1710.08491v3 [cs.DC] 16 May 2018

arxXiv

Harnessing the Power of Many: Extensible Toolkit
for Scalable Ensemble Applications

Vivek Balasubramanian*’l, Matteo Turilli *ﬂ, Weiming HuT, Matthieu Lefebvrei, Wenjie Leii,
Ryan Modraki, Guido CervoneT, Jeroen Trompi and Shantenu Jha*§,
*ECE, Rutgers University
T Penn State University
¥ Princeton University
§ Brookhaven National Laboratory
¥ Contributed Equally

Abstract—Many scientific problems require multiple distinct
computational tasks to be executed in order to achieve a desired
solution. We introduce the Ensemble Toolkit (EnTK) to address
the challenges of scale, diversity and reliability they pose. We
describe the design and implementation of EnTK, characterize
its performance and integrate it with two exemplar use cases:
seismic inversion and adaptive analog ensembles. We perform
nine experiments, characterizing EnTK overheads, strong and
weak scalability, and the performance of the two use case imple-
mentations, at scale and on production infrastructures. We show
how EnTK meets the following general requirements: (i) imple-
menting dedicated abstractions to support the description and
execution of ensemble applications; (ii) support for execution on
heterogeneous computing infrastructures; (iii) efficient scalabil-
ity up to O(10*) tasks; and (iv) task-level fault tolerance. We
discuss novel computational capabilities that EnTK enables and
the scientific advantages arising thereof. We propose EnTK as an
important addition to the suite of tools in support of production
scientific computing.

I. INTRODUCTION

Traditionally, advances in high-performance scientific com-
puting have focused on the scale, performance and optimization
of an application with a large but single task, and less on appli-
cations comprised of multiple tasks. However, many scientific
problems are expressed as applications that require multiple
distinct computational tasks to be executed in order to achieve
a desired solution.

“Task” is used to represent processes at different scales and
granularity. In this paper, a computational task is a general-
ized term for a stand-alone process that has well defined input,
output, termination criteria, and dedicated resources. Specifi-
cally, a task is used to represent an independent simulation or
data processing analysis, running on one or more nodes of a
high-performance computing (HPC) machine.

When the collective outcome of a set of tasks is of impor-
tance, this set is defined to be an ensemble. Individual tasks
within the set might be coupled or uncoupled. When coupled,
tasks might have global (synchronous) or local (asynchronous)
exchanges, and regular or irregular communication. This is in
contrast to traditional parameter sweeps, or high-throughput
computing (HTC) applications, where tasks are typically iden-
tical, uncoupled, idempotent and can be executed in any order.

Individual tasks within the ensemble may also vary in their
type, executable, and resource requirements.

The number and type of applications that can be formulated
as ensembles is vast and span many scientific domains. Some
scientific problems that have traditionally been expressed as a
single computational task must be reformulated using ensem-
bles so as to overcome limitations of single task execution [1]].
For example, in biomolecular sciences, due to the end of Den-
nard scaling, and thus limited strong scaling of individual MD
tasks, there has been a shift from running single long running
tasks towards multiple shorter running tasks, as evidenced by
a proliferation of ensemble-based algorithms [2f], [3].

The execution of an ensemble on HPC machines presents
three main challenges: (1) encoding scientific problems into
algorithms that are amenable to distributed and coordinated
solution; (2) sizing, acquiring, and managing resources for the
execution; and (3) managing the execution of the ensemble.
Encoding scientific problems into ensembles requires describ-
ing tasks with heterogeneous properties, specifying whether
and how tasks are grouped into partitions of the ensemble,
and defining an ordering among tasks and partitions. Sizing re-
sources for the ensemble depends on calculating the resources
needed by each task and those needed by the set of tasks that
can be executed concurrently.

Often, there is a friction between the resource requirements
of an ensemble and the traditional resource management of
HPC machines. Each task of the ensemble has to be queued
onto a HPC machine, incurring a long queue waiting time
that adds up to the total time to completion of the ensemble.
Usually, at least one compute node of the HPC machine has to
be requested for each task, and often for at least one hour, even
when tasks may require fewer resources for a shorter duration.
Finally, distributing the execution of an ensemble requires
tailored coordination and communication infrastructure and
protocols, not made readily available to the user via the HPC
software provision. These factors make using HPC resources
for ensemble applications challenging, when not unfeasible.

In response to these challenges and requirements, the grow-
ing importance of ensemble-based applications in scientific
HPC, and the absence of middleware providing scalable, exten-
sible and general solutions, we have designed and implemented

the Ensemble Toolkit (EnTK). EnTK promotes ensembles to a
high-level programming abstraction, providing specific inter-
faces and execution models for ensemble-based applications.
EnTK is engineered for scale and a diversity of computing
platforms and runtime systems, and it is agnostic of the size,
type and coupling of the tasks comprising the ensemble.

EnTK adheres to the building blocks approach for the de-
sign, development and integration of middleware [4]], [S]. This
approach advocates a sustainable ecosystem of software compo-
nents from which tailored workflow systems can be composed,
as opposed to having to fit workflows to pre-existing frame-
works. The building blocks approach overcomes the limited
flexibility of monolithic workflow systems by enabling com-
posability and extensibility, and thereby supporting the wide
range of workflow requirements. As circumstantial evidence,
EnTK has been used to develop several diverse domain-specific
workflow systems [4].

This paper offer four main contributions: (1) a description of
the design, architecture and implementation of EnTK (§II); (2)
a characterization of EnTK overheads on different HPC comput-
ing infrastructures (CI) for a variety of task types (§IV-A); (3)
an analysis of EnTK weak and strong scaling on a leadership-
class HPC CI (§IV-B); and (4) the support of two ensemble-
based scientific applications with different characteristics and
requirements (§[V-C). This shows that EnTK can support di-
verse types of ensemble applications, at scale and on several
HPC ClIs, introducing acceptable overheads. As such, we pro-
pose EnTK as an important addition to the suite of tools in
support of production scientific computing.

II. ENSEMBLE TOoOLKIT (ENTK)

The design and implementation of EnTK are iterative and
driven by use cases. Use cases span several scientific domains,
including Biomolecular Sciences, Material Sciences, and Earth
Sciences. Users and developers collaborate to elicit require-
ments and rapid prototyping. EnTK is loosely specified in
UML, validated against its requirements and characterized via
a profiler. Jenkins and Travis are used for continuous inte-
gration and automated testing. Documentation and code are
managed and made available via a GitHub repository [6].

A. Requirements

As seen in {I| the space of ensemble applications (hereafter
simply ‘applications’) is vast, and thus there is a need for
simple and uniform abstractions while avoiding single-point
solutions. We elicited requirements about computing infras-
tructures (CIs), scale, fault-tolerance, and usability. EnTK is
required to: (1) support heterogeneous Cls; (2) abstract the
complexity of execution and resource management; and (3) be
performance independent of the type of CI.

