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Abstract

Since the seminal 1961 paper of Monod and Jacob, mathematical models of biomolecular

circuits have guided our understanding of cell regulation. Model-based exploration of the

functional capabilities of any given circuit requires systematic mapping of multidimensional

spaces of model parameters. Despite significant advances in computational dynamical sys-

tems approaches, this analysis remains a nontrivial task. Here, we use a nonlinear system

of ordinary differential equations to model oocyte selection in Drosophila, a robust symme-

try-breaking event that relies on autoregulatory localization of oocyte-specification factors.

By applying an algorithmic approach that implements symbolic computation and topological

methods, we enumerate all phase portraits of stable steady states in the limit when nonlin-

ear regulatory interactions become discrete switches. Leveraging this initial exact partition-

ing and further using numerical exploration, we locate parameter regions that are dense in

purely asymmetric steady states when the nonlinearities are not infinitely sharp, enabling

systematic identification of parameter regions that correspond to robust oocyte selection.

This framework can be generalized to map the full parameter spaces in a broad class of

models involving biological switches.

Author summary

Identification of qualitatively different regimes in models of biomolecular switches is

essential for understanding dynamics of complex biological processes, including symme-

try breaking in cells and cell networks. We demonstrate how topological methods,
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symbolic computation, and numerical simulations can be combined for systematic map-

ping of symmetry-broken states in a mathematical model of oocyte specification in Dro-
sophila, a leading experimental system of animal oogenesis. Our algorithmic framework

reveals global connectedness of parameter domains corresponding to robust oocyte speci-

fication and enables systematic navigation through multidimensional parameter spaces in

a large class of biomolecular switches.

Introduction

Clusters of cells interconnected by stable cytoplasmic bridges serve important functions in

existing species and are thought to have played a role in the emergence of multicellularity [1].

A notable example wherein such cysts arise is animal oogenesis, which includes an obligate

stage where the future oocyte develops while connected to auxiliary cells that supply it with

molecules and organelles [2–8]. Here we focus on dynamics within the female germline cyst in

Drosophila, one of the leading experimental systems for studies of oogenesis [9].

The developmental unit of Drosophila oogenesis is the egg chamber—a 16-cell germline

cyst surrounded by a somatically derived epithelium [3]. This cyst arises from a single stem

cell-derived cystoblast (Fig 1A) that undergoes four synchronous divisions, generating the ste-

reotypical network of cells shown in Fig 1B [9]. These divisions are incomplete, however, leav-

ing cells interconnected by reinforced cytoplasmic bridges called ring canals [10, 11] that allow

for transport of proteins, mRNA, and cytoplasmic components between cells. The invariant

pattern of divisions generates a lineage tree with bilateral symmetry. The oocyte differentiates

from one of the two central cells with 4 ring canals. The 15 remaining cells become nurse cells,

supplying the oocyte with components required for its growth and development [12].

Only one cell within the cyst must be selected as the future oocyte. The selection of a single

cell as the oocyte corresponds to the proper dynamic localization of many factors, such as

BicD, Egl, and dynein [13, 14]. Another key component of this selection process is Orb, an

important mRNA-binding translational regulator of multiple transcripts in the developing egg

chamber that is necessary for establishing polarity within the developing cyst [15–19]. In early

stages of development, this factor is expressed uniformly in low amounts within all cells of the

cyst. However, as oogenesis progresses, orbmRNA begins to migrate to the two central cells

with four ring canals, and finally to just a single cell, the eventual oocyte (see Fig 1B) [20].

Notably, Orb promotes its own translation and indirectly affects transport of its own transcript

through ring canals [21, 22].

Two models have been proposed to explain the differentiation of the oocyte from all other

cells in the cyst: prepatterning (biased) and self-organizing (unbiased). The biased mechanism

relies on the nonuniform distribution of the fusome, a membranous structure that is generated

during cyst formation and passes through the 15 ring canals in the 16-cell cyst [13, 23]. This

backbone is formed progressively with every sequential division and is critical for synchro-

nized mitotic divisions and intercellular communication within the cyst [9]. According to this

model, the future oocyte is predetermined by the asymmetric distribution of fusome material

during the first cell division, well before the entire cyst is fully formed [14].

In contrast, the unbiased model postulates that either of the two central cells can be selected

as the oocyte, independently of fusome asymmetry [9]. Because Orb protein binds to the

untranslated region of its own mRNA (3’UTR) and positively promotes mRNA translation, a

feedback loop is established that alters the intercellular transport of orbmRNA between the

two cells in order to select the future oocyte [20–22]. Recent work has provided evidence that
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the fusome does not play as direct a role in oocyte specification, but instead aides Orb in local-

izing orbmRNA to one of the cells, therefore polarizing the developing cyst [20]. This would

suggest that either of the central cells can become enriched for orbmRNA and Orb protein,

eventually leading to its selection as the oocyte. Here, we evaluate this autoregulatory mecha-

nism using a mathematical model and demonstrate that it enables robust oocyte selection

without preexisting bias.

