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1. Introduction

Topological materials are characterized 
by a topologically nontrivial electronic 
band structure from which they derive 
their exceptional transport properties.[1–6] 
The prospect of developing these exotic 
phases into useful applications has gar-
nered widespread efforts to identify and 
catalogue candidate topological mate-
rials, evidenced by the emergence of 
numerous theoretical frameworks based 
on connectivity of electronic bands,[7–13] 
symmetry-based indicators,[7,14–21] elec-
tron-filling constraints,[7,22,23] and spin-
orbit spillage.[24–26] These frameworks 
have facilitated the prediction of over 8000 
topologically non-trivial phases,[27–34] a 
vast unexplored territory for experiments. 
This is strong motivation to develop com-
plementary experimental techniques 
for high-throughput screening of candi-
date materials. Current state-of-the-art  
techniques such as angle-resolved photo-
emission spectroscopy (ARPES), scan-
ning tunneling microscopy (STM), and 

Topological materials discovery has emerged as an important frontier in 
condensed matter physics. While theoretical classification frameworks 
have been used to identify thousands of candidate topological materials, 
experimental determination of materials’ topology often poses significant 
technical challenges. X-ray absorption spectroscopy (XAS) is a widely used 
materials characterization technique sensitive to atoms’ local symmetry and 
chemical bonding, which are intimately linked to band topology by the theory 
of topological quantum chemistry (TQC). Moreover, as a local structural 
probe, XAS is known to have high quantitative agreement between experi-
ment and calculation, suggesting that insights from computational spectra 
can effectively inform experiments. In this work, computed X-ray absorption 
near-edge structure (XANES) spectra of more than 10 000 inorganic mate-
rials to train a neural network (NN) classifier that predicts topological class 
directly from XANES signatures, achieving F1 scores of 89% and 93% for 
topological and trivial classes, respectively is leveraged. Given the simplicity 
of the XAS setup and its compatibility with multimodal sample environments, 
the proposed machine-learning-augmented XAS topological indicator has 
the potential to discover broader categories of topological materials, such as 
non-cleavable compounds and amorphous materials, and may further inform 
field-driven phenomena in situ, such as magnetic field-driven topological 
phase transitions.
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quantum transport measurements are commonly used to 
detect topological signatures, but a few limitations remain: 
Methods like ARPES directly probe band topology but are sur-
face-sensitive and thereby place strict requirements on sample 
preparation and the sample environment, limiting the range 
of experimentally accessible materials;[35,36] transport meas-
urements, on the other hand, can be performed on more ver-
satile samples but can be more difficult to interpret. Neither 
approach yet fully meets the demands of a high-throughput 
classification program.

Machine-learning methods are increasingly being adapted 
to materials research to accelerate materials discovery[37–44] 
and facilitate inverse design through high-throughput prop-
erty prediction.[45–47] Several recent studies have proposed 
data-driven frameworks for predicting band topology from 
structural and compositional attributes[48–50] and quantum 
theoretical or simulated data.[51–54] At the same time, 
machine-learning methods are being adopted to automate 
and improve data analysis for a broad range of experimental 
techniques.[55–61] Importantly, machine learning presents a 
potential opportunity to not only accelerate data analysis, 
but to derive useful information from complex data in the 
absence of reliable theoretical models, or to extract new 
insights beyond traditional models.

In this work, we develop a data-driven classifier of electronic 
band topology using materials’ X-ray absorption spectra. X-ray 
absorption spectroscopy (XAS) is widely used to characterize 
the chemical state and local atomic structure of atomic spe-
cies in a material. This technique is suitable for the study of 
highly diverse samples and environments, including noncrys-
talline materials and extreme temperatures and pressures.[62] 
As a bulk probe, XAS also places few constraints on surface 
quality and sample preparation. The X-ray absorption near-
edge structure (XANES), defined within ≈50 eV of an XAS 
absorption edge, provides a specie-specific fingerprint of the 
absorbing atom’s local chemical environment, including coor-
dination chemistry, orbital hybridization, and density of avail-
able electronic states. However, despite the rich electronic 
structural information contained in XANES spectra, the lack 
of a simple analytic description of XANES has compelled 
largely qualitative treatment of this energy regime, with indi-
vidual spectral features attributed to properties of the electronic 
structure through empirical evidence and spectral matching.[63] 