The use cases motivating EnTK require execution of up to
O(10*) ensemble members (tasks). This poses many challenges,
that need to be addressed by EnTK and a runtime system
(RTS). At this scale, EnTK has to reliably enable sustained
task submission rate, tracking of executing tasks and clean
termination of tasks. The RTS has instead to integrate with

[Pipeline 1 Pipeline 2 Pipeline N)
4 Stage 1 h Stage 1 Stage 1
Set (Il HHHB-_———__ 0L Il Il WH-----
-1
Stage 2 Stage 2
) n 100y
g - Stage 2 - -
% g
A i i
0 I
0 /—'ﬁ /—Yﬁ
Task 0 Stage S, Stage S|
Stage S, ﬂﬂ ﬂﬂ
ﬂﬂ ~— ~— =

Fig. 1: Diagrammatic representation of an application consisting
of a set of pipelines with varying number of stages and tasks.

suitable MPI layers, setting up the execution environment for
heterogeneous tasks, managing their data requirements and
scheduling tasks across multiple resource partitions. Together,
EnTK and RTS have to ensure full resource utilization across
the ensemble execution time.

EnTK has to be fault-tolerant at scale, i.e., when both the
probability and cost of failure increase. Currently, EnTK is
required to support resubmission of failed tasks, without appli-
cation checkpointing, and restarting of failed RTS and compo-
nents. In this way, applications can be executed on multiple
attempts, without restarting completed tasks.

Usability plays an important role in the development of
EnTK, as it must support diverse programming and develop-
ment skills. Special attention is given to lowering the time to
encode use cases into executable applications.

B. Design

1) Application Model: We model applications by combining
the following user-facing constructs:

o Task: an abstraction of a computational task that con-
tains information regarding an executable, its software
environment and its data dependences.

« Stage: a set of tasks without mutual dependences and that
can be executed concurrently.

« Pipeline: a list of stages where any stage 7 can be executed
only after stage ¢ — 1 has been executed.

Figure (1| shows an application described with pipelines,
stages, and tasks (PST). The application consists of a set of
pipelines, where each pipeline is a list of stages, and each stage
is a set of tasks. All the pipelines can execute concurrently, all
the stages of each pipeline can execute sequentially, and all
the tasks of each stage can execute concurrently.

Note that PST descriptions can be extended to account for
dependencies among groups of pipelines in terms of lists of
sets of pipelines. Further, the specification of branches in the
execution flow of applications does not require to alter the PST
semantics: Branching events can be specified as tasks where
a decision is made about the runtime flow. For example, a

API Layer

| AppManager @ I Synchronizer i @ | Pipelinel Stagel Task ||
WFProcessor @ ExecManager

[Sync] Enqueue { Sync } { Sync } Emgr [Sync]

[Sync] Dequeue

Callback [Sync]
Rmgr ;
Heartbeat RTS

Workload Management Layer

{ Sync } { Sync]
O Pending ©
© Done @

Workflow Management Layer

Fig. 2: EnTK architecture and execution model. Components’
(purple) subcomponents (green) use queues (blue and orange)
to communicate and coordinate the execution of an application
via a chosen RTS (gray).

task could be used to decide to skip some elements of a stage,
based on some partial results of the ongoing computation.

2) Architecture: EnTK sits between the user and the CI,
abstracting resource management and execution management
from the user. Fig. 2] shows the components (purple) and
subcomponents (green) of EnTK, organized in three layers:
API, Workflow Management, and Workload Management.

The API layer enables users to codify PST descriptions.
The Workflow Management layer retrieves information from
the user about available ClIs, initializes EnTK, and holds the
global state of the application during execution. The Workload
Management layer acquires resources via the RTS.

The Workflow Management layer has two components: App-
Manager and WFProcessor. AppManager uses the Synchronizer
subcomponent to update the state of the application at runtime.
WFProcessor uses the Enqueue and Dequeue subcomponents
to queue and dequeue tasks from the Workload Management
layer. The Workload Management layer uses ExecManager and
its Rmgr, Emgr, RTS Callback, and Heartbeat subcomponents
to acquire resources from CIs and execute the application.

Another benefit of this architecture is the isolation of the
RTS into a stand-alone subsystem. This enables composability
of EnTK with diverse RTS and, depending on capabilities,
multiple types of CIs. Further, EnTK assumes the RTS to be
a black box enabling fault-tolerance. When the RTS fails or
becomes unresponsive, EnTK can tear it down and bring it
back, loosing only those tasks that were in execution at the
time of the RTS failure.

3) Execution Model: EnTK components and subcomponents
communicate and coordinate for the execution of tasks. Users
describe an application via the API, instantiate the AppManager
component with information about the available CIs and then
pass the application description to AppManager for execution.
AppManager holds these descriptions and, upon initialization,
creates all the queues, spawns the Synchronizer, and instan-
tiates the WFProcessor and ExecManager. WFProcessor and
ExecManager instantiate their own subcomponents.

Once EnTK is fully initialized, WFProcessor initiates the
execution by creating a local copy of the application description
from AppManager and tagging tasks for execution. Enqueue
pushes these tasks to the Pending queue (Fig.[2] 1). Emgr pulls

tasks from the Pending queue (Fig. [2] 2) and executes them
using a RTS (Fig. [2] 3). RTS Callback pushes tasks that have
completed execution to the Done queue (Fig. 2} 4). Dequeue
pulls completed tasks (Fig. [2} 5) and tags them as done, failed
or canceled, depending on the return code from the RTS.

Throughout the execution of the application, tasks, stages
and pipelines undergo multiple state transitions in both WFPro-
cessor and ExecManager. Each component and subcomponent
synchronizes these transitions with AppManager by pushing
messages through dedicated queues (Fig. [2] 6). AppManager
pulls these messages and updates the application states. App-
Manager then acknowledges the updates via dedicated queues
(Fig. [2} 7). This messaging mechanism ensures that AppMan-
ager is always up-to-date with any state change, making it the
only stateful component of EnTK.

4) Failure Model: We consider four main sources of failure:
EnTK components, RTS, CI, and task executables. All state
updates in EnTK are transactional, hence any EnTK component
that fails can be restarted at runtime without losing information
about ongoing execution. In case of full failure, EnTK can
reacquire upon restarting information about the state of the
execution up to the latest successful transaction before the
failure. Information is synced on disk and hooks are in place
to use an external database.

Both the RTS and the CI are considered black boxes. Partial
failures of their subcomponents at runtime are assumed to be
handled locally, not globally by EnTK. Upon full failure of
the RTS, EnTK assumes all the pilot resources and the tasks
undergoing execution are lost. EnTK purges any process left
over by the failed RTS, starts a new instance of the RTS, ac-
quires new pilot resources, and restarts executing the ensemble
until completion. Users can configure the number of times a
RTS is restarted during the execution of a single ensemble.

