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Abstract

A significant challenge facing photometric surveys for cos-
mological purposes is the need to produce reliable redshift es-
timates. The estimation of photometric redshifts (photo-zs) has
been consolidated as the standard strategy to bypass the high
production costs and incompleteness of spectroscopic redshift
samples. Training-based photo-z methods require the prepa-
ration of a high-quality list of spectroscopic redshifts, which
needs to be constantly updated. The photo-z training, valida-
tion, and estimation must be performed in a consistent and re-
producible way in order to accomplish the scientific require-
ments. To meet this purpose, we developed an integrated web-
based data interface that not only provides the framework to
carry out the above steps in a systematic way, enabling the
ease testing and comparison of different algorithms, but also ad-
dresses the processing requirements by parallelizing the calcu-
lation in a transparent way for the user. This framework called
the Science Portal (hereafter Portal) was developed in the con-
text the Dark Energy Survey (DES) to facilitate scientific anal-
ysis. In this paper, we show how the Portal can provide a re-
liable environment to access vast data sets, provide validation
algorithms and metrics, even in the case of multiple photo-zs
methods. It is possible to maintain the provenance between the
steps of a chain of workflows while ensuring reproducibility of
the results. We illustrate how the Portal can be used to pro-
vide photo-z estimates using the DES first year (Y1A1) data.
While the DES collaboration is still developing techniques to
obtain more precise photo-zs, having a structured framework
like the one presented here is critical for the systematic vetting
of DES algorithmic improvements and the consistent produc-
tion of photo-zs in future DES releases.

Keywords

astronomical databases: catalogs, surveys – methods: data
analysis – galaxies: distances and redshifts, statistics

1. Introduction

In the last few decades, large galaxy surveys have become
one of the main research tools in astronomy, in particular, for
the study of cosmology. The need for increasing statistical sam-
ples and depths have encouraged the design and construction of
deeper, wider, and more sensitive surveys. These projects are
generating vast amounts of data, bringing astronomy into the
realm of “big data”, which increases the challenges associated
with cosmological analyses.

One of these projects is the Dark Energy Survey (DES,
Flaugher, 2005; DES et al., 2016), a 5–year program to carry
out two distinct surveys. The wide–angle survey covers 5,000
deg2 of the southern sky in five (grizY) filters to a nominal mag-
nitude limit of ∼24 in most bands. Also, there is a deep survey

∗Corresponding author
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(i ∼26) of about 30 deg2 in four filters (griz) with a well–defined
cadence to search for type–Ia Supernovae (SNe Ia) (Kessler
et al., 2015). The primary goal of DES is to constrain the nature
of dark energy through the combination of four observational
probes, namely baryon acoustic oscillations, counts of galaxy
clusters, weak gravitational lensing, and determination of dis-
tances of SNe. Besides, many other fields of astrophysics ben-
efit from the large data set generated by the survey, as detailed
by DES et al. (2016).

The constraining power of cosmological results provided
by DES will strongly depend on the ability to estimate reli-
able photometric redshifts (photo-z, e.g., Huterer et al., 2004;
Ma et al., 2006; Lima and Hu, 2007; Ma and Bernstein, 2008;
Hearin et al., 2010; Cunha et al., 2014; Georgakakis et al., 2014).
In fact, the computation of accurate photo-zs has been one of
the major concerns of the collaboration, which has spurred the
implementation and testing of several algorithms. For instance,
Sánchez et al. (2014) addressed the performance of several codes
when applied to the DES science verification data (SVA1), while
Banerji et al. (2015) discussed the effect of using infrared data.
More recently, Bonnett et al. (2016) examined the impact of
four photo-z algorithms on the conclusions of the first DES cos-
mological analysis based on weak lensing discussed by Abbott
et al. (2016).

Photo-z estimation will only get more challenging for the
next DES releases and future photometric surveys. The rea-
son is that we are sampling magnitudes beyond the reach of
most spectroscopic surveys and therefore, traditional photo-z
validations are not realistic. This issue has inspired the imple-
mentation of new ideas in the collaboration, such as the cal-
ibration of photo-zs with cross–correlations (Newman, 2008;
Davis et al., 2017; Gatti et al., 2018), the training and validation
of photo-z codes with simulations (data–augmentation) (Hoyle
et al., 2015) and validation of photo-zs with multi–band photo-
metric samples (Hoyle et al., 2017). Techniques for assignment
and validation of photo-zs for DES are under continuous devel-
opment.

There are a large number of methods and algorithms avail-
able in the literature to compute and validate photo-zs. Thus,
it is useful to work in an integrated environment where one
can perform repeated tests and compare the results, while keep-
ing the history well documented. Such an environment should
provide the necessary hardware and software infrastructure to
make feasible the comparison of different methods applied to
large datasets.

Besides dealing with big data, another remarkable aspect
of current and near–future surveys is a large number of people
working collaboratively. The computational methods are devel-
oped jointly by groups of people, commonly located in different
countries. Therefore, it is useful to share a development envi-
ronment that organizes software with version control, keeps the
history, and ensures it is possible to reproduce results at any
time.

Other web–based interfaces for astrophysical data mining
and analysis are also being developed (e.g., the DAMEWERE
environment by Brescia et al., 2014) aiming at the exploitation
of large datasets.
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The DES collaboration proposed, along with the Data Man-
agement system (DESDM1, Mohr et al., 2012), the creation of a
dedicated portal to solve some of the problems associated with
the data processing. This concept became the DES Science Por-
tal, hereafter “the Portal”.

During the early days of the DES project, the Portal was
conceived as an “end–to–end” (E2E) process where the data
flowed through a chain of tasks to prepare science–ready cat-
alogs and perform scientific analyses. Since then the Portal
has undergone several implementations for various scientific
goals. The complexity of the system has been growing ac-
cordingly to accomplish the science demands. Now, there are
instances of the Portal at Cerro Tololo Inter–American Obser-
vatory (CTIO), at the National Center for Supercomputing Ap-
plications (NCSA) and, at the Laboratório Interinstitucional de
e–Astronomia (LIneA)2. In this paper, we refer to the instance
at LIneA as “the Portal”.

The Portal provides the infrastructure necessary to handle
large amounts of data, a common demand in extragalactic as-
tronomy, but also attacks specific needs of the DES science,
for instance, creating and applying systematic maps, comput-
ing zero-point corrections, performing star-galaxy classifica-
tion, computing photo-zs and galaxy properties. The Portal
generates galaxy samples in the form of pruned lightweight cat-
alogs containing only the columns required by specific science
analysis, which may also be integrated into workflows (Fausti
Neto et al., 2018).

In this paper, we present, in particular, the capabilities of
the Portal to produce photo-zs. It provides an integrated en-
vironment where all the steps necessary to compute photo-zs
can be carried out in a controlled and consistent way. The au-
tomatic provenance, configuration management, and the com-
puting facilities that sustain the Portal allow for a selection of
many photo-z algorithms or settings, which would be highly
time-consuming without infrastructure such as this. The need
for the Portal capabilities will increase as the DES databases
grow, and more generally, as we enter an era of big data astron-
omy.

In Cavuoti et al. (2015), the authors of the PhotoRApToR
algorithm discussed the advantage of linking automatically dif-
ferent steps of photo-z calculation. The Portal surpasses Pho-
toRApToR in the sense that it is method agnostic: any photo-z
algorithm can be incorporated into the portal framework, which
becomes especially interesting when the investigation aims to
compare results using different methods.

We present a sequence of tasks that include the prepara-
tion of a spectroscopic sample by combining data from different
redshift surveys, the creation of training sets, the training and
validation procedures for several algorithms, and the computa-
tion of photo-zs for large datasets. To show these examples, we
used the DES first year data release, referred as Y1A1 (Drlica-
Wagner et al., 2018; Abbott et al., 2018).

1http://www.darkenergysurvey.org/the-des-project/

survey-and-operations/data-management/
2http://www.linea.gov.br/

Table 1: Glossary of terms used in the description of the Portal.
Term Meaning

Component A Python script that works as a module to perform
a specific task or to serve as a wrapper for an exter-
nal algorithm.

Pipeline A self–consistent sequence of components defined
in an XML file. The pipeline script also defines de-
pendencies between different components, as well
as their required inputs and outputs.

Workflow One or a group of pipelines oriented to a common
purpose. In general, it refers to scientific pipelines
(known as Science Workflows).

Class of
products

A unique name that defines the attributes, charac-
teristics and possible applications of a dataset or a
product created in the Portal.

End–
to–end
(E2E)

Sequence or chain of pipelines running in the Por-
tal, starting with data acquisition, passing through
several steps of data preparation and estimation of
value–added quantities, culminating in the produc-
tion of science–ready catalogs (see ).