As a result, machine-learning methods have been introduced 
to automate the estimation of materials parameters such as 
coordination environments,[56,64–67] oxidation states,[64,67] and 
crystal-field splitting[68] from XANES and other core-level 
spectroscopies, and even enable direct prediction of XANES 
spectra from structural and atomic descriptors.[69–71] Here, we 
propose that machine-learning models can be used to extract 
other hidden electronic properties, namely the electronic band 
topology, from XANES signatures and thereby serve as a poten-
tially useful diagnostic of topological character. The theory of 
topological quantum chemistry (TQC) has demonstrated the 
intimate link between a material’s band topology and its local 
chemical bonding,[7] which motivates our inquiry into the unex-
plored connection between XANES spectra and band topology. 
In particular, we develop a machine-learning-enabled indicator 
of band topology based on K-edge XANES spectral inputs, 
which correspond to electronic transitions from the 1~s core 
shell states to unoccupied states above the Fermi energy. First, 
we summarize the data assembly procedure, which consists of 
labeling the database of computed XANES K-edge spectra[72] 
according to topological character using the catalogue of high-
quality topological materials predicted by TQC.[27,34] We then 
conduct an exploratory analysis of topological indication for the 
K-edge XANES spectra of different elements based on principal 
component analysis (PCA) and k-means clustering. Finally, we 
develop a neural network (NN) classifier of topology that syn-
thesizes insights from XANES signatures of all elements in a 
given compound. Our classifier achieves F1 scores of 89% and 
93% for topological and trivial classes, respectively. Materials 
containing certain elements, including Be, Al, Si, Sc, Ti, Ga, 
Ag, and Hg, are predicted with F1 scores above 90% in both 
classes. Our work suggests the potential of machine learning 
to uncover topological character embedded in complex spectral 
features, especially when a mechanistic understanding is chal-
lenging to acquire.

2. Data Preparation and Pre-Processing

XAS data were obtained from the published database of com-
puted K-edge XANES spectra[72] and additional examples dis-
tributed on the Materials Project,[73–76] which are computed 
using the FEFF9 program.[77] The materials from the XANES 
database were then labeled according to their classification in 
the database of topological materials,[27,34] which is based on the 
formalism of TQC.[7] The classifications in the TQC database 
are based on structures from the Inorganic Crystal Structure 
Database (ICSD),[78] and the ICSD identifier was used to asso-
ciate topological class labels with entries in the XANES data-
base. We note that the crystal structures in the two databases 
are not strictly identical, and ICSD identifiers are associated 
with structurally similar Materials Project entries according 
to pymatgen’s StructureMatcher algorithm.[75,76] In rare cases, 
multiple ICSD identifiers corresponding to different topolog-
ical classifications were associated with the same set of XANES 
spectra. Because small discrepancies between the ICSD and 
Materials Project structures could lead to different topological 
classification for some materials close to a phase transition, 
all multiply labeled examples were removed from the dataset. 
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The materials data were further refined based on availability 
of both high-quality topological classification and spectral 
data, resulting in 13–151 total materials considered: 4957 top-
ological (≈38%) and 8194 trivial (≈62%). Here, high-quality is 
defined following ref. [27], which considers only materials 
with well-determined structures and excludes alloys, magnetic 
compounds, and certain problematic f-electron atoms. Addi-
tionally, entries with spectra containing unphysical features 
such as large negative jumps were discarded. The materials in 
the final dataset are structurally and chemically diverse, rep-
resenting 200 of 230 spacegroups and 63 different elements, 
with primitive unit cells ranging from 1 to 76 atoms and up to 
seven unique chemical species. The representation of different 
elements among topological and trivial examples is shown in 
Figure  S1a,b, Supporting Information. Data were subdivided 
into training, validation, and test sets according to a 70/15/15% 
split. While samples were randomly distributed among the 
datasets, an assignment process was developed to ensure bal-
anced representation of each absorbing element and topological 
class within each dataset. Specifically, the fraction of topological 
insulators (TI), topological semimetals (TSM), and topologi-
cally trivial materials represented in compounds containing 
a certain element was balanced as shown in Figure  S1c, Sup-
porting Information. For each example, the computed K-edge 
XANES spectra of each absorbing element were interpolated 