Cl-level failures are reported to EnTK indirectly, either as
failed pilots or failed tasks. Both pilots and tasks can be
restarted, up to a certain number of times configured by the
user. Failures are logged and reported to the user at runtime
for live or postmortem analysis. EnTK design enables collec-
tion of information from both the RTS and the resources via
APIs. When RTS and CI expose information about, for exam-
ple, OS-level faults, application checkpoint, or hardware faults,
EnTK can implement advanced fault-tolerant capabilities. Cur-
rently, these capabilities are not required by our use cases and
application checkpoint is not performed by their executables.

C. Implementation

EnTK is implemented in Python, uses RabbitMQ message
queuing system and the RADICAL-Pilot (RP) runtime system.
All EnTK components are implemented as processes, and all
subcomponents as threads. AppManager is the master process
spawning all the other processes. Tasks, stages and pipelines are
implemented as objects, copied among processes and threads
via queues and transactions. Synchronization among processes
is achieved by message-passing via queues.

EnTK relies on RabbitMQ to manage the creation of the com-
munication infrastructure to transport the objects and messages

Resource

+

‘ L Q00000 Application‘

\ L4 1171 Pilot API]
Pilot Pilot vy Unit Unit |Workstation/

Manager | Launcher o (P (l) (\) Scheduler | Manager| Resource

[2 2/ |\ SAGA AP[|
z P L S Workstation/

[MongoDB [4040 40 -, |

 — {

Resource | Pilot Ag;nt Execut?(r (é é)Executor Aggnt Pilot | Resource
o 50 5 5 &

Fig. 3: RADICAL-Pilot (RP) architecture and execution model.
Gray: machines; green: pilot; purple: modules; yellow: compo-
nents; red: tasks.

among components. RabbitMQ provides methods to increase
the durability of messages in transit and of the queues, and
to acknowledge messages. Most importantly, it supports the
requirement of managing at least O(10%) tasks concurrently.

RabbitMQ is a server-based system and requires to be in-
stalled before the execution of EnTK. This adds overheads but
it also offers the following benefits: (1) producers and con-
sumers do not need to be topology aware because they interact
only with the server; (2) messages are stored in the server and
can be recovered upon failure of EnTK components; and (3)
messages can be pushed and pulled asynchronously because
data can be buffered by the server upon production.

D. Runtime System

Currently, EnTK uses RADICAL-Pilot (RP) [7]], [8]] as the
RTS. RP is a runtime system designed to execute ensemble
applications via pilots. Pilots provide a multi-stage execution
mechanism: Resources are acquired via a placeholder job and
subsequently used to execute the application’s tasks. When a
pilot is submitted to a CI as a job, it waits in the CI’s queue
until the requested resources become available. At that point,
the CI’s scheduler bootstraps the job on the CI's compute
nodes. RP does not attempt to ‘game’ the CI's scheduler: Once
queued, the pilot is managed according to the CI’s policies.

RP is a distributed system with four modules: PilotManager,
UnitManager, Agent and DB (Fig. |3| purple boxes). PilotMan-
ager, UnitManager and Agent have multiple components (Fig.[3]
yellow boxes), isolated into separate processes. Components
are stateless and some of them can be instantiated concur-
rently to enable RP to manage multiple pilots and tasks at the
same time. Concurrent components are coordinated via a dedi-
cated communication mesh, scaling throughput and enabling
tolerance to failing components.

Workloads and pilots are described via the Pilot API and
passed to the RP runtime system (Fig.[3] 1). The PilotManager
submits pilots as jobs (or virtual machines or containers) to
one or more CIs via the SAGA API (Fig. E], 2). The SAGA
API implements an adapter for each supported type of CI,
exposing uniform methods for job and data management. Once
a pilot becomes active on a CI, it bootstraps the Agent module
(Fig. 3] 3). The UnitManager schedules each task to an Agent
(Fig. Bl 4) via a queue on a MongoDB instance. Each Agent

pulls its tasks from the DB module (Fig.[3] 5), scheduling them
on the Executor. The Executor sets up the task’s execution
environment and then spawns the task for execution.

When required, the input data of a task are either pushed
to the Agent or pulled from the Agent, depending on data
locality and sharing requirements. Similarly, the output data
of the task are staged out by the Agent and UnitManager
to a specified destination, e.g., a filesystem accessible by the
Agent or the user workstation. Both input and output staging are
optional, depending on the requirements of the tasks. The actual
file transfers are enacted via SAGA, and currently support
(gsi)-scp, (gsi)-sftp, Globus Online, and local
and shared filesystem operations via cp. Consequently, the
size of the data along with network bandwidth and latency or
filesystem performance determine the data staging durations
and are independent of the performance of the RTS.

III. USE CASES

To help understand the initial scope and design of EnTK,
we describe two motivating use cases, focusing on their com-
putational and functional requirements.

A. Seismic Inversion

Inversion of full-waveform, wide-bandwidth seismic data [9]
is one of the most powerful tomographic technique to study the
Earth’s interior. Scaling this technique is challenging, mostly
because of the amount of computational resources and human
labor it needs. These challenges require a more automated
approach to the management and execution of the workflow,
such as the one implemented by the EnTK.

Figure [shows a high level view of the workflow we use
to perform seismic tomography. We record seismic data (i.e.,
seismograms) as time series of a physical quantity, like dis-
placement, velocity, acceleration or pressure. Our goal is to
iteratively minimize differences between observed and corre-
sponding synthetic data through a pre-defined misfit function.
As the adjoint-based optimization procedure is carried on and
the data misfit decreases, the model gets closer to reality.

We run the workflow of Figure |4|in production, assimilating
data from about 1,000 earthquakes. Forward (1) and adjoint
(3) simulations are the most computationally expensive parts
of the workflow, each running on 384 GPUs for a total of
10 millions core-hours per iteration. Data processing (2) is
relatively computationally inexpensive, utilizing about 48,000
core-hours in each iteration. Post-processing (4) takes about
10,000 core-hours while optimization (5) takes about 1 million
core-hours.

Currently, each part of the workflow relies on a Python-
based proto-workflow management system. However, scaling to
higher resolutions and assimilating data from 6,000 earthquakes
requires more automation to ensure reliability, minimize errors
at the user level and lower the overall time to solution. Further,
we need to interleave simulation tasks with data-processing
tasks, each requiring respectively leadership-scale systems and
moderately sized clusters. During the workflow execution, we
need to save between 0.15 to 1.5GB per seismogram.

