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Abstract

In recent literature one-loop tests of the higher-spin AdSd+1/CFTd correspondences were carried
out. Here we extend these results to a more general set of theories in d > 2. First, we consider the
Type B higher spin theories, which have been conjectured to be dual to CFTs consisting of the singlet
sector of N free fermion fields. In addition to the case of N Dirac fermions, we carefully study the
projections to Weyl, Majorana, symplectic, and Majorana-Weyl fermions in the dimensions where
they exist. Second, we explore theories involving elements of both Type A and Type B theories,
which we call Type AB. Their spectrum includes fields of every half-integer spin, and they are
expected to be related to the U(N)/O(N) singlet sector of the CFT of N free complex/real scalar
and fermionic fields. Finally, we explore the Type C theories, which have been conjectured to be
dual to the CFTs of p-form gauge fields, where p = d

2 − 1. In most cases we find that the free
energies at O(N0) either vanish or give contributions proportional to the free-energy of a single
free field in the conjectured dual CFT. Interpreting these non-vanishing values as shifts of the bulk
coupling constant GN ∼ 1/(N − k), we find the values k = −1,−1/2, 0, 1/2, 1, 2. Exceptions to this
rule are the Type B and AB theories in odd d; for them we find a mismatch between the bulk and
boundary free energies that has a simple structure, but does not follow from a simple shift of the
bulk coupling constant.
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1 Introduction

Extensions of the original AdS/CFT correspondence [1–3] to relations between the “vectorial” d-

dimensional CFTs and the Vasiliev higher-spin theories in (d+ 1)-dimensional AdS space [4–8] have

attracted considerable attention (for recent reviews of the higher-spin AdSd+1/CFTd correspondence

see [9, 10]). The CFTs in question are quite well understood; their examples include the singlet

sector of the free U(N)/O(N) symmetric theories where the dynamical fields are in the vectorial

representation (rather than in the adjoint representation), or of the vectorial interacting CFTs such

as the d = 3 Wilson-Fisher and Gross-Neveu models [11–13]. Some years ago the singlet sectors

of U(N)/O(N) symmetric d-dimensional CFTs of scalar fields were conjectured to be dual to the

Type A Vasiliev theory in AdSd+1 [11], while the CFTs of fermionic fields – to the type B Vasiliev

theory [12, 13]. In d = 3 the U(N)/O(N) singlet constraint is naturally imposed by coupling the

massless matter fields to the Chern-Simons gauge field [14, 15]. While the latter is in the adjoint

representation, it carries no local degrees of freedom so that the CFT remains vectorial. More

recently, a new similar set of dualities was proposed in even d and called Type C [16–18]; it involves

the CFTs consisting of some number N of
(
d
2 − 1

)
-form gauge fields projected onto the U(N)/O(N)

singlet sector.

The higher-spin AdS/CFT conjectures were tested through matching of three-point correlation

functions of operators at order N , corresponding to tree level in the bulk [9,19]; further work on the

correlation functions includes [20–25]. Another class of tests, which involves calculations at order

N0, corresponding to the one-loop effects in the bulk, was carried out in [16–18,26–29]. It concerned

the calculation of one-loop vacuum energy in Euclidean AdSd+1, corresponding to the sphere free

energy F = − logZSd in CFTd; in even/odd d this quantity enters the a/F theorems [30–36]. Similar

tests using the thermal AdSd+1, where the Vasiliev theory is dual to the vectorial CFT on Sd−1×S1,

have also been conducted [16–18,28, 37]. Such calculations serve as a compact way of checking the

agreement of the spectra in the two dual theories. The quantities of interest are the formula for the

thermal free energies at arbitrary temperature β, as well as the temperature-independent Casimir

energy Ec.

In this paper we continue and extend the earlier work [16–18, 26–29] on the one-loop tests of

higher-spin AdS/CFT. In particular, we will compare the Type B theories in various dimensions

d and their dual CFTs consisting of the Dirac fermionic fields (we also consider the theories with

Majorana, symplectic, Weyl, or Majorana-Weyl fermions in the dimensions where they are admis-

sible). Let us also comment on the Sachdev-Ye-Kitaev (SYK) model [38, 39], which is a quantum

mechanical theory of a large number N of Majorana fermions with random interactions; it has been

attracting a great deal of attention recently [40–44]. After the use of replica trick, this model has

manifest O(N) symmetry [40], and it is tempting to look for its gravity dual using some variant

of type B higher spin theory. Following [45] one may speculate that the SYK model provides an
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effective IR description of a background of a type B Vasiliev theory asymptotic to AdS4 which is

dual to a theory of Majorana fermions; this background should describe RG flow from AdS4 to

AdS2 (one could also search for RG flow from HS theory in AdSd+1 to AdS2 with d = 2, 4, . . .).

Two other types of theories with no explicitly constructed Vasiliev equations are also explored.

First, we consider the theories whose CFT duals are expected to consist of both scalar and fermionic

fields, with a subsequent projection onto the singlet sector. These theories, which we call of Type AB,

are then expected to have half-integral spin gauge fields in addition to the integral spin gauge fields

of Type A and Type B theories. Depending on the precise scalar and fermion field content, the Type

AB theories may be supersymmetric in some specific dimension d. For example, the U(N) singlet

sector of one fundamental Dirac fermion and one fundamental complex scalar is supersymmetric

in d = 3, and a similar theory with one fundamental Dirac fermion and two fundamental complex

scalars is supersymmetric in d = 5.1 Second, we study the Type C theories, where the CFT dual

consists of some number of p-form gauge fields, with p = d
2 − 1; the self-duality condition on the

field strength may also be imposed. Such theories were studied in [16–18] for d = 4 and 6, and we

extend them to more general dimensions.

The organization of the paper is as follows. In Section 2, we review how the comparison of

the partition functions of the higher-spin theory and the corresponding CFT allows us to draw

useful conclusions about their duality. We will also go through the various HS theories that will

be examined in this paper. This will allow us to summarize our results in Tables 1, 2, and 6. In

Section 3, we present our results for the free energy of Vasiliev theory in Euclidean AdSd+1 space

asymptotic to the round sphere Sd. In addition, in Appendix A, we detail the calculations for the

free energy of Vasiliev theory in the thermal AdSd+1 space, which is asymptotic to Sd−1 × S1.

Note Added: Shortly before completion of this paper we became aware of independent forth-

coming work on related topics by M. Gunaydin, E. Skvortsov and T. Tran [46].

2 Review and Summary of Results

2.1 Higher spin partition functions in Euclidean AdS spaces

According to the AdS/CFT dictionary, the CFT partition function ZCFT on the round sphere Sd

has to match the partition function of the bulk theory on the Euclidean AdSd+1 asymptotic to

Sd. This is the hyperbolic space Hd+1 with the metric, ds2 = dρ2 + sinh2ρ dΩd, where dΩd is the

metric of a unit d-sphere. After defining the free energy F = − logZ, the AdS/CFT correspondence

implies FCFT = Fbulk.
1This theory may be coupled to the U(N) 5d Chern-Simons gauge theory to impose the singlet constraint.
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For a vectorial CFT with U(N), O(N) or USp(N) symmetry, the large N expansion is

FCFT = Nf (0) + f (1) +
1

N
f (2) + . . . . (2.1)

For a CFT consisting of N free fields, one obviously has f (n) = 0 for all n ≥ 1.

For the bulk gravitational theory with Newton constant GN the perturbative expansion of the

free energy assumes the form

Fbulk =
1

GN
F (0) + F (1) +GNF

(2) + . . . (2.2)

The leading contribution is the on-shell classical action of the theory; it should match the leading

term in the CFT answer which is of order N . Such a matching seems impossible at present due to

the lack of a conventional action for the higher spin theories.2 However, as first noted in [26], the

one-loop correction F (1) requires the knowledge of only the free quadratic actions for the higher-

spin fields in AdSd+1; it can be obtained by summing the logarithms of functional determinants of

the relevant kinetic operators. The latter were calculated by Camporesi and Higuchi [47–50], who

derived the spectral zeta function for fields of arbitrary spin in (A)dS. What remains is to carry out

the appropriately regularized sum over all spins present in a particular version of the higher spin

theory.

The corresponding sphere free energy in a free CFT is given by FCFT = NF , where F may be

extracted from the determinant for a single conformal field (see, for example, [35]); the examples of

the latter are conformally coupled scalars, massless fermions, or p-form gauge fields. For vectorial

theories with double-trace interactions, such as the Wilson-Fisher and Gross-Neveu models, the

CFT itself has a non-trivial 1
N expansion, and so FCFT = NF + O(N0). To match the large N

scaling, the Newton constant of the bulk theory must behave as

1

GN
∝ N, (2.3)

in the large N limit. If one assumes that 1
GN

F (0) = FCFT, then all the higher-loop corrections to

Fbulk must vanish for FCFT = Fbulk to hold. In [26, 27], it was found that for the Vasiliev Type A

theories in all dimensions d, the non-minimal theories containing each integer spin indeed have a

vanishing one-loop correction to F . However, the minimal theories with even spins only were found

to have a non-vanishing one-loop contribution that matched exactly the value of the sphere free-

energy of a single conformal real scalar. This surprising result was then interpreted as a one-loop
2In the collective field approach to the bulk theory the action does exist, and the matching of free energies works

by construction [29]. However, the precise connection of this formalism with the Vasiliev equations remains an open
problem.
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shift

1

GN
∼ N − 1, (2.4)

where the one-loop contribution cancels exactly the shift in the coupling constant. Such an integer

shift is consistent with the quantization condition for 1
GN

established in [20,21]. The rule N → N−1

does not apply to all the variants of the HS theory. In [16, 17] it was shown that the one-loop

calculations in Type C higher spin theories dual to free U(N)/O(N) Maxwell fields in d = 4

required that 1
GN
∼ N −1 or N −2 respectively. If the Maxwell fields are taken to be self-dual then

1
GN
∼ N − 1/2; in view of this half-integer shift it is not clear if such a theory is consistent.

2.2 Variants of Higher Spin Theories and Key Results

The simplest and best understood HS theory is the type A Vasiliev theory in AdSd+1, which is

known at non-linear level for any d [7]. The spectrum consists of a scalar with m2 = −2(d − 2)

and a tower of totally symmetric HS gauge fields (in the minimal theory, only the even spins are

present). This is in one to one correspondence with the spectrum of O(N)/U(N) invariant “single

trace” operators on the CFT side, which consists of the ∆ = d− 2 scalar

J0 = φ∗iφ
i (2.5)

and the tower of conserved currents

Jµ1···µs = φ∗i ∂(µ1
· · · ∂µs)φ

i + · · · , s ≥ 1. (2.6)

This spectrum can be confirmed for instance by computing the tensor product of two free scalar

representatios, which yields the result [8, 51, 52]

(
d

2
− 1; 0

)
⊗
(
d

2
− 1; 0

)
= (d− 2; 0, . . . , 0) +

∞∑

s=1

(d− 2 + s; s, 0, . . . , 0) (2.7)

where the notation (∆;m1,m2, . . .) indicates a representation of the conformal algebra with con-

formal dimension ∆ and SO(d) representation labelled by [m1,m2, . . .] (on the left-hand side,

(d/2 − 1; 0) is a shorthand for (d/2 − 1; 0, . . . , 0)). Equivalently, one may obtain the same re-

sult by computing the “thermal” partition function of the free CFT on S1 × Sd−1, using a flat

connection to impose the U(N) singlet constraint [28, 37]. Similarly one can consider real scalars

and O(N) singlet constraint, where one obtains the same spectrum but with odd spins removed

(this corresponds to symmetrizing the product in (2.7)).

Another version of the HS theory is the so-called “type B” theory, which is defined to be the
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HS gauge theory in AdSd+1 dual to the free fermionic CFTd restricted to its singlet sector. The

field content of such theories can be deduced from CFT considerations, by deriving the spectrum of

singlet operators which are bilinears in the fermionic fields. In the case of Dirac fermions, one has

the following results for the tensor product of two free fermion representations [8, 52]: in even d

(
d− 1

2
;
1

2

)
⊗
(
d− 1

2
;
1

2

)
= 2(d− 1; 0, . . . , 0) + 2

∞∑

s=1

[(d− 2 + s; s, 0, . . . , 0) + (d− 2 + s; s, 1, 0, . . . , 0)

+(d− 2 + s; s, 1, 1, 0, . . . , 0) + . . .+ (d− 2 + s; s, 1, 1, 1, . . . , 1, 0)

+(d− 2 + s; s, 1, 1, . . . , 1, 1) + (d− 2 + s; s, 1, 1, . . . , 1,−1)]

(2.8)

and in odd d

(
d− 1

2
;
1

2

)
⊗
(
d− 1

2
;
1

2

)
= (d− 1; 0, . . . , 0) +

∞∑

s=1

[(d− 2 + s; s, 0, . . . , 0)+

+(d− 2 + s; s, 1, 0, . . . , 0) + . . .+ (d− 2 + s; s, 1, 1, . . . , 1, 0) + (d− 2 + s; s, 1, 1, . . . , 1, 1)] .

(2.9)

Note that in the case d = 3, the spectra of the type A and type B theory are the same, except for

the fact that the m2 = −2 scalar is parity even in the former and parity odd in the latter (and also

quantized with conjugate boundary conditions, ∆ = 1 versus ∆ = 2). In this special case, the fully

non-linear equations for the type B HS gauge theory in AdS4 are known and closely related to those

of the type A theory [6]. For all d > 3, however, the spectra of Type B theories differ considerably

from Type A theories, since they contain towers of spins with various mixed symmetries, see (2.8)-

(2.9), and the corresponding non-linear equations are not known. As an example, and to clarify

the meaning of (2.8)-(2.9), let us consider d = 4 [28, 53–55]. In this case, on the CFT side one can

construct the two scalar operators

J0 = ψ̄iψ
i, J̃0 = ψ̄iγ5ψ

i , (2.10)

as well as (schematically) the totally symmetric and traceless bilinear currents

Jµ1···µs = ψ̄iγ(µ1
∂µ2 · · · ∂µs)ψ

i + · · · , J̃µ1···µs = ψ̄iγ5γ(µ1
∂µ2 · · · ∂µs)ψ

i + · · · , s ≥ 1 , (2.11)

and a tower of mixed higher symmetry bilinear current,

Mµ1···µs,ν = ψ̄iγν(µ1
∂µ2 · · · ∂µs)ψ

i + · · · , s ≥ 1 , (2.12)

where γνµ1 = γ[νγµ1] is the antisymmetrized product of the gamma matrices. These operators

are dual to corresponding HS fields in AdS5. In particular, in addition to two towers of Fronsdal

fields and a tower of mixed symmetry gauge fields, there are two bulk scalar fields and a massive
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antisymmetric tensor dual to ψ̄iγµνψi. Similarly, in higher dimensions one can construct the tower

of mixed symmetry operators appearing in (2.8)-(2.9) by using the antisymmetrized product of

several gamma matrices. In the Young tableaux notation, these operators correspond to the hook

type diagrams

sz }| {

j

8
>>>>><
>>>>>:

....

· · ·

(0.8)

2

(2.13)

where 1 < j ≤ p, with p = d/2 for even d and p = (d− 1)/2 for odd d. For s > 1, these operators

are conserved currents and are dual to massless gauge fields in the bulk, while for s = 1 they are

dual to massive antisymmetric fields.

For even d, we find evidence that the non-minimal Type B theory is exactly dual to the singlet

sector of the U(N) free fermionic CFT. The one-loop free energy of the Vasiliev theory vanishes

exactly. This generalizes the result given in [16] for the non-minimal Type B theory in AdS5;

namely, there is no shift to the coupling constant in the non-minimal Type B theory dual to the

singlet sector of Dirac fermions.

However, for all odd d, the one-loop free energy does not vanish. Instead, it follows a surprising

formula

F
(1)
type B =− 1

Γ(d+ 1)

∫ 1/2

0
du u sin(πu)Γ

(
d

2
+ u

)
Γ

(
d

2
− u
)
, (2.14)

which has an equivalent form for integer d

F
(1)
type B =

1

2Γ(d+ 1)

∫ 1

0
du cos (πu) Γ

(
d+ 1

2
+ u

)
Γ

(
d+ 1

2
− u
)
, (2.15)

For example, for d = 3, 5, 7 one finds

F
(1)
type B = −ζ(3)

8π2
, d = 3 ,

F
(1)
type B = − ζ(3)

96π2
− ζ(5)

32π2
, d = 5 ,

F
(1)
type B = − ζ(3)

720π2
− ζ(5)

192π2
− ζ(7)

128π2
, d = 7 .