and re-sampled at 200 evenly spaced energy values spanning 
an energy range of 56 eV surrounding the absorption edge. The 
spectra were standardized separately for different absorbing 
elements, which consisted of centering the mean of spectral 
intensities over each energy range, and scaling by the average 
intensity standard deviations.

3. Results

3.1. Exploratory Analysis

Prior to training the NN classifier, we conducted an explora-
tory analysis of the assembled XANES spectra to estimate the 
separability by topological class exhibited by different elements. 
For all examples containing a given element, we performed a 
principal component analysis (PCA) on the high-dimensional 
spectra and subsequently carried out unsupervised k-means 
clustering on a subset of principal components of the training 
set. The number of retained principal components was selected 
to retain at least 80% of the explained variance of spectra for 
a given element. Results of the clustering analysis for a selec-
tion of elements are shown in Figure 1. The decision boundary 
between the two clusters identified by k-means clustering, 
projected along the first two principal components, lies at the 

Adv. Mater. 2022, 34, 2204113

Figure 1. Exploratory analysis using principal components and k-means clustering. a) Decision boundary visualizations of classifications by unsuper-
vised k-means clustering for selected elements. As detailed in the main text, the k-means clustering is performed on the subset of principal components 
accounting for at least 80% of the explained variance of spectra for a given element. The clusters are visualized along the first (x-axis) and second 
(y-axis) principal components in the scatter plots. Scattered points are colored according to their true class: topological (orange) or trivial (blue). The 
background is shaded according to the cluster-assigned class. The principal components exhibited three typical patterns: (row I) imbalanced classifica-
tion in favor of topological examples, (row II) relatively balanced classification of topological and trivial examples, and (row III) no apparent clustering 
by class. b) Confusion matrices of representative examples in each of rows I, II, and III.
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intersection of the blue (trivial) and orange (topological) shaded 
regions in Figure 1a. Since k-means clustering is not supervised 
by the true topological class of each example, cluster assign-
ment was performed by solving an optimal matching problem 
that finds the pairing between clusters and topological classes 
that minimizes the number of misclassified examples, cor-
rected for class imbalance. The examples from all three datasets 
(training, validation, and testing) are plotted as scattered points 
in the low-dimensional space and colored according to their 
known topological class. Additional visualizations are shown 
in Figure S2, Supporting Information. A quick survey of these 
results reveals a number of elements for which the classifica-
tion accuracy of topological and trivial examples is imbalanced, 
and a few for which the classification accuracy is more balanced 
between the two classes. We correlated these observations 
with the decision boundary visualizations and noted three dis-
tinct patterns in the result of our unsupervised clustering. For 
some elements, nearly all topological examples were segregated 
within a single cluster (row I of Figure 1). This led to a strong 
score for topological examples but weaker score for trivial ones 
for elements such as Ti, Ge, As, and Sb. Other elements like Ga, 
In, Sn, and Ta exhibited more balanced classification accuracies 
between the two topological classes (row II of Figure 1). On the 
other hand, there were a number of unsuccessful examples 
of alkali and alkaline earth metals for which clustering of the 
data did not appear coincident with topological class (row III of 
Figure 1). Given that the feature transformations performed in 
our exploratory analysis were element-specific, the potential to 
discriminate data between the two classes is encouraging. This 
also suggests a possible advantage of synthesizing information 
of all constituent atom types in a given compound in order to 
improve prediction accuracy.