Stage A group of pipelines in the same phase of data
management. The E2E comprises the three stages:
Data Installation > Data Preparation > Catalog
Creation, and it is directly connected to the Sci-
ence Workflows’ stage. This last stage comprises
the suite of scientific pipelines to support the re-
search done by members of DES–Brazil Consor-
tium (details in the supplemental video V04).

The outline of this paper is as follows. In Section 2 we
present the general technical aspects of the Portal. In Section 3
we go deeper in details of the processes related to the produc-
tion of photo-zs. Still in Section 3 we present a use case of
how the Portal can aid to determine reliable photo-zs through
examples of runs using data from DES. The data is described
in Appendix A. Finally, our conclusions and a summary of the
paper are presented in Section 4.

Also, we present, attached to this text, a list3 of five videos
(V0 to V4), showing examples of live runs, in a guided tour
through the photo-z production on the Portal.

2. The DES Science Portal: Overview

Before describing the technical aspects of the Portal, we
define in Table 1 a list of terms frequently used in this text.

The Portal, which the LIneA team designed, developed,
hosts, operates and maintains, is an overarching web–based sys-
tem solution for many issues faced by large astronomical sur-
veys. Geographically, the operation is divided into three Portal
instances running independently at CTIO, LIneA, and NCSA,
as illustrated in Figure 1. Each instance is responsible for ac-
complishing tasks in distinct phases of the data lifecycle.

In the very beginning of the production of raw data, still at
the telescope, the Portal@CTIO runs a pipeline called Quick

3https://www.youtube.com/playlist?list=

PLGFEWqwqBauBIYa8H6KnZ4d-5ytM59vG2
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CTIO (Chile) NCSA (USA) LIneA (Brazil)

Portal@CTIO

Quick Reduce

Blanco 
Telescope

DESDM
Portal@LIneA

E2E

Science
Workflows

Portal@NCSA

Data Release 
Interface

Figure 1: Instances of the DES Science Portal. The arrows indicate the data
flow from the Blanco Telescope, at CTIO, through the various portal instances
and the DESDM system at NCSA.

Reduce. It performs a rapid inspection of images, immedi-
ately after the exposures are taken, to detect possible problems
and to produce a preliminary quality assessment. DESDM at
NCSA receives the data and reduces and co–adds the raw im-
ages (Morganson and Dark Energy Survey Data Management
Team, 2016). The photometry tables of objects detected from
the coadded images are called coadd tables. After that, these
tables are downloaded and ingested into the Portal@LIneA’s
database, where the science–ready catalogs are created. Fi-
nally, the catalogs and science products are transferred to Por-
tal@NCSA, which provides visualization tools through the data
release interface.

In this work, we only present the technical aspects of the
Portal@LIneA, which are related to the production of photo-zs.
Among these features, we highlight those that apply to many
other tasks:

• Storing and registering of survey data to serve as input
for analysis pipelines.

• Maintaining analysis codes (and their development his-
tory) ready to run on registered products.

• Integrating external scientific codes publicly available into
science workflows.

• Facilitating the run and scalability of algorithms for sci-
entific analysis (user–specific or collaboration–defined).

• Registering outputs as products available for download
and making them usable as inputs for other codes.

• Keeping track of provenance (inputs, selected options,
version of codes, etc.)

• Allowing reproducibility of analysis results by keeping
documentation about data and codes used, and operations
performed.

Portal Infrastructure

The Portal framework relies on two databases, a mass stor-
age file system, a web interface, a workflow system and a clus-
ter of computers, as illustrated in Figure 2.

Both databases uses PostgresSQL5 object-relational database
management system. The catalog database stores the catalogs
retrieved from NCSA database and the catalogs produced by
the Portal pipelines. The total storage capacity of the machine
available for the catalog database is 23 TB, from which, ∼17
TB is already occupied. This device has a hot backup duplica-
tion in another connected machine. Both will be replaced in the
future by new devices with larger capacity.

The administrative database keeps track of metadata such as
available releases, ingested products, product information, such
as file and table names, storage location, classification, prove-
nance, etc. All the operations and steps are logged in the admin-
istrative database, so it allows to detect errors and investigate
them posteriorly, and also to produce reports on the resources
usage that can be filtered by a user or by an application.

The mass storage device has the capacity for 59 TB, from
which 39 TB is already used. It keeps data in three separate
spaces:

• Archive area, where the original catalogs FITS files are
preserved (so the catalogs are duplicated in the database
and mass storage’s archive).

• Scratch area, where are placed the directories and files
that are created during the process executions. They in-
clude tables, images, flat files of any kind, run logs, error
logs, etc. They remain in this area until the user saves
the process. Periodically, a tool called garbage collector
removes old files from this area.

• Process area, is a safe area where the directories and files
from saved processes are kept permanently.

The location of all the process directories, both in Scratch
and Process areas are registered in the administrative database.

The web application front–end uses the Model-View-Con-
troller (MVC, Burbeck, 1987) software architecture and is de-
veloped in both Hypertext Markup Language6 (HTML) and
JavaScript 7 languages. It connects to the databases via the
back-end infrastructure Python components.

Pipelines and Components

The computational tools available in the Portal are orga-
nized in pipelines and components. The former are workflows
defined in Extensible Markup Language (XML, Bray et al.,
2008) which concatenates a chain of tasks performed by com-
ponents. They determine the order of execution of the tasks
and the parallelization strategy, as well as necessary inputs and
outputs.

5https://www.postgresql.org/
6https://www.w3.org/html/
7https://www.javascript.com/
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Web Application
- data selection

 - configuration manager
- monitor
- dashboard

Administrative 
Database

Batch System
- Condor

 Catalog 
Database
- Postgres
- GAVO DaCHS

Mass Storage
- Archive
- Process 

Workflow System
- code wrapping
- packages

Global 
Scratch Area

HadoopFS

Node 1

Node 2

Node 3

Node N

...

Figure 2: Elements of Portal’s infrastructure: software components (in blue), processing systems (in green), and storage systems (databases in yellow, file systems
in orange).

Figure 3: Portal’s initial screen - data preparation pipelines menu.

Components are Python scripts which can both serve as a
wrapper for an external code or be an independent algorithm.
Scientific codes, which can be written in any programming lan-
guage, are encapsulated by the wrappers, which are in charge of
preparing the inputs in the format expected by the code, calling
the code to run, and handling the outputs.

The pipelines are triggered via the Portal interface (see Fig-
ure 3), where the user navigates through tabs to define inputs
and configuration parameters. For each pipeline, there is a
README document that includes configuration tips and pieces
of advice regarding the technical aspects of pipeline running.
There are also cookbooks with a scientific approach to help the
user on decisions about data selection and data-dependent con-
figurations.

When a process finishes, the user receives a notification via
e–mail with a link to a product log – a page containing results
and process–relevant pieces of information.

The pipelines are self–consistent independent building blocks
in the E2E chain. Each one provides a product log and can
be redone as many times as the user demands. The list of the
most used pipelines can be seen in Figure 4. The pipelines
highlighted in gray are those related to the photo-z calculation.
They will be discussed in details in Section 3. For now, it is
not possible to run part of a pipeline stand–alone. For instance,
one can perform repeated tests, varying configurations, until it
converges into a result with the desired quality. In our case of

study, we have already run training, validation, and computing
for nine different photo-z codes, varying their configurations,
more than 300 times in total, considering the several datasets of
the Y1A1 release. That would be complicated to manage using
directories and command–line runs.
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Figure 5: Portal environments: development (bottom), testing (middle), and
production (top).

The Portal is developed collaboratively using the GIT8 ver-
sion control system. All changes done by different develop-
ers are merged and intensively tested in a separate Portal clone
called “Testing”, to ensure consistency and compatibility be-
tween developers’ versions (see Figure 5). The stable and vali-
dated versions of the codes are deployed to the production Por-
tal. All the technical information about hardware mentioned in
this work refers to the production environment.

Pipelines and component codes are opensource9. These
codes often have dependencies on other programs or libraries
which are provided by two systems: Tawala and the Extended
Unix Product System (EUPS10). Tawala is a homemade repos-
itory system created in earlier stages of portal development,
which we maintain due to the large number of historical code
dependencies. Nowadays it is kept frozen and is being gradu-
ally replaced by EUPS.

The pipelines of the first stage, Data Installation (the first
block of pipelines in Figure 4), are only executed by the por-
tal developers (LIneA’s IT team), except for the Upload Tool,
that can be executed by any science user. The initial step of
Data Installation is the retrieval and ingestion from NCSA, of
coadd tables. A daemon process called Data Retriever peri-
odically inspects the NCSA database to discover new releases
of the DES Survey data. For each new release recognized, the
Data Retriever registers its existence in the Portal Administra-
tive database. At this point, the Portal system “knows” the pres-
ence of a new release and a Portal operator can start the specific
installation procedure that takes care of downloading the data
in an optimized network route. The download is done using a
server in a “demilitarized zone network” and then storing it into
a mass storage server. Later it is ingested into the Portal Cata-
log database. Finally, the Administrative database registers the

8https://git-scm.com/
9https://git.linea.gov.br

10https://github.com/RobertLuptonTheGood/eups

new tables and makes them available to be accessed by visual-
ization tools and to serve as input to be processed by pipelines
in the Portal.

