-extended) Ising model. For instance, if �1 ⊂ �2 ⊂ G,
the marginal of the measure P̄∂v�2,+

�̄2
on �̄1 is stochastically dominated by P̄∂v�1,+

�̄1
.

3 Disagreement Percolation

The extension of the Ising model to Ḡ facilitates the following exact relations in which the
mean spin - spin correlation, and related measures of influence propagation, are cast in terms
of disagreement percolation.

With that end in mind, let G be a finite graph, A ⊂ V(G), and consider σ̄+ and σ̄− to be
sampled independently from P̄

A,+
Ḡ

and P̄
A,−
Ḡ

, respectively. The disagreement set of σ̄+ and

σ̄− is

D := D(σ̄+, σ̄−) = {u ∈ Ḡ : σ̄+
u �= σ̄−

u }. (3.1)

We say that A, B ⊂ Ḡ are connected in D, denoted by A
D←→ B, if there is a path

connecting them which stays in D.
For a set S ⊂ Ḡ, let CS be the union of the connected components of D that intersect S.
For pairs of configurations, we denote by 〈·〉A,+/−

G
, or just 〈·〉A,+/− if G is clear from

context, the expectation with respect to the product measure P̄A,+
Ḡ

⊗ P̄
A,−
Ḡ

, and by 〈〈·〉〉 the
expectation with respect to the product of two identically distributed copies of P̄

Ḡ
. The

truncated correlation function 〈σu; σv〉 denotes 〈σuσv〉 − 〈σu〉 · 〈σv〉.
Proposition 3.1 For any random-field Ising model on a finite graphG and any realization of
the external field η:

(i) for all u, v ∈ V(G),

〈σu; σv〉 = 2 ·
〈〈
1
[
u

D←→ v
]〉〉

. (3.2)

(ii) For any A ⊂ V(G) and u ∈ V(G)

〈σu〉A,+
G

= 1

2
·
(
〈σu〉A,+

G
− 〈σu〉A,−

G

)

=
〈
1
[
u

D←→ A
]〉A,+/−

. (3.3)

Applying Eq. (3.3) with G = �(L) ⊂ Z
2 and A = ∂vG, we obtain the following

geometric representation of the order parameter of equation

m(L) = E

[〈
1
[
0

D←→ ∂v�(L)
]〉∂v�(L),+/−]

. (3.4)

The identities of Proposition 3.1 are proven using a general principle of symmetry under
the following class of swap operation. For any pairs of sets A, S ⊂ V(G), let RA

S be the
mapping RA

S : (σ̄ , σ̄ ′) �→ (φ̄, φ̄′) which acts as the identity in case CS ∩ A �= ∅, and
otherwise swaps the configurations in CS , in the sense that

(φ̄u, φ̄
′
u) :=

{
(σ̄ ′

u, σ̄u) u ∈ CS
(σ̄u, σ̄

′
u) u /∈ CS

(provided CS ∩ A = ∅). (3.5)

123



Exponential Decay of Correlations in the 2D RFIM 311

Proposition 3.2 For any A, S ⊂ V(G), and pair τ, τ ′ of maps from A to {−1,+1}, the
independent product measure P̄A,τ

Ḡ
⊗ P̄

A,τ ′
Ḡ

(interpreted as P̄
Ḡ

⊗ P̄
Ḡ
if A = ∅) is invariant

under the action of RA
S .

Proof Since RA
S is one-to-one (indeed, RA

S ◦RA
S = 1), it suffices to verify that it preserves the

product of the weights of the two configurations. That is so since, for each pair (v,�e), the fac-
tors in (2.1) corresponding to the two configurations are either left unaffected or exchanged.
The essential observation here is that the swap affects entire disagreement clusters, along
whose external boundary the two configurations agree.

Remark The symmetry operation described in Proposition 3.2 is essentially equivalent to the
‘cluster swap’ operation of Sheffield [19, Chap. 8] (with earlier uses by van den Berg in his
disagreement percolation [20]) applied to the (non-extended) RFIM (see [12, Sect. 2] for a
review).

Proof of Proposition 3.1 The first item follows from the observation that

2 · 〈σu; σv〉 = 〈〈(σu − σ ′
u) · (σv − σ ′

v)
〉〉

=
〈〈
(σu − σ ′

u) · (σv − σ ′
v) · 1

[
u

D←→ v
]〉〉

+
〈〈
(σu − σ ′

u) · (σv − σ ′
v) · 1

[
u �D←→ v

]〉〉

=
〈〈
(σu − σ ′

u) · (σv − σ ′
v) · 1

[
u

D←→ v
]〉〉

+ 0,

(3.6)

where the final equality follows from the observation that, whenever u and v are disconnected
inD,wemay ‘swap’ the connected component ofu inDwithout affecting the value of (σv, σ

′
v)

by Proposition 3.2. The proof is completed by noting that (σu − σ ′
u) · (σv − σ ′

v) = 4 on the

event {u D←→ v}.
The second item is proved analogously.

4 The Surface Tension

4.1 Definition and Relation with Disagreement Percolation

A useful role in the analysis is played by the following quantity.

Definition 4.1 Given a finite graph G the surface tension between a pair of subset A1, A2 ∈
V(G) at a given realization η, and at temperature β−1 (which will often be omitted in our
notation) is

TA1,A2(η, β) := 1

β
· log

(
Z+,+ · Z−,−

Z+,− · Z−,+

)
. (4.1)

where Z+,+ ≡ Z A1,A2;s1,s2
G

, at s1, s2 = ±, is the partition function with the spins restricted
to the indicated values on A1 and A2.

Of particular interest will be the situation where A j are the vertex boundaries of two
subgraphs �1 ⊂ �2 ⊂ G, with ∂v� j = A j (and A1 and A2 are disjoint). In a slight abuse
of notation, in such cases we shall refer to TA1,A2(η) also by the symbol T�1,�2(η).
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The surface tension bears a number of relations with the disagreement percolation process
D(σ̄+, σ̄−), where (σ̄+, σ̄−) are independently sampled from P̄

∂v�2,+ ⊗ P̄
∂v�2,−. One of

these is an identity, which appears in [3], relating the surface tension to the thermal average
of the number of disagreements in �1. We define

D�1,�2(η) := 1

2

∑

v∈�1

[
〈σv〉+�2

− 〈σv〉−�2

]
, (4.2)

and observe that, by Proposition 3.1,

D�1,�2(η) = 〈|�1 ∩ C∂v�2 |〉∂v�2,+/−, (4.3)

where we recall that C∂v�2 := C∂v�2(σ̄
+, σ̄−) is the connected component of D containing

∂v�2. In these terms, one has:

Theorem 4.2 Let �1 ⊂ �2 ⊂ G be subgraphs with disjoint internal vertex boundaries. For
the RFIM with IID standard Gaussian random fields, the surface tension bears the following
relation with disagreement percolation:

T�1,�2(η) = 2ε
∫

R

D�1,�2(η
(t)) dt = 2ε√|�1| Eη̂�1

(
D�1,�2(η)

φ(̂η�1)

)
, (4.4)

where:

(1) η(t) is defined by adding a uniform field of intensity t in �1

η(t)
v :=

{
ηv + t v ∈ �1

ηv otherwise
, (4.5)

(2) the subscript on Eη̂�1
indicates the average over the variable

η̂�1 := 1√|�1|
∑

v∈�1

ηv (4.6)

at fixed values of the other, orthogonal, Gaussian degrees of freedom which determine
η,

(3) φ is the Gaussian density function φ(s) := 1√
2π

e−s2/2.