3.2. Network Architecture Optimization

The NN classifier inputs consist of the set of XANES spectra 
and atom types of each absorbing atom in a given mate-
rial, as shown in Figure  2a, where atom types are encoded 
as one-hot feature vectors with a one at the index equaling 
the atomic number, and zeros elsewhere. The core-electron 
binding energy increases substantially with increasing 
atomic number, ranging from 284 eV for the C K-edge to 
115  606 eV for the U K-edge,[79] and thus representing the 
XANES spectra of all absorbers on a continuous energy 
scale would be either poorly resolved or exceedingly high-
dimensional (Figure  2a). Separating the spectral and atom 
type information at the input facilitates the construction of 
element-specific channels and allows us to retain the spec-
tral energy resolution. In addition to enabling the synthesis 
of information from different absorbers, an NN comprises 
more complex, non-linear operations than PCA and thereby 
has the capability to learn more expressive representations 
of the input data. The network architecture is illustrated 
in Figure  2b. Fully connected layers first operate on each 
spectral and atom-type input to obtain intermediate repre-
sentations, termed the spectral and atom-type embeddings, 
respectively. The embedded spectra are assigned to element-
specific channels through a direct product with the corre-
sponding atom-type embedding. These composite features 
are subsequently added for a given material and flattened to 
a single array, which is passed to another series of fully con-
nected layers and activations that output the predicted binary 
topological class. Due to moderate class imbalance, samples 
were weighted to add greater penalty to the misclassification 
of topological examples.

Adv. Mater. 2022, 34, 2204113

Figure 2. Data structure and model architecture. a) A schematic of the full XANES spectrum for a representative sample in the dataset, showing the 
signatures from different absorbing elements on an absolute energy scale. For a given material, the inputs to the NN classifier consist of one-hot 
encoded atom types (left) and XANES spectra (right) for all absorbing atoms. b) Schematic of the NN architecture predicting the (binary) topological 
class using spectral and atom-type inputs. Spectral and atom-type inputs are individually embedded by fully connected layers before performing a direct 
product between corresponding spectral and atomic channels. These composite features are aggregated for a given material and passed to a final fully 
connected block to predict the topological class.
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3.3. Machine-Learning Model Performance

Figure 3 summarizes the performance of the trained NN clas-
sifier. The receiver operating characteristic (ROC) curve, which 
indicates the tradeoff between true and false positive rates, is 
shown in Figure 3a. We use three different metrics in assessing 
the quality of prediction: recall, precision, and F1 score. These 
metrics are defined as

=
+

r t
t f

recall : p

p n

 (1a)

=
+

p t
t f

precision : p

p p

 (1b)

=
+

F F p r
p r

score: 2 ·
1 1

 (1c)

where tp and tn denote the number of true positive and true nega-
tive predictions, and fp and fn denote the number of false positive 
and false negative predictions of a given class, respectively. The NN 
classifier achieved F1 scores of 89% and 93% for topological and 
trivial classes, respectively. We compare these results to the per-
formance of a traditional support vector machine (SVM) operating 
on one-hot encoded atom types only (denoted SVM-type) and on a 
concatenated array of spectra for all atom types (denoted SVM), as 
shown in Figure 3b,c. The average performance of the PCA and 
k-means clustering approach across all elements is also included 
for reference. Note that the concatenated feature vector input to 
the SVM contains zeros in place of spectra corresponding to ele-
ments not contained in the compound. We find that both the NN 
and SVM classifiers based on XANES spectral inputs outperform 

