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A Unified Framework for Key Agreement over
Wireless Fading Channels

Lifeng Lai, Yingbin Liang and H. Vincent Poor

Abstract—The problem of key generation over wireless fading
channels is investigated. First, a joint source-channel approach
that combines existing source and channel models for key
agreement over wireless fading channels is developed. It is shown
that, in general, to fully exploit the resources provided by time-
varying channel gains, one needs to combine both the channel
model, in which Alice sends a key to Bob over wireless channels,
and the source model, in which Alice and Bob generate a key by
exploiting the correlated observations obtained from the wireless
fading channels. Asymptotic analyses suggest that in the long
coherence time regime, the channel model is asymptotically
optimal. On the other hand, in the high power regime, the
source model is asymptotically optimal. Second, the framework is
extended to the scenario with an active attacker whose goal is to
minimize the key rate that can be generated using our protocol.
The attacker’s optimal attack strategy is identified and the key
rate under this attack model is characterized.

I. INTRODUCTION

Recently, the study of security from an information theoretic
perspective has attracted considerable attention. (See [3] for a
recent review of results in this area.) In this paper, we focus on
the problem of key agreement over wireless fading channels, in
which two terminals, Alice and Bob, connected by a wireless
fading channel wish to establish a key through the wireless
channel while keeping the key secret from an eavesdropper
Eve. The goal is to establish a key with a rate as large as
possible under the constraint that the observations at Eve do
not provide any information about the generated key.

There are two lines of previous work relating to key
agreement over fading channels: that concerned with the
channel model, and that concerned with the source model.
In the channel model studied in [4] and [5]1, the time-varying
channel gain from Alice to Bob is assumed to be known by
all parties, namely Alice, Bob and Eve. The ability to transmit
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1These papers consider the transmission of a secret message from Alice to
Bob. If Alice uses this secret message as a secret key, then the schemes in
these papers can be used for key agreement purposes.

information securely relies on a non-zero probability that the
channel gain from Alice to Bob is larger than the channel
gain from Alice to Eve. In the source model studied in [6]–
[11], the channel gain from Alice to Bob is assumed to be
unknown everywhere a priori. Alice and Bob each estimates
the unknown channel gain. In this way, Alice and Bob obtain
correlated observations that can then be used to generate keys
using the key generation from common randomness method
introduced in [12].

There are two main limitations of the existing studies. First,
each of the channel model and the source model successfully
exploits only one aspect of the resources provided by the
varying channel gains. More specifically, the channel model
exploits the possibility of a larger channel gain at the receiver
while the source model exploits the fact that Eve does not
know the channel gain from the source to the destination.
However, the channel model does not exploit the opportunity
provided by the fact that Eve does not know the channel
gain from Alice to Bob. As a result, the key rate generated
using the channel model saturates even if the available transmit
power goes to infinity [4], [5]. On the other hand, the source
model does not exploit the possibility that the channel gain
from Alice to Bob might be better than the channel gain from
Alice to Eve. Hence, the key rate generated using the source
model goes to zero when the coherence time of the channel
increases [6].

Second, in all these studies, it is assumed that the attacker
is passive, meaning that it only overhears (does not transmit
over) the channel and tries to infer information about the
generated key. This assumption implies that the messages
exchanged between Alice and Bob are authenticated and will
not be modified by the attacker. In reality, an active attacker
might modify the messages exchanged between Alice and
Bob. For example, when Alice and Bob try to learn the
channel gain, Eve can send attack signals to make the channel
estimation imprecise. Similarly, when Alice and Bob exchange
information over the channel, Eve can modify the message
exchanged over the wireless channel. The problem of key
generation over an unauthenticated channel has been studied
in [13]–[15]. These papers assumed that the attacker can
completely block the communication link between Alice and
Bob. Under this assumption, these papers developed a key
agreement protocol that allows these two terminals to achieve
the following two goals: 1) In the time slots when the active
attack occurs, the two terminals can detect the presence of
the attack with a probability close to 1; 2) In the time slots
when the active attack does not occur, the two terminals can
establish a key with a rate equal to the rate that one can achieve
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as if the attacker is passive. Obviously, if the attacker chooses
to attack all the time, these two terminals will not be able to
establish a key under this model. The main reason for this
pessimistic result lies in the assumption that the attacker can
completely block the communication link between Alice and
Bob. Hence when an active attack occurs, what the receiver
receives comes purely from the attacker. However, in wireless
communications it is difficult, if not impossible, to completely
block a communication link. Hence, even if the attack occurs,
the receiver will still be able to receive signals from the
transmitter (although the received signal will be corrupted by
signals from the attacker).