Model for oocyte selection in Drosophila
Although initially present in all 16 cells of the cyst, orbmRNA eventually localizes to the two

central cells in the cyst (Fig 1). This allows for the 16-cell model to be reduced to just the two

Fig 1. Dynamics of oocyte determination. (A) During the cyst’s progression through the germarium, the oocyte-

specifying factor Orb is initially produced in all cells, but then localizes to the two central cells, and finally to a single

cell, the future oocyte. Throughout this process, the fusome (green) forms a backbone within the cyst, leading to the

formation of polarized microtubules terminating in the oocyte. (B) Confocal images of the fusome (α-Spectrin, green)

and ring (Pavarotti, red) backbone that lies within the network of cells, and corresponding 16-cell schematic denoting

the progression of orbmRNA (gray), from a uniform distribution throughout all cells, to localization within the two

central cells, and finally to the oocyte (scale bar = 5 μm).

https://doi.org/10.1371/journal.pcbi.1008711.g001

PLOS COMPUTATIONAL BIOLOGY Mapping parameter spaces of biological switches

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008711 February 8, 2021 3 / 19

https://doi.org/10.1371/journal.pcbi.1008711.g001
https://doi.org/10.1371/journal.pcbi.1008711


central cells. To model oocyte selection, we consider a localization mechanism where Orb pro-

tein in each central cell binds freely diffusing orbmRNA to its fusome. A summary of this pro-

cess is shown in Fig 2A. In this case, the dynamics of concentrations for unbound (u1, u2) and

bound (b1, b2) forms of mRNA in each cell, as well as the respective concentrations of Orb pro-

tein (p1, p2) can be represented by the following six-dimensional dynamical system:

du1

dt
¼ â � m̂u1 þ k� b1 � kþ;0 þ kþ;D

pn
1

pn
1
þY

n
1

� �

u1 þ d̂ðu2 � u1Þ; ð1Þ

du2

dt
¼ â � m̂u2 þ k� b2 � kþ;0 þ kþ;D

pn
2

pn
2
þY

n
1

� �

u2 þ d̂ðu1 � u2Þ; ð2Þ

Fig 2. The oocyte selection model. (A) Overview of species in the model. orbmRNA that has been bound (b) to

fusome does not exchange between cells, unbound orbmRNA (u) and Orb protein (p) are not restricted in their

movement. (B) Schematic of unbound orbmRNA (u1,2), bound orbmRNA (b1,2), and Orb protein (p1,2) interactions

between the two most central cells. (C) Regulatory interactions in the reduced model.

https://doi.org/10.1371/journal.pcbi.1008711.g002
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db1

dt
¼ kþ;0 þ kþ;D

pn
1

pn
1
þY

n
1

� �

u1 � k� b1 � m̂b1; ð3Þ

db2

dt
¼ kþ;0 þ kþ;D

pn
2

pn
2
þY

n
1

� �

u2 � k� b2 � m̂b2: ð4Þ

dp1

dt
¼ b̂ þ ĝ

pn
1

pn
1
þY

n

2

� �

b1 � p̂p1 þ D̂ðp2 � p1Þ; ð5Þ

dp2

dt
¼ b̂ þ ĝ

pn
2

pn
2
þY

n

2

� �

b2 � p̂p2 þ D̂ðp1 � p2Þ: ð6Þ

The definitions of each parameter in this system are given in Table 1, and a schematic of

species interactions is shown in Fig 2B.

Nondimensionalization

Letmi denote the sum of bound and unbound mRNA species in a given cell i, where i = 1, 2.

When binding and unbinding processes are fast compared to the time scale of oocyte selection,

a rapid equilibrium approximation can be used to express the bound and unbound concentra-

tions in terms ofm asmi ¼ ui 1þ K0 þ K
pni

pni þY
n
1

� �
, where K0 ¼

kþ;0
k�

and K ¼ kþ;D
k�

. This can be

Table 1. Model parameters.

Parameter Definition

â rate of mRNA transcription

m̂ rate constant for mRNA degradation

k− rate constant for mRNA unbinding

k+,0 basal rate constant of mRNA binding

k+,Δ protein-induced increase of binding rate constant

d̂ rate constant for intercellular mRNA exchange

b̂ basal rate of protein translation

ĝ protein-induced increase of translation rate constant

p̂ rate constant for protein degradation

D̂ rate constant for intercellular protein exchange

Θ1 threshold for protein-induced mRNA binding

Θ2 threshold for protein-induced translation

n Hill exponent for protein-induced mRNA binding

ν Hill exponent for protein-induced translation

https://doi.org/10.1371/journal.pcbi.1008711.t001
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used to reduce the number of variables from six to four:

dm1

dt
¼ â � m̂m1 � d̂

1

1þ K0 þ K
pn

1

pn
1
þY

n
1

0

B
B
@

1

C
C
Am1 þ d̂

1

1þ K0 þ K
pn

2

pn
2
þY

n
1

0

B
B
@

1

C
C
Am2; ð7Þ

dm2

dt
¼ â � m̂m2 þ d̂

1

1þ K0 þ K
pn

1

pn
1
þY

n
1

0

B
B
@

1

C
C
Am1 � d̂

1

1þ K0 þ K
pn

2

pn
2
þY

n
1

0

B
B
@

1

C
C
Am2; ð8Þ

dp1

dt
¼ b̂ þ ĝ

pn
1

pn
1
þY

n

2

� � K0 þ K
pn

1

pn
1
þY

n
1

1þ K0 þ K
pn

1

pn
1
þY

n
1

0

B
B
@

1

C
C
Am1 � p̂p1 þ D̂ðp2 � p1Þ; ð9Þ

dp2

dt
¼ b̂ þ ĝ

pn
2

pn
2
þY

n

2

� � K0 þ K
pn

2

pn
2
þY

n
1

1þ K0 þ K
pn

2

pn
2
þY

n
1

0

B
B
@

1

C
C
Am2 � p̂p2 þ D̂ðp1 � p2Þ: ð10Þ

To nondimensionalize the model, we rescale (7)–(10) time by the maximum rate of mRNA

transport between cells, t ¼ d̂t=ð1þ K0Þ, mRNA by the ratio of the rate of mRNA formation to

the maximum rate of intercellular mRNA transport,Mi ¼ d̂mi=ðâð1þ K0ÞÞ, and protein by the

basal ratio of the translation of bound mRNA to the rate of unbinding and maximum transport

of free mRNA, Pi ¼ d̂2pi=ðâb̂K0ð1þ K0ÞÞ. The rescaled model takes the following form:

dM1

dt
¼ 1 � mM1 �

1

1þ k
Pn

1

Pn
1
þ y

n
1

0

B
B
@

1

C
C
AM1 þ

1

1þ k
Pn

2

Pn
2
þ y

n
1

0

B
B
@

1

C
C
AM2; ð11Þ

dM2

dt
¼ 1 � mM2 þ

1

1þ k
Pn

1

Pn
1
þ y

n
1

0

B
B
@

1

C
C
AM1 �

1

1þ k
Pn

2

Pn
2
þ y

n
1

0

B
B
@

1

C
C
AM2; ð12Þ

dP1

dt
¼ 1þ g

Pn
1

Pn
1
þ y

n

2

� � 1þ Z
Pn

1

Pn
1
þ y

n
1

1þ k
Pn

1

Pn
1
þ y

n
1

0

B
B
@

1

C
C
AM1 � pP1 þ �ðP2 � P1Þ; ð13Þ

dP2

dt
¼ 1þ g

Pn
2

Pn
2
þ y

n

2

� � 1þ Z
Pn

2

Pn
2
þ y

n
1

1þ k
Pn

2

Pn
2
þ y

n
1

0

B
B
@

1

C
C
AM2 � pP2 þ �ðP1 � P2Þ: ð14Þ

While ν and n are unchanged upon rescaling, eight dimensionless groups arise, which are

defined in Table 2. Though the presented simplified model does not account for the full
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intricacies of interactions between orbmRNA and cytoskeleton within each cell, the regulatory

effects of protein interactions preserve the qualitative behaviors of the system. Here, we dem-

onstrate that this model can predict the emergence of alternative symmetry-broken states,

where—depending on initial conditions—one cell accumulates more mRNA and protein. In

fact, it can be shown through direct substitution that this system will have equal concentrations

of total mRNA in each cell if and only if there are equal amounts of Orb protein within each

cell. Therefore, in searching for symmetry broken solutions, it will suffice to look for steady

states where the amount of protein within each cell at steady state is asymmetric.

The feedback loops in the model introduce nonlinear terms that induce switch-like behav-

iors. That is, this model predicts different potential outcomes for oocyte selection based on the

amounts of protein in each cell relative to some threshold. Models with sharp switches have

been analyzed using various approaches, such as parameter sampling [24] or by transforming

the nonlinearity to a logoid function [25, 26]. Here, we adopt a different perspective that

focuses on the identification of attracting regions, which we define as regions of phase space

that are mapped onto themselves.

By replacing the sigmoidal nonlinearities (Hill functions) in Eqs (11)–(14) by step func-

tions, we adopt a combinatorial approach to the dynamics of the system, while maintaining a

continuous parameterization. In turn, this allows us to determine a priori the regions of

parameter space that contain the same configurations of steady state behaviors. Algorithmic

implementation of this strategy, called Dynamic Signatures Generated by Regulatory Net-

works (DSGRN), enumerates these regions of parameter space and identifies the associated

dynamics [27, 28]. In contrast to numerical continuation or parameter sampling, this

approach is guaranteed to identify all qualitatively different behaviors [29] and can be applied

to systems with large numbers of parameters [30, 31]. A brief summary of this approach is

given by the following series of steps:

1. Identify all parameters in the dynamical system of interest.

2. Convert Hill functions to sharp switches (Heaviside functions) in order to make the system

piecewise linear.

Table 2. Dimensionless parameters.

Parameter Definition Interpretation

μ m̂ð1þ K0Þ

d̂

ratio of timescales of unbound mRNA transport to mRNA degradation

π p̂ð1þ K0Þ

d̂

ratio of timescales of unbound mRNA transport to protein degradation

� D̂ð1þ K0Þ

d̂

ratio of timescales of unbound mRNA transport to protein transport

γ ĝ

b̂

ratio of protein-induced rate of translation due to basal rate of protein translation

θ1 Y1d̂
2

âb̂K0ð1þ K0Þ

threshold for inhibition of unbound mRNA transport

θ2 Y2d̂
2

âb̂K0ð1þ K0Þ

threshold for autocatalytic protein translation

κ K
1þ K0

ratio of protein-induced binding rate of mRNA to basal rate of mRNA binding and

unbinding

η K
K0

ratio of protein-induced binding rate of mRNA to basal rate of mRNA binding

https://doi.org/10.1371/journal.pcbi.1008711.t002
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3. Decompose state space based on whether each switch in the model is “on” or “off” and

solve the resulting linear system within each region of state space to identify their governing

inequalities with respect to system parameters.