(2.16)
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and similarly for higher d. Obviously, these complicated shifts cannot be accommodated by an

integer shift of N . While the reason for this is not fully clear to us, it may be related to the fact

that the imposition of the singlet constraint requires introduction of other terms in F . For example,

in d = 3 the theory also contains a Chern-Simons sector, whose leading contribution to F is of

order N2. Perhaps a detailed understanding of these additional terms holds the key to resolving

the puzzle for the fermionic theories in odd d.

We note that (2.14) always produces only linear combinations of ζ(2k + 1)/π2 with rational

coefficients. Interestingly, these formulas are related to the change in F due to certain double-trace

deformations [56]. In particular, the first formula gives (up to sign) the change in free energy due

to the double-trace deformation ∼
∫
ddxO2

∆, where O∆ is a scalar operator of dimension ∆ = d−1
2 ,

and the second formula is proportional to the change in free energy due to the deformation ∼
∫
ddxΨ̄∆Ψ∆, where Ψ∆ is a fermionic operator of dimension ∆ = d−2

2 . The reason for this formal

relation to the double-trace flows is unclear to us.

We also consider bulk Type B theories where various truncations have been imposed on the

non-minimal Type B theory and we provide evidence that they are dual to the singlet sectors of

various free fermionic CFTs. In d = 2, 3, 4, 8, 9 mod 8 we study the CFT of N Majorana fermions

with the O(N) singlet constraint, while in d = 5, 6, 7 mod 8 we study the theory of N symplectic

Majorana fermions with the USp(N) singlet constraint. We also study the CFT of Weyl fermions

in even d, and of Majorana-Weyl fermions when d = 2 mod 8. We will discuss these truncations

in more detail in section 3.2.1. For even d, we find that under the Weyl truncation, the Type

B theories have vanishing F at the one-loop level. Under the Majorana/symplectic Majorana

condition, the free energy of the truncated Type B theory gives (up to sign) the free energy of one

free conformal fermionic field on Sd. This is logarithmically divergent due to the CFT a-anomaly,

FS
d

f = af log(µR), where the anomaly coefficient af is given by [56]:

af = 2
d
2

(−1)
d
2

πΓ(1 + d)

∫ 1

0
du cos

(πu
2

)
Γ

(
1 + d+ u

2

)
Γ

(
1 + d− u

2

)
(2.17)

=

{
−1

6
,

11

180
,− 191

7560
,

2497

226800
,− 14797

2993760
,

92427157

40864824000
,− 36740617

35026992000
, · · ·

}
(2.18)

for d = {2, 4, 6, 8, . . .}. Finally, under the Majorana-Weyl condition, the free energy of the cor-

responding truncated Type B theory reproduces half of the anomaly coefficients given in (2.18),

corresponding to a single Majorana-Weyl fermion.

For the odd d case, the minimal type B theories dual to the Majorana (or symplectic Majorana)

projections again have unexpected values of their one-loop free energies. They are listed in Table 6.

We did not find a simple analytic formula that reproduces these numbers, but we note that, as in

the non-minimal type B result (2.14), these values are always linear combinations of ζ(2k + 1)/π2

with rational coefficients. It would be very interesting to understand the origin of these “anomalous”
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results in the type B theories.

One may also consider free CFTs which involve both the conformal scalars and fermions in the

fundamental of U(N) (or O(N)), with action

S =

∫
ddx

N∑

i=1

[
(∂µφ

∗
i )(∂

µφi) + ψ̄i(/∂)ψi
]
. (2.19)

When we impose the U(N) singlet constraint, the spectrum of single trace operators contains not

only the bilinears in φ and ψ, which are the same as discussed above, but also fermionic operators

of the form

Ψµ1···µs = ψ̄i∂(µ1
· · · ∂µ

s− 1
2

)φ
i + . . . , where s =

1

2
,
3

2
, · · · , (2.20)

The dual HS theory in AdS should then include, in addition to the bosonic fields that appear in type

A and type B theories, a tower of massless half integer spin particles with s = 3/2, 5/2, . . ., plus a

s = 1/2 matter field. We will call the resulting HS theory the “type AB” theory. Note that in d = 3

this leads to a supersymmetric theory, but in general d the action (2.19) is not supersymmetric. One

may also truncate the model to the O(N)/USp(N) by imposing suitable reality conditions. There

is no qualitative difference in the spectrum of the half-integer operators in the truncated models,

with the only quantitative difference being a doubling of the degrees of freedom of each half-integer

spin particle when going from O(N)/USp(N) to U(N) in the dual CFT.

The partition function for the Type AB theory is,

Z = e−F = e
− 1
GN

F (0)+F (1)+GNF
(2)+···

, where F (1) = F
(1)
f + F

(1)
b , (2.21)

with Fb being for the contributions from bosonic higher-spin fields, which arise from purely Type

A and purely Type B contributions, and F (1)
f is the contribution of the HS fermions dual to (2.20).

Up to one-loop level, the bosonic and fermionic contributions are decoupled, as indicated in (2.21).

A similar decoupling of the Casimir energy occurs at the one-loop level, i.e. E(1)
c = E

(1)
c,f + E

(1)
c,b .

Our calculations for the Euclidean-AdS higher spin theory shows that F (1)
f = 0 at the one-loop

level for both U(N)/O(N) theories for all d. Similarly, the Casimir energies are found to vanish:

Ec,f = 0. In even d, from our results on the Type B theories and the earlier results on Vasiliev Type

A theories, we see that F (1)
b = 0 for the non-minimal Type AB theory, and this suggests that Type

AB theories at one-loop have vanishing F (1). For odd d, F (1) is non-vanishing with the non-zero

contribution coming from the Type B theory’s free energy, as discussed above.

Finally, we consider the Type C higher-spin theories, which are conjectured to be dual to the

singlet sector of massless p-forms, where p = (d2 − 1).3 The first two examples of these theories are

3The choice of the p-form is made to ensure that the current operators satisfy the unitary bound, as well as
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the d = 4 case discussed in [16, 17], where the dynamical fields are the N Maxwell fields, and the

d = 6 case [18] where the dynamical fields are N 2-form gauge fields with field strength Hµνρ. In

these theories, there are also an infinite number of totally symmetric conserved higher-spin currents,

in addition to various fields of mixed symmetry. We will extend these calculations to even d > 6.

As for type B theories in d > 3, there are no known equations of motion for type C theories, but

we can still infer their free field spectrum from CFT considerations, using the results of [52]. The

non-minimal theory is obtained by taking N complex (d/2− 1)-form gauge fields A, and imposing

a U(N) singlet constraint. One may further truncate these models by taking real fields and O(N)

singlet constraint, which results in the “minimal type C” theory. In addition, one can further impose

a self-duality condition on the d/2-form field strength F = dA. Since ∗2 = +1 in d = 4m + 2 and

∗2 = −1 in d = 4m, where ∗ is the Hodge-dual operator, one can impose the self-duality condition

F = ∗F only in d = 4m + 2 (for m integer); this can be done both for real (O(N)) and complex

(U(N)) fields. In d = 4m, and only in the non-minimal case with N complex fields, one can impose

the self-duality condition F = i ∗ F . Decomposing F = F1 + iF2 into its real and imaginary parts,

this condition implies F1 = − ∗F2, and selfdual and anti-selfdual parts of F are complex conjugate

of each other.

As an example, let us consider d = 4 and take N complex Maxwell fields with a U(N) singlet

constraint. The spectrum of the the single trace operators arising from the tensor product F̄ iµν⊗F
ρσ
i

can be found to be [17,52]

(2; 1, 1)c ⊗ (2; 1, 1)c = 2(4; 0, 0) + (4; 1, 1)c + (4; 2, 2)c

+ 2
∞∑

s=2

(s+ 2; s, 0) +
∞∑

s=3

(s+ 2; s, 2)c
(2.22)

where we use the notation (2; 1, 1)c = (2; 1, 1) + (2; 1,−1), corresponding to the sum of the selfdual

and anti selfdual 2-form field strength with ∆ = 2, and similarly for the representations appearing

on the right-hand side. Note that we use SO(4) notations [m1,m2] to specify the representation.

The operators in the first line are dual to matter fields in AdS5 in the corresponding representations,

while the second line corresponds to massless HS gauge fields. Note that a novel feature compared

to type A and type B is the presence of mixed symmetry representations with two boxes in the

second row

s︷ ︸︸ ︷
· · · (2.23)

conformal invariance.

10



Imposing a reality condition and O(N) singlet constraint, one obtains the minimal spectrum [17]

[(2; 1, 1)c ⊗ (2; 1, 1)c]symm = 2(4; 0, 0) + (4; 2, 2)c

+
∞∑

s=2

(s+ 2; s, 0) +
∞∑

s=4,6,...

(s+ 2; s, 2)c .
(2.24)

Similarly, one may obtain the spectrum in all higher dimensions d = 4m and d = 4m + 2, as will

be explained in detail in section 3.2.3. As an example, in the d = 8 type C theory we find the

representations

s︷ ︸︸ ︷
· · · &

s︷ ︸︸ ︷
· · · &

s︷ ︸︸ ︷
· · ·

&

s︷ ︸︸ ︷
· · · &

s︷ ︸︸ ︷
· · · &

s︷ ︸︸ ︷
· · ·

(2.25)

&

s︷ ︸︸ ︷
· · · &

s︷ ︸︸ ︷
· · ·

Our results for the one-loop calculations in type C theories are summarized in Table 1. We

find that the non-minimal U(N) theories have non-zero one-loop contributions, unlike the type A

and type B theories (in even d). The results can be grouped into two subclasses depending on the

spacetime dimension, namely those in d = 4m or in d = 4m + 2, where m is an integer. In the

minimal type C theories with O(N) singlet constraint, we find that for all d = 4m the identification

of the bulk coupling constant is 1/GN ∼ N − 2, while in d = 4m+ 2, the bulk one-loop free energy

vanishes, and therefore no shift is required. In the self-dual U(N)/O(N) theories, the one-loop

free energy does not vanish, but can be accounted for by half-integer shifts 1/GN ∼ N ± 1/2,

as mentioned earlier. We find that all of these results are consistent with calculations of Casimir

energies in thermal AdS space, which are collected in the Appendix.
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Type of Theory Shift to 1
GN
∼ N

Type A Theories
Non-Minimal U(N): No shift

Minimal O(N): N → N − 1

Type B Theories
Non-Minimal U(N): No shift

Minimal O(N) in d = 2, 4, 8 (mod 8): N → N − 1
USp(N) in d = 6 (mod 8): N → N + 1

Weyl Projection: No shift
Majorana-Weyl: d = 2 (mod 8): N → N − 1

Type C Theories (p-Forms)

Non-minimal U(N)
d = 4, 8, 12, . . .: N → N − 1
d = 6, 10, 14, . . .: N → N + 1

Minimal O(N)
d = 4, 8, 12, . . .: N → N − 2
d = 6, 10, 14, . . .: No shift

Self-dual U(N)
d = 4, 8, 12, . . .: N → N − 1

2

d = 6, 10, 14, . . .: N → N +
1

2

Self-dual O(N)
d = 4, 8, 12, . . .: Not defined

d = 6, 10, 14, . . .: N → N − 1

2

Table 1: Summary of results of one-loop calculations for even d > 0. By no shift, we mean that there are no shifts
to the relation GN ∼ 1/N due to one-loop free energy of the particular theory. Results for Type A theories taken
from [27].

3 Matching the Sphere Free Energy

3.1 The AdS spectral zeta function

Let us first review the calculation of the one-loop partition function on the hyperbolic space in the

case of the totally symmetric HS fields [26,27]. After gauge fixing of the linearized gauge invariance,

the contribution of a spin s (s ≥ 1) totally symmetric gauge field to the bulk partition function is

obtained as [57–59]

Zs =

[
detSTTs−1

(
−∇2 + (s+ d− 2)(s− 1)

)] 1
2

[
detSTTs (−∇2 + (s+ d− 2)(s− 2)− s)

] 1
2

(3.1)

where the label STT stands for symmetric traceless transverse tensors, and the numerator corre-

sponds to the contributions of the spin s − 1 ghosts. The mass-like terms in the above kinetic

operators are related to the conformal dimension of the dual fields. For a totally symmetric field

with kinetic operator −∇2 + κ2, the dual conformal dimension is given by

∆(∆− d)− s = κ2 . (3.2)
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Type of Theory Shift to 1
GN
∼ N

Type A Theories
Non-Minimal U(N): No shift

Minimal O(N): N → N − 1

Type B Theories
Non-Minimal U(N): Shifted by (2.14)

Minimal O(N) in d = 3, 9 (mod 8): See Section 3.3.3
USp(N) in d = 5, 7 (mod 8): See Section 3.3.3

Table 2: Summary of results of one-loop calculations for odd d > 0. Again, by no shift, we mean that there are no
shifts to the coupling constant coming from the spectrum of the particular theory. Results for Type A theories taken
from [27].

For the values of κ in (3.1), one finds for the physical spin s field in the denominator4

∆ph = s+ d− 2 (3.3)

which corresponds to the scaling dimension of the dual conserved current in the CFT. Similarly, the

conformal dimension obtained from the ghost kinetic operator in (3.1) is

∆ph = s+ d− 1 . (3.4)

From CFT point of view, this is the dimension of the divergence ∂ · Js, which is a null state that

one has to subtract to obtain the short representation of the conformal algebra corresponding to a

conserved current.

The determinants in (3.1) can be computed using the heat kernel, or equivalently spectral zeta

functions techniques.5 The spectral zeta function for a differential operator on a compact space

with discrete eigenvalues λn and degeneracy dn is defined as

ζ(z) =
∑

n

dnλ
−z
n . (3.5)

In our case, the differential operators in hyperbolic space have continuous spectrum, and the sum

over eigenvalues is replaced by an integral. Let us consider a field labelled by the representation

αs = [s,m2,m3, . . .] of SO(d)6, where we have denoted by m1 = s the length of the first row in

the corresponding Young diagram, which we may call the spin of the particle (for example, for a
4We choose the root ∆+ above the unitarity bound. The alternate root corresponds to gauging the HS symmetry

at the boundary [60].
5The heat-kernel is related to the spectral zeta-function by a Mellin transformation.
6This can be thought as the representation that specifies the dual CFT operator. From AdS point of view, one

may view SO(d) as the little group for a massive particle in d+ 1 dimensions.
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totally symmetric field, we have αs = [s, 0, 0, . . . , 0]). For a given representation αs, the spectral

zeta function takes the form

ζ(∆;αs)(z) =
vol (AdSd+1)

vol(Sd)
2d−1

π
gαs

∫ ∞

0
du

µαs(u)[
u2 +

(
∆− d

2

)2]z , (3.6)

where µαs(u) is the spectral density of the eigenvalues, which will be given shortly, and gαs is the

dimension of the representation αs (see eq. (3.18) and (3.19) below). The denominator corresponds

to the eigenvalues of the kinetic operator, and ∆ is the dimension of the dual CFT operator.7 The

regularized volume of AdS is given explicitly by [61–63]

vol(AdSd+1) =




πd/2Γ(−d

2), d odd,
2(−π)d/2

Γ(1+ d
2

)
logR, d even,

(3.7)

where R is the radius of the boundary sphere. The logarithmic dependence on R in even d is related

to the presence of the Weyl anomaly in even dimensional CFTs. Finally, the volume of the round

sphere of unit radius is

vol(Sd) =
2π(d+1)/2

Γ[(d+ 1)/2]
. (3.8)

Once the spectral zeta function is known, the contribution of the field labelled by (∆;αs) to the

bulk free energy is obtained as

F
(1)
(∆;αs)

= σ

[
−1

2
ζ ′(∆;αs)

(0)− ζ(∆;αs)(0) log(`Λ)

]
, (3.9)

where σ = +1 or −1 depending on whether the field is bosonic or fermionic. Here ` is the AdS

curvature, which we will set to 1 henceforth, and Λ is a UV cut-off. In general, the coefficient of

the logarithmic divergence ζ(∆;αs)(0) vanishes for each αs in even dimension d, but it is non-zero

for odd d.

When the dimension ∆ = s+d−2, the field labelled by αs is a gauge field and one has to subtract

the contribution of the corresponding ghosts in the αs−1 representation.8 We find it convenient to

introduce the notation

Z(∆ph=s+d−2;αs)(z) ≡ ζ(∆ph;αs)(z)− ζ(∆ph+1;αs−1)(z) (3.10)

7For the case of totally symmetric fields, this form of the eigenvalues can be deduced from the results of [49]. See
for example the Appendix of [16] and [18] for an explicit derivation in AdS5 and AdS7 for arbitrary representations.