In this paper, we develop key agreement algorithms that
address these two issues. We first develop a joint source-
channel approach that combines the existing channel model
and source model for the key generation. As a result, one can
design a scheme that can exploit the advantages provided by
both of these two models. Our key agreement protocol has
two phases. In the first phase, Alice and Bob send training
signals over the channel alternately, and obtain an estimate
of their respective channel gains. In the second phase, Alice
sends an auxiliary message, which will be used to distill a key
from the correlated observations obtained in the first phase,
and a new randomly generated key to Bob. The total key rate
is the sum of the key rate that can be generated from the
correlated observations and the rate of the newly generated
key. Our asymptotic analysis suggests that the channel model
is asymptotically optimal as the coherence time of the channel
becomes long. On the other hand, in the high power regime,
the source model is asymptotically optimal. We note that the
idea of sending artificial noise can also be incorporated into
our work. However, it is more suitable to send artificial noise
if there are relays [16] or if we consider feedback [17], or if
we consider multiple antennas [18], [19]. In the single antenna
case as considered in this paper, sending artificial noise may
lead to performance loss.

We then extend this approach to the case of an active
attacker, whose goal is to minimize the key rate that can be
generated using our key agreement protocol. The attacker can
design the signal it transmits based on the signal overheard
over the channel. We first characterize the attacker’s optimal
attack strategy to our protocol. In this paper, we assume that
the attacker uses an independently and identically distributed
attack strategy. We note that the active attacker considered in
this work is more benign than those considered in the arbitrary
varying channels [20], [21]. The study of more advanced attack
models is an interesting topic for future work. We show that
during the first phase, the optimal attack strategy is to send
correlated Gaussian random signals. During the second phase,
the optimal attack strategy is to send a Gaussian jamming
signal. We then characterize the key rate that can be generated
from the fading wireless channel in the presence of an attacker
that employs the optimal attack strategy. With this approach,
Alice and Bob can establish a key over the wireless fading
channels even in the presence of an active attacker under
certain circumstances.

The remainder of the paper is organized as follows. In
Section II, we introduce the model under study. In Section III,

we develop our joint source-channel approach for the key
generation. In Section IV, we extend our protocol to the case
of an active attacker and study the corresponding performance.
Finally, we present concluding remarks and point out possible
future directions in Section V.

II. MODEL

Two terminals Alice (A) and Bob (B) wish to agree on
a key through a wireless fading channel in the presence of
an active attacker Eve (E). All three terminals can transmit
over the wireless channel. We assume that Alice and Bob are
half-duplex nodes, while the attacker is a full-duplex node.
In this paper, we assume that the goal of the attacker is to
minimize the key rate generated by Alice and Bob from the
wireless channel. The attacker can receive a noisy version of
the signal transmitted by the legitimate terminals. In addition,
it can transmit signals to contaminate the signal transmitted
by the legitimate users. In particular, if Alice transmits XA in
a given channel use, then Bob and Eve receive

YB = hABXA +XE1 +NB (1)
and YE = hAEXA +NE , (2)

respectively, in which hAB is the channel gain from Alice to
Bob, XE is the signal transmitted by the Eve, NB is zero
mean Gaussian noise with variance σ2, hAE is the channel
gain from Alice to Eve, and NE is zero mean Gaussian noise
with variance σ2. We assume that there is no fading in the links
from Eve to Alice and Bob. Alternatively, if Bob transmits XB

in a given channel use, then Alice and Eve receive

YA = hBAXB +XE2 +NA (3)
and YE = hBEXB +NE , (4)

respectively, in which hBA is the channel gain from Bob to
Alice, NA is zero mean Gaussian noise with variance σ2, and
hBE is the channel gain from Bob to Eve. We note that the
analysis can be easily carried out to the case in which the noise
variance of NA is different from that of NB . Again, XE is
the attack signal from the attacker. We assume that NA, NB

and NE are independent of each other. We note that in the
model considered in [13]–[15], YB = XE1 and YA = XE2

(i.e., if there is an active attack, the receiver receives a signal
only from the attacker).