4. Find each realizable steady state configuration by taking the union of all parametric

inequalities and identifying which are non-empty sets.

5. Divide parameter space based on these parametric inequalities and identify adjacencies

between distinct regions in parameter space.

Illustrative example

To better illustrate the algebraic decomposition framework, we first look at a simple example.

Consider a single autocatalytic component, X, as shown in Fig 3A. If this component has a

basal rate of production, b, degree of self-activation, n, with some associated threshold, θ, and

degradation rate, γ, then its dynamics can be described in the following way, for positive X, b,

θ, γ and n> 1:

dX
dt
¼ bþ

Xn

y
n
þ Xn

� �

� gX: ð15Þ

In the limit when n!1, where the Hill nonlinearity becomes a Heaviside function [32],

the differential equation becomes:

dX
dt
¼ bþ H X � yð Þð Þ � gX: ð16Þ

This piecewise linear model can be studied using the algebraic decomposition framework,

identifying attracting regions as a function of parameter values [27]. Here, (16) naturally leads

to the division of phase space into 2 regions, as shown in Fig 3B: A0 = {X|X< θ} and A1 = {X|X
> θ} where each distinct region is defined as a different case for the Heaviside function taking

Fig 3. Analysis of toy model. (A) Single-variable model. (B) Division of X into 2 regions based on the value of θ. (C)

All distributions of steady states in the sharp switch limit. (D) Adjacency relations of parameter regions defined in (C).

(E) Visualization of parameter space projected onto (θ, γ) space for some fixed b. Here, we can explicitly see how

parameter space has been divided based on the parametrically-derived steady state configurations.

https://doi.org/10.1371/journal.pcbi.1008711.g003
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the value 0 or 1. Note that (16) in regions A0 and A1 is given, respectively, by:

dX
dt
¼ b � gX; ð17Þ

dX
dt
¼ ðbþ 1Þ � gX: ð18Þ

Eqs (17) and (18) have stable steady states f0 = b/γ and f1 = (b + 1)/γ, respectively. Further-

more, if f0 2 A0, then A0 is an attracting region (the same is true for A1 if f1 2 A1). We focus on

attracting regions for the following reasons: First, the actual value of the fixed point f0 is of little

biological interest as it is specific to (17), which is an unrealistic limiting equation for (15). Sec-

ond, the existence of a fixed point in A0 if A0 is an attracting region can be deduced from topo-

logical fixed point theorems. Finally, the property of being an attracting region is determined

by the behavior of the vector field at the boundary of the region. The only requirement for a

region to be attracting is that the vector field points inside along the boundary of that region.

Hence if region A0 is attracting for a vector field f, it will also be attracting for any other vector

field g that is not too far from f along the boundary of A0 (all that is required is that g also

points inside along the boundary of A0). This suggests that the assumption that A0 can be asso-

ciated with an attracting region is valid for a much broader class of equations than just (16).

Importantly, this does not require the assumption that the nonlinearities of (15) are analyti-

cally precise.

Returning to Eqs (17) and (18), observe that A0 is an attracting region if and only if b/γ< θ,

and similarly, A1 is an attracting region if and only if (b + 1)/γ> θ. Simple algebraic decompo-

sition of these two inequalities allows identification of the full distribution of attracting regions

or equivalently stable steady states. This decomposition is shown in Fig 3C, where all possible

combinations of steady states are shown graphically. Therefore, the entire parameter space

ðb; y; gÞ 2 R3

þ
can be decomposed as follows: D1 = {b> γθ}, D2 = {b< γθ< b + 1}, and D3 =

{(b + 1)< γθ}. Note additionally that there is no region defined that corresponds to the equa-

tion containing no fixed points. This can be shown either through direct analysis of (16) at

steady state or by showing that requiring b/γ> θ and (b + 1)/γ< θ leads to a contradiction.

We ignore the hypersurfaces b = γθ and b + 1 = γθ as they take up zero volume inR3

þ
. This

analysis is summarized in Fig 3C, which shows all realizable combinations of fixed point

distributions.

At this point, the decomposition framework yields the exact relationship between distribu-

tion of fixed points and clearly defined parameter space decomposition. Therefore, given some

set of parameters ðb; y; gÞ 2 R3

þ
, it is possible to identify which region the parameter set

belongs to, as well as identify all adjacent regions that may be traversed through varying

parameters. In general, identifying adjacencies between regions requires ideas from computa-

tional algebraic geometry, (See S1 Text for details). However, for this simple example, it is

clear how these regions must be connected based on the parametrically defined boundaries

separating them. The adjacency graph for (16) is provided in Fig 3D, while the divided param-

eter space is shown in Fig 3E, projected onto (θ, γ) space.

