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Abstract 24 

Unprecedented alterations in precipitation characteristics over the last century and especially in 25 

the last two decades have posed serious socio-economic problems to society in terms of hydro-26 

meteorological extremes, in particular flooding and droughts. The origin of these alterations has 27 

its roots in changing climatic conditions; however, its threatening implications can only be dealt 28 

with through meticulous planning that is based on realistic and skillful decadal precipitation 29 

predictions (DPPs). Skillful DPPs represent a very challenging prospect because of the 30 

complexities associated with precipitation predictions. Because of the limited skill and coarse 31 

spatial resolution, the DPPs provided by General Circulation Models (GCMs) fail to be directly 32 

applicable for impact assessment. Here, we focus on nine GCMs and quantify the seasonally and 33 

regionally averaged skill in DPPs over the continental United States. We address the problems 34 

pertaining to the limited skill and resolution by applying linear and kernel regression-based 35 

statistical downscaling approaches. For both the approaches, statistical relationships established 36 

over the calibration period (1961-1990) are applied to the retrospective and near future decadal 37 

predictions by GCMs to obtain DPPs at ~4km resolution. The skill is quantified across different 38 

metrics that evaluate potential skill, biases, long-term statistical properties, and uncertainty. Both 39 

the statistical approaches show improvements with respect to the raw GCM data, particularly in 40 

terms of the long-term statistical properties and uncertainty, irrespective of lead time. The 41 

outcome of the study is monthly DPPs from nine GCMs with 4-km spatial resolution, which can 42 

be used as a key input for impacts assessments. 43 

Keywords: Decadal predictions, continental United States, statistical downscaling, precipitation   44 
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1. Introduction 45 

Water is the most abundant natural resource that manifests itself in diverse states and forms 46 

such as precipitation, snowfall, surface and ground water, rivers, lakes, oceans. Despite such a 47 

wide availability, most of our activities pertaining to water are constrained because of a lower 48 

percentage of available fresh water, upcoming problems concerning water usage, and even the 49 

solutions adopted to negotiate the problems. For instance, to address elevated food requirements 50 

of the rising population (population more than quadrupled in 100 years), measures such as 51 

doubled crop land area, six-fold increase in irrigated area (Freydank and Siebert, 2008) are 52 

implemented, leading to rise in global water use (i.e., withdrawal) by nearly 8 times with a steep 53 

increase at a rate of 15% per decade between 1960 and 2010. Such measures have put additional 54 

constraints on the available fresh water resources and the exacerbating situations demand careful 55 

planning and mastering of the available water resources. However, design and implementation of 56 

water resources planning measures is a difficult task because precipitation represents a key input. 57 

Precipitation is the most important and equally complex climate variable to understand and 58 

foresee mainly because of extreme variability, revealed by precipitation patterns at different 59 

spatio-temporal resolutions. The variability in precipitation might lead to high-intensity disasters 60 

such as flooding and mudslides (Trenberth et al., 2007), or lower-intensity, longer-duration 61 

events such as droughts (e.g., Gray, 2009; Henry et al., 2004; Hunter et al., 2011). Such 62 

catastrophes not only lead to heavy infrastructure damages and pose a serious threat to life but 63 

also lead to sensitive issues such as migration, which has been a common strategy to avert the 64 

consequences of weather events and/or a changing climate (e.g., Nawrotzki et al., 2012, Kniveton 65 

et al., 2008; McLeman and Smit, 2006).  66 

The background discussed up to this point highlights the importance of precipitation and the 67 

associated problems, and leads us to concluding that such problems can be mitigated only 68 
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through robust planning policies. The success of such measures would be highly dependent on 69 

the knowledge of future precipitation, which itself represents an extremely challenging task. Our 70 

current best knowledge of future precipitation and the associated uncertainties can be obtained 71 

from projections from General Circulation models (GCMs) produced in support of the fifth 72 

generation of Coupled Model Intercomparison Project (CMIP5) framework. This includes results 73 

from a standard set of experiments by state-of-the-art climate models developed by different 74 

teams of experts worldwide. This “ensemble of opportunity” (commonly used terminology to 75 

represent the suite of GCM data; e.g., Sanderson et al., 2015) is the best available source of 76 

information on the range of physically plausible climate evolutions over the next century. 77 

Representative Concentration Pathways (RCPs) from the CMIP5 suite provide us with future 78 

projections of climate variables as a possible response to different radiative forcings. These 79 

projections solve our problem to a certain extent and provide us with the climate projections as a 80 

possible response to these forcings. However, there is a three-fold problem associated with the 81 

use of GCM projections in the planning process: (1) the RCP scenarios are driven by end-82 

conditions, where the trajectories of different climate variables are plausible responses to the 83 

corresponding radiative forcing at the end of the 21
st
 century. Such projections form a better way 84 

of understanding the long-term future of climate variables, but they cannot be used for short-term 85 

planning policies. This is because realistic weather conditions that we encounter in our day-to-86 

day life are driven by their initial rather than their boundary conditions. Also, it is established 87 

that long-term behaviors of climate variables may differ from their short term properties (e.g., 88 

Cane, 2010; van Oldenborgh et al., 2012). (2) A complex variable such as precipitation is 89 

difficult to predict and the skill exhibited by the GCM in projecting them is limited. (3) The 90 

coarse spatial resolution at which the GCM projections are available cannot be used for impacts 91 
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assessment over limited areas. CMIP5 simulations themselves tend to resolve the first problem 92 

by providing decadal scale forecasts that are initialized every year or intermittently to provide 93 

predictions for the next 10-30 years. These predictions are known as decadal predictions, which 94 

range from 10 to 30 year lead times (Meehl et al., 2009) and are forced with observed initial and 95 

boundary conditions. Initialized decadal predictions, while still in their infancy, have been 96 

subject to increasing attention by the scientific community. These are called upon by different 97 

names, including “a new kid on the block,” “the fascinating baby that all wish to talk about” 98 

(Goddard et al., 2012), “high profile predictions” (Goddard et al., 2013). Several scientists are 99 

currently working on evaluating: (i) different aspects of this new product such as initialization 100 

strategies (Meehl et al., 2014), assessment of skill in decadal predictions (Meehl et al., 2009), 101 

gap between decadal climate predictability and predictions, impacts of initialization (Branstator 102 

and Teng, 2012), opportunities and challenges, importance of ocean observations for successful 103 

decadal predictions (Hurrell et al., 2009), positive phase of the inter-decadal Pacific oscillations 104 