We assume that the channel is reciprocal, that is hAB =
hBA. Due to different transmission paths, hAB is independent
of hAE and hBE . We consider an ergodic block fading
model, in which the channel gains are fixed for a block of
T symbols and change to other values at the beginning of the
next block. In this paper, we assume hAB ∼ N (0, σ2

h) and
hAE ∼ N (0, σ2

AE). We assume that none of the terminals
knows the value of the fading gains. The noise processes are
assumed to be independent and identically distributed (i.i.d.)
over channel uses and terminals.

Let XA = [XA(1), · · · , XA(N)]T and XB =
[XB(1), · · · , XB(N)]T denote codewords sent by Alice and
Bob respectively, and XE be the attack signal sent by
Eve, over N uses of the channel. Here N could be
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larger than the channel coherence time T ; that is a code-
word can span multiple coherence blocks. Let YA =
[YA(1), · · · , YA(N)]T , YB = [YB(1), · · · , YB(N)]T and
YE = [YE(1), · · · , YE(N)]T denote corresponding observa-
tions at Alice, Bob and Eve, respectively. Since we have a
half-duplex constraint on the legitimate users, YA(i) = ϕ
when XA(i) ̸= ϕ. Here ϕ denotes either no observation or
no transmission. Similarly, YB(i) = ϕ when XB(i) ̸= ϕ. To
make a fair comparison to schemes in which only one terminal
transmits, we have a total power constraint, that is

1

N
E{XT

AXA +XT
BXB} ≤ P. (5)

We also assume that the attacker has an average power
constraint PE , that is

1

N
E{XT

EXE} ≤ PE . (6)

Both Alice and Bob will generate a key based on the
sequence it sends and signals it receives from the wireless
channel. Let fA and fB denote the key generation functions
at Alice and Bob, respectively, so that KA = fA(XA,YA) and
KB = fB(XB ,YB). A key rate Rkey is said to be achievable
if for each ϵ > 0, there exists n0 such that for each N ≥ n0

we have that

Pr(KA ̸= KB) ≤ ϵ, (7)
1

N
H(KA) ≥ Rkey − ϵ, (8)

1

N
I(KA;YE ,XE) ≤ ϵ, and (9)

H(KA) ≥ log |KA| − ϵ. (10)

III. A JOINT SOURCE-CHANNEL KEY AGREEMENT
PROTOCOL

In this section, we develop a joint source-channel key
agreement protocol. Here, we assume that the eavesdropper
is passive, i.e., XE = 0. We first consider a scenario in
which there exists a public channel, through which both Alice
and Bob can exchange messages. All messages transmitted
over the public channel will be overheard by Eve noiselessly.
The scheme developed in this scenario provides insights for
a more realistic scenario in which there is no public channel
available. We then consider this more realistic model. In both
cases, key agreement schemes that benefit from both the
source model and the channel model are developed. In both
scenarios, asymptotic analyses suggest that the channel model
is asymptotically optimal as the coherence time of the channel
becomes long. On the other hand, in the high power regime,
the source model is asymptotically optimal. We also find that,
in the asymptotic regime, either in long coherence time or high
power, the achievable key rate without the public channel is
the same as that we can achieve when there is a public channel.

A. Key Agreement With a Public Channel

To assist in the presentation, we first consider a scenario in
which, in addition to the wireless channel, there is a public
channel with infinite capacity. This scenario will provide

insights for a more realistic scenario in which there is no
public channel available. Both Alice and Bob can transmit
over this public channel, and Eve can overhear any messages
exchanged over this public channel. In this scenario, the key
generation functions at Alice and Bob can also depend on
the communications that have taken place over the public
channel. Let C be the collection of messages exchanged
over the public channel; then KA = fA(XA,YA,C) and
KB = fB(XB ,YB ,C). Now, Eve observes both YE and
C, and hence we require that the mutual information between
the generated key and (YE ,C) should be small; that is

1

N
I(KA;YE ,C) ≤ ϵ.