The primary advantage of analyzing the sharp switch limit of the dynamics is the ability to

systematically obtain an explicit algebraic decomposition that separates the entire parameter

space into a finite number of regions. However, this is an abstraction from the original prob-

lem given in Eq 15. The exact decomposition of parameter space based on the sharp switch

limit assists in identifying regions of interest in the finite model by allowing for better pruning

of prospective parameter sets. For example, using the defined regions from this sharp switch
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limit as a guide, we obtained 1000 parameter sets through uniform sampling over (b, γ, θ) 2

[0.01, 3]3 within each region for finite Hill exponent, n = 5, 10, and 20. For each parameter set,

we then used gradient descent over a range of initial conditions to determine whether the

steady state configuration matches the distribution from the Heaviside case, implying that the

parameter set is in the same region of parameter space as it was drawn from under the Heavi-

side limit.

The parameter decomposition based on the dynamics in the Heaviside limit helps guide

analysis in the original problem. For example, the proportions in Table 3 show that as n
decreases, the region of bistability, D2, is shrinking. This insight demonstrates that parameter

sets with the property b< γθ< b + 1 are necessary but not sufficient to induce asymmetry in

this simple example system. This same two-step approach is applied to our model in Eqs (11)–

(14), enabling us to identify parameter regions that are more dense in the symmetry-breaking

steady states needed for oocyte specification in the original, finite model.

Algebraic decomposition framework

To analyze the model presented in Eqs (11)–(14), and represented by the schematic in Fig 2C,

we must identify all possible behaviors this system can produce, paying special attention to the

ones that yield symmetry-broken steady states. To do this, we first consider the limit case n, ν
!1, where these Hill nonlinearities become Heaviside functions. This simplification changes

the system of nonlinear equations into a more complicated combinatorial model, but one that

can still be analyzed through our decomposition framework. Here, we analyze the problem for

the case θ2 < θ1, and we provide results for the case θ1 < θ2 in S1 Text. With this inequality,

the phase space can be divided into 9 regions, as shown in Fig 4A. For example, the 0th region

Table 3. Proportion of parameter sets that remain in the same region under finite Hill dynamics.

Region n = 5 n = 10 n = 20

1 1.0 1.0 1.0

2 0.078 0.221 0.449

3 1.0 1.0 1.0

https://doi.org/10.1371/journal.pcbi.1008711.t003

Fig 4. Model decomposition for oocyte selection. (A) Division of P1, P2 space into 9 regions based on the values of θ1 and θ2. For the Heaviside case,

each of the 9 regions defines a distinct set of 4 linear ODEs that can be solved at steady state, yielding a fixed point which may or may not lie within the

region. (B) Schematic of desired phase plane dynamics on P1 and P2 for the system given by Eqs (11)–(14), where asymmetric steady states (shown in

red) will result in the selection of one cell as the oocyte. (C) Example of dynamics that yields only asymmetric steady states over a range of initial

conditions. For (θ1, θ2, μ, γ, η, κ, π, �) = (1.4, 0.9, 0.8, 0.2, 2.3, 2.5, 1.2, 0.1) with finite Hill exponents n = ν = 10, a number of initial conditions relax to

select cell 1 as the oocyte (red trajectories), while the rest will select cell 2 (shown in blue).

https://doi.org/10.1371/journal.pcbi.1008711.g004
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is defined as the set fðM1;M2; P1; P2Þ 2 R
4

þ
jP1 < y2; P2 < y2g. In this way, each region can be

defined as a different case for each Heaviside function taking the value 0 or 1. Within each

region, the system of equations is linear.

The linear dynamical system in each region can be shown to have a stable steady state. Let

fi, i = 0, . . ., 8 denote the stable fixed point for the dynamics of the system defined by the i-th

region. One may show that region i is attracting for the dynamics of the full system if and only

if fi is in region i. Therefore, identifying all possible distributions of attractors in the sharp

switch limit is equivalent to analyzing the distribution of fi, i = 0, . . ., 8 over the 9 regions,

which can be derived algebraically case-wise. For example, it can be shown when θ2 < θ1, f0 is

in the 0th region if and only if 1< μπθ2. Similar algebraic restrictions with respect to model

parameters can be made for each of the other 8 fixed points relative to their respective regions

and for the case where θ1 < θ2 (see Tables A and B in S1 Text).

With these definitions, we are able to decompose parameter space into regions correspond-

ing to all possible steady state configurations in the sharp switch limit. After this decomposi-

tion, we can sample over each identified region when the sharp switch approximation is

relaxed, in search of parameter sets that yield symmetry breaking within our original model.

As indicated earlier, the fact that stable fixed points are identified with attracting regions sug-

gests that the dynamics should be robustly preserved under this relaxation. A schematic of the

dynamics we seek is shown in Fig 4B. The existence of such dynamics is shown in Fig 4C,

where a parameter set was readily found that results in only asymmetric steady states, implying

that oocyte selection in the model can be realized for at least one parameter set. We now show

how one can map the entire parameter space of a given model with switch-like behavior and

how this process can be used to more effectively probe parameter space in search of parameter

sets that admit only asymmetric steady states in the finite formulation.