A system of “classes” of products connects pipelines via
inputs and outputs. In this context, a class is a unique key-
word that identifies a specific product data structure. Hence,
we can define the type of products that each pipeline receives
as input and returns as output. As an example, the catalogs
mentioned above, which are ready to be used in the portal, pass
through the pipeline Install Catalog, where they are classified
as products with class =“Object Catalog”. This way, they are
made available to each pipeline where we set this class as in-
put. Star/Galaxy Separation is one of the pipelines configured
to use products of this class as input, so when the user chooses
to run this pipeline, the system will display the tables registered
by Install Catalog, and the user will be asked to select one of
them. Then, running various pipelines can be understood as
a hierarchy of products, as shown in Figure 6. This figure il-
lustrates the provenance of a sequence of pipelines related to
photo-z pipelines described in Section 3.

Parallelization

The photo-zs estimation is one of the most computationally
intensive tasks of the E2E process, due to the size of datasets
involved. The first solution adopted in the Portal is the so-called
Embarrassing Parallelization (Herlihy and Shavit, 2011), which
is the division of the data into small partitions and their process-
ing is done simultaneously by several computers.

The large volume of data requires a high–performance sys-
tem to transfer such data inside and outside each computer node
avoiding the creation of an I/O bottleneck. This is a com-
mon problem in data–intensive computing that does not have
a unique solution for all possible use cases. We solved this ob-
stacle by implementing different I/O service strategies that can
be used according to each specific problem, as detailed below.

For the very basic DES datasets (table of objects identified
in coadded images) frequently used in the majority of the al-
gorithms, we use the high responsive Hadoop Distributed File
System (HDFS, Shvachko et al., 2010) to distribute data uni-
formly across the cluster nodes. Despite the fact that the pro-
cessing is done by several computers, the data itself also needs
to be distributed. Otherwise, the simultaneous reading from the
same database by several parallel tasks (jobs) would establish a
significant bottleneck.

The Portal’s computers cluster contains 38 nodes with 24
central processing unit (CPU) cores each. The management
of job submission is performed by an orchestration system, to-
gether with the HTCondor management system11. The orches-
tration system interprets the parallelization strategy defined by
each pipeline and its configuration, then it calculates the num-
ber of jobs necessary, and gives instructions to HTCondor. The
tasks are organized in the cluster nodes based on the data, such
that it always prioritizes the runs to process the data that are
already stored in each node, avoiding unnecessary data transfer

11https://research.cs.wisc.edu/htcondor
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Figure 6: Display of provenance chain for a product of Photo-z Compute
pipeline (first column). Each sub–level tag the processes that entered the par-
ent process with their identification number (process ID) and their links to the
product logs and comments made by users.

overheads. If necessary, it allows reading additional data from
other nodes. There is a mirroring in the data storage to help on
this optimization. Each data chunk is stored triplicated in three
different nodes. Hence, if one node needs data from a neighbor
node that is, by chance, very busy with some intense process,
the former still has two other options of nodes from where to
get the data.

For less frequently accessed data used in our algorithms, the
Portal use PostgreSQL12, a fat node database with 24 cores and
256 gigabytes of RAM that supports multiple queries concur-
rently, allowing the fast retrieval of the portion of the data that
each node needs. Moreover, to fast retrieve positional data ac-
cording to its spatial position, we use the Q3C (Koposov and
Bartunov, 2006) PostgreSQL extension for spatial indexing on
a sphere.

For temporary data, such as the one produced in a compo-
nent that needs to be consumed by the next segment of the same
pipeline, it is required to be staged and then rapidly transferred
from one or more nodes to others. In this case, we use the high–
performance parallel Lustre file system (Donovan et al., 2003),
explicitly developed for large–scale cluster computing. Finally,
PostgreSQL is used to store the new generated products tem-
porarily stored in a Network File System (NFS, Sandberg et al.,
1985). An example of such a product is the product log gener-
ated by any pipeline.

The parallel processing is implemented in a “Map-Reduce”
(Dean and Ghemawat, 2004) way, as illustrated in Figure 7, and

12https://www.postgresql.org/docs/9.6/static/

parallel-query.html

  

   

   

   

Thread 1

Thread 3

Thread 2

  

Data Partition Tasks Consolidation Tasks

Group of Parallel Tasks

Figure 7: Illustration of parallel processing managed by the workflow system.
The first group of tasks defines the data partitioning schema and distributes
jobs to the cluster. Tasks that require the same chunk of data are grouped in the
same cluster node, to minimize data transfer. The first component of the task
group running in parallel is responsible for data retrieving (marked with a cross
symbol). The final task group consolidate the results from all jobs.

it follows one of the three options of data partitioning strategies:

• Tiles: This is the original data division from DES. Tiles
are tangent projections of an array equivalent to 5000
× 5000 CCD pixels (0.7306◦ on each side, Morganson
and Dark Energy Survey Data Management Team, 2016).
Each tile corresponds to one file stored in HDFS. The file
size is strongly dependent on the density of objects de-
tected, which is related to the depth of observations. For
the Y1A1 depth, one tile contains, typically, ∼ 40k ob-
jects detected, and the file occupies ∼130 MB (for data
description, see Appendix A). The number of tiles pro-
cessed by each job submitted to the cluster is a free pa-
rameter in the configuration of the pipelines. The opti-
mal choice depends on the dataset size (number of tiles),
compared to the number of CPU cores available, as well
as the memory consumption of the algorithm run.

• HEALPix13 indexation: This is a more flexible way of
splitting the entire sky projected area into pieces (pixels)
of variable size. The division based on HEALPix pixels
is available both for the coadd tables, stored in HDFS,
and some of the other datasets stored in the database.
Concerning the first, the data is distributed in files con-
taining pixels of NSide = 32 (∼1.6 GB each for Y1A1
wide datasets), using nested pixel ordering. NSide is a
quantity that represents the resolution of the HEALPix
map, so that the total number of pixels covering the whole
sphere is N = 12 × (NSide)2. Therefore, the larger the
NSide, the smaller the pixel size. Similarly to the tile–
based partitioning, the choice of NSide has implications
on the processing performance. The available options
for NSide values are 2n, n = 2 to 10. Stress tests have
shown that large pixels (n < 4) should be avoided due
to random–access memory limitations, depending on the

13http://healpix.sourceforge.net/
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dataset. On the other hand, scaling–out to use small pix-
els (n > 8) are also not recommended, because they con-
vert in too many jobs, increasing the transferring over-
head and stressing the cluster management system. One
advantage of the partitioning based on HEALPix is that
it applies to any data set which has celestial coordinates,
therefore connected to spherical geometry. It is particu-
larly useful to organize simulated data, that is not related
to any observational strategy.

• Custom: This option defines the data partitioning based
on one of the data attributes (i.e., any table’s column). It
queries the data and distributes, among the several clus-
ter nodes, using intervals of one attribute. There are three
options of binning: (i) fixed: evenly spaced bin edges;
(ii) variable: evenly populated, so the bin widths are ir-
regular; (iii) manual: bin intervals are defined manually
by the user. This data partition is more commonly used
by the science workflows. Some examples of this par-
allelization are the estimation of the angular correlation
function of galaxies in tomographic bins of redshift, and
the estimation of the luminosity function of galaxies in
bins of absolute magnitude.

In all cases, the scaling of parallel processing is not auto-
matic. The user is asked to make decisions on the configu-
ration screen about the size or the number of partitions. Op-
tionally, the second layer of parallelization can be applied as a
further user–specific parallelization, by reserving one or more
machines and distributing the process among their cores using,
e.g., Python Multiprocessing. All this flexibility is put in place
to optimize the pipeline execution in various scenarios, depend-
ing on the peculiarities of each run. Too large data chunks
can cause memory over–heading problems or take too long to
be processed, while too small pieces can waste time with data
transfer and create a massive queue of jobs waiting for avail-
able nodes. Therefore, the optimal parallelization schema must
be defined case by case. In Section 3.4 we show, as an example,
a test to measure the impact of the configuration chosen on the
processing speed, measured by the processes total duration and
the time spent in groups of components.