(Meehl et al., 2016), role of sea ice, land surface, stratosphere, and aerosols in decadal-scale 105 

predictability (Bellucci et al., 2015a), and comparison between initialized and non-initialized 106 

predictions (Fyfe et al., 2011); (ii) performances of individual GCM with respect to the decadal 107 

predictions e.g. Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 108 

(FGOALS-g2) (Bin et al., 2012), coupled Earth System model of the Max Planck Institute for 109 

Meteorology (MPI-ESM) (Muller et al., 2012), MIROC4h and MIROC5 (Mochizuki et al., 110 

2011); and (iii) the skill of decadal predictions for different climate variables and quantities, 111 

including surface temperature (Smith et al., 2007; Choi et al., 2016; Salvi et al. 2017), Sahelian 112 

precipitation (Gaetani and Mohino, 2013), hurricane activity (Smith et al., 2010; Vecchi et al., 113 

2013), and regional surface climate (Kim et al., 2012; van Oldenborgh, 2012; Doblas-Reyes et 114 
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al., 2013; Goddard et al., 2013; Caron et al., 2014; Meehl et al., 2014; Bellucci et al., 2015b). 115 

However, despite recent progress, we still have to comprehensively quantify the quality of GCM 116 

precipitation predictions, including over the United States; moreover, even though CMIP5 117 

simulations have outperformed CMIP3 in terms of spatial resolution, the resolution is still not 118 

high enough for impacts assessment. With this background, the goal of this work is to obtain 119 

high-resolution precipitation decadal predictions over the continental United States (CONUS).  120 

The specific objectives of this study involve: 1) the evaluation of raw GCM precipitation 121 

skill over CONUS; 2) the enhancement of the skill using two data-driven approaches; and 3) the 122 

development of a dataset of decadal predictions of precipitation over CONUS at a spatial 123 

resolution of ~4 km. The two data-driven approaches that are implemented in this study are 124 

transfer function based statistical downscaling (SD) methodologies. Transfer function based 125 

downscaling methodologies rely upon establishing statistical relationships between coarse 126 

resolution climate variables (predictors) that are relatively well understood in terms of 127 

underlying physics and hence, well simulated, and the fine resolution climate variable of interest 128 

that needs to be downscaled, i.e. predictand (precipitation in this study). The established 129 

relationships are applied to GCM predictions to obtain downscaled data. We use two SD 130 

approaches: (1) linear regression (LR) based, which assumes a parametric form of the 131 

relationship, with the variation between predictors and predictand that is assumed to be linear; 132 

and (2) kernel regression (KR) based, which is a non-parametric form of regression. The premise 133 

behind the selection of two methodologies that are categorized under the same cluster (transfer 134 

function approach) is explained in section 3. These methodologies are applied to the predictors 135 

by nine GCMs to obtain improved decadal precipitation predictions at fine spatial resolution (~4 136 

km). The manuscript is organized as follows. Details about the study region and the data used are 137 
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in Section 2. Section 3 provides details about the data-driven approaches, which are applied here 138 

to enhance the prediction skills and different evaluation metrics. The results of the evaluation of 139 

raw and processed GCMs‟ skill are discussed in Section 4. We conclude this study with 140 

summary and discussion in Section 5, followed by concluding remarks. 141 

 142 

2. Study region and data 143 

Figure 1 shows the spatial variations of precipitation over the study region for the period 144 

1961-2014, obtained using the Parameter–Elevation Regressions on Independent Slopes Model 145 

(PRISM) data product (additional information about the PRISM data product can be found in 146 

Section 2.1). The figure also provides the details about the seven regions we focus on: Northeast 147 

(NE), Midwest (MW), Southeast (SE), Great Plains North (GPN), Great Plains South (GPS), 148 

Northwest (NW), and Southwest (SW). These regional delineations are largely based on the 149 

National Climate Assessment Report (Karl et al., 2009) and then implemented in different 150 

studies (e.g., Pryor and Schoof, 2008). Similar to the recent studies, which use slightly modified 151 

delineations (Schoof et al., 2010; Kunkel et al., 2013; Mutiibwa et al., 2015), we divide the Great 152 

Plains into two regions GPN and GPS. The division of the Great Plains into two visually 153 

homogeneous regions (homogeneous in terms of spatial variation of average precipitation) is an 154 

additional advantage for the improvement in performance of SD. In this study, we focus on the 155 

seven regions in Figure 1 and consider each one as an individual unit for: 1) applying statistical 156 

downscaling methodologies and 2) quantifying prediction skill in regionally and seasonally 157 

averaged spatio-temporal framework. Based on Figure 1, it is clear that the spatial distribution of 158 

the average precipitation over CONUS shows extreme variability, in particular in areas, where 159 

precipitation is mainly influenced by orography. This large spatial variability distinguishes NW 160 
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and SW regions from the others, where a relatively smooth transition is encountered. We 161 

envision capturing the spatial variability through downscaling methodologies to prove the 162 

worthiness of the downscaled precipitation for impacts assessment.  163 

 164 

2.1 Observed precipitation data 165 

We select PRISM precipitation dataset at monthly temporal and ~4km spatial resolution as 166 

the baseline dataset. The PRISM precipitation data is used in the establishment of the statistical 167 

relationships and also as the reference data for the evaluation of the decadal precipitation 168 

predictions skills. PRISM (Daly et al., 2002; Hijmans et al., 2005) represents high-resolution 169 

climate observations that are derived from a wide range of monitoring networks to illustrate 170 

short- and long-term climate patterns. Point observations (precipitation measurements), obtained 171 

from the monitoring networks, a digital elevation model (DEM), and other spatial datasets to 172 

generate gridded estimates of annual, monthly and event-based climatic parameters (Daly et al., 173 

1994) are utilized to generate the high-resolution dataset. Here, we use the monthly PRISM 174 

precipitation product from 1961 to 2014 over CONUS. There are specific limitations of the 175 

dataset such as the problem with the choice of the domains for the regressions (Widmann and 176 

Bretherton, 1999) and temporal discontinuities because of heterogeneous station network 177 

(UCAR, 2016). However, the above mentioned positive features of this dataset (e.g. the high 178 

spatial resolution for impacts analysis, and positive performance in regions of complex terrain) 179 

make PRISM an appropriate product for our study.   180 

 181 

2.2 Reanalysis data  182 
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We use two SD approaches to obtain high-resolution predictions. The success of the data-183 

driven approaches such as SD is highly dependent on the choice and quality of the predictors. 184 

Usually, standard reanalysis data products are validated for their quality and hence, used as 185 

sources of predictors. Reanalysis data are gridded data for climate variables over the entire globe, 186 

derived by applying data assimilation techniques over past data, including global radiosonde 187 

data, a Comprehensive Ocean-Atmosphere Data Set (COADS) that comprises a collection of 188 

surface marine data, aircraft data, surface land synoptic data, satellite sounder data, Special 189 