Pipeline

Mesh Creation

]]—Task

Weights
Computation

(2)4

[Adjoint Source Creation] [Adjoint Source Creation } ------ [Adjoint Source Creation]
[©F [Adjoint Simulation] [Adjoint Simulation } ------ [Adjoint Simulation]

Kernel Summation

Pre-conditioning
Regularization

(4)4

Optimization Routine

(54

Model Update

Fig. 4: Simplified seismic tomography workflow encoded into
the PST model.

Ensemble-based applications are particularly well-suited to
encode the seismic tomography workflow. In EnTK, we can de-
scribe the simulation and analysis phases as stages of a pipeline,
avoiding to use dedicated MPI application to execute multiple
simulation concurrently. EnTK and RP also allow the execu-
tion of the ensemble of simulations with a varying degree of
concurrency and sequentiality, without requiring specific cod-
ing. EnTK offers automation and fault-tolerance avoiding the
overheads we experienced with full-fledged workflow systems.
We encode data dependencies and staging directives via the
EnTK API, enabling data management at runtime on per-task,
stage, and pipeline basis.

B. High Resolution Meteorological Probabilistic Forecasts

We implemented the Analog Ensemble (AnEn) [10] method-
ology to generate high-resolution, probabilistic forecasts for
environmental variables like temperature or cloud cover. We
used relationships between current and past forecasts from the
Weather Research and Forecast model (WRF) data to generate
an analog ensemble for a given time and location. Our imple-
mentation finds the most similar historical forecasts, based on
a similarity metric. The observations associated with the most
similar past forecasts are used as analogs.

We implemented a dynamic iterative search process, named
the Adaptive Unstructured Analog (AUA) algorithm, which
generates analogs at specific geographical locations, and in-
terpolates the analogs using an unstructured grid. In this way,
we avoid computing analogs at every available location, not-
ing that for some output variables, such as temperature, the
highest resolution of the analogs is required only at specific
regions, where drastic gradient changes occur.

The AUA algorithm is iterative, and at each iteration it per-
forms a variable number of operations. EnTK addresses the
resource management challenges arising from such variations

Pipeline

Identify search space jI»Stage
Initialize AnEn
parameters

Generate
unstructured gri

A

Compute AnEn
for subregion M

Compute AnEn
for subregion 2

Compute
the error

Compute AnEn
for subregion 1
() B ——

(4)<

Fig. 5: Adaptive unstructured analog algorithm workflow en-
coded into the PST model.

by allocating diverse amount of computing resources, depend-
ing on the size of the search space required to achieve the
desired prediction accuracy.

Figure [5] shows the workflow of the AUA algorithm. The ini-
tialization step specifies the search space and the test space, and
sets up starting parameters for the AnEn. The preprocessing
step generates preparatory data for the subsequent steps. The
largest amount of computation occurs in the iterative computa-
tion step where analogs are computed and aggregated multiple
times until the available resources are exhausted, or the pre-
diction error is below a given threshold. The post- processing
task interpolates the analogs to generate the forecast solution.

We drove the development and assessed the suitability of
EnTK for analog computation by testing the AnEn method
with dataset including forecast predictions for 13 variables (e.g.,
wind speed, precipitation, pressure, etc.) for the years 2015 and
2016. Data for both analysis and forecasts are from the North
American Mesoscale Forecast System (NAM) maintained at
the National Center of Atmospheric Research (NCAR).

IV. EXPERIMENTS

We perform experiments to characterize the overheads of
EnTK and its weak and strong scaling performance. We then
measure the overheads of EnTK when executing, at scale, the
implementation of the two use cases described in

We use four applications in our experiments: Sleep, Gro-
macs [11], Specfem [12], and Canalogs [13]]. Sleep and Gro-
macs enable control of the duration of task execution and to
compare EnTK overheads across task executables. Gromacs
and the NTL9 protein serve as workload for EnTK weak and
strong scalability, while Specfem and Canalogs are required
by the two use cases of this paper.

We perform our experiments on four CIs: XSEDE SuperMIC,
Stampede, Comet and ORNL Titan. We use four resources
for the characterization of EnTK overheads; Titan for the
characterization of the scalability; and Titan and SuperMIC
for the use case applications.

[Producers —— Bascline memory consumption(right) =
7z 800 [Consumers —— Peak memory consumption(right) 3000 =
z [Aggregate g
2 600 [2800 &,
Z 400 - 2600 2
£ 200 2100

)_—\f:*/ =
. \] — 1
1, 1.1 2,22 4.4, 4 8,88
producers, # consumers, # intermediate queues

Fig. 6: Execution time and memory consumed by EnTK pro-
totype with multiple producers and consumers and 10° tasks.

A. Characterization of EnTK Performance

We use a prototype of EnTK to benchmark its performance,
providing a reference hardware configuration to support execu-
tion of up to O(10°) tasks. We then perform four experiments
to characterize the overheads of EnTK.

1) Performance of EnTK Prototype: We prototyped the most
computationally expensive functionality of EnTK to instanti-
ate multiple producers and consumers of tasks. Each producer
pushes tasks into RabbitMQ queues and each consumer pulls
tasks from these queues, passing them to an empty RTS module.
We benchmarked configurations with 106 tasks and a different
number of producers, consumers, and queues, measuring: pro-
ducers and consumers time; total execution time; base memory
consumption when the components are instantiated; and peak
memory consumption during the execution.

Fig. [6] shows that tuning of the prototype can reduce the
processing time linearly, at the cost of increased memory usage.
Eight producers and consumers require 107 seconds to process
10° tasks, with a peak memory consumption of 3,126MB.
Uneven distributions of producers and consumers resulted in
lower efficiencies than when using even distributions.

The execution model of EnTK can be tuned on the basis
of this benchmark, workload requirements, and hardware ca-
pabilities. This benchmark shows that the performance of the
core functionality of EnTK depends on the number of tasks
that are processed concurrently. This has relevant implications
for the understanding of EnTK overheads and scalability.

2) Overheads, Data Staging and Task Execution Time:
We characterize EnTK overhead against four parameters that
are likely to vary among applications: Task executable; task
duration; CI on which the application is executed; and structure
of the application, i.e., the way in which tasks are grouped into
stages and stages into pipelines. We measured the overheads
that dominate EnTK and RTS runtime alongside the total task
execution time and, when required, the total data staging time:

+ EnTK Setup Overhead: Time taken to setup the messag-
ing infrastructure, instantiate components and subcompo-
nents, and validate application and resource descriptions.

+« EnTK Management Overhead: Time taken to process
the application, translate tasks from and to RTS-specific
objects, and communicate pipelines, stages, tasks and
control messages.

+ EnTK Tear-Down Overhead: Time taken to cancel all
EnTK components and subcomponents, and shutdown the

messaging infrastructure.

o RTS Overhead: Time taken by the RTS to submit and
manage the execution of the tasks.

e RTS Tear-Down Overhead: Time taken by the RTS to
cancel its components and to shutdown.