The proof given in [3] (in reference to �1 = �(
),�2 = �(3
)) extends to the presented
statement with only notational modifications.

The second relation used here is an upper bound on T�1,�2(η). For that, it is instructive
to first note the following identity.

Proposition 4.3 Let �1 ⊂ �2 ⊂ G such that ∂v�1 and ∂v�2 are disjoint. Then

Z̄+,− · Z̄−,+

Z̄+,+ · Z̄−,− =
〈
1

[
∂v�1

D�←→ ∂v�2

]〉∂v�1∪∂v�2,+/−
. (4.7)

Proof In this proof, we will denote by 〈·〉(s1,s2),(s′1,s′2) the expectation operator induced by the
product measure P̄∂v�2,∂v�1,s1,s2 ⊗ P̄

∂v�2,∂v�1,s′1,s′2 . In this notation

〈·〉(+,+),(−,−) = 〈·〉∂v�1∪∂v�2,+/− .
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Exponential Decay of Correlations in the 2D RFIM 313

Observe that
〈
1

[
∂v�1

D�←→ ∂v�2

]〉(+,−),(−,+)

= 1 . (4.8)

This is true because the pair (σ̄ , σ̄ ′) must ‘switch’ from being identically (+1,−1) on the
boundary of �2 to being identically (−1,+1) on the boundary of �1; in the extended Ising
model, this is not compatible with a connection in D.

Next, the symmetry argument which was used in the proof of Proposition 3.2 implies also
that the product

Z̄+,s Z̄−,s′ ·
〈
1

[
∂v�1

D�←→ ∂v�2

]〉(+,s),(−,s′)
(4.9)

(which gives the contribution to the partition function of terms for which the indicated
boundary conditions are met) is invariant under the exchange of s with s′. From the resulting
equality for the case (s, s′) = (−,+), we deduce that

Z̄+,− · Z̄−,+

Z̄+,+ · Z̄−,− =

〈
1

[
∂v�1

D�←→ ∂v�2

]〉(+,+),(−,−)

1

≡
〈
1

[
∂v�1

D�←→ ∂v�2

]〉∂v�1∪∂v�2,+/−
.

4.2 Bounding the Surface Tension via Non-anticipatory Sets

The next upper bound combines a swap similar to that employed for (4.7), while estimating
the effects of imperfections that arise when the swap is not an exact symmetry. It is an
extension of Theorem 4.1 of [3] to random non-anticipatory sets, a notion which we now
define.

Given �1 ⊂ �2 in Ḡ and a set S ⊂ Ḡ, we denote the ‘forward’ set of S by

SF := {u ∈ Ḡ\S : ∃ a path from u to ∂v�1 which is disjoint from S}. (4.10)

The complement of SF in �̄2 is called SB , the ‘backward’ set of S. We say that S is a
separating set if ∂v�1 ∈ SF and ∂v�2 ∈ SB .

Definition 4.4 A random set S is called non-anticipatory if, for any set S, the event {S = S}
is measurable with respect to the restriction of (σ̄+, σ̄−) to SB .

Proposition 4.5 Let �1 ⊂ �2 ⊂ G be finite subsets, and fix a realization of the random field
η. Let S be a non-anticipatory separating set such that, almost surely,

σ̄+
�e

= σ̄−
�e

= 0 ∀�e ∈ S. (4.11)

Then

T�1,�2(η) ≤ 16J 〈 |S ∩ D| 〉∂v�2∪∂v�1,+/− . (4.12)

Proof It suffices to prove the theorem for β < ∞, as both sides of (4.11) are for almost every
η continuous at β = ∞.

Set A := (�2\�1) ∪ ∂v�1. As was explained in Lemma 2.1 (cf. (2.5)) the partition
function of a model can be computed by summing the weights P̄

Ḡ
(σ̄ ) over the configurations
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of the extended version of the model. The partial sums, corresponding to summing first over
the edge variables, reduce the expression to the more standard sum of the Gibbs weights
e−βH(σ ) summed over the regular spin configurations σ . In the following proof we shall mix
the two representations.

Given a deterministic separating set S and an extended Ising configuration σ̄ , let σ̄B and
σF be the restrictions of σ̄ to SB and SF ∩ V(G), respectively. Upon summing the weights
over the midedge variables �e in the forward set, we are left with a mixed formula for the
partition function in which the remaining summation is over the pair (σ̄B , σF ), with suitably
mixed weights. If we further assume that S satisfies (4.11), the weight takes on a particularly
simple form of

P̄SB (σ̄B) · e−βH(σF |σ̄S), (4.13)

where H(σF |σ̄B) is the energy of σF alone (including the contribution of the external field
η on SF ∩ V(G)), plus the energy terms for pairs of neighboring vertices one of which is in
SF ∩ V(G) and the other in SB ∩ V(G). (In other words, vertex sites of S act as an external
boundary condition, and under the condition (4.11) edge vertices of S turn the edge into a
free boundary condition.)

This prescription extends naturally to any non-anticipatory random set S. Decomposing
the partition function according to the particular realization S of the random set, one gets:

Z̄+,− · Z̄−,+ =
∑

S⊂Ā

∑

(σ̄B ,σF ),(σ̄ ′
B ,σ ′

F )

1[S = S](σ̄B , σ̄ ′
B) · 1∂v�2,+(σ̄B)

·1∂v�2,−(σ̄ ′
B) · 1∂v�1,−(σF ) · 1∂v�1,+(σ ′

F )

·WS(σ̄B) · WS(σ̄
′
B) · e−β[US (σ̄B )+US (σ̄

′
B )] · exp (−β[HS(σF | σ̄S) + HS(σ

′
F | σ̄ ′

S)]
)

,

(4.14)

where the sum is over all separating sets S and correspondingly split configurations, as
explained above. The first indicator ensures that the set S coincides with the value of the
random variable S; the next four indicators impose the appropriate boundary conditions on
(σ̄ , σ̄ ′). The functions WS and US represent the product of all weights W over edges of SB
andU restricted to SB ∩VG, respectively. We note that since S is non-anticipatory the input
to the first indicator can indeed be written as just the pair (σ̄B , σ̄ ′

B).
Upon the relabeling the variables (σF , σ ′

F ) in the switched order, (4.14) transforms into:

Z̄+,− · Z̄−,+ =
∑

S⊂Ā

∑

(σ̄B ,σF ),(σ̄ ′
B ,σ ′

F )

1[S = S](σ̄B , σ̄ ′
B) · 1∂v�2,+(σ̄B) · 1∂v�2,−(σ̄ ′

B)

·1∂v�1,+(σF ) · 1∂v�1,−(σ ′
F )

·WS(σ̄B) · WS(σ̄
′
B) · e−β[U (σ̄B )+U (σ̄ ′

B )] · exp (−β[HS(σF | σ̄S) + HS(σ
′
F | σ̄ ′

S)]
)

· exp (−β · �S H(σF , σ ′
F | σ̄B , σ̄ ′

B)
)

, (4.15)

with the energy switching cost function

�SH(σ, σ ′ | τ, τ ′) := [HS(σ | τ) − HS(σ
′ | τ)] + [HS(σ

′ | τ ′) − HS(σ | τ ′)]
=

∑

(u,v)∈E(G)
u∈S∩V(A),v∈SF∩V(A)