8As in the case of totally symmetric fields, the representation labeling the ghosts can be understood from CFT
point of view from the structure of the character of the short representations of the conformal algebra and the
corresponding null states, see [52].
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to indicate the spectral zeta function of the HS gauge fields in the αs representation, with ghost

contribution subtracted. The full one-loop free energy may be then obtained by summing over all

representations αs appearing in the spectrum. For instance, in the case of the non-minimal type A

theory, we may define the “total” spectral zeta function

ζHS
type A(z) = ζ(d−2;[0,...,0])(z) +

∞∑

s=1

Z(s+d−2;[s,0,...,0])(z) (3.11)

from which we can obtain the full one-loop free energy

F
(1)
type A =

[
−1

2
(ζHS

type A)′(0)− 1

2
ζHS

type A(0) log(`2Λ2)

]
. (3.12)

Similarly, one can obtain ζHS
total(z) and the one-loop free energy in the other higher spin theories

we discuss. As these calculations requires summing over infinite towers of fields, one has of course

to suitably regularized the sums, as discussed in [26, 27] and reviewed in the explicit calculations

below.

3.1.1 The spectral density for arbitrary representation

A general formula for the spectral density for a field labelled by the representation α = [m1,m2, . . .]

was given in [50], and we summarize their result below.

In AdSd+1, arranging the weights for the irreps of SO(d) as m1 ≥ m2 ≥ · · · ≥ |mp|, where
p = d−1

2 for odd d and p = d
2 for even d, we may define

`j = mp−j+1 + j − 1, for d = even, (3.13)

`j = mp−j+1 + j − 1

2
, for d = odd . (3.14)

In terms of these, the spectral density takes the form of

µα(u) =
π

(
2d−1Γ

(
d+1

2

))2
p∏

j=1

(u2 + `2j ), for d = even, (3.15)

µα(u) =
π

(
2d−1Γ

(
d+1

2

))2 f(u)u

p∏

j=1

(u2 + `2j ), for d = odd, (3.16)

where

f(u) =





tanh(πu), `j = half-integer,

coth(πu), `j = integer.
(3.17)
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The pre-factor of π

(2d−1Γ( d+1
2 ))

2 arises as a normalization constant found by imposing the condition

that as we approach flat space from hyperbolic space, the spectral density should approach that of

flat space.

The number of degrees of freedom gα is equal to the dimension of the corresponding represen-

tation of SO(d), and is given by [64]

gαs =
∏

1≤i<j≤p

mi −mj + j − i
j − i

∏

1≤i<j≤p

mi +mj + 2p− i− j
2p− i− j

, for d = 2p, (3.18)

and

gαs =
∏

1≤i≤p

2mi + 2p− 2i+ 1

2p− 2i+ 1

∏

1≤i<j≤p

mi −mj + j − i
j − i

×
∏

1≤i<j≤p

mi +mj + 2p− i− j + 1

2p− i− j + 1
, for d = 2p+ 1, (3.19)

where α = [m1, . . . ,mp]. As an example, in the Type A case in AdSd+1, the only representation we

need to consider is m1 = s, and for all j 6= 1, mj = 0. This gives us

µ[s,0,...,0](u) =
π

(
2d−1Γ

(
d+1

2

))2

[
u2 +

(
s+

d− 2

2

)2
] ∣∣∣∣∣

Γ
(
iu+ d−2

2

)

Γ(iu)

∣∣∣∣∣

2

=





π
(
2d−1Γ

(
d+1

2

))2

[
u2 +

(
s+

d− 2

2

)2
]

(d−4)/2∏

j=0

(u2 + j2), d = even,

π
(
2d−1Γ

(
d+1

2

))2u tanh(πu)

[
u2 +

(
s+

d− 2

2

)2
]

(d−5)/2∏

j=0

[
u2 + (j +

1

2
)2

]
, d = odd.

(3.20)

and

g[s,0,...,0] =
(2s+ d− 2)(s+ d− 3)!

(d− 2)!s!
, d ≥ 3. (3.21)

The results agree with the formulas derived in [47] and used in [27].

In type AB theories, we need the spectral density for fermion fields in the α = [s, 1/2, 1/2, . . . , 1/2]

representation. We find that the above general formulas for even and odd d can be expressed in the

compact form valid for all d

µ[s, 1
2
,..., 1

2
](u) =

π
(
2d−1Γ

(
d+1

2

))2

[
u2 +

(
s+

d− 2

2

)2
] ∣∣∣∣∣

Γ
(
iu+ d−1

2

)

Γ(iu+ 1
2)

∣∣∣∣∣

2

, (3.22)
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and

g[s, 1
2
,..., 1

2
] =

(s− 5
2 + d)!

(s− 1
2)!(d− 2)!

nF (d), nF (d) =





2
d−2

2 , if d = even,

2
d−1

2 , if d = odd.
(3.23)

The spectral densities for the mixed symmetry fields appearing in type B and C theories can be

obtained in a straightforward way from the above general formulas, and we present the explicit

results in the next sections.

3.2 Calculations in even d

3.2.1 Type B Theories

Spectrum The non-minimal Type B higher spin theory, which is conjectured to be dual to the

U(N) singlet sector of the free Dirac fermion theory, contains towers of mixed symmetry gauge fields

of all integer spins. From the spectrum given in (2.8), we obtain the total spectral zeta function

ζHS
type B(z) = 2ζ(∆=d−1;[0,0,...,0])(z)

+ 2

∞∑

s=1

[
Z(∆ph;[s,1,1,...,1,0])(z) + Z(∆ph;[s,1,1,...,1,0,0])(z) + . . .+ Z(∆ph;[s,1,0,...,0])(z)

+ Z(∆ph;[s,0,0,...,0])(z)
]

+
∞∑

s=1

[
Z(∆ph;[s,1,1,...,1,1])(z) + Z(∆ph;[s,1,1,...,1,1,−1])(z)

]
. (3.24)

In the third line of (3.24), the representations [s, 1, 1, . . . , 1, 1] and [s, 1, 1, . . . , 1,−1] give the selfdual

and anti-selfdual parts of the corresponding fields. At the level of the spectral ζ functions, they

yield equal contributions.9 Using the spectral zeta function formulas listed in Section 3.1.1 and

summing over all representations given above, we find that for all even d

ζHS
type B(z) = O(z2) , (3.25)

and consequently the one-loop free energy in the non-minimal type B theory in even d exactly

vanishes

F
(1)
type B = 0 . (3.26)

There are various truncations to the non-minimal Type B theory that results in the Weyl,

Majorana and Majorana-Weyl projections on the free fermionic CFT. While the Weyl projection
9Note that, technically, for all Type B theories the field of spin s = 1 in the tower of spins of representation [s, 1, . . .]

is not a gauge field. However, for conciseness we still use the symbol Z(∆ph;[s,1,...]) for these fields; the corresponding
ghost contribution is zero, so it does not make a practical difference.
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can be applied in all even dimensions d, the Majorana projection can be applied in dimensions

d = 2, 3, 4, 8, 9 (mod 8), and the Majorana-Weyl projection only in dimensions d = 2 (mod 8). An

interesting example is d = 10 (AdS11), where we can consider all four types of Type B theories.

Weyl projection The projection from the non-minimal Type B theory described above is

slightly different when the theory is in d = 4m or d = 4m + 2. Using the results of [52] for the

product of chiral fermion representations, we find10

ζHS
type B Weyl(z) =





∞∑

s=1

[
Z(∆ph;[s,0,0,...,0])(z) + Z(∆ph;[s,1,1,0,...,0])(z) + . . .+ Z(∆ph;[s,1,1,...,1])(z)

]
, for d = 4m+ 2,

∞∑

s=1

[
Z(∆ph;[s,0,0,...,0])(z) + Z(∆ph;[s,1,1,0,...,0])(z) + . . .+ Z(∆ph;[s,1,1,...,1,0])(z)

]
, for d = 4m,

=





∞∑

s=1

1∑

ti≥0
ti≥ti+1

Z(∆ph;[s,t1,t1,...,tm,tm])(z), for d = 4m+ 2,

∞∑

s=1

1∑

ti≥0
ti≥ti+1

Z(∆ph;[s,t1,t1,...,tm−1,tm−1,0])(z), for d = 4m,

(3.27)

Note that under this projection, there are no scalars in the spectrum. The case d = 4 (AdS5)

was already discussed in [28]. Summing over all representations, we find that for all even d

ζHS
type B Weyl(z) = O(z2) , (3.28)

and so

F
(1)
type B Weyl = 0 . (3.29)

Minimal Theory (Majorana projection) The Majorana condition ψ̄ = ψTC, where C is

the charge conjugation matrix, can be imposed in d = 2, 3, 4, 8, 9 (mod 8), see for instance [65]. In

these dimensions, we can consider the theory of N free Majorana fermions and impose an O(N)

singlet constraint. In d = 6 (mod 8), provided one has an even number N of fermions, one can

impose instead a symplectic Majorana condition ψ̄i = ψTj CΩij , where C is the charge conjugation

matrix and Ωij the antisymmetric symplectic metric. In this case, we consider the theory of N free

symplectic Majoranas with a USp(N) singlet constraint.

The operator spectrum in the minimal theory can be deduced by working out which operators

of the non-minimal theory are projected out by the Majorana constraint. The bilinear operators in
10To obtain this result, we note that in d = 4m, complex conjugation flips the chirality of a Weyl spinor, while in

d = 4m + 2 the Weyl representation is self-conjugate. Therefore, in order to obtain U(N) invariant operators, we
should use eq. (4.20) of [52] for d = 4m, and eq. (4.23) of the same reference for d = 4m+ 2.
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the non-minimal theory are of the schematic form

Jµ1···µs,ν1···νn−1 ∼ ψ̄i(Γ(n))ν1···νn−1(µ1
∂µ2∂µ3 · · · ∂µs)ψ

i + . . . (3.30)

where n = 0, . . . , d2−1, and Γ(n) is the antisymmetrized product of n gamma matrices. For Majorana

fermions, we have ψ̄ = ψTC, and so the operators are projected out or kept depending on whether

CΓ(n) is symmetric or antisymmetric. If CΓ(n) is symmetric, then the operators with an even number

of derivatives (i.e. odd spin) are projected out; if it is antisymmetric, then the operators with an

odd number of derivatives (i.e. even spin) are projected out. In addition to (3.30), the non-minimal

type B theories in even d include two scalars J0 = ψ̄iψ
i and J̃0 = ψ̄iγ∗ψ

i, where γ∗ ∼ Γ(d) is the

chirality matrix. When C is symmetric, J0 is projected out, and when Cγ∗ is symmetric, J̃0 is

projected out.11

For instance, in d = 4, the non-minimal theory contains the operators given in (2.10), (2.11)

and (2.12). In d = 4, one has that both C and Cγ5 are antisymmetric, so both scalars in (2.10)

are retained. Then, one has that Cγµ is symmetric while Cγµγ5 antisymmetric, and so we keep

the first tower in (2.11) for even s and the other tower for odd s: together, they make up a single

tower in the [s, 0] representation with all integer spins. Finally, CΓµν is symmetric, so we keep the

mixed symmetry fields (2.12) with an odd number of derivatives, i.e. the spectrum contains the

representations [s, 1]c = [s, 1] + [s,−1] for all even s.

Higher dimensions can be analyzed similarly, using the symmetry/antisymmetry properties of

CΓ(n) in various d [65]. The results are summarized in Table 3. One finds that under the Majorana

projections the operators with the “heaviest” weight [s, 1, 1, . . . , 1]c always form a tower containing

all even s. The next representation [s, 1, . . . , 1, 0] form a tower of all integer s. Then, [s, 1, . . . , 1, 0, 0]

appears in two towers of all odd s. And finally, [s, 1, . . . , 1, 0, 0, 0] form a tower of all integer spins,

after which this cycle repeats. The number of scalars with ∆ = d− 1 to be included also changes in

a cycle of 4. In AdS5, we have 2 scalars; in AdS7, we have 1 (this case, though, should be discussed

separately, see below); in AdS9, we have 0; in AdS11, we have 1, and the cycle repeats. In a more

compact notation, the total spectral zeta function in the minimal type B theories dual to the O(N)

Majorana theories is

ζHS
type B Maj.(z) = χ(d)ζ(d−1;[0,0,...,0])(z)

+
∞∑

s=2,4,6,...

1∑

ti≥ti+1
ti≥0∑

w tw=w (mod 4)

(
Z(∆;[s,t1,t2,...,tw−1,tw])(z) + Z(∆;[s,t1,t2,...,tw−1,−tw])(z)

)

11As an example, consider the bilinear ψTMψ. If M is symmetric, this operator clearly vanishes. On the other
hand, consider ψTM∂µψ. In this case, ifM is an antisymmetric matrix, then this is equal to +∂µψ

TMψ. In turn, this
means that ψTM∂µψ = 1

2
∂µ(ψTMψ), and so this operator is a total derivative and is not included in the spectrum

of primaries.
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+
∑

s=1,2,3,...

1∑

ti≥ti+1
ti≥0∑

w tw=(w−1) (mod 4)

(
Z(∆;[s,t1,t2,...,tw−1,tw])(z) + Z(∆ph;[s,t1,t2,...,tw−1,−tw])(z)

)

+
∑

s=1,2,3,...

1∑

ti≥ti+1
ti≥0∑

w tw=(w−3) (mod 4)

(
Z(∆ph;[s,t1,t2,...,tw−1,tw])(z) + Z(∆ph;[s,t1,t2,...,tw−1,−tw])(z)

)

+
∑

s=1,3,5,...

1∑

ti≥ti+1
ti≥0∑

w tw=(w−2) (mod 4)

(
Z(∆ph;[s,t1,t2,...,tw−1,tw])(z) + Z(∆ph;[s,t1,t2,...,tw−1,−tw])(z)

)
(3.31)

where χ(d) = 1, 2, 0 when d = 0, 2, 4 ( mod 8) respectively. Explicit illustrations of this formula are

given in Table 3. Using these spectra we find, in all even d where the Majorana condition is possible

F
(1)
type B Maj. = af logR (3.32)

where R is the radius of the boundary sphere, and af is the a-anomaly coefficient of a single

Majorana fermion in dimension d, given in (2.18). As explained earlier, this is consistent with the

duality, provided Gtype B Maj.
N ∼ 1/(N − 1).

As mentioned above, in d = 6 (mod 8), i.e. AdS7(mod 8), we should impose a symplectic Majorana

condition and consider the USp(N) invariant operators. In terms of the operators (3.30), since

ψ̄ = ψTCΩ with Ω antisymmetric, all this means is that now odd spins are projected out when

CΓ(n) is antisymmetric, and even spins are projected out when CΓ(n) is symmetric. Similarly,

the scalar operators ψ̄iψi and ψiγ∗ψ
i are now projected out when C and Cγ∗ are antisymmetric,

respectively. In d = 6 (mod 8), one has that C is symmetric and Cγ∗ is antisymmetric, so we retain

a single scalar field. On the other hand, Cγµ and Cγµγ∗ are both antisymmetric, and so we have two

towers of totally symmetric representations of all even s.12 The projection of the mixed symmetry

representations can be deduced similarly. The total spectral zeta function is given by the formula

ζHS
type B Symp.Maj.(z) = ζ(d−1;[0,0,...,0])(z)

+

∞∑

s=1,3,5,...

1∑

ti≥ti+1
ti≥0∑

w tw=w (mod 4)

(
Z(∆ph;[s,t1,t2,...,tw−1,tw])(z) + Z(∆ph;[s,t1,t2,...,tw−1,−tw])(z)

)

12Note that, had we tried to impose the standard Majorana condition, we would have retained the totally symmetric
fields of all odd spins. Then, the spectrum would not include a graviton, i.e. the dual CFT would not have a stress
tensor.
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+
∑

s=1,2,3,...

1∑

ti≥ti+1
ti≥0∑

w tw=(w−1) (mod 4)

(
Z(∆ph;[s,t1,t2,...,tw−1,tw])(z) + Z(∆ph;[s,t1,t2,...,tw−1,−tw])(z)

)

+
∑

s=1,2,3,...

1∑

ti≥ti+1
ti≥0∑

w tw=(w−3) (mod 4)

(
Z(∆ph;[s,t1,t2,...,tw−1,tw])(z) + Z(∆ph;[s,t1,t2,...,tw−1,−tw])(z)

)

+
∑

s=2,4,6,...