3. Photo-z Pipelines

The estimation of redshifts is a fundamental part of the pro-
cess of creating science–ready catalogs for extragalactic appli-
cations. In photometric surveys, photo-z methods and algo-
rithms are used to surpass the lack of spectroscopic information.
In most cases, the photo-z estimation and validation rely on the
use of a “true” sample, in the sense of assuming negligible er-
rors in the determination of their redshifts, as in the spectro-
scopic redshift samples. This sample will be useful both to train
empirical algorithms (e.g., neural networks, nearest–neighbor),
and to estimate the uncertainties in the mean values and errors
of their distributions. We note that as photometric surveys are
reaching fainter magnitude limits, the spectroscopic data avail-
able are less representative of the photometric sample. There-
fore, new techniques are being developed to estimate photo-z in

surveys without the need of spectroscopic data (see, e.g., Hoyle
et al., 2017). In the Portal, we have implemented tools to esti-
mate the redshift of sources using standard techniques based on
spectroscopic redshifts to train and validate the algorithms.

In the following sections, we describe the methodology of
each pipeline related to the photo-z estimation in the Portal.
They operate in sequence, as illustrated in Figure 8. For each
pipeline described, we add an example of a result obtained us-
ing data from DES Y1 release, as an illustration, and proof of
concept. A description of the data used is available in Appendix
A.

3.1. Spectroscopic Sample

In the Portal the first step to obtain photo-zs is the creation
of a spectroscopic sample that will be matched with DES pho-
tometric catalog to define a training set used for training and
validation. The goal is to create a sample with as many sources
as possible avoiding effects of cosmic variance or under-re-
presentation of particular spectral types.

The database associated with the Portal serves as a central-
ized spectroscopic database for DES (Hoyle et al., 2017), be-
ing continually updated, in particular, by ongoing follow-up ob-
servations from DES collaborators such as the OzDES project
(Yuan et al., 2015; Childress et al., 2017), as well as with sub-
stantial new spectroscopic galaxy samples made public.

The current spectroscopic redshift samples available are in-
dicated in Table A.4. Once a new spectroscopic survey of in-
terest is identified, the data is downloaded to our archive and
ingested in the database to be accessible by the Spectroscopic
Sample pipeline. At this stage of the process, it is necessary
to provide some predefined information to be associated with
a given spectroscopic sample in the registration database (Fig-
ure 9).

When building a spectroscopic sample from heterogeneous
sources, we need to take into account the following:

• Each source might have different column names for the
same quantities, e.g., redshift represented by “z”, “spec-
z”, “zspec”, etc. We associate mandatory columns (RA,
Dec, redshift, redshift quality, source, redshift error) when
uploading each sample to ensure that the columns are
properly delivered as input to the pipelines (see Figure 10).

• Each catalog may have different quality estimates of red-
shift. To normalize quality flags to a single schema, we
take the approach of OzDES Survey (Yuan et al., 2015),
with qualities (Qspec) ranging from 0 to 4. The numbers
0 and 1 are two types of unknown redshift, 2 is only a
guess, 3 is above 90% confidence, and 4 attributed to a
trusted redshift. When a survey is uploaded, we need
to tell the centralized spectroscopic database that a new
catalog has arrived and how to translate the quality infor-
mation to the numerical system explained above.

• Elimination of duplicates. Internally, the pipeline han-
dles possible multiple measurements for same objects.
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Figure 8: Photo-z complete workflow. Pipelines are represented in green: Spec-
troscopic Sample (Section 3.1), Training Set Maker (Section 3.2), Photo-z
Training and Photo-z Validation (Section 3.3), and Photo-z Compute (Sec-
tion 3.4. There is also another pipeline (Photo-z PDF, Section 3.5) not present
in this illustration, because it is placed after the construction of scientific cata-
logs. The components are represented in white. Data inputs and products are
represented by yellow cylinders. In Photo-z Compute, the dashed line involves
the part that runs in parallel. The generic “Photo-z Code” component block
represents one of the components that wraps a particular photo-z code (DNF,
LePhare, etc).

We implemented the following set of possibilities: 1) Se-
lect the spectroscopic redshift according to the best qual-
ity (default); 2) Make an average of all values to give a
single redshift. To identify measurements for the same
objects, the matching is done based on the angular sep-
aration between the coordinates in the different surveys
using a matching radius of 1.0 arcsec (default). If two
or more objects are within the search radius, the criteria
to solve duplicates selected in the configuration tab ap-
plied is the following: we select the measurement that
has the highest Qspec. If more than one observation has
the same Qspec flag, we select the one obtained more re-
cently. If there are two or more observations in the same
year, we choose the redshift with the smallest error, when
it is available. Finally, if we still have more than one
source (from the same year and with no errors available),
we choose the one with redshift the closest as possible to
the mean value of all the multiple measurements. Since
we have selected a high “quality” threshold, the differ-
ences between choosing the best source or averaging be-
tween all the different matches are negligible. This step is
done in several sub–steps using a PostgreSQL extension
for spatial indexing on a sphere, called Q3C (Koposov
and Bartunov, 2006) and the Starlink Tables Infrastruc-
ture Library Tool Set (STILTS, Taylor, 2006).

• Spectral type classification. Some surveys classify the
source (star, galaxy, QSO). When this is available, we
use this information to allow for specific spectral classi-
fication of stars or galaxies. In the case where no classi-
fication provided, we assign as “stars” every object with
z <0.001. For the time being, we do not classify objects
as QSOs, and they will normally enter as galaxies. How-
ever, in the pipeline, Training Set Maker, where we have
photometric data associated to each object, we can apply
a point source removal criterion, which eliminates most
of the QSOs from the galaxy samples we built.

In summary, the Spectroscopic Sample pipeline creates a
“master” sample by combining spectroscopic data from vari-
ous surveys. The user chooses the ones to include in a check–
box menu (see Figure 11) on the pipeline interface. The next
step is to choose the configuration parameters, as can be seen
in Figure 12. There one can make decisions about the criterion
adopted to handle duplicates, quality threshold, spectral classi-
fication, etc.

The result of this pipeline is a table registered in the database
containing: spec-zs, errors, quality flags, sources, and coordi-
nates. At this stage, there is no association with DES objects.
This table becomes available to be an input for the next pipeline
or to be delivered to the collaboration.

Relevant information about the spectroscopic sample cre-
ated in a particular run is in the process’ product log. In Fig-
ure 13 we show the result of creating a spectroscopic sample
containing data from all surveys available in the Portal, select-
ing only the best measurements (Qspec=4), and resolving dupli-
cates by the default criteria mentioned above. This plot shows
the spatial distribution of spectroscopic redshifts included in the
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Figure 9: Upload tool initial screen. The user provides the relevant metadata to registering and versioning, such as the data source and a short description.

Figure 10: Upload tool - column association screen. In this screen, the user is asked to drag the original column names (on the right side) to those names expected
by the pipelines (on the left). With this information, the Upload tool creates a table in the database with the contents of the uploaded catalog and the columns names
appropriate to be read by the pipeline Spectroscopic Sample. Both the original and the “translated” names are saved as metadata, to keep the history.
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Figure 11: Input menu of Spectroscopic Sample pipeline. In this tab, the user selects which spectroscopic surveys are to be include in the spectroscopic sample.

Figure 12: Configuration menu of Spectroscopic Sample pipeline. In this tab, the user selects spec-z and quality criterion to resolve duplicates.
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sample, and we can verify that part of the spectroscopic sam-
ple spills over the DES footprint. The product created contains
redshifts of 1,408,138 unique galaxies, from 34 surveys (see
Appendix A.2).

Furthermore, the supplemental video V114 shows an exam-
ple of a guided run of the Spectroscopic Sample pipeline and a
quick exploration of its results.

3.2. Training Set Maker

After creation of the spectroscopic sample, the next step is
to match the photometric data to the spectroscopic catalog. This
is done by the Training Set Maker pipeline, designed to build
training (and validation) samples by matching a photometric
sample (among the datasets available in the Portal) with a spec-
troscopic sample, which comes from the Spectroscopic Sample
pipeline, as shown in Figure 14.

In this stage the user can also include outputs of the Star/Galaxy
Separation pipeline, identifying and removing point sources,
avoiding the mismatch between spec-zs from galaxies merged
to photometry from stars and removing QSOs. Also, option-
ally, it is possible to apply corrections in the observed magni-
tudes, like zero–point based on stellar locus regression calibra-
tions (High et al., 2009) or galactic extinction.

In the configuration menu (Figure15), the user selects the
parameters to make quality choices and a search radius used for
matching. Similarly to the previous pipeline, the matching is
also done based on the angular separation between the objects
at the database level using Q3C, but here with the spectroscopic
and photometric catalogs. We also selected the radius to 1.0
arcsec as a default configuration. If two or more objects from
the photometric sample are within the search radius, the nearest
object to the spectroscopic one is selected.

The result of this pipeline is a table registered in the database
under the class “training set”, containing the columns from the
spectroscopic sample plus some columns from photometric data
(DES IDs, magnitudes, and errors). On the product log, one
can access the query automatically generated by the pipeline
(as illustrated in Figure 16) and pieces of information about the
matched sample, so–called training set, organized in some tabs.
In this example run, we selected the spectroscopic sample de-
fined in the previous example (Figure 13) and the photometric
sample from DES Y1 wide survey (details in Appendix A.1).