« Data Staging Time: Time taken to copy data between
tasks using the functionality available on the resource (in
this case, the Unix POSIX cp command).

« Task Execution Time: Time taken by the task executables
to run on the CIL

We designed four experiments (Table |I)) to characterize the
overheads added by EnTK and the RP RTS to the time taken
to execute an application, excluding the time taken by the re-
sources to become available. These experiments execute applica-
tions with different task executable (Experiment 1, Fig.); task
duration (Experiment 2, Fig. [7b); CI (Experiment 3, Fig. [7f);
and application structure, i.e., the number of pipelines, stages
and tasks per application (Experiment 4, Fig. [7d).

Fig. |7] shows that EnTK Setup Overhead is ~0.1s across
Experiment 1, 2, 4, and ~0.05s for Titan in Experiment 3.
We attribute this difference to the host from which EnTK
was executed. All the experiments on XSEDE machines were
performed from the same virtual machine (VM) hosted at
TACC, while experiments on Titan had to be performed from
an ORNL login node. The ORNL login nodes have faster
memory and CPU than the VM.

Fig. |/| shows a similar behavior between EnTK Setup Over-
head and EnTK Management Overhead. EnTK Management
Overhead measures ~10s on all the runs but those performed
on Titan where it measures ~3s. Also in this case, we attribute
this difference to the performance of the VM and login nodes
from which EnTK was executed.

In Fig. [/} EnTK Tear-Down Overhead and RTS Tear-Down
Overhead vary across all four experiments with values between
~1 and ~10s for EnTK Tear-Down Overhead and ~3 and ~80s
for RTS Tear-Down Overhead. We attribute these variations to
the time taken by Python to terminate processes and threads.
The higher values of RTS Tear-Down Overhead are expected as
RP uses significantly more processes and threads than EnTK.

We explain the variations of RTS Overhead in Fig. [7] by
noticing that, at runtime, RP initiates communications between
the CI and a remote database, and reads and writes to the shared
file system of the CI to create the execution environment of
each task. Further, RP uses third party tools to distribute the
execution of tasks across compute nodes. A detailed analysis
of the interplay among network latency, I/O performance, and
the performance of third party tools and libraries is beyond
the scope of this paper. This is consistent with EnTK design:
the RTS (RP in this case) is assumed to be a black box.

Fig. [7| shows that for tasks executing more than 1s, RP
overheads have little impact on Task Execution time: As per
experiment design, executables of Experiment 1 (Fig. [7p) run
for ~300s and those of Experiment 3 (Fig. [7c) for ~100s on all
four CIs. In Experiment 2 (Fig.[7p), tasks set to run for ls, run
for ~5s due to RP overhead but tasks set to run for 10s, 100s,
and 1,000s run in about that amount of time. In Experiment

10? 10°
z z
5 10 10 5
< 100 10" g
= =

107! 100

1072 " ’ 107!

mdrun sleep
(a) Task executable

10° 10*

107 10°
z z
5 10t 10> 8
5] 5]
RS Z
< 100 00 g
g g

107! 10°

1072 ' m 107!

supermic st Llllp(‘(e comet titan

¢) Computing Infrastructure

[EnTK Setup Overhead [EnTK Tear-Down Overhead

[EnTK Management Overhead

10*

10% 10%
=
10" 0% 5
100 10 g
&
101 100
2 | ~1
10 1000 10
(b) T\sl duration (S(l()ll\l\)
108 104
10? 10°
=
10! 10?3
10° 10" ¢
&
1071 10°
1072 —e - — - 1071
P-16, S-1, T-1 P-1, $-16, T-1 P-1,S-1, T-16

(d) Application structure

[RTS Tear-Down Overhead [RTS Overhead [Task Execution Time (right)

Fig. 7: Overheads and Task Execution Time as function of (a) Task Executable (Experiment 1), (b) Task Duration (Experiment
2) (c) Computing Infrastructure (Experiment 3) (d) Application Structure (Experiment 4).

TABLE I: Parameters of the experiments plotted in Figure

ID Computing Infrastructure (CI) Pipeline, Stage, Task Executable Task Duration Data
1 SuperMIC (1,1,16) mdrun, sleep 300s TDB
2 SuperMIC (1,1,16) sleep 1s, 10s, 100s, 1,000s None
3 SuperMIC, Stampede, Comet, Titan (1,1,16) sleep 100s None
4 SuperMIC (16,1,1), (1,16,1), (1,1,16) sleep 100s None
4 (Fig.), for runs with 16 pipelines and 16 tasks, all the 1gt| 3 EnTK Setup Overhead = RTS Overhead "
tasks execute concurrently and hence Task Execution Time is B EnTK Tear-Down Overhead B4 Data Staging Time 1500
[0 EnTK Management Overhead [0 Task Execution Time (right)

~100s. However, with 16 stages, tasks execute sequentially,
resulting in Task Execution Time of ~1,600s.

EnTK setup, management, and tear-down overheads vary
minimally with the four parameters of task execution we mea-
sured. Setup and management overheads depend on the memory
and CPU performance of the host on which EnTK is executed,
while the tear-down overhead on the Python version utilized.
This validates EnTK design and implementation against its re-
quirements: EnTK can be used in various scientific domains,
with different task executables, and across heterogeneous Cls.

In absolute terms, EnTK overheads are between ~10 and 20
seconds but Experiment 3 shows that these overheads can be
reduced by running EnTK on a host with better performance.
RP RTS shows overheads up to ~80s, limiting its utilization to
applications with at least minutes-long tasks. These limitations
are mostly due to the use of Python and its process and thread
termination time: EnTK and RP should be coded, at least
partially, in a different language to manage the execution of
applications of tasks that are O(1) seconds.

B. Scalability

We perform two experiments to characterize weak and strong
scalability of EnTK. As with Experiment 1-4, we measure and
compare all overheads, Data Staging Time and Task Execution
Time. Weak scaling relates these measures to the amount of

2] 0 RTS Tear-Down Overhead
1000

Tasks/Cores

Fig. 8: Weak scalability on Titan: 512, 1,024, 2,048, and 4,096
1-core tasks executed on the same amount of cores.

Time (seconds)

concurrency used to execute the application’s tasks; Strong
scaling to the amount of serialization.

1) Weak scalability: To investigate weak scaling, we run
four applications on Titan, each with 1 pipeline, 1 stage per
pipeline, and 512, 1,024, 2,048, or 4,096 tasks per stage. Each
task executable is Gromacs mdrun, configured to use 1 core
for =600 seconds. The number of acquired cores is equal to
the number of the application’s tasks. Each task requires 4
input files: 3 soft links of 130B each and 1 file of 550KB.