Training: source model Transmission: channel model

Alice sends Bob sends

Fig. 1: Training based scheme.

We consider a training based scheme as shown in Figure 1.
In this training based scheme, Alice and Bob first obtain an
estimate of their channel gain through training. That is, at
the beginning of each block, Alice sends a known training
sequence to the wireless channel, Bob obtains an estimate
of the channel gain, and then Bob sends a known training
sequence to the wireless channel from which Alice obtains
an estimate of the channel gain. These two estimates will not
be the same, but will be correlated. Eve can also estimate its
channel, but the observations at Eve will be independent of
the observations at both Alice and Bob because of the inde-
pendence of the noise processes and fading gains. Then Alice
and Bob generate a key from these correlated observations
with the assistance of the public channel. After the training
phase, Alice also sends another randomly generated key using
the noisy wireless channel. Let Tτ denote the amount of time
spent on training, and let T − Tτ denote the amount of time
that is used in the second stage.

Suppose Alice sends a known sequence SA of size 1×αTτ ,
with 0 < α < 1. Bob receives

YB,τ = hABSA +NB , (11)

where NB = [NB(1), · · · , NB(αTτ )]
T . After that, Bob sends

a known sequence SB of size 1× (1−α)Tτ over the wireless
channel, and Alice receives

YA,τ = hABSB +NA, (12)

where NA = [NA(1), · · · , NA((1− α)Tτ )]
T .

Alice and Bob use YA,τ and YB,τ in the following two
ways: (1) to generate a key from these two correlated obser-
vations using the source model through the public channel;
and (2) to generate an estimate of the channel gain hAB in
the given coherence block, which will be used for the key
generation using the channel model.
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1) Key generation from the training phase: We first look
at the key generation using the source model. Alice computes
a sufficient statistic ỸA for YA,τ via

ỸA =
ST
B

||SB ||
YA,τ = hAB +

ST
B

||SB ||
NA, (13)

in which || · || denotes the norm of its argument. Similarly,
Bob computes a sufficient statistic ỸB for YB,τ via

ỸB =
ST
A

||SA||
YB,τ = hAB +

ST
A

||SA||
NB . (14)

Note that ỸA is a zero mean Gaussian random variable with
variance σ2

h+
σ2

||SB || , and similarly ỸB is a zero mean Gaussian

random variable with variance σ2
h+

σ2

||SA|| . Assuming that Alice
and Bob transmit with power Pτ during the training period,
we have ||SB || = (1− α)TτPτ and ||SA|| = αTτPτ .

We first have the following observation showing that ỸA and
ỸB retain the mutual information between YA,τ and YB,τ ;
i.e., they are sufficient for the key generation purpose.

Lemma 3.1:

I(ỸA; ỸB) = I(YA,τ ;YB,τ ). (15)

Proof: It is easy to see that the following Markovian
relationship is true:

ỸA ←→ YA,τ ←→ hAB ←→ YB,τ ←→ ỸB , (16)

which implies I(ỸA; ỸB) ≤ I(YA,τ ;YB,τ ). Similarly, from
the Markovian relationship

YA,τ ←→ ỸA ←→ hAB ←→ ỸB ←→ YB,τ , (17)

we have I(ỸA; ỸB) ≥ I(YA,τ ;YB,τ ). Hence, I(ỸA; ỸB) =
I(YA,τ ;YB,τ ).

From (ỸA, ỸB) one can generate a key with rate [12]

Rs

=
1

T
I(ỸA; ỸB) (18)

=
1

2T
log

(
(σ2 + σ2

hαPτTτ )(σ
2 + σ2

h(1− α)PτTτ )