We present an example of this operation in the supplemen-
tal video V215 showing a live run of the pipeline Training Set
Maker, using the same inputs and configurations as shown above.

3.3. Photo-z Training and Validation

After the matched sample is created and registered in the
portal’s database, the next step before calculating photo-zs for
the whole photometric dataset is to train the empirical algo-
rithms and, optionally, calibrate the template–fitting ones. For

14https://youtu.be/1mu-PqOvK88?list=

PLGFEWqwqBauBIYa8H6KnZ4d-5ytM59vG2
15https://youtu.be/2nA1PFGCnEM?list=

PLGFEWqwqBauBIYa8H6KnZ4d-5ytM59vG2

several science applications, it is necessary to know the quality
of the photo-z estimations requiring a validation step also done
with a sample with known spectroscopic redshifts.

Although it is not the pipeline with the largest number of
components, Photo-z Training is the most complex among pipe-
lines related to photo-z, because it performs several different
tasks, as detailed below. It is composed of three components,
as illustrated in Figure 8. The first is Subsets Separation,
which splits the matched sample into two subsets and performs
a comprehensive characterization of them with plots and statis-
tics. The second is the Photo-z Training, which conducts the
training procedure using the first subset, for several algorithms
simultaneously. The third is the Photo-z Validation which
uses the second subset to compute the photo-zs and compare the
results with the spec-zs, as well as it shows metrics and plots for
quality assessment.

The primary input for the Photo-z Training pipeline is the
matched sample built by the previous pipeline, named as “Train-
ing Set” on the input menu shown in Figure17. Also, we choose
a photometric sample of reference (“Objects catalog”, on the
input menu), the same coadd tables mentioned in the previous
pipeline. But in this case, this one is used only to compare
photometric properties, to check whether the training and vali-
dations subsets are representative of the photometric set or not.

In the first implementation, we created a unique pipeline to
do both steps, the training and validation (The pipeline Photo-
z Training). Thus, a first component is necessary to separate
the data in training and validation subsamples (to avoid the bi-
ases introduced by validating with the same galaxies used for
the training). Afterward, we created another pipeline to do the
validation step separately (details below), but we kept the first
option available, optionally.

The Subsets Separation component splits the matched
catalog randomly, where the fraction of the data delivered to
the training subset (and consequently the remaining portion for
validation) is a free parameter in the component’s configuration.
Also, the user can define the sample selection criteria, choos-
ing the acceptable intervals of magnitude, redshifts, colors and
magnitude signal–to–noise ratio, as illustrated in Figure 18.

Ideally, the training and validation samples should have the
same properties as the photometric sample of interest. How-
ever, this is difficult to meet when spectroscopic data come
from surveys with different depths, redshift intervals, and tar-
geting strategies. In cases like this, it is a common practice to
evaluate the performance of the photo-z in a weighted sample,
representing the color and magnitude distributions of the pho-
tometric sample.

In the Portal, it is optional to weight the training and vali-
dation sets, using the algorithm presented in Lima et al. (2008).
If so, we assign to each galaxy its relative importance in rep-
resenting the photometric sample, regarding the multi–space of
colors and magnitudes. The user builds the weighted sample
by repeating galaxies multiple times in the proportion of their
weights, with their magnitudes spread according to their errors
(assumed Gaussian) to avoid generating identical cloned galax-
ies. Applying this algorithm, we obtain a weighted sample that
presents distributions of colors and magnitudes very similar to
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Figure 13: Product log of Spectroscopic Sample pipeline. Screenshot capturing one of the plots available on the “Results” tab of the product log. The black line
represents the DES footprint. The surveys in the legend are ordered by the number of spectroscopic sources included in the sample after resolving the duplicates.

Figure 14: Input menu of the Training Set Maker pipeline. Each one of the four pull down menus show the available products for each class (mandatory or not)
required by this pipeline: Targets – the spectroscopic sample defined in Section 3.3, Object Catalog – the coadd tables coming from DES, S/G Separation – a
star/galaxy classification table, provided by another pipeline, not addressed in this paper, and Zeropoints – optional additional photometric calibrations. Each row
with a check box refers to a product generated by a previous pipeline, registered in the database. The process number is a link that redirects to the process’ product
log, which helps the user on the choice.
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Figure 15: Configuration menu of the Training Set Maker pipeline. On this screen, the user is asked to make decisions about the characteristics of the matched
sample, called training set, that is being constructed. In this example, the type of magnitude used to apply quality cuts.

Figure 16: Product log of Training Set Maker pipeline. This screen summarizes the results of a pipeline run. The SQL query used by the pipeline is always shown.
In the second tab, there are tables and plots to show the characteristics of the training set just created.
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Figure 17: Input menu of the Photo-z Training pipeline. On this screen, the user is asked to chose one matched sample (recognized by its class “Training Set”),
and a photometric sample of reference (“Objects Catalog”). Similarly to any other pipeline, each row with a check box refers to a product previously generated by
another pipeline, and registered in the database. The process number is a link that redirects to the process’ product log, which helps the users on their choice.

Figure 18: Screenshot of the Configuration tab of the component Subsets Separation, that belongs to the Photo-z Training pipeline. The default value for the
fraction of data given to training and validation is 0.5 for each subset. If the fraction is chosen to be 1.0, the whole sample is employed for training, and the
validation step is skipped.
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those of the photometric sample, as shown in Figure 19. In the
example, the excess of red objects in the training set is dimin-
ished as the result of weighting.

Photo-z Training
In recent years the number of photo-z algorithms has in-

creased enormously. The Portal is an interesting environment to
compare different methods, since they can be applied to datasets
under similar conditions. So far, the following codes are im-
plemented in the Portal: Annz (Collister and Lahav, 2004),
Annz2 (Sadeh et al., 2016), ArborZ (Gerdes et al., 2010), BPZ
(Benı́tez, 2000), DNF (De Vicente et al., 2016), LePhare (Ar-
nouts et al., 2002; Ilbert et al., 2006), Pofz (Cunha et al., 2009),
Sky-Net (Graff et al., 2014), and TPZ (Carrasco Kind and Brun-
ner, 2013, 2014). We refer to Hildebrandt et al. (2010) and
Carrasco Kind and Brunner (2014) for a review of the particu-
larities and comparison of their performances.

Empirical methods are the basis for the majority of the algo-
rithms, except for BPZ and LePhare, two template fitting codes,
for which a training sample can be used to improve photo-z
quality through systematic shifts in the theoretical magnitudes
from the spectral energy distribution (SED) templates. Hence,
all of them are implemented in Photo-z Training pipeline. Nev-
ertheless, for the template–fitting ones, the “training” step is not
mandatory.

Each photo-z algorithm has its configuration parameters.
The user interface provides a configuration menu with a default
configuration, but the user can change these values as shown in
Figure 20.

The product of this training procedure is the so–called train-
ing file. Its format and content depend strongly on the photo-z
algorithm used. For instance, TPZ’s training files are stored
in NumPy16 format files, containing the decision trees used in
photo-z estimation. LePhare’s training files are just a list of
floating point numbers representing the systematic shifts ap-
plied to the theoretical magnitudes (those obtained from the
SED templates), stored in a simple text file. Besides the training
files, the component Photo-z Training also registers the code
configurations used, so it is also applied by the pipeline Photo-z
Compute, where the photo-zs are estimated for the DES datasets.

The main advantage of performing this step independent
from the actual photo-z estimation is that training files from
one training procedure can be used in the photo-z calculation
several times, for different photometric datasets. On the other
hand, one can make training and validation several times, until
gets a satisfactory result and then apply it to the photo-z central
estimate.

Photo-z Validation
The last component of Photo-z Training pipeline is the Photo-z

Validation. It is responsible for checking the quality of the
photo-zs computed in a validation sample, as an estimate of the
quality of the photo-z to be estimated for the large photometric
datasets.

16http://www.numpy.org/

To meet science–driven requirements, sometimes one needs
to perform training and validation in samples which are in-
dependent of each other. Hence, we created a new pipeline
(keeping the first one active) called Photo-z Validation to per-
form only the validation step, using the result of training from
a previous run of the pipeline Photo-z Training, but with the
possibility to receive a completely different matched sample as
input data. This pipeline uses the same component Photo-z
Validation as the Photo-z Training pipeline, therefore the
methodology is the same. The coincidence of pipeline and com-
ponents’ names might lead the reader to a confusion. We clarify
the sequence of tasks performed by the components grouped by
the pipelines in Figure 8.

In summary, there are two possible ways to validate photo-
zs in the Portal: (i) splitting the matched spec–photo sample
(so–called training set) into two subsets and perform the vali-
dation at the last component of Photo-z Training pipeline; (ii)
training with 100% of the training set, and do the validation sep-
arately, in another pipeline, with an independent validation set.
Both ways follow the same methodology. The only difference
is the definition of the inputs.