Fig. [8] (right axis) shows that Task Execution Time increases
gradually and therefore does not have ideal weak scaling. Anal-
ysis of the RTS profiles shows that this behavior is due to
delays in the Executor module of the RTS Agent and, specifi-
cally, in the current implementation of the Agent scheduler and
the ORTE distributed virtual machine of OpenMPI. Ref. [7]]

10000

10t [EnTK Setup Overhead [RTS Overhead
[EnTK Tear-Down Overhead [Data Staging Time 8000
[EnTK Management Overhead [Task Execution Time (right)

102/ =3 RTS Tear-Down Overhead 6000

4000

Time (seconds)
Time (seconds)

1024 2048 4096
Cores

Fig. 9: Strong scalability on Titan: 8,192 1-core tasks are

executed on 1,024, 2,048 and 4,096 cores.

characterizes these delays and their causes.

EnTK Management Overhead remains almost constant till
2,048 tasks as the number of tasks are too small to cause a
variation. The overhead, then, increases between 2,048 and
4,096 tasks: With the increase of the number of concurrent
tasks, EnTK requires more resources and starts to strain the
resources of the host on which it is executed. The other EnTK
and RTS overheads appear to be consistent with those already
noted in Experiments 1-4.

EnTK neither controls, nor contributes to Data Staging time.
Data staging is performed by the RP RTS that, in this exper-
iment, creates 1 directory for each task, writing 3 soft links
and copying 1 file within it for a total of ~IMB. RP uses
Unix commands to perform these operations on the OLCF Lus-
tre filesystem. By default, RP is configured with 1 stager and
hence files are staged sequentially. Multiple staging workers
can be used to parallelize data staging but trade offs with the
filesystem performance must be taken into account.

Data Staging time grows linearly with the number of tasks
executed: from ~11s for 512 tasks to ~88s for 4,096 tasks.
As this time mostly depends on the performance of Lustre, a
less linear behavior is expected with larger (amount of) files.

2) Strong scalability: To investigate strong scaling, we run
four applications on Titan, each with 1 pipeline, 1 stage per
pipeline, 8,192 tasks per stage and a total of 1,024, 2,048 or
4,096 cores. Each task executable is Gromacs mdrun, config-
ured to use 1 core for ~600 seconds. In this way, we execute
at least 2 generations, each with 4,096 tasks, within the 2 hours
walltime imposed by Titan’s queuing policies. Data staging is
as in the weak scalability experiment.

Fig. 0] shows that Task Execution Time reduces linearly
with increase in the number of cores. The availability of more
resources for the fixed number of tasks explains this linear
reduction in the Task Execution Time. EnTK Management
Overhead is ~1s, confirming what already observed in the
previous experiments.

All the other overheads and Data Staging Time remain
constant across the experiment runs. This suggests that both
EnTK and RP overheads mostly depend on the number of
managed tasks, not on the size of the pilot on which they are
executed. This is confirmed for RP in Ref. [7].

Fig. E] shows that EnTK can be configured to execute 10°
tasks in less than 200 seconds and consuming less than 4GB
of memory. Extrapolating and accounting for a faster CPU on

. I 1 task 3 16 tasks
z 1000 [2 tasks [32 tasks
8 I 4 tasks [Failed tasks(right)

Z 3000 B S tasks

2000

cution time

G

1000

Ex

0
20/384

21/768

22/1536 23/3072
concurrent tasks/# nodes

24/6144 2/12288
Fig. 10: Task Execution Time of forward simulations using
EnTK at various values of concurrency.

Titan’s login nodes, EnTK should manage enough tasks to fill
all of Titan cores with an overhead of less than 20 seconds.

C. Use Cases at Scale

We implement and execute at scale the most computationally
intensive and fault-prone step of the tomography workflow,
and the full adaptive analog workflow (§III) with EnTK.

1) Seismic inversion: We use EnTK to encode the forward
simulations of the seismic tomography workflow described
in and depicted in Fig.] These simulations account for
more than 90% of the computation time of the workflow, re-
quiring 384 nodes for each earthquake simulation, and 40MB
of input data each. When earthquakes are concurrently simu-
lated, they require a sizable portion of Titan and incur a high
rate of failures. Without EnTK, these failures result in manual
resubmission of computations, adding a significant overhead
due to queue wait time on user intervention.

We characterize the scalability of forward simulations with
EnTK by running experiments with a varying number of tasks,
where each task uses 384 nodes/6,144 cores to forward simulate
one earthquake. Understanding this scaling behavior contributes
to optimize the execution of the whole workflow, both by
limiting failure and enabling fault-tolerance without manual
intervention. Ultimately, this will result in an increase of the
overall efficiency of resource utilization and in a reduction of
the time to completion.

The current implementation of forward simulations causes
heavy I/O on a shared file system (§III-A). This overloads
the file system, inducing crashes or requiring termination of
the simulations. EnTK and RP utilize pilots to sequentialize
a subset of the simulations, reducing the concurrency of their
execution and without having to go through Titan’s queue
multiple times. This is done by reducing the number of cores
and increasing the walltime requested for the pilot.

Fig. shows that increasing concurrency leads to a linear
reduction of Task Execution Time, with a minimum of ~180
seconds. Interestingly, reducing concurrency eliminates fail-
ures: we encountered no failures in executions with up to 24
concurrent tasks and 6,144 nodes. At 2° concurrent tasks and
12,288 nodes, 50% of the tasks failed due to runtime issues.

EnTK automatically resubmitted failed tasks until they were
successfully executed. In the run with 2° tasks, EnTK attempted
to run a total of 157 tasks. The resulting Task Execution

4

100 method
Hadaptive method
Brandom method

error

25 #h*ﬁl_ﬁ_*‘* . %0

30 60 90 120 150 180 210 240 270 300
Number of Io(ccia)nons computed %

(c)

Fig. 11: Predictions from random and adaptive methods. (a)
theoretical true value, (b) the interpolated map from 1,800
randomly picked locations, (c) the interpolated map from 1,800
locations identified using AUA, (d) box plots of the errors for
both implementations.

Time was =360 seconds, similar to that of a run with with 24
concurrent tasks (Fig. [T0).

EnTK and RP enable reasoning and benchmarking the con-
currency of an execution without any change in the executable
code. This gives insight on how to tailor a given computa-
tional campaign on a specific CI. The insight gained via our
experiments can be immediately used in production: On Titan,
forward simulations are best executed with 2% concurrent tasks.
Further, fault-tolerance has an immediate impact on produc-
tion runs, eliminating one of the most limiting factor of the
previous implementation of the workflow.