Results

Parameter space topology in the sharp switch limit

After computing the parametric relationships that must hold in each region to contain a fixed

point, the parameter space defined by ðy1; y2; m; g; k; Z;p; �Þ 2 R
8

þ
can be divided based on the

combination of fixed-point containing regions. That is, each region shown in Fig 5 represents

a nonempty region such that parameter sets within this region satisfy some intersection of

parametric relationships defined by having some combination of fi lie within region i in P1, P2

space. Once divided, it is possible to analyze the topology of all parameter regions and their

adjacencies in 8-dimensional parameter space, providing insights into the robustness of sym-

metry breaking in our model.

For the simplified Heaviside form of Eqs (11)–(14) with θ2 < θ1, we can divide the 8-dimen-

sional parameter space into 70 regions, corresponding to 40 distinct steady state configura-

tions. While some of these steady state configurations exist as a singly-defined region in the

parameter spaceR8

þ
, others exist as separate, disjoint regions based on their respective

parametric definitions. The distribution of stable steady states within each distinct region is

shown in Fig 5, while the adjacencies of all regions in the full parameter space are shown in

Fig 6.

In addition to steady state behavior and adjacency within parameter space, each region is

explicitly defined by the derived parametric relationships that must hold to realize its charac-

terizing steady state configuration. Although these relationships tend to be rather complex,

they may provide a glimpse into the most important characteristics necessary for desirable

behaviors within the system. For example, Region 16 is defined as containing all parameter
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sets (θ1, θ2, μ, γ, η, κ, π, �) that satisfy the following inequalities:

ð1þ gÞð1þ ZÞð2þ mÞ�þ ð2þ mð1þ kÞÞðpþ �Þ

ðpþ 2�Þðð1þ mÞð1þ kÞ þ 1Þ
< pmy2 < 1;

1 <
ð1þ gÞð1þ ZÞ

1þ k
< pmy1 <

ð1þ gÞð1þ ZÞð2þ mÞðpþ �Þ þ ð2þ mð1þ kÞÞ�

ðpþ 2�Þðð1þ mÞð1þ kÞ þ 1Þ
:

These inequalities provide some insights about basic parametric relationships that may

serve as guidelines when searching for global parametric properties that are highly selected in

symmetric breaking states. For example, for a parameter set to be in Region 16, we expect that

the product πμ is sufficiently small, such that it satisfies πμθ2 < 1. Since π and μ are related to

timescales of protein and mRNA degradation, respectively, to mRNA transport, a small prod-

uct implies low degradation rates (or conversely high mRNA transport) within the system. If

this is true, however, these inequalities also imply that either the threshold for mRNA transport

inhibition, θ1, must be large, or similarly that the rate of protein translation must be large.

While there is no governing law for how to select for symmetry breaking within the system,

these heuristics provide useful insights into understanding the deeply complex division of

parameter space.

The remaining parametric relationships that define each region of parameter space are pro-

vided in S1 Text. These boundaries also define the hypersurfaces that separate adjacent

Fig 5. Distribution of stable steady states in the sharp switch limit. Each distinct parameter region is defined by its

distribution of attractors within the 9 regions of P1, P2 space (from Fig 4), with symmetric steady states denoted by

hollow dots and asymmetric steady states denoted as filled dots. The color represents the number of disjoint connected

components that exist throughout parameter space that contain the same steady state configuration. For the

corresponding distribution in the case θ1 < θ2, see Figure B in S1 Text.

https://doi.org/10.1371/journal.pcbi.1008711.g005
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regions. That is, in the entire parameter space, these relationships also define the codimen-

sion-1 bifurcations that separate distinct regions in the entire eight-dimensional parameter

space.

With the successful decomposition of parameter space and identification of each region’s

adjacencies, we may further analyze the otherwise opaque topology and structure dictating all

potential steady state behaviors of the system within the sharp switch limit of our model. For

example, knowing the adjacencies of all regions allows for a definition of distance based on

phenotype to be introduced. For any pair of regions in our decomposed parameter space, the

minimum number of regions, N, that must be traversed to get from one to the other can be

computed. Therefore, the distance between any two regions is given by d = N + 1. A frequency

table showing this property is given in Fig 6. Notably, for any pair of randomly chosen regions

in parameter space, the probability that the distance between them is four or less is greater

than two-thirds. This key fact simply highlights the high degree of interconnectedness between

the regions in our eight dimensional parameter space.

The diameter of this graph may also be computed, defined as the greatest distance between

any two regions of parameter space. This maximal distance can be shown to be 9, and one

such path with this distance is given in the bottom of Fig 6. In this path, the single symmetric

Fig 6. Graph adjacency and topology of parameter space. Adjacency of all regions identified through the division of

the entire parameter space under the sharp switch limit. Each node is colored based on how many distinct components

exist for each defined region. Top right: inset for adjacency graph between the two components of region 27, along

with steady state configurations of each adjacent region. Bottom: inset showing an example path for the diameter of the

adjacency graph, along with the steady state configurations of each region along the path. Left: inset for adjacency

graph for the singly-defined component of region 16, along with steady state configurations of each adjacent region.