Sensing Microwave/Imager surface wind speeds, and satellite cloud drift winds. Here, we use 190 

reanalysis data for establishing statistical relationships with the predictand and to remove 191 

systematic errors from the GCM predictions. Different reanalysis data products are available at 192 

different spatial and temporal scales, including the European Centre for Medium-Range Weather 193 

Forecasts (ECMWF) reanalysis data (ERA40; Uppala et al., 2005), ERA-Interim (Dee et al., 194 

2011), National Center for Environmental Prediction / National Center for Atmospheric 195 

Research (NCEP/NCAR; Kalnay et al., 1996), and the Japanese 25-year ReAnalysis (JRA-25; 196 

Onogi et al., 2007), and JRA-55 (Ebita et al., 2011; Kobayashi et al., 2015) from the Japan 197 

Meteorological Agency. Statistical relationships are better established if a sufficient sample size 198 

is available: NCEP/NCAR reanalysis provides longer records of reanalysis climate variable data 199 

compared to other available products, with positive assets such as fixed state-of-the-art 200 

assimilation scheme, inclusion of more observations, better quality control (Bromwich and Fogt, 201 

2004), better accessibility and spatial coverage over the regions where observed data are not 202 

available, and better categorization of climate variables based on the influences of observations 203 

over the climate variable. „Categorization of climate variable‟ is an important feature of this 204 

product, allowing the users to identify each reanalysis climate variable with a category such as 205 
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„A‟, „B‟, and „C‟ (Kalnay et al., 1996), where category „A‟ variables show higher accuracy 206 

compared to the other ones. As mentioned before, the success of SD also relies upon the choice 207 

of predictors, which represent synoptic scale circulation patterns over a study region, should be 208 

well simulated by climate models and should be associated with precipitation processes (Wilby et 209 

al., 2004). The categorical distinctions of predictors in the case of NCEP/NCAR data serve as a 210 

guideline to choose appropriate climate variables as predictors. Here, we consider four surface 211 

level climate variables, such as mean sea level pressure (psl), temperature (tas), near surface 212 

zonal (uas) wind, near surface meridional (vas) wind, and five pressure level climate variables (at 213 

500hPa), including specific humidity (hus), geopotential height (zg), temperature (ta), Uwind 214 

(ua), and Vwind (va). Most of the predictors that we select belong to the category „A‟. 215 

 216 

2.3 GCMs used 217 

As a part of the CMIP5 program, a large number of GCMs provide the monthly decadal 218 

prediction of precipitation and are initialized either each year or intermittently. We use a set of 219 

nine GCMs for the analysis and Figure 2 illustrates three important details about the 220 

corresponding GCM data, i.e. the name and spatial resolution, the years of initialization, and the 221 

availability of the predictions based on different lead times. The lead time, which represents the 222 

time lag between the year of the initialization and the year of the prediction, varies from 1 to 30 223 

years. However, we restrict our analysis to the first 10 annual lead times mainly because of two 224 

reasons. First, the availability of the decadal predictions for longer lead times is too small to 225 

provide a conclusive estimate of skill. Secondly, the influence of initial conditions, with which 226 

the models are forced, reduces with lead times (Meehl et al., 2009). It is important to note that 227 

the initialization patterns differ across the GCMs. Hence, we cannot get the same number of 228 
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GCMs contributing to the ensemble for a particular initialization. The bottom-right panel in 229 

Figure 2 summarizes the number of GCMs available for each and lead time; for instance, certain 230 

initializations (e.g. 1961, 1965) have their contributions from all the GCMs, whereas there is 231 

only one GCM which provides the predictions that are initialized in the year 2013-2015. It is 232 

clear that the presence of a higher number of GCMs provides additional confidence in the 233 

predictions, which we lack for the most recent years based on the CMIP5 models. 234 

 235 

3. Methodology and skill assessment 236 

The SD methodologies that we use can be categorized under the broad umbrella of the 237 

transfer function approaches (e.g., Ghosh and Mujumdar, 2006; Kannan and Ghosh, 2013; 238 

Srinivas et al, 2014). We use LR and KR based SD models to establish statistical relationships 239 

between predictors and predictand. These methodologies are applied to each season separately. 240 

For both the approaches, the overall methodology remains the same. The two approaches differ 241 

from each other over the models that we use to link coarse level climate variables with the fine 242 

resolution predictand. The reason behind the selection of two approaches lies in the complexity 243 

of the climate variable that we intend to capture (precipitation). Precipitation is a highly complex 244 

climate variable and there is a possibility that different attributes of precipitations that are 245 

important in the planning process such as total rainfall, seasonal variations, extremes, may not be 246 

captured by a single SD approach. Hence, we use two transfer function approaches. Two datasets 247 

originating from the two approaches are validated thoroughly to specify the positive attributes of 248 

each product, which would help in planning. These methodologies are well established and have 249 

been applied successfully, for instance, for rainfall projections with kernel regression approach 250 

(e.g., Kannan and Ghosh, 2013; Salvi et al., 2013) and monthly rainfall projections with linear 251 
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regression approach (e.g., Kannan et al., 2014; Shashikanth et al., 2014). Here, we briefly 252 

describe the specific steps that are carried out while applying the methodologies, and additional 253 

details are provided in the supplementary material and in the literature (Kannan and Ghosh, 254 

2013; Kannan et al., 2014). We select 30 years (1961-1990) as calibration period and 24 years 255 

(1991-2014) as validation period. We justify the selection of 1961-1990 as calibration period by 256 

carrying out sensitivity analysis. We select three different time slices as calibration periods (each 257 

of 30 years) and obtain the predictions for the validation period. Based on this sensitivity 258 

analysis, the skills for different seasons and regions vary with calibration period and we cannot 259 

identify a particular calibration period which provides the best results in all the cases. Hence, we 260 

select 1961-1990 as the calibration period for this study. The details can be found in the 261 

supplementary material (Sections S3, S-Figure 20). The downscaling approach begins with the 262 

identification of „zone of predictors‟ (e.g., Salvi et al., 2013, 2015), which represents an 263 

imaginary area (usually rectangular or square in shape) that surrounds the study region. It is 264 

assumed that the predictors in the zone of predictors influence the precipitation in the 265 

corresponding region. Because we work with seven regions, we have seven zones of predictors. 266 