J · (τu − τ ′
u) · (σv − σ ′

v). (4.16)

The energy cost is null if there are no disagreement percolation sites along S, and otherwise
it is clearly of the order of |S ∩ D|. For an explicit bound one easily gets:

|�SH(σ, σ ′ | τ, τ ′)| ≤ 16J |{u ∈ S : τu �= τ ′
u}|. (4.17)
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The above switch in the notation translates into a change in the boundary conditions, and
can be summarized in the following relation

Z̄+,− · Z̄−,+ = Z̄+,+ · Z̄−,− 〈exp(−β · �SH(σF , σ ′
F | σS , σ ′

S)
〉∂v�2∪∂v�1,+/−

(4.18)

For the surface tension this gives:

T�1,�2(η) = −1

β
log
〈
exp(−β · �SH(σF , σ ′

F | σS , σ ′
S
〉∂v�2∪∂v�1,+/−

≤ −1

β
log 〈exp(−16β J |S ∩ D|)〉∂v�2∪∂v�1,+/−

≤ 16J 〈|S ∩ D|〉∂v�2∪∂v�1,+/− ,

(4.19)

where the first inequality is (4.17), and the second is by Jensen’s inequality applied to the
convex function (− log x).

5 Fractality of Disagreement Percolation

5.1 A Sufficient Condition for Tortuosity

The surface tension upper bound of the previous section will be significantly boosted through
the observation that the path along the clusters of disagreement percolation are tortuous, in
the following sense.

Lemma 5.1 Set A1,2 := �(2
)\�(
). Let Aα,
 denote the event that the annulus Ā1,2 is
crossed by a path of disagreement percolation whose length is at most 
1+α . Then, for some
α = α(J/ε) > 0:

lim

→∞E

(
〈1Aα,


〉∂vA1,2,+/−)→ 0. (5.1)

The arguments of this section are close to the zero-temperature tortuosity argument of
[14]. The desired statement follows from [1, Theorem 1.3] through an estimate on the proba-
bilities that collections of well-separated rectangles are simultaneously traversed in the long
direction.

For an explicit statement of the condition, consider configurations (σ̄+, σ̄−) defined in
Ā1,2, and the percolation cluster C∂vA1,2(σ̄

+, σ̄−) which they define. We shall refer by R to
collections of rectangles of possibly varying orientations in R2, with the properties:

(1) Each R ∈ R has side lengths 
(R) × 5
(R) with 10 ≤ 
(R) ≤ 1
160
.

(2) Each R ∈ R is contained in the annulus AR
2

5
4 , 74

:= {x ∈ R
2 : 5

4
 < ‖x‖1 < 7
4
}.

(3) The 
1(R
2) distance between distinct R1, R2 ∈ R is at least 60max{
(R1), 
(R2)}.

We call such a collection well-separated.
We can associate C∂vA1,2 with a polygonal curve in R

2 by embedding Z̄
2 in R

2 in the
natural way and including the straight lines between adjacent vertices in C∂vA1,2 . We say that
the event Cross(R) occurs if the curve associated to C∂vA1,2 contains a R

2 path connecting
the short sides of R.

By the general sufficient condition of [1, Theorem 1.3], Lemma 5.1 can be deduced from
the following statement.

123



316 M. Aizenman et al.

Lemma 5.2 There exists b > 0 such that for any set of well-separated rectangles R,

E

⎛

⎝
〈
∏

R∈R
1Cross(R)

〉∂vA1,2,+/−⎞

⎠ ≤ (1 − b)|R| . (5.2)

Our goal in this section is to prove this estimate, which we shall do with

b = c exp

(
−C

(
J

ε

)2
)

(5.3)

at some absolute constantsC, c > 0. This is followed by a quantitative version of Lemma 5.1.

5.2 Disagreement Lassoes

The first step is to bound the probability that the disagreement set forms a circuit in an annulus
(the lasso event). This would allow to bound away from 1 the crossing probability of a single
rectangle, and finally verify (5.2).

For this section we denote byL(
) the event that the boundary component of the disagree-
ment set in �̄(25
) contains a circuit in the annulus �(8
)\�(
), and refer to it as a lasso
event.

Lemma 5.3 There exist absolute constants C, c > 0 with which for all integers 


E(〈1L(
)〉∂v�(25
),+/−
�(25
) ) ≤ 1 − c exp

(
−C

(
J

ε

)2
)

. (5.4)

We prove the lemma for β < ∞; the zero-temperature case follows by continuity.
A key tool towards the proof of Lemma 5.3 is a self-bounding inequality that we now

phrase. Fix an integer 
 > 0. For brevity, denote � j := �( j
) and shorthand 〈·〉∂v� j ,+/−
� j

to

〈·〉+/−
j . Cover the annulus�17\�16 by translates of�1: (v+�1)v∈B for someB ⊂ �17\�16

chosen so that |B| smaller than a suitable absolute constant. Note that v + �8 ⊂ �25\�8

for each v ∈ B. Recalling (4.2) and (4.3), we denote the thermal average of the number of
disagreements in v + �1 due to boundary conditions placed at v + �8 by

Dv(η) := Dv+�1,v+�8(η) = 〈|(v + �1) ∩ C∂v(v+�8)|
〉∂v(v+�8),+/−

(η). (5.5)

Lemma 5.4 For each realization of the random field,

Eη̂�8

(
D0(η) · 〈1L(
)

〉+/−
25 (η)

φ(̂η�8)

)
≤ 100 · J

ε
·
∑

v∈B
Dv(η). (5.6)

Proof Important aspects of the inequality include the fact that the same distribution appears
on both sides, namely D0 on the left-hand side has the same distribution as each Dv on the
right-hand side, and the fact that the vector (Dv)v∈B is independent of D0. The notation η̂�

and φ are defined in Theorem 4.2. The inequality is obtained by contrasting lower and upper
bounds for the surface tension T�8,�25 , as we now demonstrate.
From the integral representation of Theorem 4.2, we see that

T�8,�25(η) = 2ε√|�8| Eη̂�8

(
D�8,�25(η)

φ(̂η�8)

)
. (5.7)
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The right-hand side is further developed using (4.3) by writing, for each realization of the
external field,

D�8,�25 = 〈|�8 ∩ C∂v�25 |
〉+/−
25 ≥ 〈|�1 ∩ C∂v�25 |

〉+/−
25 ≥ 〈|�1 ∩ C∂v�25 | · 1L

〉+/−
25 .

(5.8)

Themain purpose of introducing the lasso eventL(
) is to define+/−boundary conditions
in the annulus �8\�1 which decouple the disagreement set in �̄1 from the disagreement set
outside �̄8. The event L(
) entails the existence of a self-avoiding path in C∂v�25 which goes
around the annulus �8\�1. The outermost such path P is well-defined (in the sense of the
associated curves in R2, and is measurable with respect to the spin configurations (σ̄+, σ̄−)

on P and its exterior. For each realization of the external field, the domain Markov property
and monotonicity of the extended Ising model imply that

〈|�1 ∩ C∂v�25 | · 1L(
)

〉+/−
25 = 〈〈|�1 ∩ CP |〉P,+/− · 1L(
)

〉+/−
25

≥ 〈|�1 ∩ C∂v�8 |
〉+/−
8 · 〈1L(
)

〉+/−
25 = D0 · 〈1L(
)

〉+/−
25 .