Top left: histogram of number of regions separating any pair of nodes in the graph. To see the individual labels for each

region, see Figure A in S1 Text. For the corresponding parameter space graph in the case θ1 < θ2, see Figure C in S1

Text.

https://doi.org/10.1371/journal.pcbi.1008711.g006
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steady state of high protein concentration characteristic of Region 1 crosses into Region 5:1,

where it gains a symmetric steady state with low protein concentration. This path then crosses

into Region 29, gains a pair of asymmetric steady states, and promptly loses them upon tra-

versing into Region 5:4. Upon continuing to Region 7:5, the system again gains another sym-

metric steady state, gains another pair of asymmetric steady states in Region 14:2, and then

loses them once in Region 7:3. The system then loses its high protein symmetric state in

Region 6:2, then its middle symmetric state in Region 4, before finally ending in Region 18,

where it gains a pair of asymmetric steady states corresponding to high protein concentration

in one cell and low concentration in the other. Together with the distance metric, the diameter

demonstrates how different behaviors lie with respect to one another in the full eight dimen-

sional parameter space.

Overall, this framework enables all steady state configurations to be defined, along with

their respective parametric relationships in the limit of nonlinear regulatory interactions

becoming switch-like. Analysis of the adjacency graph for the decomposition of parameter

space provides important insights into how different regions of parameter space are related

topologically. On the other hand, understanding these definitions and behaviors in the sharp

switch limit is an important step in analyzing which areas of parameter space correspond to a

higher density of symmetry-broken states when n and ν are finite.

Computational analysis for Hill nonlinearities

Using the defined parameter regions from the Heaviside case as a guide, we may sample

parameter sets within a region and identify the locations of stable steady states in P1, P2 space,

checking whether each fixed point fi remains in region i after this perturbation. In addition, we

may also use our parameter space decomposition as a guide to identify regions that are denser,

on average, with the behaviors we seek. We can use the density of symmetry breaking behav-

ior, given by the proportion of symmetry breaking parameter sets drawn under uniform sam-

pling, as a rough measure of the robustness of symmetry breaking in a given region of our

parameter space.

Uniform sampling from the range [0.01, 3]8 to generate a set of 10000 parameter sets, we

found only 6 of them permitted purely asymmetric steady state solutions in the finite Hill

regime (n = ν = 10) after long time integration from a wide range of initial conditions. In con-

trast, when this same procedure was performed for 1000 randomly generated parameter sets

from Region 16 within the same range, 323 of them were found to contain only asymmetric

states. Under this uniform sampling procedure, this seems to indicate that Region 16 is denser

in symmetry breaking behavior than the full parameter space.

The substitution of finite Hill equations into the piecewise linear system of differential

equations based on the Heaviside approximation has a number of effects on the defined

regions in parameter space [32]. For instance, the sharp switch limit yields no parameter sets

that admit only symmetry-broken states, as each space allowed for the existence of at least one

symmetric steady state. However in the finite Hill regime, for instance when n = ν = 10, we

find many examples of parameter sets that yield only asymmetric steady states. As each region

was parametrically defined from the sharp switch limit, knowing which regions contain non-

negligible proportions of parameter sets that yield desired solutions helps identify key features

required for robust symmetry breaking.

Discussion

Animal oocytes start their development within clusters of interconnected cells that exchange

molecules and organelles [2–4, 7, 8, 11]. The process of oocyte selection within such clusters is
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one of the key unresolved questions in oogenesis [9, 13, 14]. Recent studies in Drosophila
revealed that oocyte selection is foreshadowed by autoregulated accumulation of oocyte-spe-

cific mRNA and proteins [16, 19, 20, 23, 33]. Even the simplest models of molecular and cellu-

lar processes in early stages of animal oogenesis contain a large number of parameters. This

presents a considerable challenge for the systematic mapping of parameter regions corre-

sponding to robust symmetry breaking that is needed for oocyte specification. We have shown

how this challenge can be successfully addressed for models with sharp switch nonlinearities

by combining topological analysis, symbolic computation, and numerical simulations.

The distribution of possible steady states in the sharp switch limit can be broken down into

parametrically-defined relationships, which permit the division of parameter space into

regions based on these steady state configurations. Thus, the entire parameter space can be

more easily defined based on these parametric relationships. Once these regions are defined, it

is possible to perform more refined parameter sampling within each region in search of a high

density of some behavior of interest, in this case symmetry breaking. As opposed to more com-

mon approaches of parametric analysis in nonlinear dynamical systems, our process is neither

statistically driven nor based in singularity theory [34–40].

A key feature of our model of Drosophila oocyte specification is the existence of asymmet-

ric, stable steady states for the case of symmetric transport between the two central cells in the

developing cluster. The presence of these states suggests that, independent of the initial

amounts of orbmRNA and Orb protein within these two central cells during development,

oocyte selection would be guaranteed given a permissible parameter set. This finding is consis-

tent with studies of orbmutant cysts, where it was shown that altering an untranslated region

of orb had a temporal effect on the oocyte selection process, but ultimately did not appear to

affect the development of cysts that specified an oocyte. Additionally, it was shown that remov-

ing this untranslated region in the mRNA prevented Orb autoregulatory interactions, ulti-

mately resulting in failure for these cysts to properly specify an oocyte [20]. In this way, our

model agrees with the idea that selection of the oocyte does not require finely tuned parameter

values and that the nonlinear interactions of Orb protein with orbmRNA are key in driving

the symmetry breaking of the cyst. That is, based on the autoregulatory behavior of Orb pro-

tein in the two central cells, our model provides evidence that a symmetric, self-organizing sys-

tem is sufficient to explain robust oocyte specification.