the baseline model relying on atom types alone, suggesting that 
XANES spectral features provide meaningful insight to topological 
indication. To maintain the same number of neurons between 
SVM-type and SVM models, the SVM-type inputs were copied 
200 times (the length of the spectral inputs) to construct the input 
features, which led to a combined increase of 5% in the F1 scores 
compared to a minimal SVM-type model reported in Figure S5a, 
Supporting Information, for comparison. The NN further 
improves upon the SVM model predictions, particularly in the 
precision of topological classification which increased by 4%. We 
note that the NN with both spectral and atom-type inputs achieves 
a combined improvement of ≈7% in the F1 scores compared to 
a NN model of similar size operating on atom-type inputs alone 
(Figure  S5a, Supporting Information). Additional details about 
the reference models are provided in the Supporting Information. 
We also assess the sensitivity to the spectral energy resolution in 
Figure S7, Supporting Information. While the main results of this 
work are obtained for spectra sampled at intervals of ≈0.28 eV, we 
see that a sampling of ≈5 eV is sufficient for comparable perfor-
mance. Finally, we compute the average metric scores obtained by 
the NN classifier individually for each absorbing element, shown 
in Figure  3d,e for topological and trivial examples, respectively. 
Corresponding results for the SVM model and additional plots 
for the NN classifier are shown in Figures S4 and S6, Supporting 
Information, respectively.

3.4. Application to Experimental Spectra

While we are unable to include experimental spectra in our 
training set due to limited availability, we present a preliminary  

Adv. Mater. 2022, 34, 2204113

Figure 3. NN classifier performance. a) The receiver operating characteristic (ROC) curve showing the tradeoff between true and false positive rates 
for the NN model. The area under the curve (AUC) for each dataset is noted in the legend. b,c) Comparative plots of the overall recall, precision, and 
F1 scores for topological (b) and trivial (c) examples obtained using different methods discussed in the main text. d,e) Element-specific F1 scores for 
topological (d) and trivial (e) examples. Each element’s entry lists its atomic number, atomic symbol, and F1 score. Elements with no score listed were 
not present in the dataset.
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effort by making predictions on a small set of seven experi-
mental XAS spectra and their computational counterparts, 
where available. The XAS experiments were performed at the 
4-ID-D beamline of the advanced photon source (APS) and 
include measurements of both topological and trivial com-
pounds listed in Table  1. The predictions obtained using the 
experimental and computational spectra were all consistent 
with one another, though in one instance (MoSe2) both are 
incorrectly classified, as shown in Table  1. Specifically, within 
this set of examples, the NN correctly classifies six of the seven 
sets of experimental spectra, and five of the six sets of compu-
tational spectra (computational spectra were unavailable for 
one of the seven compounds). Additionally, we note that for 
the two ternary compounds, LaAlGe and CdGeYb, one of the 
three absorption edges could not be measured at this time; in 
these cases, the two available experimental spectra were used to 
make a prediction. As an example, Figure 4 shows the experi-
mental and computational XAS spectra of the topological semi-
metal Cd3As2 (Figure 4a) and the isostructural trivial compound 
Zn3As2 (Figure  4b). While there is some misalignment of the 
experimental spectra relative to the computed ones, many of 
the key qualitative features are preserved. We expect that a cer-
tain tolerance in the misalignment is admissible, further rein-
forced by the results of the sensitivity analysis discussed in the 
previous section. Spectra for the remaining experimental exam-
ples are provided in Figure S9, Supporting Information.

4. Discussion

Our results indicate that the NN classifier enables higher and 
more balanced predictive accuracy over the PCA and k-means 
clustering approach for a majority of elements, including sig-
nificant improvement for alkali metals. Certain elements are 
better indicators of one class over another; for instance, the 
alkali metals and halogens appear to serve as somewhat poor 
indicators of topological samples but are well-predicted in 
trivial compounds. A possible explanation for this is that the 
elements in these columns rarely contribute to frontier orbitals 
(valence and conduction bands) in materials, and are thereby 
poor indicators of topology. Certain transition-metal elements, 
such as Cr, Co, Ni, Tc, and Rh, also exhibit imbalanced accuracy 
in the prediction of trivial and topological classes. This is most 
likely due to the over-representation of topological examples 
containing Cr, Co, Ni, and Rh (Figure  S5c, Supporting Infor-
mation), since accurate prediction of topological compounds 
is prioritized during training. Tc is the least abundant element 
in the dataset (Figure  S1a,b, Supporting Information), which 
accounts for the model’s weak performance on Tc-containing 
compounds. However, further investigation of the relevant 
spectroscopic features—whether pre-edge, edge, or post-edge—
in connection with the corresponding electronic transitions 
(e.g., 1s → 3d) may be useful to better understand performance 
barriers for transition metals. Finally, we comment on the  