1∑

ti≥ti+1
ti≥0∑

w tw=(w−2) (mod 4)

(
Z(∆ph;[s,t1,t2,...,tw−1,tw])(z) + Z(∆ph;[s,t1,t2,...,tw−1,−tw])(z)

)
(3.33)

An illustration of the formula is given in Table 3 for the AdS7 and AdS15 cases. Using these spectra,

we find that the one loop free energy of the minimal type B theory corresponding to the symplectic

Majorana projection is given by

F
(1)
type B sympl.Maj. = −af logR , (3.34)

i.e. the opposite sign compared to (3.32). This is consistent with the duality, providedGtype B sympl.Maj.
N ∼

1/(N + 1).

Majorana-Weyl projection Finally the spectra arising from the Majorana-Weyl projection,

which can be imposed in dimensions d = 2 (mod 8), is the overlap of the individual Majorana and

Weyl projection. The resulting spectrum yields the total zeta function

ζHS
Type B MW(z) =

∞∑

s=2,4,6,...

1∑

ti≥ti+1
ti≥0∑

w tw=w (mod 4)

Z(∆;[s,t1,t2,...,tw−1,tw])(z)

+
∑

s=1,3,5,...

1∑

ti≥ti+1
ti≥0∑

w tw=(w−2) (mod 4)

Z(∆ph;[s,t1,t2,...,tw−1,tw])(z) .

(3.35)

An illustration of this can be seen in Table 4, where we list the spectra of AdS11 and AdS19.

Summing up over these spectra, we find the result

F
(1)
type B MW =

1

2
af logR (3.36)

which is the a-anomaly coefficient of a single Majorana-Weyl fermion at the boundary.

In d = 6 (mod 8) one may impose a symplectic Majorana-Weyl projection. The resulting spectra

are the overlap between the symplectic Majorana and Weyl projections. For instance, in d = 6 we
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AdS3 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s] 2
Scalar (∆ = 1) 1

F (1) − 1
6 logR

AdS7 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1]c 1
[s, 1, 0] 1
[s, 0, 0] 2

Scalar (∆ = 5) 1

F (1) 191
7560 logR

AdS11 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 0] 1
[s, 1, 1, 0, 0] 2
[s, 1, 0, 0, 0] 1
[s, 0, 0, 0, 0] 2

Scalar (∆ = 9) 1

F (1) − 14797
2993760 logR

AdS15 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 0, 0] 2
[s, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0] 2
[s, 1, 0, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0] 2

Scalar (∆ = 13) 1

F (1) − 36740617
35026992000 logR

AdS19 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 1, 1, 0, 0] 2
[s, 1, 1, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 1, 1, 0, 0, 0, 0] 2
[s, 1, 1, 1, 0, 0, 0, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0, 0, 0] 2
[s, 1, 0, 0, 0, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0, 0, 0] 2

Scalar (∆ = 15) 1

F (1) − 23133945892303
99786996429120000 logR

AdS5 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1]c 1
[s, 0] 1

Scalar (∆ = 3) 2

F (1) 11
180 logR

AdS9 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1]c 1
[s, 1, 1, 0] 1
[s, 1, 0, 0] 2
[s, 0, 0, 0] 1

Scalar (∆ = 7) 0

F (1) 2497
226800 logR

AdS13 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 0, 0] 2
[s, 1, 1, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0] 2
[s, 0, 0, 0, 0, 0] 1

Scalar (∆ = 11) 2

F (1) 92427157
40864824000 logR

AdS17 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1, 1]c 1
[s, 1, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 1, 0, 0] 2
[s, 1, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 1, 0, 0, 0, 0] 2
[s, 1, 1, 0, 0, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0, 0, 0] 2
[s, 0, 0, 0, 0, 0, 0, 0] 1

Scalar (∆ = 15) 0

F (1) 61430943169
125046361440000 logR

AdS21 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1, 1, 1, 1]c 2
[s, 1, 1, 1, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 1, 1, 1, 0, 0] 2
[s, 1, 1, 1, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 1, 1, 1, 0, 0, 0, 0] 2
[s, 1, 1, 1, 1, 0, 0, 0, 0, 0] 1
[s, 1, 1, 1, 0, 0, 0, 0, 0, 0] 2
[s, 1, 1, 0, 0, 0, 0, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0, 0, 0, 0, 0] 2
[s, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1

Scalar (∆ = 17) 2

F (1) 16399688681447
149003207337600000 logR

Table 3: Projection of the non-minimal Type B theory to the Majorana/symplectic Majorana mimimal Type B
theory in even d. Notice that in AdS7 and AdS15, where we impose a symplectic Majorana projection, the pattern
does not exactly follow the one seen in the other dimensions, as explained in the text. Instead, they are ‘inverted’,
with the swapping of the towers for each weight from being only even integer spins to only odd integer spins. Their
shift is highlighted in cyan. As defined earlier, the subscript ‘c’ indicates that both selfdual and anti-selfdual parts
are included, corresponding to the weights [t1, . . . , tk−1, tk] and [t1, . . . , tk−1,−tk].
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AdS11 (Majorana-Weyl)
α s =

1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .
[s, 1, 1, 1, 1] 1
[s, 1, 1, 0, 0] 1
[s, 0, 0, 0, 0] 1

F (1) −14797
5987520

logR

AdS7 (Symplectic Majorana-Weyl)
α s =

1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .
[s, 1, 1] 1
[s, 0, 0] 1

F (1) 191
15120

logR

AdS19 (Majorana-Weyl)
α s =

1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .
[s, 1, 1, 1, 1, 1, 1, 1, 1] 1
[s, 1, 1, 1, 1, 1, 1, 0, 0] 1
[s, 1, 1, 1, 1, 0, 0, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0, 0, 0] 1

F (1) − 23133945892303
199573992858240000

logR

AdS15 (Symplectic Majorana-Weyl)
α s =

1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .
[s, 1, 1, 1, 1, 1, 1] 1
[s, 1, 1, 1, 1, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0] 1

F (1) − 36740617
70053984000

logR

Table 4: Table of weights and their towers of spins for (top left) AdS11 and (top right) AdS19 under Majorana-Weyl
projection, and for (bottom left) AdS7 and (bottom right) AdS15 under the Symplectic Majorana-Weyl projection.
There are no subscripts c for the [s, 1, . . . , 1] representations because the dual representations [s, 1, . . . , 1,−1] are not
included.

find a minimal theory with a totally symmetric tower [s, 0, 0] of all even spins, and a tower of the

mixed symmetry fields [s, 1, 1] of all odd spins (see Table 4). In this case (and similarly for higher

d = 14, 22, . . .), we find

F
(1)
type B SMW = −1

2
af logR . (3.37)

Since the a-anomaly of the boundary free theory of N symplectic Majorana-Weyl fermions is

aN SMW = N
2 af , this result is consistent with a shift Gtype B SMW

N ∼ 1/(N + 1).

Sample Calculations

AdS5 Following (3.24) for the non-minimal Type B theory,

ζHS
type B(z) = 2ζ(3;[0,0])(z) +

∞∑

s=1

(
Z(∆ph;[s,1])(z) + Z(∆ph;[s,−1])(z)

)
+ 2

∞∑

s=1

Z(∆ph;[s,0])(z). (3.38)

We see that there are two weights to consider in AdS5, corresponding to [s, 0] and [s,±1] represen-

tation. Using (3.6) and 3.15, we have

ζ(∆;[s,1])(z)

logR
= π2

∫ ∞

0
du

(
u2 + 1

) [
(s+ 1)2 + u2

]

12π3

s(2 + s)

[u2 + (∆− 2)2]z
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=
s(s+ 2)

8
√
πΓ(z)

[
(s+ 1)2(∆− 2)1−2zΓ

(
z − 1

2

)

3
+

(
(s+ 1)2 + 1

)
(∆− 2)3−2zΓ

(
z − 3

2

)

6

+
(∆− 2)5−2zΓ

(
z − 5

2

)

4

]
(3.39)

In the above, we made use of the formula,

∫ ∞

0
du

u2p

[u2 + ν2]z
= ν2p+1−2z

∫ ∞

0
du

u2p

[u2 + 1]z
= ν2p+1−2zΓ(p+ 1

2)

2

Γ(z − p− 1
2)

Γ(z)
, (3.40)

to go from the first to the second line.

In our regularization scheme, we sum over the physical modes separately from the ghost modes.

We introduce ζ(k, ν), the Hurwitz zeta function (analytically extended to the entire complex plane),

which is given by

ζ(k, ν) =

∞∑

s=0

1

(s+ ν)k
. (3.41)

Then, using ∆gh = s+ 3,

1

logR

∞∑

s=1

ζ(∆gh;[s−1,1])(z)

=
1

96
√
πΓ(z)

[
2ζ(2z − 7)Γ

(
z − 3

2

)
+ 3ζ(2z − 7)Γ

(
z − 5

2

)
+ 8ζ(2z − 6)Γ

(
z − 3

2

)

+ 6ζ(2z − 6)Γ

(
z − 5

2

)
+ 4ζ(2z − 5)Γ

(
z − 1

2

)
+ 12ζ(2z − 5)Γ

(
z − 3

2

)

+ 16ζ(2z − 4)Γ

(
z − 1

2

)
+ 8ζ(2z − 4)Γ

(
z − 3

2

)
+ 20ζ(2z − 3)Γ

(
z − 1

2

)

+ 8ζ(2z − 2)Γ

(
z − 1

2

)]
. (3.42)

Similarly, using ∆ph = s+ 2,

1

logR

∞∑

s=1

ζ(∆ph;[s,1])(z)

=
1

96
√
πΓ(z)

{
Γ

(
z − 5

2
, 1

)[
6ζ(2z − 6, 1) + 3ζ(2z − 7, 1)

]

+ Γ

(
z − 3

2

)[
12ζ(2z − 5, 1) + 2ζ(2z − 7, 1) + 8ζ(2z − 6, 1)Γ + 8ζ(2z − 4, 1)

]
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+

(
z − 1

2

)[
16ζ(2z − 4, 1)Γ + 8ζ(2z − 2, 1) + 20ζ(2z − 3, 1) + 4ζ(2z − 5, 1)

]}

(3.43)

Putting (3.42) and (3.43) together,

1

logR

∞∑

s=1

[
ζ(∆ph;[s,1])(z)− ζ(∆gh;[s−1,1])(z)

]

= − 1

90
z +

1

180

[
56ζ ′(−6)− 160ζ ′(−4)− 120ζ ′(−2)− 2γ + 3ψ

(
−5

2

)
− 5ψ

(
−3

2

)]
z2 +O(z3)

(3.44)

where ψ(x) is the digamma function, γ the Euler-Mascheroni constant, and ζ ′ the derivative of

the Riemann Zeta function ζ(z) (which is related to the Hurwitz Zeta function ζ(z) = ζ(z, 1)).

Similarly, for the totally symmetric representation [s, 0], we have

1

logR

∞∑

s=1

Z(∆ph;[s,0])(z)

=
1

logR

∞∑

s=1

[
ζ(∆ph;[s,0])(z)− ζ(∆gh;[s−1,0])(z)

]

=
1

24
√
πΓ(z)

[
3ζ(2(z − 3))Γ

(
z − 5

2

)
+ 4(ζ(2(z − 3)) + ζ(2(z − 2)))Γ

(
z − 3

2

)]

=

(
14

45
ζ ′(−6) +

4

9
ζ ′(−4)

)
z2 +O(z3) (3.45)

Finally, for the massive scalar with ∆ = 3, we have

ζ(3;[0,0])(z)

logR
=

∫ ∞

0
du

(s+ 1)2u2
[
(s+ 1)2 + u2

]

12π [(∆− 2)2 + u2]z

∣∣∣∣∣∆=3,
s=0

=

[
(s+ 1)4(∆− 2)3−2zΓ

(
z − 3

2

)

48
√
πΓ(z)

+
(s+ 1)2(∆− 2)5−2zΓ

(
z − 5

2

)

32
√
πΓ(z)

]

∆=3,
s=0

=
Γ
(
z − 3

2

)

48
√
πΓ(z)

+
Γ
(
z − 5

2

)

32
√
πΓ(z)

=
1

90
z +

1

180

[
2γ − 3ψ

(
−5

2

)
+ 5ψ

(
−3

2

)]
z2 +O(z3). (3.46)

When summing (3.44), (3.45), and (3.46) together, there are no terms of order O(z0) or O(z1) in

the sum, and hence, taking z → 0, we obtain F (1) = 0 for the non-minimal Type B theory.
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For the Type B minimal theory, we should evaluate, according to (3.31), the following sum

ζHS
Total−Type B(z) = 2ζ(3;[0,0])(z) +

∑

s=2,4,6,...

(
Z(∆ph;[s,1])(z) + Z(∆ph;[s,−1])(z)

)
+
∞∑

s=1

Z(∆ph;[s,0])(z).

(3.47)

The first and third term of the sum have already been evaluated for in the non-minimal theory in

(3.46) and (3.45) respectively. For the second term,

∑

s=2,4,6,...

(
Z(∆ph;[s,1]) + Z(∆ph;[s,−1])

)

= 2
∑

s=2,4,6,...

[
(s+ 1)2(s+ 2)s2−2zΓ

(
z − 1

2

)

24
√
πΓ(z)

+
(s+ 2)

(
(s+ 1)2 + 1

)
s4−2zΓ

(
z − 3

2

)

48
√
πΓ(z)

+
(s+ 2)s6−2zΓ

(
z − 5

2

)

32
√
πΓ(z)

]
logR

− 2
∑

s=2,4,6,...

[
(s− 1)s2(s+ 1)2−2zΓ

(
z − 1

2

)

24
√
πΓ(z)

+
(s− 1)

(
s2 + 1

)
(s+ 1)4−2zΓ

(
z − 3

2

)

48
√
πΓ(z)

+
(s− 1)(s+ 1)6−2zΓ

(
z − 5

2

)

32
√
πΓ(z)

]
logR (3.48)

To illustrate the zeta-regularization, let us consider the last term,

∑

s=2,4,6,...

(s− 1)(s+ 1)6−2zΓ
(
z − 5

2

)

32
√
πΓ(z)

=
∑

s=2,4,6,...

[
(s+ 1)7−2zΓ

(
z − 5

2

)

32
√
πΓ(z)

− 2
(s+ 1)6−2zΓ

(
z − 5

2

)

32
√
πΓ(z)

]

=
∑

s=1,2,3,...

[
27−2z(s+ 1

2)7−2zΓ
(
z − 5

2

)

32
√
πΓ(z)

− 2
26−2z(s+ 1

2)6−2zΓ
(
z − 5

2

)

32
√
πΓ(z)

]

=
22−2zζ

(
2z − 7, 3

2

)
Γ
(
z − 5

2

)
√
πΓ(z)

−
22−2zζ

(
2z − 6, 3

2

)
Γ
(
z − 5

2

)
√
πΓ(z)

(3.49)

where on the second line we used the substitution s→ 2s, followed by rewriting 2s+1 = 2(s+ 1
2).13

The partial results coming from summing each tower are given in Table 9. Putting everything

together, we obtain F (1)
type B Maj. = 11

180 logR = ad=4
f logR, which agrees with the results of [16].

13Similar shifts and scaling will be applied in the higher dimensional Type B cases, as well as the Type AB and C
cases, and details of transformations to the Hurwitz-zeta function can be found in Appendix B.1.
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Finally, for the Weyl truncated theory,

ζHS
type B Weyl(z) =

∞∑

s=1

Z(∆ph;[s,0])(z) = O(z2), (3.50)

which gives us F (1) = 0.

AdS11 We skip the d = 7, 9 case, whose spectrum for the various theories follow from the

discussion in Section 3.3.3. For reference, the calculated free energy of each weight F (1) is given in

Tables 10 and 11.

Instead, let us consider the d = 11 case, where we can compare the four different types

of fermions: non-minimal (U(N)), Weyl, minimal (O(N)), and Majorana-Weyl. The calcula-

tions of F (1) for each the various weights and their spectra are given in Table 12. In the non-

minimal and Weyl projected theories, the bulk F (1) contributions sum to zero, whereas in the

minimal and Majorana-Weyl theories, the bulk F (1) contributions are −14797/2993760 logR and

−14797/5987520 logR respectively. The numerical parts of these free energies correspond exactly

to the values of the free energy of one real fermion, −14797/2993760 and one real Weyl fermion on

S10, −14797/5987520.