σ4 + σ2σ2
hPτTτ

)
,(19)

in which the normalization factor 1/T comes from the fact
that the channel gain is fixed for T symbols, meaning that we
can observe only one value of (ỸA, ỸB) for every T symbols.
To generate a key with such a rate, one can use the standard
Slepian-Wolf coding scheme [12]. More precisely, for every
N symbol times, Alice has m = ⌊N/T ⌋ observations of the
random variable ỸA. Here ⌊·⌋ is the largest integer that is
smaller than its argument. These observations are collected
into a vector ỸA = [ỸA(1), · · · , ỸA(m)]T . Here, the ỸA(i)s
are independent of each other. Similarly, Bob has a vector of
observations ỸB = [ỸB(1), · · · , ỸB(m)]T . Alice randomly
divides the typical ỸA sequences into non-overlapping bins,
with each bin having 2mI(ỸA;ỸB) typical ỸA sequences. Hence,
each sequence has two indices: bin number and index within
the bin. Now, after observing the vector ỸA, Alice sets the
key value as the index of this sequence within each bin and
sends the bin number to Bob through the public channel. That
is, Alice needs to send H(ỸA|ỸB) bits of information through

the public channel. After combining the information observed
from the public channel with ỸB , it can be shown that
Bob can recover the value of ỸA with probability arbitrarily
close to 1. Then Bob can recover the value of the key. At
the same time, it can be shown that the bin number and
index within each bin are independent of each other. Hence,
even though the eavesdropper can observe the bin number
transmitted over the public channel, it learns nothing about the
generated key. We note here that the codebook information
is public, i.e., everyone including the attacker knows the
codebook information.

2) Key generation after the training phase: After the train-
ing period of Tτ symbols, Alice can send another randomly
generated key to Bob using the scheme developed for the fad-
ing eavesdropper channel [4]. More specifically, Bob obtains
a Minimum Mean Square Error (MMSE) estimate ĥAB of the
channel gain hAB in the given coherence block,

ĥAB =
σ2
h

σ2 + αPτTτσ2
h

ST
AYB,τ , (20)

and treats this as the true value of the channel gain. We can
write

hAB = ĥAB + h̄AB ,

in which h̄AB is the estimation error. It is easy to verify that
h̄AB is a zero mean Gaussian random variable with variance
σ2
h/(σ

2
hαPτTτ + σ2).

We consider a simple scheme in which Alice does not per-
form power control or rate control. Clearly, one can improve
this rate by allowing Alice to adapt her transmission scheme
based on its estimate of the channel. But this simple strategy
allows us to decouple the key generation problem in these
two stages. If Alice adapts her transmission scheme based on
its estimated channel gain, the eavesdropper might be able to
learn some information about the channel gain hAB during
the second stage, which complicates the key generation from
the source model. Alice sends a key to Bob, using a constant
power Pd. Then the following secrecy rate is achievable [4]:

Rch =
T − Tτ

T
[I(XA;YB |ĥAB)− I(XA;YE |hAE)]

+ (21)

=
T − Tτ

2T

E
log

1 +
ĥ2Pd

σ2 +
σ2
hPd

σ2
hαPτTτ+σ2


− log

(
1 +

h2
AEPd

σ2

)}]+
, (22)

in which [x]+ = max{x, 0}. Here, the first term is the rate that
Bob can decode using a mismatched decoder [22], [23]. The
second term is an upper-bound on the mutual information that
Eve can accumulate. We obtain this upper-bound by assuming
that Eve has perfect knowledge of hAE . We note here that
Alice and Bob do not need to know the instantaneous value
of hAE .

In summary, we have the following result.
Theorem 3.2: In a wireless fading channel with a public

channel, the following secret key rate is achievable using the
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training based scheme:

Rkey = max
α,Pτ ,Tτ

{Rs +Rch} (23)

s.t. TτPτ + (T − Tτ )Pd ≤ TP, (24)

in which Rs and Rch are given by (18) and (21), respectively.

One can optimize the key rate by choosing appropriate
values of α, Pτ and Tτ . If Tτ is small, one has more time
left for transmitting a key using the channel model. But the
estimates of channel gain at Alice and Bob will be coarse,
which will affect both key generation processes using the
source model and the channel model. On the other hand, if Tτ

is large, one can generate a larger key rate using the source
model, since the estimates of the channel at Alice and Bob
are more precise. But, in this case the time left for sending a
key from Alice to Bob is reduced. For general values of the
available power P and the coherence length T , it is difficult
to obtain closed form expressions for the optimal values of
α, Pτ and Tτ . In the following, we consider two asymptotic
regimes to gather insight into the behavior of these quantities.

1) Long coherence time regime, in which T →∞.