S-Figures 1-9 show the spatial extent of each zone of predictors, obtained using a correlation 267 

analysis approach (e.g., Kannan and Ghosh, 2010; Salvi et al., 2013). After the selection of the 268 

zone of the predictors, we proceed to the establishment of the statistical relationship between 269 

reanalysis climate variables over the zone of predictor and individual precipitation at each pixel 270 

in the region. To deal with the multicollinearity (i.e., correlation among predictors) and 271 

multidimensionality, we select and apply principal component analysis (PCA) as a 272 

dimensionality reduction technique. PCA is a form of orthogonal transformation that converts 273 

the correlated predictors into non-correlated principal components (PC) and arranges them in 274 
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descending order of variability explained by each one. There is no single criterion about the 275 

selection of the number of PCs which would need to be retained in establishing the statistical 276 

relationship. A number of methods have been proposed in the literature to select the number of 277 

PCs, including the selection of PCs with eigen value greater than unity (Kaiser, 1960), Akaike 278 

information criterion (Akaike, 1974), cumulative percent variance (Malinowski, 1991), and 279 

variance of the reconstruction error (Qin, 1998; Valle et al., 1999). In this study, we mainly use 280 

the “percentage of variance explained” criterion to select the number of PCs, which involves the 281 

selection of the first few PCs for model calibration/validation depending upon the desired level 282 

of variability retained. As the 30-year calibration period provides us with a sample size of 90 (30 283 

years × 3 months per season), we select the first three PCs of each predictor, leading to a total of 284 

27 PCs (9 predictors × 3 PCs). For LR, we put an additional filter over these 27 PCs and select 285 

only those PCs (out of 27) which show a statistically significant relationship with the observed 286 

precipitation at each pixel. S-Figure 10 shows that on average between 3 and 10 PCs in a 95% 287 

confidence interval are used to establish the statistical relationship after the application of the 288 

second filter. The established statistical relationship is assumed to be time-invariant and applied 289 

to obtain: 1) precipitation with NCEP/NCAR reanalysis data for the validation period, and 2) 290 

decadal scale climate predictions with bias corrected GCM predictions. The details about the 291 

methodology can be found in the supplementary material (Sections S1-2). 292 

Three sets of results (i.e., ensemble raw GCM predictions and ensemble GCM predictions 293 

after statistical downscaling with both the approaches) are evaluated with respect to different 294 

metrics. The performance of raw GCM predictions and the downscaled precipitations (with LR 295 

and KR) are evaluated over the validation period (1991-2014). These assessments are carried out 296 

over „lead-wise‟ seasonally and regionally averaged time series for both the raw and the 297 
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downscaled precipitation and we refer to this as the „spatio-temporally averaged framework.‟ 298 

The regional delineations in Figure 1 are used to obtain spatially averaged time series to 299 

represent the respective regions. To obtain seasonal averages, we choose four seasons: spring 300 

(MAM), summer (JJA), fall (SON), and winter (DJF) and the complete year (YEAR). This 301 

results in the representative time series with 24 data points (one representative value for each 302 

season over the validation period of 24 years). This is different from some of the studies (Singh 303 

et al., 2012; Gaetani and Mohino, 2013; Tiwari et al., 2014), which retained monthly values 304 

even in the seasonal time series, resulting in 72 data points for each season (24 years × 3 months 305 

per year): one of the major limitations of such approach is the enhanced correlation due to the 306 

capturing of the seasonality of precipitation (e.g., November is wetter than October which is also 307 

wetter than September) rather than the correct values, potentially leading to an erroneous 308 

impression about the skill possessed by the predictions. Hence, we retain the prior validation 309 

approach (one representative value per region per season per year). This approach provides a 310 

much more direct information about the skill of the models (whether the raw GCM or after the 311 

statistical downscaling) for each season without having to rely on the climatology to achieve 312 

good skill. The evaluation of regionally and seasonally averaged time series is carried out 313 

considering three metrics. Each metric represents a specific quality that we intend to quantify for 314 

decadal predictions. The first metric represents a linear association between observation and 315 

predictions known as skill score (SS). Murphy and Winkler (1992) proposed a decomposed 316 

version of the skill score in terms of potential skill and biases (conditional and unconditional) as 317 

shown in equation 1: 318 
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where, ρfx is the correlation between predictions and observations; σf and σx are the standard 319 

deviation, while μf and μx are the mean of the predictions and the observations, respectively. The 320 

first term of the decomposition (right-hand side) is the potential skill (PS) of the forecasts 321 

without any bias. The second term is known as the slope reliability (SREL) and is a measure of 322 

the conditional bias. The third term is a standardized mean error (SME), a measure of the 323 

unconditional bias (Hashino et al., 2007). We refer to this correlation-based metric as “Memory-324 

based” metric (Dirmeyer et al., 2016). The second metric represents the skill pertaining to the 325 

long term statistical properties such as mean, standard deviation (STDEV), extremes (95
th

 326 

percentile), and root mean square error (RMSE), which we refer to as “Long-term statistics 327 

based” metrics. The third metric represents the quantification and visual assessment of inter-328 

model uncertainty, obtained in terms of the envelope of nine GCM predictions, and we refer to 329 

this as “Uncertainty-based” metric. We also compare the statistically downscaled GCM 330 

predictions with both approaches on a decadal scale as well: instead of comparing the predictions 331 

lead-wise for 1991-2014, we compare them decade-wise e.g. 1961-1970, 1961-1971. This is the 332 

format in which GCMs provide the data and our motive in comparing the two products in this 333 

manner is to identify the skill metrics which retain the consistency across different initializations. 334 

We call this comparison as “decadal framework” and we make these comparisons for regionally 335 

averaged time series (one time series for each region with 12 months × 10 years = 120 data 336 

points). 337 

 338 

 339 

 340 

 341 
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4. Results 342 

4.1 Skill of the raw GCMs’ predictions 343 

Regionally and seasonally averaged raw GCM precipitation predictions (ensemble) for 344 

different lead times (in years, from 1 to 10) are evaluated for Memory-based and Long-term 345 

statistics metrics and the results are presented in Figure 3. Overall, GCM predictions are 346 

characterized by low PS values, ranging from 0 to 0.3. For most of the lead times, the PS values 347 

are as low as 0.1. For different regions, patches of slightly elevated PS values are encountered 348 

(e.g., GPS, NE, SW at the yearly scale; GPS, MW, NE, SE, SW in winter; NW in spring; NE, 349 

SW in summer; MW, NW in fall). Surprisingly, the higher PS values do not always correspond 350 

to the lead-1 predictions. This finding is contradictory to our pre-conceived belief that smaller 351 

differences between initialization and year of prediction should provide the best results, 352 

assuming the highest influence of initial conditions for shorter lead times. The absence of 353 

conditional bias, revealed in terms of lower SREL values, is the only positive aspect of the raw 354 

GCM predictions. This is consistent for all regions and seasons and across all lead times. 355 