3.2.2 Fermionic Higher Spins in Type AB Theories

Spectrum We described earlier that there is only one irrep of SO(d) of interest here that describes

the tower of spins corresponding to the fermionic bilinears in type AB theories, namely αs =

[s, 1
2 ,

1
2 , . . . ,

1
2 ]. Therefore, in the non-minimal theories dual to complex scalars and fermions in the

U(N) singlet sector, the purely fermionic contribution to the total zeta function is

ζHS
type AB ferm(z) = 2ζHS

(∆1/2;[ 1
2
, 1
2
, 1
2
,..., 1

2
])

(z) + 2
∞∑

s= 3
2
, 5
2
,...

Z(∆ph;[s, 1
2
, 1
2
,..., 1

2
])(z), (3.51)

where ∆1/2 = 1
2 + d − 2 = d − 3

2 . Thus, the spectrum of spins gives us a massive Dirac fermion14,

and a tower of complex massless higher-spin fermionic fields.15

Sample Calculation: AdS5 After collecting our equations following (3.51), we have,

ζHS
type AB ferm(z) = 2ζHS

(∆1/2;[ 1
2
, 1
2

])
(z) + 2

∞∑

s= 3
2
, 5
2
,...

Z(∆ph;[s, 1
2

])(z), (3.52)

14With mass |m| = (∆1/2 − d/2)/2 = (d− 3)/4.
15 The factor of 2 in (3.51) just accounts for the fact that the representations are complex.

27



with ∆ph = 2 + s. For the massive fermion contribution,

ζ(∆1/2;[s, 1
2

])(z) =
22z−10

(
36Γ

(
z − 1

2

)
+ 20Γ

(
z − 3

2

)
+ 3Γ

(
z − 5

2

))

3
√
πΓ(z)

. (3.53)

Then,

ζ(∆;[s, 1
2

])(z)

logR
=

(s+ 1
2)(s+ 3

2)

48π(∆− 2)2z−1Γ(z)

×
[
(∆− 2)4Γ

(
5

2

)
Γ

(
z − 5

2

)
+ Γ

(
3

2

)
Γ

(
z − 3

2

)
(∆− 2)2

(
1

4
+ (s+ 1)2

)

+Γ

(
1

2

)
Γ

(
z − 1

2

)
(s+ 1)2

4

]
. (3.54)

This gives us,

∑

s= 3
2
, 5
2
,...

ζ(∆ph;[s, 1
2

])(z)

=
1

1536
√
πΓ(z)

{
6

[
4ζ

(
2z − 7,

3

2

)
+ 8ζ

(
2z − 6,

3

2

)
+ 3ζ

(
2z − 5,

3

2

)]
Γ

(
z − 5

2

)

+

[
16ζ

(
2z − 7,

3

2

)
+ 64ζ

(
2z − 6,

3

2

)
+ 96ζ

(
2z − 5,

3

2

)
+ 64ζ

(
2z − 4,

3

2

)

+15ζ

(
2z − 3,

3

2

)]
Γ

(
z − 3

2

)
+ 2

[
4ζ

(
2z − 5,

3

2

)
+ 16ζ

(
2z − 4,

3

2

)

+23ζ

(
2z − 3,

3

2

)
+ 14ζ

(
2z − 2,

3

2

)
+ 3ζ

(
2z − 1,

3

2

)]
Γ

(
z − 1

2

)}
. (3.55)

The technicalities of the shift to the Hurwitz Zeta function in the sum above is similar to the case

for the minimal Type B theory in AdS5 which we worked out earlier. More details can be found in

Appendix B.1. Similarly,

∑

s= 3
2
, 5
2
,...

ζ(∆gh;[s−1, 1
2

])(z)

=
1

1536
√
πΓ(z)

{
6

[
4ζ

(
2z − 7,

5

2

)
− 8ζ

(
2z − 6,

5

2

)
+ 3ζ

(
2z − 5,

5

2

)]
Γ

(
z − 5

2

)

+

[
16ζ

(
2z − 7,

5

2

)
− 64ζ

(
2z − 6,

5

2

)
+ 96ζ

(
2z − 5,

5

2

)
− 64ζ

(
2z − 4,

5

2

)

+15ζ

(
2z − 3,

5

2

)]
Γ

(
z − 3

2

)
+ 2

[
4ζ

(
2z − 5,

5

2

)
− 16ζ

(
2z − 4,

5

2

)

+23ζ

(
2z − 3,

5

2

)
− 14ζ

(
2z − 2,

5

2

)
+ 3ζ

(
2z − 1,

5

2

)]
Γ

(
z − 1

2

)}
. (3.56)
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Quite clearly, the Hurwitz-zeta function shifts differently for the physical and ghost modes. Adding

all three contributions and expanding near z = 0,

ζHS
type AB ferm(z) = O(z2) (3.57)

which implies that F (1)
type AB ferm = 0, consistently with the duality.

For reference, we also report the expected expression of ζHS
type AB ferm(z) for AdS7 and AdS9,

expanded in z up to the second order, in Appendix C.2.

3.2.3 Type C Theories

Calculations for Type C theories are similar to those described above and we will not go through all

details explicitly. In the following sections, we list the spectrum of fields in these theories, including

their various possible truncations. The free energy contributions in a few explicit examples are

collected for reference in Appendix C.3.

Spectrum The spectrum of the non-minimal type C theories, dual to the free theory of N complex

d/2-form gauge fields with U(N) singlet constraint, can be obtained from the character formulas

derived in [52]. While the resulting spectra may look complicated, they follow a clear pattern that

can be rather easily identified if one refers to the tables given in Appendix C.3. The results are split

into the cases d = 4m and d = 4m+ 2. For d = 4m, the total spectral zeta function is given by16 17

ζHS
type C(z) = 2

1∑

ki≥0
ki≥ki+1

ζ(4m;[k1,k1,...,km,km])(z)

+

∞∑

s=2

[
2∑

ti≥0
ti≥ti+1

2Z(∆ph;[s,t1,t1,t2,t2,...,tm−1,tm−1,0])(z)

+

2∑

ji≥0
ji≥ji+1

(
Z(∆ph;[s,2,j1,j1,j2,j2,...,jm−1,+jm−1])(z) + Z(∆ph;[s,2,j1,j1,j2,j2,...,jm−1,−jm−1])(z)

)]
(3.58)

and for d = 4m+ 2

ζHS
type C(z) = 2

1∑

ki≥0
ki≥ki+1

ζ(4m+2;[k1,k1,...,km,km,0])(z)

16(3.58) and (3.59) correspond to equations (4.20)-(4.21) and (4.22)-(4.23) of [52] respectively, and the tensorial
decomposition in these quoted equations can be further simplified by the formulas on p. 104 of [66].

17For all Type C theories, the field of spin s = 2 in the towers of spins of representation [s, 2, . . .] are not gauge
fields, but we will still use the symbol Z for conciseness. See footnote 9 for similar remarks.
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+

∞∑

s=2

[
2∑

ti≥0
ti≥ti+1

2Z(∆ph;[s,2,t1,t1,t2,t2,...,tm−1,tm−1,0])(z)

+
2∑

ji≥0
ji≥ji+1

(
Z(∆ph;[s,j1,j1,j2,j2,...,jm−1,+jm−1])(z) + Z(∆ph;[s,j1,j1,j2,j2,...,jm−1,−jm−1])(z)

)]
(3.59)

Using these spectra and (3.15) to compute the zeta functions, we find the results

F
(1)
type C = 2ad/2−form logR , d = 4m

F
(1)
type C = −2ad/2−form logR , d = 4m+ 2

(3.60)

where ad/2−form is the a-anomaly coefficient of a single real (d/2− 1)-form gauge field in dimension

d. The first few values in d = 4, 6, 8, . . . read [67]

ad/2−form =

{
62

90
,−221

210
,
8051

5670
,−1339661

748440
,
525793111

243243000
,−3698905481

1459458000
, . . .

}
. (3.61)

Thus, we see that (3.60) is consistent with the duality provided Gtype C
N ∼ 1/(N − 1) in d = 4m,

and Gtype C
N ∼ 1/(N + 1) in d = 4m+ 2.

Minimal Type C O(N) The “minimal type C” theory corresponds to the O(N) singlet sector

of the free theory of N (d/2 − 1)-form gauge fields. Its spectrum can be in principle obtained by

appropriately “symmetrizing” the character formulas given in [52] and used above to obtain the

non-minimal spectrum. The spectra in d = 4 and d = 6 were obtained in [16–18]. Generalizing

those results for all d, we arrive at the following total spectral zeta functions. In d = 4m,

ζHS
min. type C(z) = 2

1∑

ki≥0
ki≥ki+1

ζ(4m;[k1,k1,k1,k1,...,kbm2 c
,kbm2 c

,kbm2 c
,kbm2 c

,0])(z)

+
∞∑

s=2

2∑

ti≥0
ti≥ti+1

Z(∆ph;[s,t1,t1,t2,t2,...,tm−1,tm−1,0])(z)

+
∑

s=2,4,6,...

2∑

ji≥0
ji≥ji+1∑

i ji=0 (mod 2)

(
Z(∆ph;[s,2,j1,j1,j2,j2,...,jm−1,+jm−1])(z) + Z(∆ph,s;[s,2,j1,j1,j2,j2,...,jm−1,−jm−1])(z)

)

+
∑

s=3,5,7,...

2∑

ji≥0
ji≥ji+1∑

i ji=1 (mod 2)

(
Z(∆ph;[s,2,j1,j1,j2,j2,...,jm−1,+jm−1])(z) + Z(∆ph;[s,2,j1,j1,j2,j2,...,jm−1,−jm−1])(z)

)

(3.62)
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and in d = 4m+ 2,

ζHS
min. type C(z) =

1∑

ki≥0
ki≥ki+1

ζ(4m+2;[k1,k1,...,km,km,0])(z)

+

∞∑

s=2

2∑

ti≥0
ti≥ti+1

Z(∆ph;[s,2,t1,t1,t2,t2,...,tm−1,tm−1,0])(z)

+
∑

s=2,4,6,...

2∑

ji≥0
ji≥ji+1∑

i ji=0 (mod 2)

(
Z(∆ph;[s,j1,j1,j2,j2,...,jm,+jm])(z) + Z(∆ph;[s,j1,j1,j2,j2,...,jm,−jm])(z)

)

+
∑

s=3,5,7,...

2∑

ji≥0
ji≥ji+1∑

i ji=1 (mod 2)

(
Z(∆ph;[s,j1,j1,j2,j2,...,jm,+jm])(z) + Z(∆ph;[s,j1,j1,j2,j2,...,jm,−jm])(z)

)
, (3.63)

where bm2 c denotes the integer part of m2 .

As a consistency check of these spectra, in Appendix A we computed the corresponding partition

functions in thermal AdS with S1 × Sd−1 boundary. After summing up over all representations

appearing in the zeta functions above, the result matches the (symmetrized) square of the one-

particle partition function of a (d/2− 1)-form gauge field, see eq. (A.29).

Evaluating the spectral zeta functions with the help of the formulas in section 3.1.1, we obtain

the results
F

(1)
min. type C SD = 2ad/2−form logR , d = 4m

F
(1)
min. type C SD = 0 , d = 4m+ 2

(3.64)

These correspond to the shifts given in Table 1. Interestingly, in the minimal type C theory in

d = 6, 10, . . . the bulk one-loop free energy vanishes and no shift of the coupling constant is required.

Self-dual U(N) In d = 4m, we can impose a self-duality constraint F i = i ∗ F i in the theory

of N complex p-forms. The resulting spectrum of U(N) invariant bilinears leads to the following

total zeta function in the bulk18

ζHS
type C SD(z) =

∞∑

s=2

2∑

ti≥0
ti≥ti+1

Z(∆ph;[s,t1,t1,t2,t2,...,tm−1,tm−1,0])(z) . (3.65)

18This corresponds to eq. (4.20) in [52]. This is because in d = 4m complex conjugation maps self-dual to anti
self-dual forms.
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In d = 4m + 2, we can impose the self-duality condition F i = ∗F i, and the resulting truncated

spectrum gives the following total zeta function19

ζHS
type C SD(z) =

∞∑

s=2

2∑

ji≥0
ji≥ji+1

Z(∆ph;[s,j1,j1,j2,j2,...,jm−1,+jm−1])(z) . (3.66)

Using these spectra, we find the results

F
(1)
type C SD =

1

2
ad/2−form logR , d = 4m

F
(1)
type C SD =− 1

2
ad/2−form logR , d = 4m+ 2

(3.67)

which correspond to the shifts given in Table 1.

Self-dual O(N) In d = 4m+2, we can impose a self-duality condition on the theory of N real

forms with O(N) singlt constraint. The spectrum is given by the “overlap" of the minimal type C

and self-dual U(N) spectra given above. The resulting total zeta function is given by

ζHS
min. type C SD(z) =

∑

s=2,4,6,...

2∑

ji≥0
ji≥ji+1∑

i ji=0 (mod 2)

Z(∆;[s,j1,j1,j2,j2,...,jm,+jm])(z)

+
∑

s=3,5,7,...

2∑

ji≥0
ji≥ji+1∑

i ji=1 (mod 2)

Z(∆;[s,j1,j1,j2,j2,...,jm,+jm])(z) (3.68)

from which we find the result

F
(1)
min. type C SD =

1

4
ad/2−form logR , d = 4m+ 2 . (3.69)

3.3 Calculations in odd d

3.3.1 Preliminaries

Alternate Regulators In the calculations for even d discussed above, we chose to sum over the

spins before sending the spectral parameter z → 0. This analytic continuation in z is a natural way

to regulate the sums. In practice, this is possible in the even d case because the spectral density is

polynomial in the integrating variable u. In the case of odd d, summing before sending z → 0 is not

easy to do, and we will instead first send z → 0 and then evaluate the regularized sums over spins.

There are two equivalent ways to do this. The first involves using exponential factors to suppress
19 This corresponds to eq. (4.23) in [52].
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the spins

∑

all spins
in αs

[
Z(∆ph;αs)(z)

∣∣∣
z=0

]

= lim
ε→0

∑

all spins
in αs

e−ε(∆
ph− d

2
)(ζ(∆ph;αs))(0)− lim

ε→0

∑

all spins
in αs

e−ε(∆
gh− d

2
)(ζ(∆gh;αs−1))(0), (3.70)

and similarly

∑

all spins
in αs

[
∂

∂z
Z(∆ph;αs)(z)

∣∣∣∣
z=0

]

= lim
ε→0

∑

all spins
in αs

e−ε(∆
ph− d

2
)(ζ(∆ph;αs))

′(0)− lim
ε→0

∑

all spins
in αs

e−ε(∆
gh− d

2
)(ζ(∆gh;αs−1))

′(0), (3.71)

where we recall that ∆ph = s+d−2 and ∆gh = s+d−1. In even d, one can show that this procedure,

with the shifted exponentials as above, gives the same result as first summing over all representations

and then sending the spectral parameter z → 0. Equivalently, instead of the exponential regulators,

one can use the analytic continuation of the Hurwitz zeta function by evaluating

∑

all spins
in αs

[
Z(∆ph;αs)(z)

∣∣∣
z=0

]

= lim
ε→0

∑

all spins
in αs

(
∆ph − d

2

)−ε
(ζHS

(∆ph,s;αs)
)(0)− lim

ε→0

∑

all spins
in αs

(
∆gh − d

2

)−ε
(ζHS

(∆gh;αs−1))(0),

(3.72)

and

∑

all spins
in αs

[
∂

∂z
Z(∆ph;αs)(z)

∣∣∣∣
z=0

]

= lim
ε→0

∑

all spins
in α

(
∆ph − d

2

)−ε
(ζ(∆ph;αs))

′(0)− lim
ε→0

∑

all spins
in αs

(
∆gh − d

2

)−ε
(ζHS

(∆gh;αs−1))
′(0),

(3.73)
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This method, which is closely related to the one previously used in [27],20 will be described in the

next sections in greater detail.

Note that, while in even d ζ(∆s;αs)(0) vanishes identically for any representation, this is not true

in odd d. Vanishing of the logarithmic divergence in the one-loop free energy requires in this case

summing over all the bulk fields, as reviewed below.