We have the following inequalities, which can be verified
easily:

Rs

≤ max
α,Pτ ,Tτ

1

2T
log

(
(σ2 + σ2

hαPτTτ )(σ
2 + σ2

h(1− α)PτTτ )

σ4 + σ2σ2
hPτTτ

)
≤ 1

2T
log

(
(σ2 + 1

2σ
2
hPT )2

σ4 + σ2σ2
hPT

)
(25)

≤ 1

2T
log

(
σ2

σ2
hPT

+ 1 +
1

4σ2
σ2
hPT

)
. (26)

Thus, as T → ∞, Rs → 0. That is, in this regime,
the channel model is asymptotically optimal. As a result, to
maximize Rkey , we can choose α, Pτ and Tτ to maximize
Rch. It easy to see that we should set α = 1; that is, only
Alice sends a training sequence, since even if Bob sends a
training sequence, the key rate that we can generate from the
correlated observations will be zero.

2) High power regime, in which P →∞.

Let us examine the Rch term:

Rch (27)

= max
α,Tτ ,Pτ

T − Tτ

2T

E
log

1 +
ĥ2Pd

σ2 +
σ2
hPd

σ2
hαPτTτ+σ2


− log

(
1 +

h2
AEPd

σ2

)}]+
(28)

≤max
Pd

1

2

[
E
{
log

(
1 +

h2
ABPd

σ2

)
− log

(
1 +

h2
AEPd

σ2

)}]+
(29)

≤max
Pd

E{h2
AB≥h2

AE}

{
log

(
1 +

h2
ABPd

σ2

)
− log

(
1 +

h2
AEPd

σ2

)}
(30)

≤ E{h2
AB≥h2

AE}

{
log

(
h2
AB

h2
AE

)}
(31)

=

∫ ∞

0

log(h2
AB)f(h

2
AB)dh

2
AB

−
∫ ∞

0

∫ h2
AB

0

log(h2
AE)f(h

2
AE)f(h

2
AB)dh

2
ABdh

2
AE (32)

≤
∫ ∞

0

h2
ABf(h

2
AB)dh

2
AB

−C1

∫ 1

0

log(h2
AE)f(h

2
AE)dh

2
AE (33)

≤ E{h2
AB}+ C1C2, (34)

in which C1 = sup f(h2
AB) and C2 = sup f(h2

AE), and the
last equation is due to the fact that∣∣∣∣∫ 1

0

log xdx

∣∣∣∣ = 1.

Hence, the Rch term is bounded by a constant when P
increases. On the other hand, it is easy to see that the Rs

term increases with P . Thus, in the high power regime,
the source model is asymptotically optimal. As a result, in
order to maximize the key rate, we choose the parameters to
maximize Rs. Simple calculation shows that the optimal value
parameters are α = 1/2, Pτ = P and Tτ = T . As a result,

Rkey ∼
1

2T
logP.

Hence, in the high power regime, if the coherence time is
fixed, the secrecy rate increases logarithmically with P .

B. Key Agreement Without a Public Channel

In this section, we study a more realistic scenario in which
there is no public channel available. Similarly to the develop-
ment in Section III-A, we consider a training based scheme,
in which both Alice and Bob send training sequences over the
wireless channel during the training period. Then, Alice and
Bob generate a key from the correlated observations using the
source model. Alice also sends another randomly generated
key to Bob after the training period using the channel model.
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Hence, the total key rate that can be generated from the
wireless channel is the sum of the two key rates.

If there is no public channel, the key generation problem
using the channel model is the same as that of Section III-A,
since no public resources were used. On the other hand,
due to the absence of the public channel, the key generation
process from the correlated observations should be revised.
As discussed in Section III-A, to generate a key with a rate
of I(ỸA; ỸB)/T from the correlated estimates of the channel
gain, Alice needs to send H(ỸA|ỸB) bits of information (more
precisely, the bin number of its observations) to Bob. Since
ỸA and ỸB are continuous random variables, H(ỸA|ỸB) is
infinite. If there is a public channel with infinite capacity, this
is not an issue. If there is no public channel, one has to send
the bin number over the wireless channel. Since the wireless
channel has limited capacity, the key rate that one can generate
from these correlated observations is less than I(ỸA; ỸB)/T .