However, the presence of unconditional bias in terms of higher SME values for most of the 356 

regions brings down the overall skills (SS). This is mainly visible for GPN, SW (over all 357 

seasons), MW and NE over winter and SE over summer. As a result, the values of the actual skill 358 

SS turn negative in magnitude. The fall season lacks unconditional biases and hence, positive SS 359 

are observed for GPS, MW, NE, and NW for certain lead times. Raw GCM predictions do not 360 

fare well when compared with observed precipitation based on long term statistical properties. 361 

The comparison of statistical properties, expressed as absolute difference between ensemble 362 

predictions and PRISM data, shows high differences for all the statistical properties for almost 363 

all regions and seasons over different lead times. In fact, high difference in mean and standard 364 
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deviations is the prime cause for higher unconditional biases (SME) leading to poor skill. Except 365 

for the fall season, large differences in mean indicate that the GCMs lack the capability to 366 

capture the total amount of precipitation, and large differences in STDEV indicate their failure to 367 

capture the variability. Equally small skill values are revealed for extremes and RMSE, except 368 

for the extremes at the yearly temporal scale, where raw GCM predictions can reproduce the 369 

observations reasonably well. This analysis confirms the statement that usually GCM predictions 370 

for a climate variable such as precipitation cannot be directly used because they possess low 371 

skills.  372 

 373 

4.2 Uncertainty quantification for the raw GCM predictions 374 

The nine GCMs enable us to assess and quantify the uncertainty in precipitation predictions 375 

(Figure 4). These envelopes can be considered as a surrogate for the uncertainty in GCMs. Here, 376 

we discuss the results for lead-1, while the details about other lead times are shown in the 377 

supplementary material (S-Figures 11-19). All the plots show a wide uncertainty envelope (gray 378 

envelope) indicating that different GCM predictions, averaged over different seasons and regions 379 

differ from each other significantly. Along with the envelope, we compare the ensemble time 380 

series (shown by the blue line) with the observed data. Most of the regions show deviations 381 

between the ensemble time series and the observed precipitation data, representing biases in the 382 

predictions. One prominent feature of the observed data is high variability, which is indicated by 383 

large fluctuations (e.g. NE region in spring and summer). Ensemble raw GCM predictions fail to 384 

capture the variability present in the observed precipitation time series. The results in Figures 3-4 385 

show that the skills pertaining to the original GCM predictions are mediocre across the different 386 
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evaluation metrics used here, with limited potential skill, large unconditional biases and 387 

uncertainty.   388 

Bias correction techniques, such as „Bias Correction and Spatial Disaggregation‟ (BCSD) (Wood 389 

et al., 2004) and „Quantile mapping method‟ (Li et al., 2010), have been extensively used in the 390 

literature to obtain skillful rainfall projections. However, it is important to understand that the 391 

removal of the bias requires the correction of the statistical properties/quantiles of GCMs 392 

projections to match the cumulative distribution function (CDF) of the observed data over 393 

historic (calibration) period at each pixel. It is obvious that these methods would result in “bias-394 

free” projections with respect to the historical period; however, they cannot add any skill on their 395 

own unless the raw GCM projections are skillful. Therefore, the inherent skill in the GCM 396 

predictions represents a prerequisite for the application of such bias correction methods: bias 397 

correction methodologies should be used only for those climate variables that are reasonably 398 

well simulated by the GCMs otherwise it might lead to unrealistic predictions. Based on the 399 

results in Figure 3, the raw GCMs do not possess the skills to predict precipitation. Also, the bias 400 

correction does not involve any regional level modelling. Therefore, we choose two downscaling 401 

approaches (LR and KR based SD) in the present study, which involve regional level modelling, 402 

and our expectation is that the obtained data are more realistic. The subsequent sections provide 403 

the details of the methodical validations and the skill-evaluation exercise of the downscaled 404 

precipitation. 405 

 406 

4.3 Validation of the downscaling models 407 

Figure 5 shows the results of the validation based on Memory-based and Long-term statistics 408 

for the LR and KR-statistically downscaled products that are obtained with NCEP/NCAR 409 



19 
 

forcings over the validation period (1991-2014). As discussed in section 3, the validations are 410 

illustrated in the spatio-temporally averaged framework for each season and region. Downscaled 411 

precipitation with LR shows better Memory-based skills as compared to KR. This is clear from 412 

the PS plots over different regions, where PS for LR approach are higher than those for KR for 413 

most of the seasons and regions. High PS values (above 0.5 leading to values of the correlation 414 

coefficient larger than 0.7) are found for all the regions, except for NE over different seasons. 415 

The methodology shows a very good performance for such a highly complex variable to predict. 416 

The LR is capable of removing the conditional (SREL) and unconditional biases (SME) for all 417 

the regions and seasons, resulting in positive values of SS. In fact, there are hardly any losses in 418 

the skill because of the presence of biases. The KR methodology shows a comparable 419 

performance in removing the biases. However, this model is not able to capture the season-to-420 

season variations in the observed data, resulting in lower values of PS as compared to the LR. 421 

This is reflected in SS as well, where the KR shows negative SS for some cases (e.g., yearly SS 422 

for GPN, MW). The second set of validation metrics (i.e. Long-term statistics based validations) 423 

shows a complete reversal of skill. The comparison over variability, expressed in terms of 424 

absolute differences in standard deviation and extremes clearly shows that the KR model 425 

outperforms LR. The two models reveal similar skill when compared with respect to the absolute 426 

difference in mean and RMSE. Overall, the validation results highlight the capability of the two 427 

SD models in capturing some important properties of observed precipitation (i.e., the LR 428 

captures the season-to-season variability and mean, while the KR captures long term variability 429 

and extremes). The specific skill shown by the two methodologies can be an important guideline 430 

in selecting the downscaled product for a particular study or application.  431 
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 Having established the credibility of downscaling models with the reanalysis forcings, we 432 

move ahead with the evaluation of the decadal prediction skills for precipitation obtained with 433 

the GCM forcings. Before building the statistical relationships with respect to the nine 434 

predictors, we assess the skills of the GCM forcings. We have carried out a separate analysis for 435 

each one of them (refer to section S4 of the supplementary material) and found out that the 436 

decadal predictions of the predictors are reasonably good compared to the raw precipitation skills 437 

(Figure 3), and can be included as predictors in the SD models. 438 

 439 

4.4 Evaluation of the LR-based GCM predictions 440 

Figure 6 shows the Memory-based and Long-term statistics based skill-evaluation plots for 441 

the precipitation downscaled with LR at the regionally and seasonally averaged scale. Compared 442 

to the raw GCM predictions, we do not see significant improvements in PS. We do, though, 443 

observed instances of relatively high PS across all seasons and for different regions. Similar to 444 

the raw predictions, these instances do not follow the influences of initial conditions and hence, 445 

in some cases, higher skill is observed at long lead times (e.g., NE in summer for lead period 7-446 