Adv. Mater. 2022, 34, 2204113

Figure 4. a,b) Comparison between experimental and computational XAS spectra. Experimental (black) and computational (blue) K-edge XANES 
spectra of As and Cd in Cd3As2 (topological) (a) and As and Zn in Zn3As2 (trivial) (b). The spacegroup of each structure is indicated in parentheses. 
Both experimental and computational inputs in (a,b) are correctly classified.

Table 1. Predictions on corresponding experimental and computational spectra.

Class

Material Spacegroup True Pred. (Exp.) Pred. (Comp.)

NbAs 109 Topo. Topo. Topo.

LaAlGea) 109 Topo. Topo. Topo.

Zn3As2 137 Trivial Trivial Trivial

Cd3As2 137 Topo. Topo. Topo.

CdGeYbb) 189 Topo. Topo. ∼

MoSe2 194 Trivial Topo.d) Topo.d)

CdTe *c) Trivial Trivial Trivial

a)Al K-edge was not  measured; b)Yb K-edge was not  measured; c)The same classifications are obtained for all computed spacegroups: 63, 152, 186, 216, and  225; 
d)Incorrectly predicted.
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comparatively low precision obtained for topological over trivial 
examples, 86% and 95%, respectively. While the higher false 
positive rate of topological materials may suggest additional 
model improvements are needed, it may also indicate missed 
topological candidates. In fact, since the TQC formalism con-
siders only the characters of electronic bands at high-symmetry 
points, it may incorrectly classify certain Weyl semimetals with 
topological singularities at arbitrary k-points.[27] In particular, we 
identified 12 experimentally verified[5] or theoretically predicted 
Weyl semimetals[80] that are labeled as trivial in the TQC data-
base, nine of which we correctly predict as topological using our 
NN classifier (Table 2). Thus, the potential presence of topolog-
ical singularities not considered in the TQC formalism might 
account for some loss of precision in the classification of topo-
logical examples. In addition, we summarize in Table S1, Sup-
porting Information, the top 100 predicted topological materials 
from a collection of 459 samples not represented in the TQC 
database. These are the top candidates predicted by our model 
that may contain topological singularities. We do note that the 
success of the NN classifier can be attributed significantly to 
the presence of particular elements; further work is being pur-
sued to more accurately decouple this contribution from that of 
more subtle variations in the XAS spectral features for a given 
absorbing element.

5. Conclusion

We explored the predictive power of XAS as a potential discri-
minant of topological character by training and evaluating a NN 
classifier on more than 10~000 examples of computed XANES 
spectra[72] labeled according to the largest catalogue of topo-
logical materials.[27,34] A number of important extensions are 
envisioned for this work, such as its application to experimental 
XANES data, incorporation of a multi-fidelity approach to favor 
experimentally validated examples,[81] expansion of the energy 
range to the extended X-ray absorption fine structure regime, 
and inquiry into the detailed contribution from spectral features 
for individual elements. The theoretical connections between 
band topology and the local chemical environment encoded in 

XANES spectra has not yet been established, and we envision 
data-driven methods as a possible tool in aiding this theoretical 
development. Our current results demonstrate a promising 
pathway to develop robust experimental protocols for high-
throughput screening of candidate topological materials aided 
by machine-learning methods. Additionally, the flexibility of the 
XAS sample environment can further enable the study of mate-
rials whose topological phases emerge when driven by electric, 
magnetic, or strain fields, and even present the opportunity to 
study topology with strong disorder and topology in amorphous 
materials.[82,83] Thus, machine-learning-empowered XAS may 
be poised to become a simple but powerful experimental tool 
for topological classification.