The validation results consist of photo-z metrics (to quan-
tify bias, dispersion, etc.) and quality assessment plots for vi-
sual inspection. The definition of the metrics used can be found
in Sánchez et al. (2014). Uncertainties in the metric values are
estimated using the Bootstrap re–sampling technique (Bradley
and Tibshirani, 1993) based on 100 realizations, as done in such
work. Some of these metrics have a limit of acceptance, defined
by the collaboration as a scientific requirement for dark energy
studies. So this component also works as a “vetting point” for
the photo-z estimates. If the photo-z quality is considered unac-
ceptable, the user should repeat the previous steps varying the
data used and the configuration parameters.

An example of product log is presented in Figure 21, show-
ing the results obtained using DNF. This figure shows how this
pipeline can be used to compare performances of different al-
gorithms like the ones done by Hildebrandt et al. (2010), and
Sánchez et al. (2014).

The user can navigate through tabs to access the results
from different codes. In particular, there is an additional tab
where the results are consolidated and presented together to
ease the comparison.

For more detailed navigation through the various configura-
tion parameters and results reported on the product log, please
watch an example of usage of the Photo-z Training pipeline in
the supplemental video V317.

3.4. Photo-z Compute

The actual photo-z calculation in the Portal is done by the
Photo-z Compute pipeline. It estimates photo-zs for DES ob-
jects present in the photometric catalogs, regardless of the ob-
ject’s nature (e.g., star or galaxy), using the training file(s) pro-
duced by Photo-z Training. Once the photo-zs are calculated,

17https://youtu.be/ZOJ0hGWlvag?list=

PLGFEWqwqBauBIYa8H6KnZ4d-5ytM59vG2
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Figure 19: Magnitude (i–band), color (g-r), and spec-z distributions for the photometric sample (Y1A1, in gray), and for the training set, before (in red) and after
(in blue) weighting. The validation set, not shown here, has the same properties as the training set.

Figure 20: Screenshot of the configuration tab of the Photo-z Training pipeline. On the left side, each check box refers to one component of this pipeline. The small
tool symbol beside leads to the menu on the right side of the page, where several tabs organize the configuration parameters for the different algorithms available.
In this screenshot we show those from the code BPZ as an example.
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Figure 21: Results from the Photo-z Validation component, organized in tabs by photo-z algorithms. In this example, we present results by DNF. The three
plots on the top are, from left to right, the histograms of redshift and error distributions, and the scatter plot of photo-z error versus the difference between photo-z
and spec-z for each object in the validation sample. The plots on the bottom are the scatter plot of photo-z versus the difference between photo-z and spec-z, and the
density and contour plots of photo-z versus spec-z.
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they can be used in the creation of science–ready catalogs con-
sidering, e.g., different star/galaxy classifiers, color selections,
and magnitude limits. It is also possible to download the photo-
z resulting tables, or to deliver them to the collaboration through
the export tool, connected to DESDM database. Since the same
object can be tagged as galaxy by one classifier or star by an-
other, it is essential to have photo-zs available for all objects.
Therefore, at this stage, the distribution of redshifts, N(z), ob-
tained with the Photo-z Compute pipeline is not representative
of the galaxy distribution yet. Only later, when the final cata-
logs are produced after pruning, the N(z) can be used for scien-
tific analyses.

The Photo-z Compute is composed of five components. The
dashed line in Figure 8 highlights the part of the workflow that
runs in parallel processing. The first component, Photo-z Separate
handles with the training files inherited from the previous pro-
cess. The second component, Sky Partitioner, defines the
data partition by dividing the area in the Sky covered by the
input dataset, based on the user choice of partition unit (as de-
tailed below). It distributes the information about the data par-
titions into the nodes where the photo-z codes run in parallel.

The next two components (enclosed by the dashed line in
Figure 8) run in parallel, each item of the partition defined
by the previous one. The component Partition Retriever

loads the contents of data partition in each computing node. To
deal with large photometric samples efficiently, the data access
uses HDFS, which previously distributed chunks of data in the
cluster nodes, minimizing time spent with data transfer. There-
fore, the Partition Retriever reads from the cluster nodes,
as discussed in Section 2.

It is only in the fourth component that the photo-zs are in
fact estimated. This step is the most computationally inten-
sive of all the tasks related to photo-z estimation. There is one
component available for each algorithm. All of them contain a
python wrapper that prepares the input data, runs the code, stan-
dardizes the outputs, and delivers it to the consolidator. Thus,
the workflow calls only the one that corresponds to code cho-
sen in the configuration screen (see the menu on the left side
displayed in Figure 22).

The consolidated jobs and their resulting photo-z table are
ingested in the database by the last component, called Join

Photo-z Compute. The product of Photo-z Compute is one of
the leading ingredients to compose a science–ready catalog for
extragalactic sciences, as discussed in Fausti Neto et al. (2018).

Since the Portal provides flexibility on the parallelization
strategy, we performed a series of tests to illustrate the use of
our computer cluster. In the following paragraphs, we compare
the computing of photo-zs by varying the size of the data chunk,
and consequently, the number of data partitions. For simplicity,
we use the original data division from DES, based on tiles (see
discussion ahead). The methodology details of the paralleliza-
tion are discussed in Section 2.

We use the most extensive dataset of Y1A1 data release
(SPT, details in Appendix A.1) to make stress tests and test
the cluster capacity. In this case, we choose to use the algo-
rithm DNF, which is one of the fastest codes available in the
Portal, according to previous tests not addressed in this work.

The most straightforward way to vary the parallelization
strategy is to modify the number of tiles to be processed by
each job submitted to the cluster management system. Table 2
and Figure 23 summarize the results of the tests. In this table,
the first column shows the number of tiles processed per job in
parallel. The second column shows the total number of jobs,
which is approximately the total number of tiles in SPT (3,373)
divided by the first column. The third column shows the time
spent in the serial parts of the processes (organizing training
files, defining the partitions, and concatenating the results at
the end). The fourth column shows the parallelized part of the
processes (the data retrieving and the actual photo-z estimation,
the components surrounded by dashed line in Figure 8). The
fifth column shows the total duration of each process.

All processes started with the same inputs and code con-
figuration and delivered the same results. The only difference
was in the definition of data partitions, which was seen to have
a significant impact on the process duration. Hereafter, we re-
fer to “infrastructure time” as the difference between the total
time of a process and the time spent on actual code running.
This quantity is difficult to measure when running in parallel.
It is often the case where a group of jobs is submitted to the
computer cluster, virtually simultaneously, but they do not fin-
ish at the same time, even though all the nodes have the same
hardware characteristics and the sizes of the data chunks are
virtually homogeneous.

Some of the possible reasons for the different delays are:
i) reading data from the same node versus reading data from
a neighbor node; ii) long queues of data partitions waiting for
their jobs to start; iii) bottleneck for writing in the ’reduce’ part
of the workflow (where some jobs still waiting in a queue to
register the results, when others are already writing).

Another contribution to the infrastructure time might be the
time spent by HTCondor to manage the jobs (start, finish, writ-
ing logs, creating temporary directories, and distributing jobs
in the cluster). Although we can raise several possible reasons
for the time lost in processes and the differences in time de-
lays between processes with different partition sizes, we can
not measure precisely relative contribution from each one of
these sources of delay. Therefore, the infrastructure time is the
cumulative time loss due to a combination of reasons.

We recall that there is an option to reserve the entire node
(24 cores) for a single job, when the process deals with inter-
nal parallelization, as mentioned in Section 2. This is not the
case here. For this test, this option of node reservation is dis-
abled, so the jobs are distributed all over the cluster, regardless
of the nodes to which the cores belong. Therefore, the maxi-
mum number of jobs running simultaneously is 912 (38 nodes
times 24 cores). This number possibly explains why N = 4 is
the most effective strategy for this first test. If the infrastructure
time was null and the execution time of the primary algorithm
was proportional to the size of the data chunk then it would be
virtually equivalent to run 1 or 4 tiles per core, i.e., 1 round of
843 jobs running four tiles each, or 4 rounds of 912 (actually
3 rounds of 912 plus one of 637) jobs running one tile each.
Since the infrastructure time is not zero, and it is cumulative,
four tiles per node are better than 1, because it occupies almost
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Figure 22: Screenshot of the configuration tab of the Photo-z Compute pipeline. On the left, the five components mentioned in the text. For this example, we chose
DNF as the photo-z algorithm to be applied by the fourth component. On the right, the choice of the size of each data partition, based on HEALPix pixels.

Table 2: Execution time of pipeline Photo-z Compute - dataset SPT, data parti-
tion based on DES tiles.