Integrals In all odd d calculations, we encounter the integrals of the type

∫ ∞

0

uk

e2πu ± 1
log[u2 + b2] =

∫ ∞

0

uk du

e2πu ± 1

[
log(u2) +

∫ b2

0

1

u2 + x
dx

]
. (3.74)

We define

A±k (x) ≡
∫ ∞

0

uk

e2πu ± 1

du

u2 + x
, B±k ≡

∫ ∞

0

uk

e2πu ± 1
. (3.75)

There exists a recursive relation between the various Ak’s and Bk’s for any odd integer 2k + 1 (see

Appendix B.2 for a proof):

A±2k+1(x) = (−x)kA±1 (x) +
k∑

j=1

(−x)k−jB±2j−1. (3.76)

As a consequence of this relation, we only need the explicit analytic expressions of the integrals

A±1 ,
21 which is given by [47]

A+
1 (x) =

1

2

[
− log(

√
x) + ψ

(√
x+

1

2

)]
(3.78)

A−1 (x) =
1

2

[
log(
√
x)− 1

2
√
x
− ψ(

√
x)

]
, (3.79)

where ψ(x) is the digamma function ψ(x) = Γ′(x)/Γ(x).

3.3.2 Calculational method and Type A example

To illustrate the method of calculation, we first review the calculation in the non-minimal Type A

theory [26, 27]. The calculations for the various Type B theories are similar and we will not give

20In that paper, an “averaged” regulator of ( ∆ph+∆gh

2
− d

2
)−ε was preferred for the Type A theory calculations,

and it can be shown to give the same result as the regulators (3.72)-(3.73) that we will use in our calculations. In
type AB theories, however, it appears that “averaged” regulator does not work, and we will use the shifts defined in
(3.72)-(3.73) in all theories consistently.

21 While not needed, the integral results for B±k , can be identified with the Hurwitz-Lerch Phi function Φ(z, s, v),∫ ∞
0

du
uk

e2πu ± 1
=

∫ ∞
0

du
1

2π

( u
2π

)ke−u

1± e−u =
Γ(k + 1)

(2π)k+1
Φ(±1, k + 1, 1) (3.77)
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all details. Calculations for the Type AB theory are similar with slight differences that will be

discussed below.

Unlike the even d case, the spectral function µα(u) is no longer polynomial in u, but a polynomial

in u multiplied by a hyperbolic function,

µα(u) = µpoly
α (u)× f±(u), where f±(u) =




f+(u) = tanh(πu), for bosons,

f−(u) = coth(πu), for fermions.
(3.80)

Then, for a particular spectral weight α, the partition function can be written as

ζ(∆;α)(z) =
vol (AdSd+1)

vol(Sd)
2d−1

π

∫ ∞

0
du

gαµ
poly
α (u)[

u2 +
(
∆− d

2

)2]z f±(u). (3.81)

We will use the example of the Type A theory in AdS4 to walk us through the calculations. In

the non-minimal Type A theory in AdS4, the only representations are the totally symmetric ones

α = [s], s ≥ 0, and the spectral zeta function for a given spin s is

ζ(∆;αs)(z) =
vol (AdS4)

vol(S3)

4

π

∫ ∞

0
du

g[s](s)µ
poly
[s] (u)

[
u2 +

(
∆ph − 3

2

)2]z f+(u)

=

∫ ∞

0
du

(2s+ 1)u
[(
s+ 1

2

)2
+ u2

]

6
[(

∆− 3
2

)2
+ u2

]z tanh(πu), (3.82)

where µpoly
[s] (u) =

u
(
u2+(s+ 1

2)
2
)

8π2 and g[s] = 2s+ 1.

To calculate the one-loop free energy, we will need to evaluate
∑
ζ(∆;α)(0) and

∑
ζ ′(∆;α)(0).

Computing
∑
ζ(α;∆)(0): Setting z = 0 in (3.82), we find

ζ(∆;[s])(0) =

∫ ∞

0
du

(2s+ 1)u
[(
s+ 1

2

)2
+ u2

]

6
tanh(πu). (3.83)

Regulating this sum by inserting the prefactor (∆− d
2)−ε as in (3.72), we find22

∞∑

s=1

ζ(∆ph;[s])(0) = lim
ε→0

∞∑

s=1

∫ ∞

0
du

(2s+ 1)u
[(
s+ 1

2

)2
+ u2

]

6

(
s− 1

2

)−ε
tanh(πu)

=

∫ ∞

0

du

6
lim
ε→0

[
2ζ

(
−1 + ε,

1

2

)
u3 + 2ζ

(
−3 + ε,

1

2

)
u+ 6ζ

(
−2 + ε,

1

2

)
u

22Alternatively, one could first write tanh(πu) = 1− 2/(e2πiu + 1), evaluate the integral coming from the first term
by analytic continuation in z, and the one coming from the second term directly at z = 0, since it converges.
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+ 6ζ

(
−1 + ε,

1

2

)
u+ (2u3 + 2u)ζ

(
ε,

1

2

)]
tanh(πu)

=

∫ ∞

0
du

[
u3

72
+

113u

2880

]
tanh(πu). (3.84)

A similar calculation for the ghost modes using the prefactor (∆gh − d
2)−ε yields

∞∑

s=1

ζ(∆gh;[s−1])(0) =

∫ ∞

0

du

e2πiu + 1

[
233u

2880
+

13u3

72

]
tanh(πu). (3.85)

For the bulk scalar, we simply set s = 0 in ζ(∆ph;[s])(0), and obtain ζ(1;[0])(0) =
∫∞

0 du
[
u
24 + u3

6

]
tanh(πu).

Putting all contributions together, the coefficient of the logarithmic divergence in the one-loop free

energy is

ζHS
type A(0) = ζ(1;[0])(0) +

∞∑

s=1

ζ(∆ph;[s])(0)−
∞∑

s=1

ζ(∆gh;[s−1])(0)

=

∫ ∞

0
du tanh(πu)

[
u3

72
+

113u

2880
− 233u

2880
− 13u3

72
+

u

24
+
u3

6

]

= 0. (3.86)

It is remarkable that when we sum over the entire spectrum of bulk fields, we get

ζHS
Total(0) = 0, (3.87)

which indicates that the one-loop free energies have no logarithmic divergences. We find that this

result holds not only in type A theories [26, 27], but also in all of the type B and type AB theories

we discuss below.

Computing ζ ′(∆;αs)
(0): The evaluation of ζ ′(0) in odd d is considerably more complicated. One

may begin by splitting the f±(u) term as f±(u) = 1∓ 2
e2πiu±1

so that

ζ(∆;α)(z) = ζpoly
(∆;α)(z) + ζexp

(∆;α)(z) (3.88)

where

ζpoly
(∆;α)(z) =

vol (AdSd+1)

vol(Sd)
2d−1

π

∫ ∞

0
du

gαµ
poly
α (u)[

u2 +
(
∆− d

2

)2]z (3.89)

ζexp
(∆;α)(z) = ∓vol (AdSd+1)

vol(Sd)
2d−1

π

∫ ∞

0
du

gαµ
poly
α (u)[

u2 +
(
∆− d

2

)2]z
2

e2πiu ± 1
(3.90)
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And, by differentiating (3.88),

∂

∂z
ζ(∆;α)(z)

∣∣
z=0

=
∂

∂z
ζpoly

(∆;α)(z)
∣∣
z=0

+
∂

∂z
ζexp

(∆;α)(z)
∣∣
z=0

(3.91)

The integral in ζpoly
(∆;α)(z) may be evaluated at arbitrary z, and after taking the derivative and

summing over spins, one finds a zero contribution to the free energy. The evaluation of ζexp
(∆;α)(z)

is more involved, and we refer the reader to Appendix B.3 and [26, 27] for more details. The final

result is that, in the non-minimal theory [26]

ζ ′(1;[0])(0) +

∞∑

s=1

ζ ′(s+1;[s])(0)−
∞∑

s=1

ζ ′(s+2;[s−1])(0) = 0 , (3.92)

which implies that the one loop free energy vanishes. In the non-minimal theory, one finds instead

− 1

2


ζ ′(1;[0])(0) +

∞∑

s=2,4,6,...

ζ ′(s+1;[s])(0)−
∞∑

s=2,4,6,...

ζ ′(s+2;[s−1])(0)


 =

log 2

8
− 3ζ(3)

16π2
, (3.93)

which is the free energy of a single real conformal scalar on S3. An analogous result is found for

the type A theory in AdSd+1 for all d [27].

3.3.3 Type B Theories

Non-minimal Theory The full spectral zeta function for the non-minimal type B theory in odd

d follows from eq. (2.9), and reads

ζHS
type B(z) = ζ(d−1;[0,0,...,0])(z)

+

∞∑

s=1

(
Z(∆ph;[s,1,1,...,1,1])(z) + Z(∆ph;[s,1,1,...,1,1,0])(z) + . . .+ Z(∆ph;[s,1,0,...,0])(z) + Z(∆ph;[s,0,0,...,0])(z)

)

= ζ(d−1;[0,0,...,0])(z) +
∞∑

s=1

1∑

ti≥ti+1
ti≥0

Z(∆ph;[s,t1,t2,...,tw−1,tw])(z), (3.94)

Note that instead of two towers, there is only one tower for each representation, due to the lack of

the chirality matrix. Using this spectrum and the procedure outlined above to regulate the sums,

we find that the logarithmic divergence correctly cancels

ζHS
type B(0) = 0 . (3.95)

However, as summarized in section 2.2, the evaluation of (ζHS
type B)′(0) leads to a surprising result.

The one-loop free energy of the non-minimal type B theories in all odd d does not vanish, but is
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given by (2.14), or equivalently by (2.15). This apparent mismatch with the expected result F (1) = 0

remains to be understood.

Minimal theories Majorana fermions in odd d can be defined for d = 3, 9 (mod 8). When the

Majorana condition is not possible, one can impose the symplectic Majorana (SM) condition and

consider the USp(N) singlet sector ofN free SM fermions, as explained in the even d case above. The

AdS4 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s] 1
Scalar (∆ = 2) 1

AdS8 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1] 1
[s, 1, 0] 1
[s, 0, 0] 1
Scalar (∆ = 6) 1

AdS12 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1] 1
[s, 1, 1, 1, 0] 1
[s, 1, 1, 0, 0] 1
[s, 1, 0, 0, 0] 1
[s, 0, 0, 0, 0] 1
Scalar (∆ = 10) 1

AdS16 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1, 1] 1
[s, 1, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 1, 0, 0] 1
[s, 1, 1, 1, 0, 0, 0] 1
[s, 1, 1, 0, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0, 0] 1
Scalar (∆ = 14) 1

AdS6 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1] 1
[s, 0] 1
Scalar (∆ = 4)

AdS10 O(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1] 1
[s, 1, 1, 0] 1
[s, 1, 0, 0] 1
[s, 0, 0, 0] 1
Scalar (∆ = 8)

AdS14 USp(N)

α s =
1, 2, 3, . . . 2, 4, 6, . . . 1, 3, 5, . . .

[s, 1, 1, 1, 1, 1] 1
[s, 1, 1, 1, 1, 0] 1
[s, 1, 1, 1, 0, 0] 1
[s, 1, 1, 0, 0, 0] 1
[s, 1, 0, 0, 0, 0] 1
[s, 0, 0, 0, 0, 0] 1
Scalar (∆ = 12)

Table 5: Spectra of the minimal Type B theory dual to the fermionic vector model with Majorana (or symplectic
Majorana) projection. The corresponding values of F (1) can be found in Table 6.

spectra of the minimal theories can be again deduced from the symmetry/antisymmetry properties

of the CΓ(n) matrices. In the Majorana case, if CΓ(n) is symmetric the operators of the form (3.30)

are retained for even spins and projected out for odd spins, and vice-versa if CΓ(n) is antisymmetric.

The scalar operator ψ̄iψi is projected out if C is symmetric. For instance, in d = 3 the C matrix

is antisymmetric and Cγµ is symmetric, and so the spectrum of the minimal theory includes the

∆ = 2 (pseudo)-scalar and the tower of totally symmetric fields of even spin. Higher dimensional

cases can be worked out similarly, and the first few examples are listed in Table 5. In a compact
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notation, the total spectral zeta function of the minimal theories dual to the Majorana projected

fermion model reads

ζHS
type B Maj.(z) = χ(d)ζ(d−1;[0,0,...,0])(z)

+
∞∑

s=2,4,6,...

1∑

ti≥ti+1
ti≥0∑

i ti=w (mod 4)

(
Z(∆;[s,t1,t2,...,tw−1,tw])(z)

)
+

∑

s=1,3,5,...

1∑

ti≥ti+1
ti≥0∑

i ti=(w−1) (mod 4)

(
Z(∆;[s,t1,t2,...,tw−1,tw])(z)

)

+
∑

s=1,3,5,...

1∑

ti≥ti+1
ti≥0∑

i ti=(w−2) (mod 4)

(
Z(∆ph;[s,t1,t2,...,tw−1,tw])(z)

)
+

∑

s=2,4,6,...

1∑

ti≥ti+1
ti≥0∑

i ti=(w−3) (mod 4)

(
Z(∆ph;[s,t1,t2,...,tw−1,tw])(z)

)

(3.96)

where χ(d) = 1, 0 when d = 3, 9 (mod 8) respectively.

In d = 5, 7 (mod 8) we can impose instead the symplectic Majorana projection. In this case, the

condition for which spins are projected out is reversed compared to the Majorana case, in a way

analogous to what discussed earlier in the even d case. For instance, in d = 5 (AdS6) one has that C
is antisymmetric, and so the scalar operator ψ̄iψi is now projected out. Then, Cγµ is antisymmetric,

and so the spectrum includes the totally symmetric [s, 0] representations for even s only. Finally,

Cγµν is symmetric, and so we keep the representations [s, 1] with odd s only. Higher dimensional

cases are worked out similarly, and the first few examples are listed in Table 5. The total spectral

zeta function can be expressed as

ζHS
type B Symp.Maj.(z) = χ(d)ζ(d−1;[0,0,...,0])(z)

+
∞∑

s=1,3,5,...

1∑

ti≥ti+1
ti≥0∑

i ti=w (mod 4)

Z(∆;[s,t1,t2,...,tw−1,tw])(z) +
∑

s=2,4,6,...

1∑

ti≥ti+1
ti≥0∑

i ti=(w−1) (mod 4)

Z(∆;[s,t1,t2,...,tw−1,tw])(z)

+
∑

s=2,4,6,...

1∑

ti≥ti+1
ti≥0∑

i ti=(w−2) (mod 4)

Z(∆ph;[s,t1,t2,...,tw−1,tw])(z) +
∑

s=1,3,5,...

1∑

ti≥ti+1
ti≥0∑

i ti=(w−3) (mod 4)

Z(∆ph;[s,t1,t2,...,tw−1,tw])(z)

(3.97)

where χ(d) = 0, 1 when d = 5, 7 (mod 8) respectively. In both versions of the minimal truncation,

we find that the coefficient of the logarithmic divergence still vanishes after summing up over the

full spectrum. However, similarly to the non-minimal case, the minimal Type B theories in odd d

appear to have a non-zero one-loop free energy, which we report in Table 6. We did not find an

analytic formula for these results similar to (2.14). However, we note that all these “anomalous”

values only involve the Riemann zeta functions ζ(2k + 1) divided by π2, and interestingly all other
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d Fcomputed (Minimal Type B)

3
log(2)

8
− 5ζ(3)

16π2

5
3 log(2)

64
+

7ζ(3)

192π2
− 49ζ(5)

128π4

7
5 log(2)

128
+

227ζ(3)

3840π2
− 5ζ(5)

256π4
− 441ζ(7)

512π6

9 −35 log(2)

2048
+

315ζ(7)

2048π6
+

3825ζ(9)

4096π8
− 617ζ(3)

21504π2
− 85ζ(5)

2048π4

11
63 log(2)

16384
+

68843ζ(3)

10321920π2
+

31033ζ(5)

2211840π4
− 29ζ(7)

98304π6
− 13579ζ(9)

98304π8
− 31745ζ(11)

65536π10

13
231 log(2)

131072
+

1933151ζ(3)

619315200π2
+

27993331ζ(5)

3715891200π4
+

1056541ζ(7)

123863040π6
− 285799ζ(9)

11796480π8

−150541ζ(11)

786432π10
− 258049ζ(13)

524288π12

15
429 log(2)

524288
+

2423526031ζ(3)

1653158707200π2
+

41124367ζ(5)

10899947520π4
+

12837ζ(7)

2097152π6
+

47549ζ(9)

66060288π8

−104687ζ(11)

2097152π10
− 503685ζ(13)

2097152π12
− 2080641ζ(15)

4194304π14

Table 6: One-loop free energy of the minimal Type B HS theory in AdSd+1 for odd d.

transcendental constants that appear in intermediate steps of the calculation cancel out.

3.3.4 Type AB Theories

Spectrum and Results As in the even d case, the only irrep of SO(d) describing the tower of

half-integer spins is αs = [s, 1
2 ,

1
2 , . . . ,

1
2 ]. Thus, the total spectral zeta function is given by the same

equation as in (3.51).