6. Experimental Section
Data Processing: The computed XANES spectra of each absorbing 

atom were interpolated and re-sampled at 200 evenly spaced energy 
values. Each XANES spectrum spanned an energy range of 56 eV, 
and spectra from the same absorbing atom were co-aligned using the 
calculated absolute energy scale. Spectra of the same absorbing atom 
were standardized by centering the mean of the average intensities over 
the sampled energy range, and scaling by the mean of the standard 
deviations in intensity values.

Machine Learning: Principal component analysis and SVM model 
implementation and training were carried out using the scikit-
learn Python library.[84] The NN models presented in this work were 
implemented in Python using the PyTorch[85] and PyTorch Geometric[86] 
libraries. The atom-type embeddings were obtained using a single 
fully connected layer with 93 input and output neurons. The spectral 
embeddings of the original 200-feature spectra were obtained using a 
series of two fully connected layers with 256 and 64 output neurons, 
respectively, each followed by a dropout layer with a rate of 0.5 and 
a rectified linear unit (ReLU) activation. The composite embedded 
features had dimensions of 5952 and were passed to a second series of 
two fully connected layers with 256 and 64 output neurons, respectively, 
each followed by a dropout layer with a rate of 0.5 and a ReLU activation. 
A final, sigmoid-activated, fully connected layer was then used to output 
the scalar prediction. The models were trained on a Quadro RTX 6000 
graphics processing unit (GPU) with 24 GB of random access memory. 
Optimization was performed using the Adam optimizer to minimize the 
binary cross-entropy loss.

Sample Preparation: NbAs and CdTe crystals were grown using 
chemical vapor transport while LaAlGe, CdGeYb, Cd3As2, Zn3As2, 
and MoSe2 crystals were grown using the flux method as described 
in the literature. The samples exhibited clear, lustrous surfaces with 
demarcated straight edges indicating the orientation of the crystal axes. 
The samples were not polished.

X-ray Absorption Spectroscopy: XAS experiments were performed at 
the 4-ID-D beamline of the Advanced Photon Source, Argonne National 
Laboratory. The X-ray energy was selected using a Si (111) double crystal 
monochromator, which was detuned to reject harmonics. Measurements 
were recorded near the K absorption edge for each element. For 
absorption edges below 23 keV, a Pd mirror was employed to further 
reject harmonics. Measurements were done at room temperature and 
in transmission mode using N2 and Ar filled ion chambers to detect 
both incident and transmitted intensities, respectively. Prior to making 
predictions, experimental spectra were pre-processed as follows. First, 
a linear background was fit to the pre-edge region and subtracted. The 
resulting spectra were fit with an arctangent function of the form a1(1 +  
2tan−1(a2(E  − a3))/π)/2 with fitting parameters {ai} and measured 
energies E, and subsequently scaled by 1/a1. This ensured that 
experimental intensities were scaled consistently with computational 
ones, which were 0 at energies well below the absorption edge and 
approach 1 at energies well above the absorption edge. Finally, the 
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Table 2. Predictions on mislabeled Weyl semimetals.

Material Spacegroup Predicted class

TaAs 109 Topological

NbAs 109 Topological

NbP 109 Topological

WTe2 31 Topological

Ag2Se 17 Trivial

LaAlGe 109 Topological

Ba7Al4Ge9 42 Topological

Cu2SnTe3 44 Topological

BiTeI 143 Trivial

Al4Mo 8 Topological

KOs2O6 216 Topological

Zn2In2S5 186 Trivial
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experimental spectra were shifted in energy so that the area under 
the fitted arctangent matched that of the arctangent fit to the average 
computational spectrum for each absorbing atom. Examples of these 
pre-processing steps are shown in Figure S10, Supporting Information. 
Finally, experimental spectra were interpolated and scaled according 
to the means and standard deviations of the computational spectra as 
described in the Data Processing section.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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