8). As far as conditional and unconditional biases are concerned, there are marked improvements 447 

with respect to the raw predictions, especially for SME. The LR model is able to reduce the 448 

impact of these biases, resulting in positive SS. Overall, positive skill is observed mainly for the 449 

winter and spring seasons. The predictions obtained with LR show better linear association with 450 

the PRISM data as compared to its raw counterpart. The best part of the downscaled precipitation 451 

with LR is the skills with which the long term mean is captured. For most of the regions and 452 

seasons, the absolute difference between observed data and predictions is small (~5-7 453 

mm/month). The same methodology fails to perform at the same level in capturing other long 454 
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term statistical properties, such as variations in terms of STDEV, extremes and RMSE, leading 455 

to no significant improvements as compared to the raw predictions. Pixel-wise skills for 456 

downscaled precipitation, obtained by applying LR based downscaling approach for different 457 

lead times from 1 to 10 (years) in the form of US maps are shown in the supplementary material 458 

(from S-Figure 21 to S-Figure 30). 459 

 460 

4.5 Uncertainty quantification for LR-based GCM predictions 461 

The LR methodology showed the capability in closing the gap between PRISM and GCM 462 

predictions with respect to the mean precipitation. Here, we assess the improvements with 463 

respect to the uncertainty-based metrics, focusing on the results corresponding to the lead-1 464 

(Figure 7), while those for the other lead times are shown in the supplementary material (S-465 

Figures 31-39). The results for all regions and seasons lead us to two critical improvements in 466 

the LR based downscaled product as compared to the raw GCM predictions. The first 467 

improvement is in terms of reduced uncertainty. This is evident from the GCM envelopes (gray 468 

bands), which are considerably smaller than the raw predictions (Figure 4). The second 469 

improvement is the reduction in the gap between observed time series (black line) and ensemble 470 

mean predictions (blue line). This gap represents biases in the predictions and here it is 471 

completely eliminated (e.g., compare the uncertainty envelope for GPN in Figure 4 and Figure 472 

7). Along with these improvements, Figure 7 brings out some of the shortcomings of the LR 473 

approach as well. For all regions and seasons, the blue line, representing the ensemble of all 474 

GCM predictions, is able to trace the mean trajectory of the PRISM data, even though it 475 

completely fails to capture the large fluctuations. As far as uncertainty-based metrics are 476 
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concerned, they are the exact replica of the validation shown in Figure 6, where the long term 477 

mean is captured with a high accuracy and the fluctuations are too small.  478 

 479 

4.6 Evaluation of the KR-based GCM predictions 480 

We evaluate the skill of the decadal precipitation predictions obtained using the KR approach 481 

and present the results in Figure 8. The KR approach is able to slightly increase the values of PS 482 

in the predictions, even though these increases are small compared to the raw GCM predictions. 483 

For most of the regions and seasons, the PS is around 0.15, and the higher skills are not 484 

necessarily for the 1-year lead. One such example is SW region, which shows higher PS at 485 

different lead times (lead-7 for yearly, lead-8 for winter) other than lead-1. The real enhancement 486 

in the downscaled product is observed in the complete removal of conditional and unconditional 487 

biases. The effect of this suppression is visualized in SS, where positive residual skill is present 488 

for different lead times. Positive values of SS represent an indirect indication that the KR 489 

approach shows the credibility to retain one-to-one association between the downscaled GCM 490 

product and PRISM precipitation at least for some of the lead times. This is mainly observed for 491 

the regions: MW, NW, SE, SW (at the yearly scale), GPN, MW, NE, SE, SW (over winter); 492 

GPN, MW, NE, SW (over spring); GPN, GPS, MW, NE, NW, SW (over summer); and GPS, 493 

MW, NE, NW, SE (over fall). The second positive attribute of KR approach is its ability to 494 

capture long term statistical properties, especially the mean. The approach shows good skill in 495 

capturing the long term mean (Figure 8), with the absolute difference between observed 496 

precipitation and GCM predictions that is about ~5 mm/month. Similar to the skill displayed by 497 

LR, the KR approach is not able to capture either the standard deviation, extreme and RMSE, 498 

except for the yearly scale. For other seasons, we observe cases in which the methodology 499 
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captured STDEV and EXTREMES with excellent skills (e.g., SW in summer and fall; GPN in 500 

year and winter). Pixel-wise skills for downscaled precipitation, obtained by applying KR based 501 

downscaling approach for different lead times from 1 to 10 in the form of U.S. maps are shown 502 

in the supplementary material (from S-Figure 40 to S-Figure 49). 503 

 504 

4.7 Uncertainty quantification for KR-based GCM predictions 505 

We evaluate the downscaled precipitation with the KR approach in terms of GCM envelopes 506 

(Figure 9). Similar to the prior assessments (Figures 4 and 7), we restrict our discussion to lead-1 507 

predictions only, with the evaluations for the other lead times in the supplementary material (S-508 

Figures 50-58). Overall, here are two positive attributes associated with the KR, similar to what 509 

is discussed for LR. There is reduced uncertainty as shown by the reduction in the width of the 510 

GCM envelopes (gray band) as compared to the raw predictions in Figure 4. Also, ensemble 511 

GCM predictions (blue line) runs through the central tendency of the PRISM precipitation (black 512 

line), eliminating the biases between the two. The methodology is therefore able to capture the 513 

long term mean but not the fluctuations, similar to what was discussed for the LR methodology. 514 

If we compare the two downscaled products, we find that the LR approach performs better in 515 

reducing the uncertainty as compared to the KR methodology, evident from the width of the 516 

GCM envelope that is smaller. However, the ensemble GCM predictions for the downscaled 517 

precipitation with LR show little or no fluctuations at all, while those with the KR approach 518 

shows slightly higher degree of year-to-year variability. 519 

 520 

4.8 Further validations of decadal predictions 521 



24 
 

In the previous sections (4.1-4.7), we provided a thorough evaluation of the raw GCM 522 

predictions and the statistically downscaled products obtained with the LR and KR. The focus of 523 

the validation was on the assessment of the prediction skill in a seasonally and regionally 524 

averaged spatio-temporal framework, for lead times from one to ten years. Such a lead-wise 525 

quantification of skill was possible because of the availability of several retrospective 526 

predictions, which enabled us to construct lead-wise datasets for validation. However, GCM 527 

predictions are not provided in a lead-wise format. Hence, the spatio-temporally averaged 528 

framework validation approach considered in this study cannot be used to assess GCM 529 

predictions in the form of single initialization of „ten-year predictions‟ (decade). Here we modify 530 

the validation approach to be tailored to single initializations. We obtain regionally averaged 531 

time series of decadal predictions, consisting of 120 values (12 months × 10 years = 120 values) 532 

and compare them with the PRISM data to evaluate their performance. The motivation behind 533 

this type of evaluations lies in the fact that the decadal predictions are initialized either yearly or 534 

intermittently to provide the predictions for ten years. Therefore, we may not get the advantage 535 

of data availability to evaluate lead-wise skills. This procedure is carried out for each 536 

initialization (e.g., there are nine GCMs that are initialized with respect to the observations for 537 

the year 1961 to provide the predictions for 1961-1970). We obtain the ensemble of these nine 538 