The calculation is rather similar to the one we outlined for the Type A theory. The only

difference is that the spectral density µα(u) includes coth(πu) instead of tanh(πu). For example, in

the Type AB theory in AdS4, the higher-spin zeta-function is given by

ζ(∆;[s])(z) =

∫ ∞

0
du

(2s+ 1)u
[(
s+ 1

2

)2
+ u2

]

6
[(

∆− 3
2

)2
+ u2

]z coth(πu). (3.98)

The calculations for
∑
ζ(∆;αs)(0) are essentially identical to that of Type A theories, and in particular
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we find that the contribution to the logarithmic divergence due to the fermionic fields vanishes after

summing over the whole tower. Heading straight to the calculation of
∑
ζ ′(∆;αs)

(0), if we follow the

procedure outlined for the Type A case, we have

ζ ′(∆;[s])(0) = −
∫ ∞

0
du

(2s+ 1)u

3(e2πu − 1)

[
u2 +

(
s+

1

2

)2
]

log

[(
∆− 3

2

)2

+ u2

]
. (3.99)

Rewriting the exponential terms using (3.74), we should use A−1 (x) instead of A+
1 (x). This intro-

duces an extra 1
2
√
x
term in ζHS−exp′

∆,s;[s] (0), i.e.

ζexp′

(∆;[s])(0) = −
∫ ∞

0
du

(2s+ 1)u

3(e2πu − 1)

[
u2 +

(
s+

1

2

)2
]

log(u2)

−
∫ (s− 1

2
)2

0
dx

1

12
(2s+ 1)

[
(2s+ 1)2 + 4u2

](
− 1

2
√
x

+
log (
√
x)

2
− ψ (

√
x)

2

)
(3.100)

In any case, the terms involving 1
2
√
x
, which we can call ζexp−sqrt′

(∆;[s]) (0), will not contribute to the value

of ζexp′

(∆;[s])(0). Only the contributions from the terms involving ψ(
√
x), namely the third term inside

the bracket of (3.100) will contribute. After putting all together, the end result is

ζ ′
( 3

2
;[ 1

2
])

(0) +
∑

s= 3
2
, 5
2
,...

(
ζ ′(s+1;[s])(0)− ζ ′(s+2;[s−1])(0)

)
= 0 , (3.101)

i.e., the tower of fermionic fields in type AB theories yields a vanishing contribution to the bulk

one-loop free energy. This result extends to all higher d.
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A S1 × Sd−1 partition functions and Casimir energies

Besides testing the gauge/gravity duality by comparing the partition functions on the Euclidean

AdSd+1 (hyperbolic space) and CFTd on Sd, we can also compare thermal partition functions of
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higher spin theories on thermal AdSd+1 and boundary CFTs defined on S1 × Sd−1, where the

inverse temperature β of the thermal AdS space is interpreted as the length of S1. Calculations of

the thermal free energy and Casimir energy serve as useful checks on our results in hyperbolic space

with Sd boundary. The results below follow and generalize [28], which considered type A theories

in all d and type B theories in d = 2, 3, 4, and [16–18], where type B theories in d = 6 and type C

theories in d = 4, 6 were discussed.

The free energy on S1 × Sd−1 takes the form

F = Fβ + βEc (A.1)

where Fβ depends non-trivially on the temperature and goes to zero at large β, and Ec is the

Casimir energy. The latter is related to the “one-particle” partition function on S1 × Sd−1 by (see

e.g. [28] for a review)

Ec = σ
1

2
ζE(−1) = σ

1

2Γ(z)

∫ ∞

0
dββz−1Z(β)

∣∣∣∣∣
z=−1

. (A.2)

where σ = +1 for bosonic fields, and σ = −1 for fermionic ones, and Z(β) denotes the one-particle

partition function. This also determines Fβ by

Fβ = −
∞∑

m=1

1

m
Z(mβ) , boson

Fβ =
∞∑

m=1

(−1)m

m
Z(mβ) , fermion

(A.3)

Note that Ec vanishes for a CFTd in odd d, but it is non-zero in even d.

In the vector models restricted to the singlet sector, one finds that Fβ = O(N0), due to the

integration over the flat connection which enforces the gauge singlet constraint [28, 37]. This term

should then match the temperature dependent part of the bulk one-loop thermal free energy, ob-

tained by summing over all fields in the AdS spectrum, and the agreement serves as a useful check

on the bulk spectra. The Casimir term, on the other hand, is just given by N times the Casimir

energy of a single conformal field. If no shift is expected in the map between the bulk coupling

constant and N , then the CFT Casimir contribution should be reproduced just by a classical cal-

culation in AdS (which we have no access to at present), and bulk loop corrections to the Casimir

energy should vanish. However, when a shift GN ∼ 1/(N − k) is expected, the one-loop correction

to the Casimir energy should precisely be consistent with such a shift. We will see below that this

is the case in all higher spin theories we considered in this paper.

On the CFT side, the one-particle partition functions of a conformal scalar and Majorana (or
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Weyl) fermion are given by

Z0(q) =
q
d
2
−1(1 + q)

(1− q)d−1
, Z 1

2
(q) =

2b
d
2
cq

d−1
2

(1− q)d−1
, q = e−β (A.4)

Using (A.2) and the identity (1 − q)−b =
∑∞

n=1

(
n+ b− 2

b− 1

)
qn−1, one then finds the Casimir

energies

Ec,0 =
∞∑

n=0

(n+ d− 3)!

(d− 2)!n!
[n+

1

2
(d− 2)]1−z|z=−1 ,

Ec,1/2 = −2b
d
2
c−1

∞∑

n=0

(n+ d− 2)!

(d− 2)!n!
[n+

1

2
(d− 1)]1−z|z=−1 .

(A.5)

Evaluating this with Hurwitz zeta regularization, one obtains the values in d = 4, 6, 8, . . .:

Ec,0 =

{
1

240
,− 31

60480
,

289

3628800
,− 317

22809600
,

6803477

2615348736000
, . . .

}

Ec,1/2 =

{
17

960
,− 367

48384
,

27859

8294400
,− 1295803

851558400
,

5329242827

7608287232000
, . . .

} (A.6)

For the real (d/2− 1)-form gauge field, with no self-duality imposed on the d/2-form field strength,

the one-particle partition function is given by (see for instance Appendix D of [18])

Z d
2
-form(q) =

2qd/2

(1− q)d−1




d
2∑

j=1

ad,j(−q)
d
2
−j


 , ad,j =

(
d− 1

j − 1

)
. (A.7)

Note that when we expand Z d
2
-form(q) around q = 1, the leading pole term is,

Z d
2
-form(q) ∼ 2

(1− q)d−1
n(d), where n(d) =

(
d− 2
d
2 − 1

)
, (A.8)

which gives the correct number of propagating degrees of freedom of a (d/2 − 1)-form gauge field.

Inserting (A.7) into (A.2), one finds the Casimir energies in d = 4, 6, 8, . . .: 23

Ec,d/2−form =

{
11

120
,− 191

2016
,

2497

25920
,− 14797

152064
,

92427157

943488000
, . . .

}
. (A.9)

On the AdS side, at the level of the one-particle partition functions, the contribution of a

bulk field to the thermal free energy is given essentially by the character of the corresponding

representation of the conformal group. For the representations αs dual to massless gauge fields, we
23The values obtained for d = 4, 6 agree with those in the literature [16–18], while the values for other dimensions

are new as far as we know.
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have

Zαs(q) =
q∆ph

(1− q)d
[gαs − qgαs−1 ] , (A.10)

where ∆ph = s+d−2 and gαs is the dimension of the representation αs (the number of propagating

degrees of freedom in the bulk is gαs − gαs−1). For the massive fields, the ghost contribution is not

present, and one has

Zα =
q∆

(1− q)d
gα . (A.11)

One may obtain a “total” one-particle partition function Z(β) in the bulk by summing over all

representations in the spectrum, and from it one may then find the bulk one-loop Casimir energy

by (A.2) and Fβ by (A.3). In the following we summarize the result of these calculations in the

various higher spin theories considered in this paper.

Type A Theories In [28], it was shown that

Non-Minimal Type A: Z(β) =
∑

α

Zα(q) = [Z0(q)]2, (A.12)

Minimal Type A: Z(β) =
∑

γ

Zγ(q) =
1

2

[
[Z0(q)]2 + Z0(q2)

]
(A.13)

where α refers to the spectrum containing the weights [s, 0, . . . , 0] with each integer spin s =

0, 1, 2, . . ., and γ refers to the spectra containing the weights [s, 0, . . . , 0] with each even integer spin

s = 0, 2, 4, . . .. The result on the right-hand side, where Z0(β) is the scalar one-particle partition

function given in (A.4), precisely agrees with the singlet sector CFT calculation [28,37].

The bulk Casimir energy can be obtained by inserting the right-hand side of (A.12) and (A.13)

into (A.2) (alternatively, one may compute the Casimir contributions spin by spin, and sum up at

the end). One finds that [Z0(q)]2 gives zero contribution to the Casimir energy,24 while Z0(q2) gives

a contribution equal to 2Ec,0. Then, Ec,type A = 0 and Ec,min. type A = Ec,0, consistently with the

expected shift of GN deduced from the Sd calculations.

Type B Theories In the type B theories and their various truncations, we find

Non-Minimal Type B:
∑

α

Zα(q) = [Z 1
2
(q)]2, (A.14)

Weyl-Projection:
∑

γ

Zγ(q) =
1

4
[Z 1

2
(q)]2, (A.15)

24This is because of symmetry under q → 1/q. Any function symmetric under this exchange gives a zero contribution
under the integral in (A.2).
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Minimal Type B:
∑

δ

Zδ(q) =





1
2

[
[Z 1

2
(q)]2 −Z 1

2
(q2)

]
, for O(N),

1
2

[
[Z 1

2
(q)]2 + Z 1

2
(q2)

]
, for USp(N),

(A.16)

Majorana-Weyl:
∑

ε

Zε(q) =
1

2

(
1

4
[Z 1

2
(q)]2 − 1

2
Z 1

2
(q2)

)
(A.17)

Symplectic Majorana-Weyl:
∑

κ

Zκ(q) =
1

2

(
1

4
[Z 1

2
(q)]2 +

1

2
Z 1

2
(q2)

)
(A.18)

where α, γ, δ are the spectra given by (3.24), (3.27), (3.31)-(3.33), and ε, κ the Majorana-Weyl

truncations discussed in 3.2.1.The right-hand side of all the above equations, with Z 1
2
(q) given

in (A.4), is again in precise agreement with the thermal calculations in the singlet sector of the

fermionic CFT (with the relevant fermion projection and gauge group). As an explicit example, in

AdS11, we have

Non-Minimal Type B:
∑

α

Zα(q) =
1024q9

(q − 1)18
=

(
32q9/2

(1− q)9

)2

, (A.19)

Weyl-Projection:
∑

γ

Zδ(q) =
256q9

(q − 1)18
, (A.20)

Minimal Type B:
∑

δ

Zγ(q) =
1

2

(
1024q9

(1− q)18
− 32q9

(1− q2)9

)
, (A.21)

Majorana-Weyl:
∑

ε

Zε(q) =
1

2

(
256q9

(1− q)18
− 16q9

(1− q2)9

)
, (A.22)

which all agree with the formulas in (A.14)-(A.18). For instance, using the spectrum found in

Table 3, the explicit computations for the Majorana-Weyl case is as follows:

[s, 1, 1, 1, 1] :
∑

s=2,4,6,...

qs+8

576(1− q)10

[
(s+ 8)!

(s+ 4)(s− 1)!
− q (s+ 7)!

(s+ 3)(s− 2)!

]

=
q8

(q − 1)18(q + 1)9

(
− q13 − q12 + 8q11 + 134q10 + 98q9 + 3914q8 + 2948q7

+ 12984q6 + 4983q5 + 8799q4 + 924q3 + 1050q2
)

(A.23)

[s, 1, 1, 0, 0] :
∑

s=1,3,5,...

qs+8

720(1− q)10

[
(s+ 4)(s+ 8)!

(s+ 2)(s+ 6)(s− 1)!
− q (s+ 3)(s+ 7)!

(s+ 1)(s+ 5)(s− 2)!

]

=
q7

(q − 1)18(q + 1)9

(
q18 + q17 − 8q16 − 8q15 + 29q14 + 29q13 − 64q12 − 64q11 + 1043q10

+ 923q9 + 6992q8 + 3760q7 + 10039q6 + 2407q5 + 3352q4 + 120q3 + 120q2
)

(A.24)

[s, 0, 0, 0, 0] :
∑

s=2,4,6,...

qs+8

20160(1− q)10

[
(s+ 4)(s+ 7)!

s!
− q (s+ 3)(s+ 6)!

(s− 1)!

]
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d Non-Minimal Weyl Minimal (O(N)/USp(N)) Majorana-Weyl

3 0 0

4 0 0
17

960

5 0 0

6 0 0
367

48384

7 0 0

8 0 0
27859

8294400

27859

16588800

9 0 0

10 0 0 − 12950803

851558400
− 12950803

1703116800

11 0 0

Table 7: Type B Casimir Energies. The grey boxes indicate that the particular type of fermion is not defined for
the given dimension.

=
q8

(q − 1)18(q + 1)9

(
− q17 − q16 + 8q15 + 8q14 − 28q13 − 28q12 + 56q11 + 66q10

− 61q9 + 59q8 + 140q7 + 392q6 + 98q5 + 218q4 + 44q3 + 54q2
)

(A.25)

Summing (A.23)-(A.25) up, we obtain (A.22).

The bulk one-loop contribution to the Casimir energy in Type B theories can be obtained by

inserting the right-hand sides of (A.14)–(A.18) into (A.2). The only non-zero contribution comes

from Z 1
2
(q2), which yields 2Ec,1/2. Then, we see that the bulk one-loop Casimir energies in all

variants of the type B theories are in precise agreement with the shifts of the coupling constant

summarized in Table 1. Note that in odd d we get zero Casimir energy on both CFT and bulk

sides, as it should be, so this calculation does not shed light on the anomalous shifts we encountered

in type B theories in odd d. A few explicit values of the bulk one-loop Casimir energies are collected

in Table 7.

Type AB Theories In the purely fermionic sector of the type AB theories, the only represen-

tations are given by the weights [s, 1
2 , . . . ,

1
2 ], which lead to a simple computation that gives for a
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generic d,

Ztype AB ferm(q) =
qd−

3
2

(1− q)d
g[1/2,1/2,...,1/2] +

∑

s= 3
2
, 5
2
,···

qs+d−2

(1− q)d
[
g[s,1/2,...,1/2] − qg[s−1,1/2,...,1/2]

]

=
2b

d
2
cqd−

3
2 (1 + q)

(1− q)2(d−1)
= Z0(q)Z 1

2
(q). (A.26)

A quick calculation gives us Ec = 0 for the contribution of the fermionic tower in the Type AB

theories, which is nicely consistent with what we obtained in the Sd calculations, namely that there

are no shifts due to the purely fermionic fields.

Type C Theories In type C theories, summing up over the relevant bulk spectra given in Section

3.2.3, we find

Non-Minimal Type C:
∑

α

Zα(q) = [Z d
2
-form(q)]2, (A.27)

U(N) Self-Dual:
∑

γ

Zδ(q) =
1

4
[Z d

2
-form(q)]2, (A.28)

Minimal Type C:
∑

δ

Zγ(q) =
1

2

[
[Z d

2
-form(q)]2 + Z d

2
-form(q2)

]
, (A.29)

O(N) Self-Dual:
∑

ε

Zε(q) =
1

2

[1

4

(
Z d

2
-form(q)

)2
+

1

2
Z d

2
-form(q2)

]
, (A.30)

where Z d
2
-form(q) is the one-particle partition function (A.7) of a single real (d/2 − 1)-form gauge

field. The results on the right-hand side have the correct structure expected from the CFT thermal

free energy in the U(N)/O(N) singlet sector of the theory of N differential form gauge fields. This

calculation was carried out explicitly in the S1 × S3 case in [17], and we expect it to generalize to

all d.