(5.9)

A complementary upper bound for the surface tension T�1,�25 is obtained by applying
Proposition 4.5. The disagreement percolation relevant to this context is the one induced by
the product measure P̄∂v�,+

�̄
⊗ P̄

∂v�,−
�̄

with � = �25\�(8
− 1). For a given 8
 ≤ k < 25
,
consider the set Sk consisting of all u ∈ Dc ∪ ∂v�(k) where there is a path of disgarrement
from a neighbor of u to ∂v�25 that stays within �25\�(k − 1).

By definition, the number of disagreement vertices on Sk is at most |C∂v�25 ∩ ∂v�(k)|,
and Sk is non-anticipatory. Furthermore, any �e ∈ Sk must have κ+

�e
= κ−

�e
= 0. To see this,

note that the two values of κ must agree; since there must be a v ∈ e satisfying σ+
v = +1

and σ−
v = −1, the two values of κ

�e
must be zero. Therefore, Proposition 4.5 implies that

T�8,�25 ≤ 16J
〈|C∂v�25 ∩ ∂v�k |

〉∂v�8∪∂v�25,+/−
. (5.10)

Averaging the obtained bound over 16
 < k ≤ 17
 implies that

T�8,�25 ≤ 16J




〈|C∂v�25 ∩ (�17\�16)|
〉∂v�8∪∂v�25,+/−

. (5.11)

Lastly, recalling that (v + �1)v∈B covers �17\�16, that v + �8 ⊂ �25\�8 for each v ∈ B
and the notation Dv(η) from (5.5) we may extend the last inequality to

T�8,�25 ≤ 16J




∑

v∈B
Dv(η) (5.12)

where monotonicity of the model was again used. Putting the last inequality together

with (5.7), (5.8), (5.9) and the fact that 16
2 ·

√|�8|



≤ 100 finishes the proof of Lemma 5.4.

Next we deduce Lemma 5.3 from the inequality of Lemma 5.4.

Proof of Lemma 5.3 As the first step we make a judicious choice of a quantile value q which
will serve as a reference point for estimating both the left- and right-hand sides of inequal-
ity (5.6). Define S to be the normalized sum of the external field in the annulus �25\�8,

S := η̂�25\�8 = 1√|�25\�8|
∑

v∈�25\�8

ηv. (5.13)
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Let q(S) be the 1
2|B| -quantile value of Dv given S. That is,

q(S) := min

{
x : P(Dv > x | S) ≤ 1

2|B|
}

. (5.14)

The definition remains the same regardless of the choice of v ∈ B as (ηv) are independent
and identically distributed and the variable Dv depends on the external field only at v + �8.
Lastly, let q be the (1−δ)-quantile of q(S), with δ a small positive number (defined by (5.26)
and (5.35) below),

q := min {x : P(q(S) > x) ≤ 1 − δ} . (5.15)

To unravel the definitions, let

S− := {s : q(s) ≤ q}, S+ := {s : q(s) ≥ q} (5.16)

and note that

P(S ∈ S−) ≥ δ, P(S ∈ S+) ≥ 1 − δ (5.17)

and

∀s ∈ S−, v ∈ B, P(Dv > q | S = s) ≤ 1

2|B| , (5.18)

∀s ∈ S+, v ∈ B, P(Dv ≥ q | S = s) ≥ 1

2|B| . (5.19)

In particular, by the union bound, the event E := {∑v∈B Dv(η) ≤ q|B|} satisfies

P (E) ≥ P

(
E ∩

{
S ∈ S−}) ≥ 1

2
P(S ∈ S−) ≥ 1

2
δ. (5.20)

It is further noted that q > 0 as, at positive temperature, Dv(η) > 0 almost surely.
As the second step, we use the reference value q and a suitably large positive parameter r

(defined by (5.35) below) to develop the inequality (5.6) to a form in which the lasso event
is separated from the other terms:

100 · J

ε
·
∑

v∈B
Dv(η) ≥ q · Eη̂�8

(
1D0(η)≥q · 〈1L(
)

〉+/−
25 (η)

φ(̂η�8)

)

≥ q · Eη̂�8

(
1D0(η)≥q · 〈1L(
)

〉+/−
25 (η) · 1|̂η�8 |≤r

φ(̂η�8)

)

≥ q · Eη̂�8

(
1D0(η)≥q · 1|̂η�8 |≤r

φ(̂η�8)

)

− q · Eη̂�8

(〈
1L(
)c

〉+/−
25 (η) · 1|̂η�8 |≤r

φ(̂η�8)

)

≥ q · Eη̂�8

(
1D0(η)≥q · 1|̂η�8 |≤r

φ(̂η�8)

)

− q

φ(r)
· Eη̂�8

(〈
1L(
)c

〉+/−
25 (η)

)
. (5.21)
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As the inequality holds for all η, we may take its conditional expectation on the event E and
use the independence of (D0, η̂�8) and (Dv)v∈B to obtain

100 · J

ε
· q|B| ≥ q · E

(
1D0(η)≥q · 1|̂η�8 |≤r

φ(̂η�8)

)

− q

φ(r)
E

(
Eη̂�8

(〈
1L(
)c

〉+/−
25 (η)

)
| E
)

(5.22)

We can use (5.20) to simplify the right-most expectation above to

E

(
Eη̂�8

(〈
1L(
)c

〉+/−
25 (η)

)
| E
)

≤ 1

P(E)
E

(〈
1L(
)c

〉+/−
25 (η)

)

≤ 2

δ
· E
(〈
1L(
)c

〉+/−
25 (η)

)
. (5.23)

Putting together the last inequalities and rearranging (recalling that q > 0) shows that

E

(
〈1Lc 〉+/−

25 (η)
)

≥ 1

2
· δ · φ(r)

(
E

(
1D0(η)≥q · 1|̂η�8 |≤r

φ(̂η�8)

)
− 100 · J

ε
· |B|

)
. (5.24)

As the third step, a lower bound is provided for the expectation in (5.24), making use of
the specific choice of q . Start with the equality

E

(
1D0(η)≥q · 1|̂η�8 |≤r

φ(̂η�8)

)
=
∫ r

−r
P(D0(η) ≥ q | η̂�8 = t)dt

=
∫ r

−r
P(Dv(η) ≥ q | η̂v+�8 = t)dt,

(5.25)

applying a translation by an arbitrary v ∈ B. Observe that η̂v+�8 and S are standard Gaussian
random variables with correlation coefficient

ρ := E(̂ηv+�8 · S) =
√

|�8|
|�25\�8| (5.26)

which is between two positive absolute constants. The required lower bound for the expres-
sion (5.25) will be deduced from (5.19), which shows that for every s,

1

2|B|1s∈S+ ≤ P(Dv(η) ≥ q | S = s)

=
∫

P(Dv(η) ≥ q | S = s, η̂v+�8 = t)φρ(t |s)dt

=
∫

P(Dv(η) ≥ q | η̂v+�8 = t)φρ(t |s)dt,

(5.27)

where we have written φρ(·|s) for the conditional density of η̂v+�8 given {S = s}, and where
the fact that Dv is independent of the external field outside v + �8 is used. Two simple
calculations involving the Gaussian density then show that

s ∈
[
− 1

ρ
r + c1,

1

ρ
r − c1

]
�⇒

∫

(−∞,r)∪(r ,∞)