# Tiles/job # Jobs Serial† Parallel† Total†

1 3,373 00:49 02:30 03:19
4 843 00:47 01:19 02:06

12 282 00:48 01:31 02:19
24 141 00:48 02:11 02:59
32 106 00:48 02:27 03:15

† Duration in (hh:mm) format.

the whole cluster with jobs, without leaving any other job wait-
ing on a queue. The small queue of four files to be processed
within a job seems to work more efficiently than a large queue
of individual files distributed to the cluster.

As expected, for N > 4, the larger the N, the longer the
processing time. This is true because large N reduces the num-
ber of CPU cores used, wasting the capacity of the cluster. In
summary, according to our tests, the optimal number of tiles
distributed per job depends on the dataset size as the following:
If the number of tiles of a dataset is less than 912 (maximum
number of jobs running in parallel) than the optimal choice is
to distribute one tile per job. If the total number of tiles is larger
than 912, the optimal number of tiles per job is the integer num-
ber closest to the result of the total number of tiles divided by
912. In the example shown in Figure 22, the total number of
tiles in the SPT dataset, 3373, divided by 912 is ∼3.7. There-
fore, the fastest run using this particular dataset was the one
with four tiles per job, as observed in Figure 23 and Table 2.
Interestingly, the data partitioner and the consolidator perfor-
mances are very stable, independently of the number of parti-
tions they handle.
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Figure 23: Duration of pipeline Photo-z Compute execution as a function of
the number of DES tiles processed by each job in parallel. In black circles, the
total duration of the runs. In green diamonds, the sum of the durations of all
serial components. In red squares, the time spent with the parallelized part of
the process, i.e., the actual photo-z estimations by DNF (see Figure 8).

As done for the previous pipelines, we show an example of
running Photo-z Compute in the supplemental video V418.

3.5. Photo-z PDF

The use of redshift probability density functions (PDFs),
instead of single estimates of photometric redshifts, is a nec-
essary approach to incorporate the measurement’s uncertainties
on scientific analyzes. For large astronomical surveys, the stor-
age of billions of PDFs can be a challenge, furthermore if they
are measured several times, as when using different methods.

To overcome these issues, we adopt two procedures when
dealing with PDFs in the Portal. The first one is to compute

18https://youtu.be/IcCk0MYhy-E?list=

PLGFEWqwqBauBIYa8H6KnZ4d-5ytM59vG2

21



PDFs only for objects selected in a science–ready catalog, avoid-
ing wasting time and storage space with PDFs for stars or bad
data. That is the reason for the pipeline not to be present in
Figure 8. The second procedure is to apply a method for data
compression and store just a reduced list of coefficients repre-
senting the PDF, instead of the complete PDF for each galaxy.
The details of this method are explained in Rau et al. (2018, in
preparation).

In a similar way to the previous pipelines, we show exam-
ples of configurations, such as the photo-z code to be used, and
the redshift range for the PDF in Figure 24.

The resulting redshift distribution strongly depends on the
stage it is obtained in the Portal, as evident in Figure 25, where
we show, as an example, for a small sample (dataset COS-
MOS D04, defined in Appendix A.1) obtained using DNF. The
pipeline Photo-z Compute provides photo-zs for every object
present in the “raw” photometric samples, including stars and
poorly sampled objects (left panel). The pipeline responsible
for creating science–ready catalogs removes those objects, but
its product still contains only point photo-z estimates (middle
panel), which can be severely biased. To obtain the final dis-
tribution, we do the stacking of the probabilities (right panel)
which is considerably smoother than the previous one.

4. Summary

In this paper, we describe the infrastructure available in the
DES Science Portal to create training sets, training files and to
compute photo-z using different algorithms. It is an easy–to–
use framework that concatenates different pipelines involved in
the calculation of photo-zs, ensuring consistency between these
processes.

The database registers all the steps; the Portal framework
eases the task of carrying out a large variety of tests and com-
paring their results. Considering the volume of data, the num-
ber of algorithms and the various releases of photometric and
spectroscopic data, having a structured framework like the one
presented here is critical for vetting of DES algorithmic im-
provements, and the systematic production of photo-zs for fu-
ture DES releases.

Although the Portal is currently accessible only for the mem-
bers of DES collaboration, the methodology and lessons learned
here can be useful and subject of interest for anyone that uses
photo-zs in a wide range of science applications.

The database associated with the Portal ingests spectroscopic
data regularly. Although the redshift repository continuously
grows, the list of surveys used is reported and registered, so that
a process can be reproduced or use only the catalogs of interest
in another experiment.

After preparing training sets and photo-zs we can compare
to spec-zs for quality checks. The pipeline used in the estima-
tion of photo-zs for large datasets is parallelized to improve per-
formance. The tests presented in Section 3.4 reveal that a good
parallelization strategy is to distribute the data to the CPU cores
using data partitions that are small enough to occupy the whole
computing cluster, but large enough to avoid creating a queue

of idle jobs. The optimal number of tiles or HEALPix pixels to
be processed per job is then dependent on the size of the dataset
in question and its original data partition. The resulting photo-z
tables are amongst the values added in the preparation of cata-
logs ready for Portal science workflows.

It is important to point out that the strategy adopted by the
Portal is to compute photo-zs for all objects in the original cat-
alog produced by DESDM. We do that because the photo-z cal-
culation is, by far, the most computationally intensive step of
the E2E process. Calculating photo-zs for all objects gives the
flexibility to create any catalog for Portal science workflows
without having to re–compute photo-zs if one decides to change
the star/galaxy classifier or another criterion for the sample se-
lection. One disadvantage of our approach is that, in this first
pass, we only compute point–values of photo-z.

The calculation of a full PDF happens at a later stage when
the number of objects of interest is smaller, after quality prun-
ing and star–galaxy separation. This approach is discussed in a
separate paper that focuses on the method of preparing catalogs
ready for Portal science workflows (Fausti Neto et al., 2018).

For the near future, there will also be pipelines available to
be executed through Jupyter Notebooks (Kluyver et al., 2016;
Perez and Granger, 2007), as an alternative to the regular work-
flow system. There is already a prototype that has been tested
using the multi-user web application JupyterHub19, but the cur-
rent implementations are not related to photo-zs.

All the examples shown in the figures and supplemental
videos use data from the Y1A1 data release. Nevertheless, the
same infrastructure is valid for any other DES data release and
also for simulations.

Besides already allowing one to handle large datasets and
easing a lot of scientific applications, the DES Science Portal
has been a useful laboratory of methodologies and a precursor
of implementations for the next generation of photometric sur-
veys.
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Figure 24: Screenshot of the configuration tab of the Photo-z PDF pipeline.
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Medioambientales y Tecnológicas-Madrid, the University of Chi-
cago, University College London, the DES-Brazil Consortium,
the University of Edinburgh, the Eidgenössische Technische
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Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Fred-
eric, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D.,
Abdalla, S., Willing, C., development team [Unknown], J., 2016. Jupyter
notebooks ? a publishing format for reproducible computational workflows,
in: Loizides, F., Scmidt, B. (Eds.), Positioning and Power in Academic
Publishing: Players, Agents and Agendas, IOS Press. pp. 87–90. URL:
https://eprints.soton.ac.uk/403913/.

Koposov, S., Bartunov, O., 2006. Q3C, Quad Tree Cube – The new Sky-
indexing Concept for Huge Astronomical Catalogues and its Realization
for Main Astronomical Queries (Cone Search and Xmatch) in Open Source
Database PostgreSQL, in: Gabriel, C., Arviset, C., Ponz, D., Enrique, S.
(Eds.), Astronomical Data Analysis Software and Systems XV, p. 735.
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Appendix A. Data description

As a proof of concept, we show through this paper an exam-
ple of the sequence of pipelines run to estimate photo-z and use
these results to discuss the benefits of such infrastructure. The
results presented in Section 3, after each pipeline methodology
was described. In the following sections, we briefly describe
the data used in those runs.

Appendix A.1. Photometric data
To describe the processes carried out in the Portal to esti-

mate photo-zs, we use photometric data from the first annual
internal release of DES. The observations were carried out with
the mosaic camera DECam (Flaugher et al., 2015; Honscheid
et al., 2014) built as part of DES project and mounted on the
4-meter Blanco telescope at Cerro Tololo Inter-American Ob-
servatory (CTIO), in Chile.

The data were reduced and calibrated by the DES Data Man-
agement (DESDM) team at the National Center for Supercom-
puting Applications (NCSA) using standard procedures descri-
bed by Desai et al. (2012), Mohr et al. (2012), Morganson et al.
(2018). This is the system used for the processing and calibra-
tion of DES data, and the DECam Community Pipeline. The
observations (Diehl et al., 2014) reported here took place from
August 2013 to February 2014 and include a total of 14,340
exposures in the grizY filters, covering a total area of ∼1,800
deg2 in eight distinct regions, making the so-called DES Y1A1
release (Drlica-Wagner et al., 2018).