Analytically, our model is simple and we are seeking simple dynamics. The challenge arises

because the parameter space is eight dimensional and classical methods in nonlinear dynamics

are not designed to handle high dimensional parameter spaces. We made use of the analytical

framework that is based on identifying attracting regions. For our case, the attracting regions

of interest are in one-to-one correspondence with the stable equilibria of the Heaviside model,

and the associated algebraic conditions are used to obtain an explicit algebraic decomposition

of parameter space where the dynamics of each region is constant (See S1 Text for details). For

similar models without transport terms, this decomposition is readily available via the open

source DSGRN software package [28] that can easily handle systems with higher dimensional

parameter spaces.

The fundamental decomposition theorem of Conley [41] guarantees that any dynamical

system can be globally decomposed using attracting regions. As a consequence, the DSGRN

software can be used to search for a broad range of dynamical features including oscillatory

phenomena. Furthermore, attracting regions are closely related to Lyapunov functions [41–

43] which are commonly used to provide robust descriptions of global dynamics. Thus, it is

not surprising that identification of dynamics in a sharp switch limit gives strong intuition of

the behavior of the dynamics for models with finite Hill exponents. The utility of the procedure

we have developed comes from the ability to identify regions of interest based on the
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decomposition of parameter space. Thus, the exact solutions from the sharp switch limit help

guide the search for behaviors of interest in finite models. The most cumbersome aspect of the

DSGRN approach is that the descriptions of parameter regions—even though, or perhaps

because, they are exact—consist of long lists of inequalities and can be difficult to comprehend.

However, the hope is that further analysis of these regions, individually and via the adjacency

relations, combined with biological insights, may lead to a greater understanding of how

parameters influence the emergent dynamic phenotypes.

Materials and methods

Fluorescence in situ Hybridization (FISH)

Oligonucleotide probes for orb were ordered from LGC Biosearch Technologies and coupled

to Atto NHS 633 dye (Sigma) and purified using HPLC. The procedure for the FISH experi-

ments follows that of [20]. Ovaries were dissected in PBS and fixed for 30 minutes in 4% para-

formaldehyde (Electron Microscopy Services), rinsed in PBS-Tween (0.1% Tween-20) and

dehydrated through a series of methanol washes, stored at -20 degrees for 10 minutes in 100%

methanol before bring rehydrated into PBS-Tween. Ovaries were then rinsed with PBS-Tween

and incubated in wash buffer (4x SSC, 35% formamide, 0.1% Tween) for 15 minutes at 37

degrees. Samples were incubated with oligoFISH probes overnight at 37 degrees in hybridiza-

tion buffer (10% dextran sulfate, 0.01% salmon sperm ssDNA, 1% vanadyl ribonucleosidase,

0.2% BSA, 4xSSC, 0.1% Tween-20 and 35% formamide). The following day, samples were

washed two times in wash buffer at 37 degrees for one hour and mounted to slides in Aqua-

Poly/Mount.

Computational analysis

Tools and methods underlying the DSGRN framework were used to enumerate the regions of

parameter space in the Heaviside limit of the model [28]. Enumeration of realizable regions of

parameter space was performed using Mathematica. Finite Hill analysis was performed with

numerical time integration functions using MATLAB and Python.

Supporting information

S1 Text. Analysis of model equations and algebraic decomposition for parameter space

topology. Figure A in S1 Text. Adjacency graphs of parameter space for θ2 < θ1. Connectiv-

ity of all regions identified through the division of the entire parameter space under the sharp

switch limit. Figure B in S1 Text. Distribution of steady states in the sharp switch limit for

θ1 < θ2. Each distinct parameter region is defined by its distribution of attractors within the 9

regions of P1, P2 space, with symmetric steady states denoted by hollow dots and asymmetric

steady states denoted as filled dots. The color represents the number of disjoint connected

components that exist throughout parameter space that contain the same steady state configu-

ration. Figure C in S1 Text. Adjacency graph of parameter space for θ1 < θ2. Connectivity

of all regions identified through the division of the entire parameter space under the sharp

switch limit. Table A in S1 Text. Parametric inequalities defining regions of P1, P2 space for

the θ2 < θ1 case. The relationships between P1, P2 and θ1, θ2 define the values for each Heavi-

side expression for each steady state in each region. Here, by symmetry, the inequalities

defined by conjugate spatial regions (1 & 3, 2 & 6, and 5 & 7) are equivalent. Table B in S1

Text. Parametric inequalities defining regions of P1, P2 space for the θ1 < θ2 case. The rela-

tionships between P1, P2 and θ1, θ2 define the values for each Heaviside expression for each

steady state in each region. Here, by symmetry, the inequalities defined by conjugate spatial
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regions (1 & 3, 2 & 6, and 5 & 7) are equivalent.
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