φρ(t |s)dt ≤ 1

4|B| (5.28)

and
∫

φρ(t |s)ds = 1

ρ
≤ C1, (5.29)
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where here and belowweuse c j ,C j to denote positive absolute constants. Thefirst calculation
allows to develop (5.27) to

∫ r

−r
P(Dv(η) ≥ q | η̂v+�8 = t)φρ(t |s)dt ≥ 1

4|B|1s∈S+∩
[
− 1

ρ
r+c1,

1
ρ
r−c1

]. (5.30)

The second calculation allows to integrate over s in the last expression and obtain

C1

∫ r

−r
P(Dv(η) ≥ q | η̂v+�8 = t)dt ≥ 1

4|B| Leb
(
S+ ∩

[
− 1

ρ
r + c1,

1

ρ
r − c1

])

(5.31)

with Leb standing for Lebesgue measure. Comparing with (5.25) we conclude that

E

(
1D0(η)≥q · 1|̂η�8 |≤r

φ(̂η�8)

)
≥ 1

4C1|B| Leb
(
S+ ∩

[
− 1

ρ
r + c1,

1

ρ
r − c1

])
. (5.32)

The final step is to choose the parameters r and δ. Inequalities (5.24) and (5.32) show that

E

(〈
1L(
)c

〉+/−
25 (η)

)
≥ 1

2
· δ · φ(r)

(
1

4C1|B| Leb
(
S+ ∩

[
− 1

ρ
r + c1,

1

ρ
r − c1

])
− 100 · J

ε
· |B|

)

(5.33)

For any real subset I ,

Leb(S+ ∩ I ) = Leb(I ) − Leb(I\S+) ≥ Leb(I ) − 1

max{φ(x) : x ∈ I )}P(S /∈ S+).

(5.34)

Thus, the fact that P(S /∈ S+) ≤ δ by (5.17) shows that taking

r := C2

(
J

ε
+ 1

)

δ := φ

(
1

ρ
· r
) (5.35)

with C2 large suffices to ensure that

E

(〈
1L(
)c

〉+/−
25 (η)

)
≥ c2 exp

(
−C3

(
J

ε

)2)
, (5.36)

thereby proving Lemma 5.3.

5.3 Verification of the Tortuosity Condition

Proof of Lemma 5.2 Given a rectangle R and a vertex v ∈ Z
2, let Rv, j be the rotation of R

by jπ/2 radians around v. Let Av be the set {x ∈ R
2 : 
(R) < ‖x − v‖1 ≤ 8
(R)} (an

R
2-image of the annulus �v(8
(R))\�v(
(R))). We say that v is a pivot point for R if i)

∪3
j=0R

v, j is contained in Av , and ii) crossing all four rectangles (as in the event CrossR)
implies the lasso event L(
) in the annulus (see Fig. 3 for an illustration).

Letting

pR := E

[〈
1CrossR

〉∂v�v(25
(R)),+/−]
, (5.37)
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R0,1

R0,2

R0,3

R
A0

Aw

Az

Av

Λ25

Λ17\Λ16

Fig. 3 The setup for the proof of Lemmas 5.2 and 5.3. The center point 0 is a pivot point for the retangle R.
The annulus A0 is in blue. The red annuli are translates of A0 for v, w, z ∈ B. Each red annulus is a subset
of �25\�8. (Colors referring to the original PDF)

rotation invariance, the union bound, and the definition of pivot points imply that

1 − 4(1 − pR) ≤ E

[〈
1∪3

j=0CrossRv, j

〉∂v�v(25
(R)),+/−] ≤ E

[〈
1L(
)

〉∂v�v(25
(R)),+/−]
,

(5.38)

where L is the appropriate lasso event. By Lemma 5.3 and some algebraic manipulation, we
deduce that, for some absolute c,C > 0,

pR ≤ 1 − c exp

(
−c

(
J

ε

)2
)

. (5.39)

To complete the proof, let R be a well-separated set of rectangles, as in the statement of
Lemma 5.2. Let {vR}R∈R be chosen so that vR is a pivot point for R. By the conditions on
R and the triangle inequality, the set {AvR }R∈R is made up of disjoint annuli. Therefore, the
domain Markov property and monotonicity of the extended Ising model imply that

E

⎛

⎝
〈
∏

R∈R
1Cross(R)

〉∂vA1,2,+/−⎞

⎠ ≤
∏

R∈R
pR ≤

[
1 − c exp

(
−c

(
J

ε

)2)]|R|
, (5.40)

as required.
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5.4 Quantified Fractality Bounds

Using a standard argument of percolation with finite-range dependence we next go beyond
Lemma 5.1, extracting from it a quantified version of the statement.

Theorem 5.5 Let Ac,α,
 be the event that the annulus A1,2 := �(2
)\�(
) is crossed by a
path of disagreement percolation whose length does not exceed c · 
1+α . Then there exist
α = α(J/ε) > 0, absolute constants C, c, c0 > 0, and 
1 = 
1(J/ε) > 0 such that for

 > 
1

E

(
〈1Ac0,α,


〉∂vA1,2(
),+/−) ≤ Ce−c
√


. (5.41)

Proof For v ∈ Z
2, define Av,s,t (
) := (v + �(t
))\(v + �(s
)). Set α0 = α0(J/ε) > 0 to

the α of Lemma 5.1. Define

p(
) := E

(
〈1Aα0,


〉∂vA1,2(
),+/−) (5.42)

so that p(
) → 0 as 
 → ∞ by Lemma 5.1. Below we use the convention that C j , c j stand
for positive absolute constants.

For integer 
 > C1, consider the configuration (σ̄+, σ̄−) sampled in themuch larger annu-
lus A1,2(


2). To get the desired quantitative bound, we will create an auxiliary percolation
process on a rescaled version of Z2. This process will contain a crossing of an annulus when-
ever the original disagreement percolation contains a crossing of A1,2(


2) whose length is
less than 
2+α0 . Wewill then prove an upper bound on the probability of crossing the rescaled
annulus.

To that end, let

V = {(m
, n
) : m, n ∈ Z, m + n is even} ∩ A1.25,1.75(

2). (5.43)

By construction, we have that

A1.25,1.75(

2) ⊂

⋃

v∈V
�v(
) and ∀v ∈ V, |{w ∈ V : d(v,w) ≤ 4
}| < C2. (5.44)

We think of V as a ‘coarse’ lattice, and endow it with a graph structure by saying that
(u, v) ∈ E(V) if �u(
) and �v(
) intersect along an edge (i.e. their intersection has two
or more points). Viewed this way, V shares a graph structure with an annulus in Z

2 of side
length c1
 and some fixed aspect ratio. In a slight abuse of notation, we will call refer to this
annulus by V as well. The construction ensures us that, if P is a path in Z̄

2 which crosses
Ā1,2(


2) and V (P) ⊂ V is the set of vertices whose associated annuli Av,1,2(
) are crossed
by P , then V (P) contains a crossing of the rescaled annulus V .