The two largest regions (see Figure A.26) are part of the
wide-field survey. One of about 160 deg2 overlapping the Sloan
Digital Sky Survey Stripe 82 Imaging Data (S82, Jiang et al.,
2014), and another of ∼1,400 deg2 overlapping the region ob-
served by the South Pole Telescope (SPT, Carlstrom et al., 2011).
These two wide regions were covered with up to four passes in
each filter, reaching SExtractor’s mag auto magnitude limits of
g = 23.4, r = 23.2, i = 22.5, z = 21.8, and Y = 20.1 (Drlica-
Wagner et al., 2018) in the AB system for a 10σ detection limit.

The remaining regions, called “supplemental fields” – where
a large number of spectroscopic redshifts (spec-zs) are available
– belong to both the science verification phase20 (SVA1), and
Y1A1 releases. Four of these regions are collectively known as

20https://des.ncsa.illinois.edu/releases/sva1
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Figure A.26: Location of all the Y1A1 fields used in this paper and DES footprint (dashed line).

Supernova (SN) fields. One of the other regions overlaps with
the VVDS-14h field from VIMOS VLT Deep Survey (hereafter
VVDS, Le Fèvre et al., 2005) and the final region overlaps with
COSMOS field (Scoville et al., 2007). The SN fields are regu-
larly observed as part of the SNe Ia program, making available a
greater number of exposures compared to the wide survey. The
location of all these regions are shown in Figure A.26 along
with the DES footprint. Relevant information is available in
Table A.3.

Appendix A.2. Spectroscopic data

In this paper, we use a spec-z sample with reliable measure-
ments to train photo-z algorithms, and to test their performance,
as an example of validation procedure. The construction of this
sample is by compiling data available from a large number of
surveys individually ingested into the database associated with
DES Science Portal.

Currently, the Portal’s spectroscopic database contains red-
shift measurements from a total of 34 spectroscopic surveys.
Together, these catalogs contain 2,173,561 redshift measure-
ments, where 1,688,403 refers to extragalactic sources includ-
ing both galaxies and quasars. In Table A.4 we show the in-
formation about the spectroscopic sample used as an example
in Section 3.1. The surveys ordered by the number of suc-
cessful matchings with photometric data from DES Y1 wide
fields are the numbers in the fourth column. The second col-
umn shows the number of objects with good quality spec-zs per
survey, after resolving multiple measurements as discussed in
Section 3.1.

After dealing with quality cuts and multiple measurements
in the spectroscopic database, we end up with 1,412,816 unique
high quality spec-zs. However, we know that not all of these
sources will be matched to the photometric sample since they
extend beyond the Y1A1 DES footprint. In particular, around
170 thousand sources overlap with Y1 footprint.
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Table A.3: Basic information of DES Y1 photometric datasets.
Field # Objects Area† mag lim‡

COSMOS 313,380 2.97 23.6
SN 2,569,018 31.76 24.4
SPT 126,623,762 1,469.05 23.2
VVDS 260,446 2.91 23.6
S82 12,487,566 165.84 23.4
† Covered area in deg2

‡ Defined as the peak of i-band mag auto number counts

Table A.4: Spectroscopic samples used in this paper.

Survey # objects† % # matchings % z mean z min z max Ref. ‡

PRIMUS 110,522 7.8 60,477 35.3 0.57 0.02 4.08 1
SDSS DR14 423,353 30.1 19,778 11.5 0.59 0.00 1.95 2
DES AAOmega 23,114 1.6 16,492 9.6 0.54 0.00 3.94 3
VIPERS 48,558 3.4 14,832 8.6 0.69 0.05 1.67 4
WiggleZ 80,431 5.7 9,131 5.3 0.55 0.01 1.70 5
VVDS 13,638 1.0 7,532 4.4 0.59 0.00 4.08 6
zCOSMOS 12,513 0.9 7,511 4.4 0.54 0.00 1.99 7
3D-HST 180,841 12.8 6,333 3.7 1.01 0.01 5.21 8
DEEP2 33,936 2.4 5,402 3.1 0.99 0.01 1.89 9
2dF 211,705 15.0 3,547 2.1 0.12 0.00 0.35 10
GAMA 7,429 0.5 3,444 2.0 0.22 0.01 0.74 11
ACES 4,047 0.3 3,045 1.8 0.58 0.04 1.42 12
6dF 108,760 7.7 2,637 1.5 0.06 0.00 0.38 13
DES IMACS 2,387 0.2 2,215 1.3 0.60 0.00 1.37 14
SAGA 64,033 4.5 1,994 1.2 0.29 0.01 1.17 15
NOAO OzDES 3,008 0.2 1,884 1.1 0.22 0.00 0.68 16
XXL AAOmega 3,143 0.2 926 0.5 0.47 0.00 2.80 17
SPT GMOS 2,189 0.2 790 0.5 0.56 0.07 1.24 18
UDS 1,307 0.1 705 0.4 1.06 0.04 3.44 19
SNLS FORS 1,321 0.1 529 0.3 0.51 0.03 3.75 20
ATLAS 729 0.1 503 0.3 0.32 0.02 1.89 21
Pan-STARRS 1,775 0.1 463 0.3 0.33 0.00 3.16 22
C3R2 1,249 0.1 429 0.3 0.92 0.03 3.52 23
SpARCS 403 <0.1 356 0.2 0.91 0.12 1.58 24
SNVETO 2,154 0.2 178 0.1 0.84 0.03 3.63 25
FMOS-COSMOS 328 <0.1 173 0.1 1.55 0.75 1.74 26
SNLS AAOmega 350 <0.1 58 <0.1 0.60 0.07 1.17 27
CDB 388 <0.1 38 <0.1 0.58 0.25 0.91 28
VUDS 141 <0.1 36 <0.1 1.78 0.19 3.75 29
ZFIRE 202 <0.1 29 <0.1 1.77 1.05 2.26 30
MOSFIRE 143 <0.1 25 <0.1 1.89 0.80 3.08 31
2dFLenS 63,632 4.5 23 <0.1 0.40 0.09 0.69 32
GLASS 383 <0.1 10 <0.1 1.06 0.34 2.07 33
XMM-LSS 26 <0.1 5 <0.1 0.42 0.19 0.65 34
† Only selected objects with Qspec > 3
‡ References: 1- Coil et al. (2011); Cool et al. (2013) and https://primus.ucsd.edu/; 2- Abolfathi et al. (2017)
and http://www.sdss.org/dr14/; 3- Yuan et al. (2015); Childress et al. (2017); 4- Garilli et al. (2014) and
http://vipers.inaf.it/rel-pdr1.html; 5- Parkinson et al. (2012) and http://wigglez.swin.edu.au/site/;
6- Garilli et al. (2008); Le Fèvre et al. (2004); 7- Lilly et al. (2009); 8- Momcheva et al. (2016) and http://
3dhst.research.yale.edu/Data.php; 9- Davis et al. (2003, 2007) and http://deep.ps.uci.edu/DR4/home.
html; 10- Colless et al. (2001) http://www.2dfgrs.net/; 11- Driver et al. (2011); 12- Cooper et al. (2012) and
http://mur.ps.uci.edu/cooper/ACES/zcatalog.html; 13- Jones et al. (2009) and http://www.6dfgs.net/;
14- Nord et al. (2016); 15- Geha et al. (2017) and http://sagasurvey.org/; 16- Yuan et al. (2015); Childress
et al. (2017); 17- Lidman et al. (2016) and http://cosmosdb.iasf-milano.inaf.it/XXL/; 18- Bayliss et al.
(2016) and https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OR13NN/; 19-
http://www.nottingham.ac.uk/astronomy/UDS/UDSz/; 20- Bazin et al. (2011) Private communication; 21- Mao
et al. (2012); 22- Rest et al. (2014); Scolnic et al. (2014); Kaiser et al. (2010); 23- Masters et al. (2017); 24-
Muzzin et al. (2012); 25- http://www.ast.cam.ac.uk/~fo250/Research/SNveto/; 26- Silverman et al. (2015) and
http://member.ipmu.jp/fmos-cosmos/FC_catalogs.html; 27- Lidman et al. (2013); Yuan et al. (2015); Childress
et al. (2017) and http://apm5.ast.cam.ac.uk/arc-bin/wdb/aat_database/observation_log/make; 28- Sul-
livan et al. (2011); 29- Tasca et al. (2017) and http://cesam.lam.fr/vuds/DR1/; 30- Nanayakkara et al. (2016) and
http://zfire.swinburne.edu.au/data.html; 31- http://mosdef.astro.berkeley.edu; 32- Blake et al. (2016)
and http://2dflens.swin.edu.au/; 33- Treu et al. (2015) and https://archive.stsci.edu/prepds/glass/;
34- Stalin et al. (2010).
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