GCMs and generate a regionally averaged times series (120 values) and estimate the skill by 539 

comparing the time series with regionally averaged PRISM observations for 1961-1970. The 540 

number of GCM predictions available at different initializations differs based on the data 541 

availability (e.g., for the predictions initialized in 1962 only five GCMs are available and we use 542 

just those five for obtaining the ensemble mean). A similar step is repeated for predictions that 543 

are initialized from 1961 onwards until 2005. We stop at the initialization year 2005 because the 544 
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validation period for the present study is restricted to 2014 (which is the last year for the decadal 545 

predictions that are initialized in 2005). We evaluate the skill of decadal predictions using three 546 

metrics: 1) PS (representing the one-to-one association between predictions and PRISM data), 2) 547 

absolute percentage difference in mean (representing the total precipitation over a decade), and 548 

3) absolute percentage difference in extremes (95
th

 percentile, representing difference in 549 

extremes). We evaluate both data products (with LR and KR) and the results of this analysis are 550 

illustrated in Figure 10 in terms of radar plots. Each plot consists of 45 spokes, each representing 551 

a single decade (e.g., 1961-1970, 1962-1971) and labeled with the year in which the predictions 552 

was initialized. For regions GPN, MW, and NW there is high PS and the performance is 553 

consistent over all the decades, irrespective of the calibration/validation period. Both the 554 

downscaled precipitation products show similar PS, indicating that the methodologies are able to 555 

capture the one-to-one association over the mentioned region with a high confidence. GPS shows 556 

reasonable skills over the training period, even though the values of PS decline over the testing 557 

period. Both the downscaled products perform poorly over the regions NE, SE, and SW. The 558 

LR- and KR-SD precipitation predictions fare well in terms of capturing long term mean, 559 

represented in terms of absolute percentage difference and expressed as a fraction. GPN, MW, 560 

and SE are the regions where both the products show excellent skill in capturing observed mean 561 

(maximum difference smaller than 8%). Over the other regions, this difference is restricted to 562 

less than 15%, which makes these products a viable input data for impact studies. As far as PS 563 

and mean are concerned, the performance of both products is comparable. The real differences 564 

manifest themselves when we focus on the extremes. For all the regions, the extremes are better 565 

captured with the KR methodology. For most of the regions, the differences for KR based 566 

predictions are about 30%. 567 
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 568 

4.9 Decadal predictions up to 2024 569 

Here we present future precipitation predictions over 2015-2024 (Figure 11). We use lead-570 

10 data to ensure maximum future coverage. Each plot shows possible future variations in 571 

seasonally and regionally averaged precipitation obtained with the LR and KR approaches, with 572 

reference to the past baseline precipitation (average precipitation of 1981-2010) for a particular 573 

season and region. There are certain common features shared by almost all the plots. Ensemble 574 

future predictions (for both products) do not show a strong trend, indicating lack of variations in 575 

average precipitation. Also, these predictions are close to the baseline precipitation implying 576 

almost no change in future precipitation predictions as compared to the past. Future predictions 577 

with both the downscaled products are along a comparable trajectory. However, these statements 578 

are valid until 2022. We observe certain erratic behavior for the years post 2022. Also, the „in-579 

sync‟ behavior between the two data products until 2022 fades away for the last three years and 580 

we encounter differences between the two. However, this behavior can be attributed to the lack 581 

of predictions over these years. We just have a single GCM (CanCM4), which provides the data 582 

until 2015, significantly decreasing our confidence in the predictions after 2022. Also, as 583 

previously discussed, the predictions follow the trajectory, tracing the mean of the observed data 584 

but lack the variability in the observations. Assuming the same pattern to manifest in the future, 585 

it is expected to have much larger variability as compared to what is being depicted in the figure. 586 

 587 

 588 

5. Discussion and conclusions 589 
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This study evaluates and enhances the skill of initialized decadal precipitation predictions 590 

over the continental United States (CONUS) and generate high resolution (~4km) precipitation 591 

prediction products by applying statistical downscaling (SD) methodologies. The downscaled 592 

precipitation products that are obtained with Linear Regression (LR) and Kernel Regression 593 

(KR) approaches are evaluated by imposing a stringent validation framework to understand the 594 

positive/negative attributes of these predictions. Raw General Circulation Models (GCM) 595 

predictions, when evaluated over different metrics, showed lack of skill (SS) because of the 596 

presence of high biases and high uncertainties, indicating that GCM predictions differ from one 597 

another, resulting in wide envelopes. Hence, it can be concluded that raw GCM predictions 598 

cannot be directly used for impacts assessments studies. 599 

The validation of LR and KR models is performed to assess the credibility of two SD 600 

approaches over downscaled precipitation data, obtained with NCEP/NCAR forcings. Results 601 

show the strength of both the SD models in capturing some of the important properties of the 602 

observed precipitation. LR model shows superiority in capturing seasonal variations for most of 603 

the regions, showing positive residual skill (Skills Score) thank to the reduction in biases. On the 604 

other hand, the KR model captures the long term variability (standard deviations, extremes). 605 

These differences in performance support our need for the use of two SD approaches that can be 606 

categorized under the transfer function approach. The validation results serve as guidelines in 607 

selecting the data product based on the study that one intends to carry out: for instance, to study 608 

seasonal variations and formulate the policies for the same, LR-precipitation data are slightly 609 

more reliable and KR-precipitation data can be used to study extremes.  Both methodologies, 610 

however, are capable of capturing a complex property of the observed data such as the spatial 611 

variability due to orography. Figure 12 shows the comparison of mean precipitation over 612 
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different seasons (as discussed in section 3), obtained from the PRISM data and the statistically 613 

downscaled products (both with LR and KR) with the reanalysis forcings over the testing period 614 