Let Fv be the event that C∂vA1,2(
2)
(σ̄+, σ̄−) contains a crossing of Av,1,2(
) of length at

most c2
1+α0 . We call the vertex v ‘good’ if Fv occurs; otherwise, we call it ‘bad’. Then the
event Ac0,α0,
2 implies that there must exist a crossing of V for which at least half the vertices
are good. Letting Q be this event, the union bound gives that

E

(
〈1Ac0,α0,
2

〉∂vA1,2(

2),+/−) ≤ E

(
〈1Q〉∂vA1,2(


2),+/−)

≤
∑

γ

∑

S⊂γ
|S|≥|γ |/2

E

⎛

⎝
〈
∏

v∈S
1Fv

〉∂vA1,2(

2),+/−⎞

⎠ ,
(5.45)
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where γ is summed over all possible crossing paths of the annulus V , and S is the set of good
vertices in γ . The properties in (5.44) imply that, given any S ⊂ V , there exists S0 ⊂ S such
that |S0| ≥ c3 · |S|, and v,w ∈ S0 implies that d(v,w) > 4
 – i.e.Av,1,2(
)∩Aw,1,2(
) = ∅.
Therefore, the domain Markov property and monotonicity imply that

E

⎛

⎝
〈
∏

v∈S
1Fv

〉∂vA1,2(

2),+/−⎞

⎠ ≤ p(
)c3·|S|. (5.46)

Noting that the shortest path crossing the annulus V has length c4
, (5.45) implies

E

(
〈1Q〉∂vA1,2(


2),+/−) ≤
∞∑

|γ |=c4


8|γ | · p(
)c3·|γ |/2, (5.47)

since there are at most 4|γ | paths of length |γ |, and at most 2|γ | ways to partition the set
into good and bad vertices. If p(
) < c5, this sum is bounded above by C3 · e−c6
. Setting
α = α0/2 and 
1 = 
20 for the minimal 
0 > C1 for which p(
) < c5, the proof is complete.

6 Exponential Decay

In this Section we prove Theorem 1.1. As the main step, we show that the order parameter
m(
) decays faster than c



for all c > 0.

Proposition 6.1 For all T , J , h and ε,

lim

→∞ 
 · m(
) = 0. (6.1)

A quantitative rate of decay for (6.1), which depends only on J/ε and is phrased in terms
of the quantities resulting from the tortuosity theorem, is given in (6.48) below.

Theorem 1.1 follows from Proposition 6.1 by a standard percolation argument which was
detailed in [3, Appendix A] for the zero-temperature case. The disagreement percolation
representation allows its natural extension to positive temperatures, stated next. The proof is
similar in spirit to the one used to prove Theorem 5.5.

Proposition 6.2 For the RFIM on Z
d with the nearest-neighbor interaction, there is a finite

constant c0 (depending only on d) with which: if for some 
 < ∞
m(
) ≤ c0/


d−1 (6.2)

then for all L < ∞
m(L) ≤ C1 e

−bL/
 (6.3)

with C1, b ∈ (0,∞) which do not depend on T , J , h, ε and 
.

Proof By (3.4),

m(L) = E

(〈
1
[
0 ∈ C�(L)

]〉∂v�(L),+/−)
. (6.4)

Assume L > 4
 (without loss of generality) and let V ⊂ �(�L/2�) be such that (�v(
))v∈V
covers �(�L/2�), and each �v(2
) intersects at most C2 others, for a suitable C2 depending
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only on d . Let Fv be the event that�v(
)∩C∂v�(L) �= ∅ (equivalently, ∂v�v(
)∩C∂v�(L) �= ∅).
The domain Markov property, monotonicity and a union bound show that if V0 ⊂ V are such
that (�v(2
))v∈V0 are disjoint then

E

(〈∩v∈V0Fv

〉∂v�(L),+/−) ≤
∏

v∈V0

E

(〈
∂v�v(
) ∩ C∂v�(2
) �= ∅〉∂v�(2
),+/−)

≤ (C3 · c0)|V0| (6.5)

with C3 depending only on d . Lastly, if 0 ∈ C∂v�(L) then at least a constant times L/


of the events Fv occur, along a geometrically connected set of the (�v(
))v∈V . Picking
c0 sufficiently small as a function of d , the result thus follows by standard arguments of
percolation with finite-range dependence.

The rest of the section is devoted to proving Proposition 6.1.

6.1 Concentration and Anti-concentration of the Number of Disagreements

We first develop a priori bounds on the concentration properties of the number of disagree-
ments. The ideas presented are adapted from corresponding ones in [3].

The following inequality is used to convert upper bounds on the surface tension to an
anti-concentration bound for the number of disagreements.

Proposition 6.3 For finite subgraphs �1 ⊂ �2 ⊂ Z
2,

P

[
D�1,�2

E[D�1,�2 ]
< 1/2

]
≥ χ

(
1

2ε
· E[T�1,�2 ]√|�1| · |�1|

E[D�1,�2 ]
)

,

where χ is the Gaussian distribution’s two sided tail χ(t) := 2
∫∞
t φ(s) ds (see Theorem 4.2

for the definition of φ).

We omit the proof since it is essentially identical to that of [3, Proposition 3.4].
The above anti-concentration bound will be contrasted with a conditional concentration

inequality, which holds whenever the fast power-law decay (6.1) of the order parameter is
violated. The combination of the bounds results in a contradiction, which provides a proof
for the fast decay (6.1).

The concentration inequality requires that the order parameter sequence m(
) exhibits
stretches with somewhat regular behavior. This is provided by the following abstract lemma.

Lemma 6.4 Let (p j ) be a monotone non-increasing sequence satisfying 0 ≤ p j ≤ 1. For
each γ > 0 and integer k ≥ 1 there exists a non-negative integer n in the range

(k + 1) · p1/(1+γ )

k − 1 ≤ n ≤ k (6.6)

such that for all 0 ≤ j ≤ n,

pn ≤ p j ≤ pn

(
n + 1

j + 1

)1+γ

. (6.7)

Proof The left inequality in (6.7) follows from the fact that (p j ) is non-increasing. The right
inequality is obtained by selecting n to be the index at which (p j · ( j + 1)1+γ )0≤ j≤k is
maximized. The lower bound in (6.6) is due to pn · (n + 1)1+γ ≥ pk · (k + 1)1+γ and the
assumption that pn ≤ 1.
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The next proposition contains the conditional concentration inequality discussed above.

Proposition 6.5 For each c > 0 there exists C = C(c) > 0 such that the following holds.
Let �1 ⊂ �2 ⊂ Z

2 be finite subgraphs satisfying that for some L ≥ 1,

|�1| ≥ c · L2 and c · L ≤ min
u∈�1

v∈∂v�2

d(u, v) ≤ max
u∈�1

v∈∂v�2

d(u, v) ≤ L. (6.8)

Assume that for some 0 < γ < 1,

m(L) ≤ m( j) ≤ m(L)

(
L + 1

j + 1

)1+γ

, 0 ≤ j ≤ L. (6.9)

Then

E
(
(D�1,�2)

2) ≤ E
(〈|�1 ∩ C∂v�2 |2

〉∂v�2,+/−) ≤ C

γ
· L2γ · (E (D�1,�2

) )2
. (6.10)

The proposition will be applied once when�1 and�2 are concentric graph balls and once
when they are concentric annuli.