The one-loop Casimir energies of Type C theories can be obtained by plugging the right-hand

side of (A.27)–(A.30) into (A.2). The calculation can be simplified by noting that, due to the

symmetry properties under q → 1/q, the term [Z d
2
-form(q)]2 contributes 2(−1)d/2Ec,d/2−form after

the integration in (A.2),25 and Z d
2
-form(q2) contributes 2Ec,d/2−form. Then we see that in all cases

the one-loop Casimir energies in the bulk are consistent with the shifts of the coupling constant

summarized in Table 1. A few explicit values are reported in Table 8.
25See Appendix D of [18] for a discussion of this.
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d Non-Minimal U(N) Self-dual U(N) Minimal O(N) Self-dual O(N)

4
11

60

11

240

11

60

6
191

1008

191

4032
0 − 191

8064

8
2497

12960

2497

51840

2497

12960

10
14797

76032

14797

304128
0 − 14797

608256

12
92427157

471744000

92427157

1886976000

92427157

471744000

14
36740617

186624000

36740617

746496000
0 − 36740617

1492992000

Table 8: Type C Casimir Energies. The grey boxes indicate that the particular type of p-form is not defined for the
dimension.

B Some technical details on the one-loop calculations in Hyperbolic

space

B.1 Hurwitz Zeta regularization

To implement ζ-function regularization, we identify the conventionally divergent term
∑∞

s=1 1/(s+

ν)k as
∑∞

s=0 1/(s+ ν + 1)k, and treating it as the Hurwitz zeta function,

ζ(k, β) ≡
∞∑

n=0

1

(n+ β)k
, (B.1)

where we then analytically extend to the full complex plane. This allows us to regulate systematically

the sums to obtain their finite contributions.

Suppose we want to start summing all integer spins s ≥ ` ≥ 0, then,

∞∑

s=`

1

(s+ ν)k
= ζ(k, `+ ν). (B.2)

This is the convention we applied in this paper, and avoids potential inconsistencies that can occur

with the Hurwitz zeta function. We might also consider sums that only incorporate a particular

subset of spins, such as either all odd integer spins or all even integer spins. To do so, we can
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transform the summing variable of the original Hurwitz zeta function appropriately. We give two

examples:

To sum over all even spins, consider

∞∑

s=2,4,6,...

1

(s+ ν)k
=
∞∑

s=1

1

(2s+ ν)k
=
∞∑

s=1

2−k
(
s+ ν

2

)k =
∞∑

s=0

2−k
(
s+ ν

2 + 1
)k = 2−kζ

(
k,
ν

2
+ 1
)
. (B.3)

A similar scheme for summing over all odd spins is

∞∑

s=1,3,5,...

1

(s+ ν)k
=
∞∑

s=1

1

(2s− 1 + ν)k
=
∞∑

s=1

2−k
(
s+ ν−1

2

)k = 2−kζ

(
k,
ν − 1

2
+ 1

)
. (B.4)

Unlike conventional summation where rearrangement of terms may lead to problems, ζ-function

regularization allows for rearrangement. In particular, the ζ-function satisfies,

∞∑

s=2,4,6,...

1

(s+ ν)k
+

∞∑

s=1,3,5,...

1

(s+ ν)k
= ζ(k, ν + 1), (B.5)

which allows us to obtain the regularization over both the odd or the even integer spins by just

doing one of the two calculation.

B.2 Identity for odd d free energy calculations

The relationship described in (3.76) can be derived by

A±k (x) =

∫ ∞

0

uk

e2πu ± 1

du

u2 + x

=
∂

∂a

[∫ ∞

0
du

uk−2

e2πu ± 1
log[au2 + x]

]

a=1

=
∂

∂a

{
log(a)

∫ ∞

0
du

uk−2

e2πu ± 1
+

∫ ∞

0
du

uk−2

e2πu ± 1
log
[
u2 +

x

a

]}

a=1

=

∫ ∞

0
du

uk−2

e2πu ± 1
− x

∫ ∞

0

uk−2

e2πu ± 1

du

u2 + x

= B±k−2(x)− xA±k−2(x). (B.6)

B.3 Evaluating ζ ′∆,α(0)

Here we collect some details on the evaluation of the term ∂zζ
exp
(∆;αs)

(z)|z=0 in (3.90), in the explicit

example of the type A theory in AdS4. The calculations in the other theories studied in this paper

go through in a similar way. After some integral identities and algebraic manipulations, we may
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write

∂

∂z
ζexp

(∆;αs)
(z)
∣∣
z=0

= ζexp−log−1′

(∆;αs)
(0) + ζexp−log−2′

(∆;αs)
(0) + ζexp−const′

(∆;αs)
(0) + ζexp−ψ′

(∆;αs)
(0). (B.7)

The only overall non-zero contribution will come from the fourth term, ζexp−ψ′
(∆;αs)

(0), and the contri-

butions of the first three will cancel out, after taking into account the ghost modes and all other

particles in the entire spectra of the theory.

To understand what these three terms are, let’s return to the Type A non-minimal theory, the

l.h.s. of (B.7) is now,

∂

∂z
ζexp

(∆;αs)
(z)
∣∣
z=0

=

∫ ∞

0
du

(2s+ 1)u3
(
(2s+ 1)2 + u2

)
log
((

∆− 3
2

)2
+ u2

)

12 (e2πu + 1)
. (B.8)

Using (3.74), we can rewrite the above term into:

∫ ∞

0
du

(2s+ 1)u3
(
(2s+ 1)2 + u2

)

12 (e2πu + 1)
log(u2)

︸ ︷︷ ︸
=ζexp−log−1′

(∆;αs)
(0)

+

∫ ∞

0
du

∫ (s− 1
2

)2

0
dx

(2s+ 1)u3
(
(2s+ 1)2 + u2

)

12 (e2πu + 1)

1

u2 + x

(B.9)

where ∆ph − 3
2 = s − 1

2 . The second term can then be explicitly integrated using the recursive

relation for
∫ k

0 dx
uk

e2πiu±1
1

u2+x
found in Appendix B.2,

∫ (s− 1
2

)2

0
dx

∫ ∞

0
du

(2s+ 1)u3
(
(2s+ 1)2 + u2

)

12 (e2πu + 1)

1

u2 + x

=
1

2

∫ (s− 1
2

)2

0
dx log (x)

(
1

6
x(2s+ 1)− 1

6

(
s+

1

2

)2

(2s+ 1)

)

︸ ︷︷ ︸
≡ζexp−log−2′

(∆ph;[s])
(0)

+
1

3
B+

1 (2s+ 1)
︸ ︷︷ ︸
≡ζexp−const′

(∆ph;[s])
(0)

+

∫ (s− 1
2

)2

0
dx ψ

(√
x+

1

2

)(
1

6
x(−2s− 1) +

1

6
(2s+ 1)

(
s+

1

2

)2
)

︸ ︷︷ ︸
≡ζexp−ψ′

(∆ph;[s])
(0)

, (B.10)

where B±k :=
∫∞

0 du uk

e2πu±1
, and ψ(x) is the digamma function ψ(x) = Γ′(x)/Γ(x). We concentrate

on the last term including the digamma function, since it is the only term that contributes to the final

partition function. To integrate the digamma function, we make use of its integral representation

ψ(x) =

∫ ∞

0

(
e−t

t
− e−xt

1− e−t

)
dt (B.11)
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so that we get

ζexp−ψ′
(∆ph;[s])

(0) =

∫ ∞

0
dt

∫ (s− 1
2

)2

0
dx

(
e−t

t
− e−(

√
x+ 1

2
)

1− e−t

)(
−1

6
x(2s+ 1) +

1

24
(2s+ 1)3

)

=

∫ ∞

0
dt

(2s+ 1)e−t

24 (et − 1) t

{
e−st+2t

[
−4(4s2 − 8s+ 1)

t
+ 16s2 +

24− 48s

t2
− 8s− 48

t3

]

+
1

4

(
1− 4s2

)2 (
et − 1

)
− 2e

3t
2

t3
[
(2st+ t)2 − 24

]
− 1

8
(1− 2s)4

(
et − 1

)
}

(B.12)

The terms in the integrand above split into those that include a prefactor of e−st, and those that

do not. For the terms with the prefactor, we can sum over the spins easily and without a regulator,

∞∑

s=1

(2s+ 1)e−t

24 (et − 1) t

{
e−st+2t

[
16s2 − 8s+

−16s2 + 32s− 4

t
+

24− 48s

t2
− 48

t3

]}

=
et

6 (et − 1)5 t4

[
t2 + 3e3t

(
2t3 + 3t2 − 6t− 12

)
+ et

(
6t3 − 17t2 + 42t− 60

)

+ e2t
(
36t3 − 41t2 − 18t+ 84

)
− 6t+ 12

]
. (B.13)

For those terms without the prefactor, we sum using the same regulator as in the previous segment,

∞∑

s=1

(
s− 1

2

)−ε (2s+ 1)e−t

24 (et − 1) t

{
1

4

(
1− 4s2

)2 (
et − 1

)
− 2e

3t
2

t3
[
(2st+ t)2 − 24

]
− 1

8
(1− 2s)4

(
et − 1

)
}

=
et/2

6 (et − 1) t4
− 113et/2

1440 (et − 1) t2
+

1609e−t

241920 (et − 1) t
− 1609

241920 (et − 1) t
. (B.14)

Combining (B.13) and (B.14) under the integrand, we obtain the expression for ζexp−ψ′
∆ph;[s]

(0). Then,

repeating the calculations for the ghost calculations, we obtain

ζexp−ψ′
(∆gh;[s−1])

(0) =

∫ ∞

0
dt

[
13et/2

6 (et − 1) t4
+

2

(et − 1)2 t4
− 4et

(et − 1)3 t4
−

4et
(
et + 1

)

(et − 1)4 t3
+

1

(et − 1)2 t3

−
2et
(
et + 1

)

(et − 1)4 t2
− 233et/2

1440 (et − 1) t2
+

1

6 (et − 1)2 t2
+

et

(et − 1)3 t2

−
4et
(
4et + e2t + 1

)

3 (et − 1)5 t2
+

349e−t

241920 (et − 1) t
− 349

241920 (et − 1) t
+

et

3 (et − 1)3 t

−
4et
(
4et + e2t + 1

)

3 (et − 1)5 t

]
. (B.15)

After combining these above with the integral representation for the scalar term, we then make use
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of the integral representation of the Hurwitz-Lerch transcendental function,

Φ(z, s, ν) =
1

Γ(s)

∫ ∞

0
dt
ts−1e−νt

1− ze−t
=
∞∑

0

(n+ ν)−szn, (B.16)

to transform the expressions into sums of derivatives of Hurwitz-Lerch transcendental functions26.

Finally, the Type A non-minimal theory will give us an expression of

ζexp−ψ′
(1;[0]) (0) +

∞∑

s=1

ζexp−ψ′
(∆ph;[s])

(0)−
∞∑

s=1

ζexp−ψ′
(∆gh;[s−1])

(0) = 0. (B.18)

C Spectra of Higher Spin Theories and their Free Energy Contri-

butions
C.1 Type B Theories

26 This makes use of the identity,

1

(1− e−t)n+1(1 + e−t)m+1
=

(−1)n

n!m!
∂nz1∂

m
z2

[
1

z1 − z2

(
1

z1 − e−t
− 1

z2 − e−t

)] ∣∣∣∣∣
z1=1,z2=−1

(B.17)
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AdS5

Towers of Spins Contribution to F from one tower summed over:

(∆ph;α) s = 1, 2, 3, . . . s = 2, 4, 6, . . . s = 1, 3, 5, . . .

(∆ph; [s, 1])

s︷ ︸︸ ︷
1

180
logR

13

360
logR − 11

360
logR

(∆ph; [s, 0])

s︷ ︸︸ ︷
0

1

90
logR − 1

90
logR

Scalar Contribution to F by one scalar

(3; [0, 0]) − 1

180
logR

Table 9: Results for Type B theory in AdS5.AdS7

Towers of Spins Contribution to F from one tower summed over:

(∆ph;α) s = 1, 2, 3, . . . s = 2, 4, 6, . . . s = 1, 3, 5, . . .

(∆ph; [s, 1, 1])

s︷ ︸︸ ︷
1

1512
logR − 211

15120
logR

221

15120
logR

(∆ph; [s, 1, 0])

s︷ ︸︸ ︷
4

945
logR − 2

315
logR

2

189
logR

(∆ph; [s, 0, 0])

s︷ ︸︸ ︷
− 1

1512
logR − 1

504
logR

1

756
logR

Scalar Contribution to F by one scalar

(5; [0, 0, 0]) − 4

945
logR

Table 10: Results for Type B theory in AdS7.AdS9

Towers of Spins Contribution to F from one tower summed over:

(∆ph;α) s = 1, 2, 3, . . . s = 2, 4, 6, . . . s = 1, 3, 5, . . .

(∆ph; [s, 1, 1, 1])

s︷ ︸︸ ︷
23

226800
logR

3463

453600
logR − 1139

151200
logR

(∆ph; [s, 1, 1, 0])

s︷ ︸︸ ︷
13

28350
logR

133

16200
logR − 293

37800
logR

(∆ph; [s, 1, 0, 0])

s︷ ︸︸ ︷
353

113400
logR − 1189

226800
logR − 23

10800
logR

(∆ph; [s, 0, 0, 0])

s︷ ︸︸ ︷
− 13

28350
logR − 29

113400
logR − 23

113400
logR

Scalar Contribution to F by one scalar

(7; [0, 0, 0, 0]) − 9

2800
logR

Table 11: Results for Type B theory in AdS9.
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AdS11

Towers of Spins Contribution to F from one tower summed over:

(∆ph;α) s = 1, 2, 3, . . . s = 2, 4, 6, . . . s = 1, 3, 5, . . .

(∆ph; [s, 1, 1, 1, 1])

s︷ ︸︸ ︷
263

14968800
logR − 19771

4276800
logR

138923

29937600
logR

(∆ph; [s, 1, 1, 1, 0])

s︷ ︸︸ ︷
31

467775
logR − 2273

374220
logR

11489

1871100
logR

(∆ph; [s, 1, 1, 0, 0])

s︷ ︸︸ ︷
311

1069200
logR − 6599

2993760
logR

37349

14968800
logR

((∆ph; [s, 1, 0, 0, 0])

s︷ ︸︸ ︷
1153

467775
logR − 3947

1871100
logR

19

53460
logR

(∆ph; [s, 0, 0, 0, 0])

s︷ ︸︸ ︷
− 19

61600
logR − 5143

14968800
logR

263

7484400
logR

Scalar Contribution to F by one scalar

(9; [0, 0, 0, 0, 0]) − 1184

467775
logR

Table 12: Results for Type B theory in AdS11.

C.2 Calculation of ZHS
total(z) in Type AB Theories

C.2.1 AdS7

In this case,

ZHS
total(z) =

z2π

86016

(
− 11253ζ ′(−10) + 15300ζ ′(−8) + 119658ζ ′(−6)− 137900ζ ′(−4) + 21735ζ ′(−2)

)

+O
(
z3
)

(C.1)

which gives us F (1)
f = 0, as we set z → 0.

C.2.2 AdS9

In this case,

ZHS
total(z) =

π

16647192576000

[
−136525ζ ′(−14) + 1242150ζ ′(−12) + 2651957ζ ′(−10)

−42097100ζ ′(−8) + 100665453ζ ′(−6)− 71501850ζ ′(−4) + 9993375ζ ′(−2)
]
z2

+O
(
z3
)

(C.2)
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which gives us F (1)
f = 0, as we set z = 0.

C.3 Free Energy Values for Type C Theories in AdS9

AdS9 Type C

Towers of Spins Contribution to F from one tower summed over:

(∆ph;α) s = 2, 3, 4, . . . s = 2, 4, 6, . . . s = 3, 5, 7, . . .

(∆ph; [s, 2, 2, 2])

s︷ ︸︸ ︷
23

1800
logR

2213

3600
logR − 2167

3600
logR

(∆ph; [s, 2, 0, 0])

s︷ ︸︸ ︷
3121

6300
logR

14281

37800
logR

127

1080
logR

(∆ph; [s, 2, 1, 1])

s︷ ︸︸ ︷
19409

37800
logR

19679

75600
logR − 19139

75600
logR

(∆ph; [s, 2, 2, 0])

s︷ ︸︸ ︷
329

2700
logR − 569

5400
logR

409

1800
logR

(∆ph; [s, 1, 1, 0])

s︷ ︸︸ ︷
31399

113400
logR

133

16200
logR

2539

9450
logR

(∆ph; [s, 0, 0, 0])

s︷ ︸︸ ︷
35293

113400
logR − 29

113400
logR

841

2700
logR

Other Particles Contribution to F by one particle

(8; [1, 1, 1, 1]) − 908

2835
logR

(8; [1, 1, 0, 0]) − 1856

14175
logR

(8; [0, 0, 0, 0])
1978

14175
logR

Table 13: Results for Type C theory in AdS9.
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