(1991-2014). These methodologies are capable of capturing the complex spatial patterns of mean 615 

precipitation, especially near the U.S. West Coast. The credibility of the methodology to capture 616 

the spatial variability is extremely important from the point of view of impact assessment. This is 617 

because, even though we assess the skill of the predictions in a spatio-temporally averaged 618 

framework, impact assessment studies often demand reasonable skill over a much finer 619 

resolution within a region of interest. At such a small scale, the local effects like orography play 620 

an important role in controlling the spatial variability. Hence, a methodology that captures such 621 

local effects is likely to produce skillful downscaled products suitable for impact assessment 622 

studies. 623 

The skill revealed by the downscaled GCM predictions is generally independent of lead 624 

times. This conclusion holds against the preconceived notion that smaller lags between 625 

initialization and predictions (smaller lead times) lead to higher skill. It is difficult to explain this 626 

inconsistent behavior. It can be only argued that the GCMs used for predictions might suffer 627 

from the shock of the initial conditions and hence, require some time before the model converges 628 

to provide better result. However, this statement is just a hypothesis and assessing its validity/ 629 

falsifiability is out of the scope of the present study. Both the approaches show reasonable skill 630 

in capturing important properties of the observed data. Similar to the skill revealed by SD 631 

predictions with NCEP/NCAR data, the GCM precipitation predictions with the LR approach 632 

show better skill in terms of PS and mean, whereas those with the KR approach show better skill 633 

with long term variability and extremes. The marked reduction in uncertainty as indicated by the 634 

reduction in the width of the GCM envelope is an indication that the downscaled precipitation 635 
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data from different GCMs bear a close resemblance with each other. The comparison of the two 636 

products in a decadal validation framework shows that the downscaled precipitation with the 637 

KR-approach appears to capture the climatology better when compared to that with LR-638 

approach. Future precipitation predictions, however, do not show a significant trend. The lack of 639 

visually significant trends in future precipitation can be taken as a word of caution. This is an 640 

indication that we need robust planning policies to cater to the increasing water demands, 641 

especially after having understood that the total precipitation is not likely to change significantly 642 

over the next few years. 643 

Having discussed all the positive features of the methodology and downscaled data, we want 644 

to highlight some of the limitations of the present study as well. The methodology starts with the 645 

identification of zone of predictors for each of the seven regions. The seven regions are formed 646 

by merging few states and they do not necessarily represent meteorologically homogeneous 647 

regions. This may result in reducing some of the skill of the downscaled precipitation. The 648 

assumption of stationarity is a common limitation for all data driven approaches, where the 649 

statistical relationship is assumed to be time invariant. However, as we are applying the 650 

relationship which is established in the near past (1961-1990), there is a fair chance that the 651 

violation of the assumption will not negatively affect the results. The variability possessed by the 652 

observed precipitation is generally not captured by our methodologies. This is evident from the 653 

narrowness of the GCM envelopes. The accuracy with which the predictions are able to capture 654 

the mean does not hold for variability and extremes. Hence, we have high confidence in the total 655 

amount of precipitations that the products predict. However, the seasonal variations and 656 

extremes, revealed by the downscaled precipitation should be considered with care.  657 

 658 
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  855 

Figure 1: Map showing the monthly averaged precipitation for the 1961-2014 period based on 856 

the PRISM data. The map also shows the seven regions considered in the analyses.  857 
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 859 

Figure 2: Graphical data inventory plots, illustrating the year of initialization and lead-wise 860 
prediction availability for nine GCMs along with their spatial resolution, mentioned in the top 861 

left corner of each plot. „Ensemble‟ plot shows the number of GCMs available for different 862 
initializations and lead times for obtaining ensemble mean and uncertainty. 863 

  864 



39 
 

 865 

Figure 3: „Memory-based‟ and „Long-term statistics based‟ skill metrics for seasonally and 866 
regionally averaged ensembles of raw GCM predictions over lead times 1-10. The results are for 867 
the average of all available GCMs.  868 
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 870 

Figure 4: „Uncertainty-based‟ skill metrics in terms of seasonally and regionally averaged 871 

envelope as a measure of uncertainty, obtained with 1-year lead time predictions. Wide 872 
envelopes (gray band) and high deviations of the ensemble GCM predictions (blue line) with 873 

respect to observed time series (black line) for some of the regions imply poor performance by 874 
the GCMs.  875 
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 877 

Figure 5: „Memory-based‟ and „Long-term statistics based‟ skill validations of LR and KR based 878 

SD methodologies applied to NCEP/NCAR reanalysis predictors over 1991-2014. The 879 
downscaling methodologies show increasing skill in extracting the relationship between 880 
NCEP/NCAR predictors and PRISM precipitation, evident from the positive values of SS, 881 

extremely low biases, and lower differences in long term statistical properties. 882 
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 884 

Figure 6: Same as Figure 3 but for seasonally and regionally averaged ensembles of LR based 885 
statistically downscaled GCM predictions. 886 
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 888 

Figure 7: Same as Figure 4 but for the ensembles of LR based statistically downscaled GCM 889 

predictions. 890 
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 892 

Figure 8: Same as Figure 3 but for seasonally and regionally averaged ensembles of KR based 893 

statistically downscaled GCM predictions. 894 
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 896 

Figure 9: Same as Figure 4 but for the ensembles of KR based statistically downscaled GCM 897 
predictions. 898 
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 900 

Figure 10: Radar plots comparing the skill between statistically downscaled precipitation skills 901 
(LR based, shown by blue color and KR based shown by red color) in the decadal framework. 902 

Each spoke represents the year of initialization. The gray region shows the skills for the years 903 
where year of initialization belongs to the calibration period (1961-1990). 904 
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 906 

Figure 11: Precipitation predictions for the near future decade 2015-2024. Seasonally and 907 

regionally averaged ensemble of LR based statistically downscaled precipitation data (thick blue 908 
line), surrounded by individual bias corrected GCM prediction trajectories (thin blue lines) and 909 

envelope (light blue shaded region) showing the uncertainty associated with it. Red lines/shaded 910 
region are the exact counterparts of the LR based statistically downscaled precipitation but 911 
obtained with KR based SD methodology. The black dashed line represents the 30-year mean 912 

(1981-2010) to be used as reference for comparing future predictions.  913 
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 927 

 928 

Figure 12: Comparison between PRISM mean precipitation (1991-2014) with statistically 929 

downscaled mean precipitation with linear and kernel regression based approach, applied to 930 
NCEP/NCAR reanalysis data predictors over different seasons. The methodologies are able to 931 

capture the orographic effects influencing spatial pattern of mean precipitation. The marked 932 
spatial variations in mean precipitation in PRISM (e.g., western United States) are captured by 933 
the two approaches. 934 