Proof of Proposition 6.5 Let Iu be the indicator function of the event {u ∈ C∂v�2(σ̄
+, σ̄−)}

for u ∈ �1. Proposition 3.1 shows that

D�1,�2 =
∑

u∈�1

〈Iu〉∂v�2,+/−. (6.11)

The first inequality in (6.10) thus follows from the Cauchy-Schwartz inequality and we focus
on the second inequality. The assumption (6.8) and monotonicity imply that

E(D�1,�2) =
∑

u∈�1

E

(
〈Iu〉∂v�2,+/−) ≥ |�1| · m(L) ≥ c · L2 · m(L). (6.12)

To bound the second moment, write

E

(〈|�1 ∩ C∂v�2 |2
〉∂v�2,+/−) =

∑

u,v∈�1

E

(
〈Iu · Iv〉∂v�2,+/−) (6.13)

and apply the following estimate, based on the domain Markov property and monotonicity,
to each term:

E

(
〈Iu · Iv〉∂v�2,+/−) ≤ E

(
〈Iu〉∂v�u (r(u,v)),+/− · 〈Iv〉∂v�v(r(u,v)),+/−)

= E

(
〈Iu〉∂v�u(r(u,v)),+/−) · E

(
〈Iv〉∂v�v(r(u,v)),+/−)

= m (r(u, v))2

(6.14)

where r(u, v) := min{�(d(u, v) − 1)/2�, �c · L�} is chosen so that the thermal expectations
for Iu and Iv in (6.14) are taken in disjoint subregions of �2, and thus involve independent
external fields.

Putting the last bounds together we conclude that

E

(〈|�1 ∩ C∂v�2 |2
〉∂v�2,+/−) ≤

�c·L�∑

k=0

|{u, v ∈ �1 : r(u, v) = k}| · m(k)2

≤ C1|�1|
⎛

⎝
�c·L�−1∑

k=0

(k + 1) · m(k)2 + |�1| · m(�c · L�)2
⎞

⎠
(6.15)
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where here and below we use C j to denote constants which may depend only on c. The
resulting terms may be estimated via the assumption (6.9) as

�c·L�−1∑

k=0

(k + 1) · m(k)2 ≤ m(L)2 · (L + 1)2+2γ ·
∞∑

k=0

1

(k + 1)1+2γ ≤ C2

γ
· L2+2γ · m(L)2 (6.16)

and

m(�c · L�) ≤ C3 · m(L). (6.17)

Plugging these bounds in (6.15) and using (6.8) shows that

E

(〈|�1 ∩ C∂v�2 |2
〉∂v�2,+/−) ≤ C4

γ
· L4+2γ · m(L)2. (6.18)

The result now follows by comparing with the lower bound (6.12).

6.2 An Upper Bound on the Surface Tension

The tortuosity bounds of Theorem 5.5 can be used to construct non-anticipatory sets with
relatively few points of disagreement, providing upper bounds on the surface tension via
Proposition 4.5. These improve upon the bounds arising from deterministic sets by a power
of the length scale (under the assumption 6.19).

Proposition 6.6 Let α = α(J/ε) and 
1 = 
1(J/ε) be the constants of Theorem 5.5. Let
0 < γ < 1 and let L > 
1 be an integer satisfying that

m(L) ≤ m( j) ≤ m(L)

(
L + 1

j + 1

)1+γ

0 ≤ j ≤ L. (6.19)

Set 
 = �L/5�. Then there exists a universal constant C such that

E[T�(
),�(6
)] ≤ Cγ − 2
3 · J · m(
) · 
1−

1
3α+γ . (6.20)

The proof is divided into several lemmas. Recall the notation SB from Sect. 4.2.

Lemma 6.7 Let �1 ⊂ �2 ⊂ Z
2 be finite subgraphs. Let (Sn)Nn=1 be a sequence of non-

anticipatory separating sets which is increasing in the sense that

(Sn)B ⊂ (Sn+1)B , 1 ≤ n ≤ N − 1. (6.21)

and with each Sn satisfying the assumption (4.11) almost surely. Then for each M > 0,

T�1,�2 ≤ 16J
(
M + 〈 |SN ∩ D| · 1E 〉∂v�2∪∂v�1,+/−) (6.22)

where D is the disagreement set (4.3) and E is the event that |Sn ∩D| > M for 1 ≤ n ≤ N.

Proof Let 1 ≤ N ≤ N be the smallest integer satisfying |SN ∩ D| ≤ M if such an integer
exists (i.e., on the event Ec) and otherwise setN = N . The increasing property of (Sn) then
implies that SN is also non-anticipatory. The result then follows from Proposition 4.5.
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We proceed to adapt the bound of the previous lemma to the setting of Proposition 6.6,
which requires several definitions.

We work in the annulus �(6
)\�(
 − 1) for some 
 > 0. For brevity, we set

〈·〉 := 〈·〉∂v�(6
)∪∂v�(
),+/−. (6.23)

Let 2
 < k ≤ 3
 be an integer. Set Ak,6
 := �(6
)\�(k) (which does not include �(k) but
includes the midedges of the edges connecting �(k) and �(k + 1)). Define

Ck|6
 := {u ∈ Ak,6
 : u D∩Ak,6
←−−−→ ∂v�(6
)}. (6.24)

Write dCk|6
 for the graph distance in the induced subgraph on Ck|6
 ⊂ Z̄
2. Let Nk := |Ak,6
|

and define, for 1 ≤ n ≤ Nk ,

Bk
n := {u ∈ Ak,6
 : dCk|6
 (u, ∂v�(6
)) ≤ 2n − 1} ,

Sk
n := {u ∈ �(6
)\Bn : ∃v ∈ Bn, u ∼ v}. (6.25)

Lastly, let

C6
 := {u ∈ �(6
)\�(2
) : u D←→ ∂v�(6
)}. (6.26)

Lemma 6.8 With the above definitions, for each M > 0,

T�(
),�(6
) ≤ 16J

(
M + 1




3
∑

k=2
+1

〈 |C6
 ∩ �(k)| · 1Ek 〉
)

(6.27)

with Ek the event that |Sk
n ∩ C6
| > M for 1 ≤ n ≤ Nk.

Proof Weaim to applyLemma6.7with�1 := �(
),�2 := �(6
). Thedefinitions imply that
the (Skn ) are non-anticipatory separating sets satisfying (6.21).Moreover, each�e ∈ Sk

n satisfies
that one endpoint of e is in Bk

n while �e /∈ Bk
n . The use of an odd distance in the definition

of Bk
n thus necessitates that σ̄+|

�e
= σ̄−|

�e
= 0, so that the Sk

n satisfy the assumption (4.11)
almost surely. Lemma 6.7 then shows that

T�(
),�(6
) ≤ 16J
(
M + 〈 |Sk

Nk
∩ D| · 1Ek 〉

)
(6.28)

with Ek the event that |Sk
n ∩ D| > M for 1 ≤ n ≤ Nk . The event Ek may be equivalently

presented as in the statement of the lemma as our definitions imply that Sk
n ∩D = Sk

n ∩ C6
.
In addition, the definitions and our choice of Nk imply that SNk ∩ D ⊂ C6
 ∩ �(k). The
lemma thus follows by averaging (6.28) over 2
 < k ≤ 3
.

We next discuss the ‘bad’ events Ek appearing in Lemma 6.8. Let α = α(J/ε), 
1 =

1(J/ε) and c0 be the constants of Theorem 5.5. Define

E1 :=
{
C6
 contains a crossing of �(6
)\�(3
) of length at mostc0 · (3
)1+α

}
,

E2 :=
{
|C6
 ∩ (�(6
)\�(3
))| >

1

2
c · M · (3
)1+α

}
.