2) Meteorological Probabilistic Forecasts: We use EnTK to
implement the AUA algorithm to iteratively and dynamically
identify locations of the analogs. We also implement the status
quo method of generating these analogs, i.e., random selection
of locations in each iteration. We perform experiments to
compare the two implementations and observe the speedup of
the proposed algorithm. We repeat the experiment 30 times for
statistical accuracy, initializing both implementations using the
same initial random locations.

Fig. [T1] shows the prediction maps and errors obtained from
the two implementations. With 1,800 locations calculated for
both prediction maps (Fig. [[T[b), Fig. [[T]c)), the AUA algo-
rithm generates a map with certain areas that have a better
representation of the analysis than the map generated by a
random selection of pixels.

The box plot in Fig. [[T(d) shows the distribution of the er-
rors for the two implementations. The error converges faster
in the AUA algorithm than in the random selection. The total
amount of potential locations (pixels) is 262,972; thus both im-
plementations use a small fraction of the available locations but
the AUA algorithm is automatically steering the computation
at each iteration. EnTK and RP avoid the usual shortcoming

of this approach: The evaluation required by the steering can
be implemented as a task and iterations do not wait in the
HPC queue, even if their number is unknown before execution.
These results suggest that the AUA algorithm over random
selection of points is well suited for very large domains.

V. RELATED WORK

Executing ensemble applications on HPC systems requires
knowledge of resource, data and execution management, spe-
cific to the HPC system. Several “middleware” frameworks
have been developed to abstract execution details and enable
execution of ensemble applications. Software development kits
such as gSOAP [[15]] enable web services for HPC applications.
Ninf-G [16] and OmniRPC [[17] provide client/server-based
frameworks for distributed programming. These solutions pro-
vide methods to launch application tasks on remote machines
but leave the details of task scheduling, resource and data
management, and fault tolerance to the user.

Hadoop and its ecosystem have been ported to HPC sys-
tems [18], [19], [20], enabling the use of the MapReduce
programming model. While some ensemble applications are
data-flow oriented and thus amenable to be implemented with
MapReduce, EnTK adopts a more flexible and coarse-grained
notion of tasks, where a task in EnTK can support multiple
programming models, including MPI. Further, EnTK does not
assume a specific runtime system and, in conjunction with RP,
can use Hadoop on HPC [21]].

Feature-rich workflow systems such as Kepler ,
Swift [23]], and Pegasus provide end-to-end capabilities
such as resource and execution management, fault tolerance,
monitoring and provenance. Encoding applications using these
systems requires acquiring specific knowledge, including
learning new languages and paradigms. Adapting these sys-
tems to user requirements is non-trivial due to their feature
richness and end-to-end design. Ruffus [25], COSMOS [26],
and GXP Make limit the capabilities and prioritize in-
terface simplicity. Galaxy [28]], Taverna [29], BioPipe [30],
and Copernicus [31]] focus on providing tailored interfaces to
domain scientists.

EnTK contributes (i) programmability, (ii) portability across
CIs and RTSs, and (iii) generality to the research on ensemble
applications. These applications can be expressed as work-
flows but their distinguishing patterns permit a simplification
of the graph structure while requiring better handling of task
parallelism and runtime adaptivity [32]. Consequently, EnTK
exposes an API tailored towards encoding of ensemble appli-
cations, focusing on task concurrency and sequentiality.

One of the limitations observed in the existing frameworks
is that functional and performance enhancements are localized
to one framework and cannot be easily ported to other systems.
EnTK avoids framework lock-in by enabling composability
with diverse runtime systems and rapid development of user-
facing, special-purpose application libraries. In this way, EnTK
builds upon the idea of composing applications from execution
patterns, also explored by systems like Tigres, and extends it

to middleware for HPC for better programmability, portability,
and generality.

VI. CONCLUSION

The results of our experiments show that the design and
implementation of EnTK meet the requirements of diverse use
cases. The performance of EnTK is shown to be invariant of
workload and platform. EnTK was shown to have ideal weak
and strong scaling up to currently required scales. Importantly,
any deviation from ideal scaling was explicable, and the causes
are candidates for future enhancements. The use of EnTK with
Specfem at large scales on Titan at ORNL led to unprecedented
reductions in time-to-completion, insulation against failures
(e.g., hardware and software), and improved reliability.

Abstractions exposed by EnTK permit algorithmic innova-
tions. For the meteorological probabilistic forecast use case,
the independence from direct resource management permits
new adaptive formulations of the Analog Ensemble method,
which in turn leads to improved accuracy in predictions, with
reduced time to completion and usage of compute resources.

We provide initial demonstrations of how EnTK has facili-
tated the full potential of ensemble methods (“power of many”).
EnTK will allow similar methodological advances for other
ensemble applications, which have so far been hindered by the
lack of suitable tools. EnTK is also a validation of the building
block approach to middleware: it is demonstrably extensible
to application specific frameworks in the upward direction [4],
as well as being agnostic to the specific RTS below.

Having provided fundamental advances for ensemble ap-
plications at the largest scales currently available (=66% of
Titans’ nodes), EnTK will be engineered to provide a path-
way to pre-exascale levels without disruption in production
capabilities for users of Titan. Specifically, EnTK will provide
capabilities for: (i) dynamic mapping of tasks onto heteroge-
neous resources, and (ii) and adaptive execution strategies to

enable optimal resource utilization.

Acknowledgments: This work is supported by NSF ICER 1639694,
DOE ASCR DE-SC0016280 and an INCITE award to J.T. Resources
from the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory are supported by the Office of Science of the
U.S. Department of Energy, Contract No. DE-AC05-000R22725.

REFERENCES

T. E. Cheatham III and D. R. Roe, “The impact of heterogeneous comput-
ing on workflows for biomolecular simulation and analysis,” Computing
in Science & Engineering, vol. 17, no. 2, pp. 30-39, 2015.

J. D. Chodera and F. Noé, “Markov state models of biomolecular con-
formational dynamics,” Current opinion in structural biology, vol. 25,
pp. 135-144, 2014.

F. Noé, C. Schiitte, E. Vanden-Eijnden, L. Reich, and T. R. Weikl,
“Constructing the equilibrium ensemble of folding pathways from short
off-equilibrium simulations,” Proceedings of the National Academy of
Sciences, vol. 106, no. 45, pp. 19011-19016, 2009.

[1]

[2]

[3]

[4] “Designing workflow systems using building blocks,” https://arxiv.org/
abs/1609.03484.

[5] “Towards common components for open workflow systems,” https://arxiv
org/abs/1710.06774.

[6] “EnTK,” https://github.com/radical-cybertools/radical.entk.

[71 A. Merzky, M. Turilli, M. Maldonado, and S. Jha, “Design and per-

formance characterization of RADICAL-Pilot on Titan,” 2017, (under
review) http://arxiv.org/abs/1512.08194.