(6.29)

Lemma 6.9 With the above definitions, Ek ⊂ E1 ∪ E2 for each 2
 ≤ k < 3
.
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Proof Fix 2
 ≤ k < 3
. The definitions imply that the sets (Sk
n ∩ C6
)n are subsets of the

non-extended lattice Z2, which may intersect only at �(k). In particular,

|C6
 ∩ (�(6
)\�(3
))| ≥
Nk∑

n=1

|Sk
n ∩ C6
 ∩ (�(6
)\�(3
))| (6.30)

On the event Ek , this estimate may be continued to

|C6
 ∩ (�(6
)\�(3
))| > M max{n : (Sk
n ∩ C6
 ⊂ �(6
)\�(3
)}

≥ M max{n : Bk
n ⊂ �(6
)\�(3
)} (6.31)

where in the second inequality the fact that the Sk
n satisfy (4.11) is used. If the event E1 does

not occur then Bk
n ⊂ �(6
)\�(3
) for 1 ≤ n ≤ 1

2c · (3
)1+α . Thus Ek\E1 ⊂ E2.

A combination of the last two lemmas provides the estimate

T�(
),�(6
) ≤ 16J

(
M + 1




〈 |C6
 ∩ (�(3
)\�(2
))| · 1E1∪E2

〉)
. (6.32)

To further estimate the right-hand side we take the average over the external magnetic field
and apply the Cauchy-Schwartz inequality and the union bound to get

E
(〈 |C6
 ∩ (�(3
)\�(2
))| · 1E1∪E2

〉)

≤
√
E
(〈 |C6
 ∩ (�(3
)\�(2
))|2〉) · E

(〈
1E1 + 1E2

〉)
(6.33)

We apply the following bounds to the terms in the right-hand side above.

Lemma 6.10 Suppose 
 = �L/5� for an integer L satisfying (6.19) and suppose that 3
 > 
1.
Then, for absolute constants C, c′ > 0,

E
(〈 |C6
 ∩ (�(3
)\�(2
))|2〉) ≤ C

γ
· m(
)2 · 
4+2γ , (6.34)

E
(〈
1E1

〉) ≤ Ce−c′√
 , (6.35)

E
(〈
1E2

〉) ≤ C

γ
· m(
) · 
1+γ−α

M
. (6.36)

Proof To see (6.34) note that Proposition 6.5 shows that

E
(〈 |C6
 ∩ (�(3
)\�(2
))|2〉) ≤ C1

γ
· 
2γ · (E (D�(3
)\�(2
),�(6
)\�(
−1)

) )2
. (6.37)

for an absolute constant C1. The bound (6.34) now follows by monotoncity of the disagree-
ment percolation and the assumption (6.19).

The probability of the event E1 is estimated using Theorem 5.5 and monotonicity. For the
event E2, monotonicity and the assumption (6.19) may again be invoked to yield

E (〈|C6
 ∩ (�(6
)\�(3
))|〉) = E
(
D�(6
)\�(3
),�(6
)\�(
−1)

)

≤ C2 · 
 ·
3
−1∑

r=0

m(r) ≤ C3

γ
· m(
) · 
2+γ .

(6.38)

for absolute constants C2,C3. Thus (6.36) follows from Markov’s inequality.
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Combining (6.32), (6.33) and the preceding lemma we arrive at

E
(
T�(
),�(6
)

)

≤ 16J

⎛

⎝M + 1




√
C

γ
· m(
)2 · 
4+2γ ·

(
Ce−c′√
 + C

γ
· m(
) · 
1+γ−α

M

)⎞

⎠ .(6.39)

Finally choosing M := 1
γ 2/3 · m(
) · 
1− 1

3α+γ finishes the proof of the proposition.

6.3 Proof of Proposition 6.1

Let α = α(J/ε) and 
1 = 
1(J/ε) take their values from Theorem 5.5. Fix a constant
0 < c0 < 1 throughout the proof. Suppose N is an integer satisfying

m(N ) >
c0

N + 1
. (6.40)

Applying Lemma 6.4 with (m( j)) in the role of (p( j)), k = N and γ = 1
12α we obtain the

existence of an integer L ≥ 0 satisfying

N ≥ L ≥ (N + 1) · m(N )1/(1+
1
12α) − 1 ≥ (N + 1)

(
c0

N + 1

)1/(1+ 1
12α)

− 1. (6.41)

for which

m(L) ≤ m( j) ≤ m(L)

(
L + 1

j + 1

)1+ α
12

0 ≤ j ≤ L. (6.42)

Set 
 = �L/5�. Assuming that L > 
1 we may Apply Proposition 6.6 to obtain

E[T�(
),�(6
)] ≤ C1α
− 2

3 · J · m(
) · 
1−
1
4α (6.43)

where we let C j stand for absolute constants. This bound is used in conjunction with Propo-
sition 6.3 to deduce that

P

[
D�(
),�(6
)

E[D�(
),�(6
)] < 1/2

]

≥ χ

(
1

2ε
· C1α

− 2
3 · J · m(
) · 
1− 1

4α

√|�(
)| · |�(
)|
E[D�(
),�(6
)]

)
. (6.44)

Using also the monotonicity of disagreement percolation and (6.42) we find that

P

(
D�(
),�(6
)

E(D�(
),�(6
))
< 1/2

)
≥ χ

(
C2

α2/3 · J

ε
· 
− 1

4α

)
, (6.45)

noting that the right-hand side is very close to 1 for 
 large.
In contrast, Proposition 6.5 shows that

E
(
(D�(
),�(6
))

2) ≤ C3

α
· 


1
6α · (E (D�1,�2

) )2
. (6.46)

This implies, via the one-sided Chebyshev inequality, that

P

(
D�(
),�(6
)

E(D�(
),�(6
))
< 1/2

)
<

1

1 + α
C4


− 1
6α

. (6.47)
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The bounds (6.45) and (6.47) are in contradiction for 
 sufficiently large. The contradiction
shows that our initial assumption (6.40) is false, thus concluding the proof of the proposition.

Since 
 = �L/5�, we may track the dependence through (6.41) and deduce that

N >
1

c0
max

{
2,

J

ε
,
1

α
, 
1

} C5
α2

implies m(N ) ≤ c0
N + 1

. (6.48)

7 Open Questions

The question discussed here remains open for systems of continuous spin variables, e.g. two-
component spin models with rotation-invariant interaction. It is of particular interest with
regards to random fields with rotationally-invariant distribution, in dimensions 2 ≤ d ≤ 4.

A remaining question for the random-field Ising model is the quantitative dependence of
the correlation length ξ on the disorder strength. There are actually a number of relevant
length scales. One of these, which makes sense even in the absence of exponential decay, is
the distance ξ0(ε/J ) at which the order parameter drops below somefixed threshold. Another,
which is finite only in the presence of exponential decay, is the inverse of the rate of that
decay. The preceding works [3,11] provide the upper bound

ξ0 ≤ ee
O((J/ε)2)

(7.1)

at weak disorder. A heuristic upper bound of the same general form may be understood
from the analysis of Imry and Ma [18] or from the Mandelbrot percolation picture of [3]. As
stated, Theorem 1.1 does not provide quantitative bounds on the correlation length; however,
its proof implies such bounds in terms of the quantities arising from the tortuosity result [1]
(see Sect. 6). It is of interest to determine the general rate of growth of ξ . As an alternative
to the form appearing in (7.1), the behavior

ξ � exp
(
O
(
J/ε)2

))
(7.2)

was discussed in [8].
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