A. Merzky, M. Santcroos, M. Turilli, and S. Jha, “Executing dynamic
and heterogeneous workloads on super computers,” 2017, (under review)
http://arxiv.org/abs/1512.08194,

[8]

[9]

[10]

(1]

[12]

[13

—

[14]
[15]

[16]

(171

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[31]

[32]

J. Virieux and S. Operto, “An overview of full-waveform inversion
in exploration geophysics,” GEOPHYSICS, vol. 74, no. 6, pp.
WCC1-WCC26, Nov. 2009. [Online]. Available: http://dx.doi.org/10|
1190/1.3238367

G. Cervone, L. Clemente-Harding, S. Alessandrini, and L. Delle Monache,
“Short-term photovoltaic power forecasting using artificial neural networks
and an analog ensemble,” Renewable Energy, vol. 108, pp. 274-286,
2017.

M. J. Abraham, T. Murtola, R. Schulz, S. Pill, J. C. Smith, B. Hess,
and E. Lindahl, “GROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers,” Soft-
wareX, vol. 1, pp. 19-25, 2015.

D. Komatitsch and J. Tromp, “Spectral-element simulations of global seis-
mic wave propagationi. validation,” Geophysical Journal International,
vol. 149, no. 2, pp. 390412, 2002.

S. Alessandrini, L. Delle Monache, S. Sperati, and G. Cervone, “An ana-
log ensemble for short-term probabilistic solar power forecast,” Applied
energy, vol. 157, pp. 95-110, 2015.

M. Stonebraker, “Too much middleware,” ACM Sigmod Record, vol. 31,
no. 1, pp. 97-106, 2002.

G. Aloisio, M. Cafaro, D. Lezzi, and R. van Engelen, “Secure web
services with globus gsi and gsoap,” Euro-Par 2003 Parallel Processing,
pp. 421-426, 2003.

Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka,
“Ninf-g: A reference implementation of rpc-based programming middle-
ware for grid computing,” Journal of Grid computing, vol. 1, no. 1, pp.
41-51, 2003.

M. Sato, T. Boku, and D. Takahashi, “OmniRPC: a Grid RPC system for
parallel programming in cluster and grid environment,” in /JEEE/ACM
CCGrid. 1EEE, 2003, pp. 206-213.

S. Krishnan, M. Tatineni, and C. Baru, “myhadoop: Hadoop-on-demand
on traditional hpc resources,” San Diego Supercomputer Center Technical
Report TR-2011-2, University of California, San Diego, 2011.

W. C. Moody, L. B. Ngo, E. Duffy, and A. Apon, “Jummp: Job uninter-
rupted maneuverable mapreduce platform,” in /EEE Int. Conf. on Cluster
Computing (CLUSTER). 1EEE, 2013, pp. 1-8.

“Magpie,” https://github.com/LLNL/magpie(accessed December 2017).
A. Luckow, I. Paraskevakos, G. Chantzialexiou, and S. Jha, “Hadoop on
hpc: integrating hadoop and pilot-based dynamic resource management,”
in IEEE IPDPS Workshops. 1EEE, 2016, pp. 1607-1616.

B. Ludischer, 1. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. B. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and the
kepler system,” Concurrency and Computation: Practice and Experience,
vol. 18, no. 10, pp. 1039-1065, 2006.

M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, pp. 633-652, 2011.

E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. S. Katz, “Pegasus: A framework for mapping complex scientific
workflows onto distributed systems,” Scientific Programming, vol. 13,
no. 3, pp. 219-237, 2005.

L. Goodstadt, “Ruffus: a lightweight python library for computational
pipelines,” Bioinformatics, vol. 26, no. 21, pp. 2778-2779, 2010.

E. Gafni, L. J. Luquette, A. K. Lancaster, J. B. Hawkins, J.-Y. Jung,
Y. Souilmi, D. P. Wall, and P. J. Tonellato, “Cosmos: Python library
for massively parallel workflows,” Bioinformatics, vol. 30, no. 20, pp.
29562958, 2014.

K. Taura, T. Matsuzaki, M. Miwa, Y. Kamoshida, D. Yokoyama, N. Dun,
T. Shibata, C. S. Jun, and J. Tsujii, “Design and implementation of gxp
makea workflow system based on make,” Future Generation Computer
Systems, vol. 29, no. 2, pp. 662-672, 2013.

J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent com-
putational research in the life sciences,” Genome biology, vol. 11, no. 8,
p- R86, 2010.

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat et al., “Taverna: a tool
for the composition and enactment of bioinformatics workflows,” Bioin-
formatics, vol. 20, no. 17, pp. 3045-3054, 2004.

S. Hoon, K. K. Ratnapu, J.-m. Chia, B. Kumarasamy, X. Juguang,
M. Clamp, A. Stabenau, S. Potter, L. Clarke, and E. Stupka, “Biopipe: a
flexible framework for protocol-based bioinformatics analysis,” Genome
Research, vol. 13, no. 8, pp. 1904-1915, 2003.

S. Pronk, I. Pouya, M. Lundborg, G. Rotskoff, B. Wesen, P. M. Kasson,
and E. Lindahl, “Molecular simulation workflows as parallel algorithms:
The execution engine of copernicus, a distributed high-performance com-
puting platform,” Journal of chemical theory and computation, vol. 11,
no. 6, pp. 2600-2608, 2015.

V. Balasubramanian, A. Treikalis, O. Weidner, and S. Jha, “Ensemble
toolkit: Scalable and flexible execution of ensembles of tasks,” in 45th
Int. Conf. on Parallel Processing (ICPP). 1EEE, 2016, pp. 458—-463.

https://arxiv.org/abs/1609.03484
https://arxiv.org/abs/1609.03484
https://arxiv.org/abs/1710.06774
https://arxiv.org/abs/1710.06774
https://github.com/radical-cybertools/radical.entk
http://arxiv.org/abs/1512.08194
http://arxiv.org/abs/1512.08194
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
https://github.com/LLNL/magpie

	I Introduction
	II Ensemble Toolkit (ENTK)
	II-A Requirements
	II-B Design
	II-B1 Application Model
	II-B2 Architecture
	II-B3 Execution Model
	II-B4 Failure Model

	II-C Implementation
	II-D Runtime System

	III Use cases
	III-A Seismic Inversion
	III-B High Resolution Meteorological Probabilistic Forecasts

	IV Experiments
	IV-A Characterization of EnTK Performance
	IV-A1 Performance of EnTK Prototype
	IV-A2 Overheads, Data Staging and Task Execution Time

	IV-B Scalability
	IV-B1 Weak scalability
	IV-B2 Strong scalability

	IV-C Use Cases at Scale
	IV-C1 Seismic inversion
	IV-C2 Meteorological Probabilistic Forecasts

	V Related Work
	VI Conclusion
	References