The problem of key generation from correlated sources
through a public channel with limited capacity has been
studied in [24]. More precisely, if the public channel has a
rate constraint R, then the following secret key rate can be
generated from the correlated observations (ỸA, ỸB):

Rs = I(U ; ỸB) (35)
s.t. U → ỸA → ỸB , (36)
and I(U ; ỸA)− I(U ; ỸB) ≤ R, (37)

where U is an auxiliary random variable subject to the Markov
chain relationship given to it in (16).

Furthermore, this rate can be achieved by sending from
Alice only. Roughly speaking, we generate 2mI(U ;ỸA) typ-
ical U sequences. We then divide these typical sequences
into bins, each bin containing 2mI(U ;ỸB) sequences. Hence,
each Um sequence can be specified by two indices: the bin
number (ranging from 1 to 2m(I(U ;ỸA)−I(U ;ỸB))), and the
index of the sequence within each bin. Now, after observing
ỸA = [ỸA(1), · · · , ỸA(m)]T , Alice finds a Um sequence that
is jointly-typical with ỸA. (This step will be successful with
very high probability.) Alice sets the key value as the index
of the sequence in the bin and sends the bin number to Bob,
which requires a rate of I(U ; ỸA) − I(U ; ỸB). This rate can
be accommodated by the public channel since the capacity of
the public channel is larger than this rate requirement. After
receiving the bin number, Bob obtains an estimate Ûm by
looking for a unique sequence in the bin specified by the bin
number that is jointly typical with its observation ỸB . Ûm

will be equal to Um with probability 1, thus Bob can then
recover the key value.

Now, if we do not have a public channel at our disposal,
we can use the wireless channel after the training stage to
send the bin number needed for the key generation from the
correlated observations. In Section III-A, we use the wireless
channel after the training stage to send another randomly
generated key from Alice to Bob using the wiretap channel
model. One important observation is that in a code for the
wiretap channel, one needs to use randomization. Roughly
speaking the randomization rate is the same as the mutual
information between Alice and Eve. In the coding scheme

used in Section III-A, this randomization rate does not con-
vey any information, although Bob is able to decode these
randomization bits. Hence, the basic idea here is that instead
of randomly generating randomization bits, we use the bin
number to specify the random bits. In this way, we can use
the wireless channel after the training phase to send a new key
and the bin number simultaneously.

In our scheme, we set U = ỸA + Z, in which Z is a
zero mean Gaussian random variable with variance σ2

z and
is independent of other random variables considered in this
paper. The variance is chosen to satisfy the condition that the
wireless channel is able to support the rate of the helper data
necessary for the key generation from the correlated noisy
observations. It is easy to check that U → ỸA → ỸB . In
this case, the key rate one can generate from the correlated
observations is

2TRs = 2I(U ; ỸB) (38)

= log

 (σ2
h + σ2

(1−α)PτTτ
+ σ2

z)(σ
2
h + σ2

αPτTτ
)

(σ2
h + σ2

(1−α)PτTτ
+ σ2

z)(σ
2
h + σ2

αPτTτ
)− σ4

h

 .(39)

To achieve this rate, one needs to transmit at rate
1

T
(I(U ; ỸA)− I(U ; ỸB)) (40)

=
1

2T
log

(
1 +

σ2
hσ

2

σ2
z(σ

2 + σ2
hαPτTτ )

+
σ2

σ2
z(1− α)PτTτ

)
(41)

over the wireless channel. Hence, the value of σ2
z should be

chosen carefully.
Theorem 3.3: Using a fading wireless channel without a

public channel, a key rate of

Rkey = max
α,Pτ ,Tτ

{Rs +Rch} , (42)

is achievable. Here, we require that

PτTτ + (T − Tτ )Pd ≤ PT. (43)

At the same time, Rch and Rs are given in (21) and (38),
respectively, and σ2

z should be chosen to satisfy the following
condition:

I(U ; ỸA)− I(U ; ỸB)

T − Tτ
≤ (44)

min

E

log

1 +
ĥ2Pd

σ2 +
σ2
hPd

σ2
hαPτTτ+σ2

 , (45)

E
{
log

(
1 +

h2
AEPd

σ2

)}}
. (46)

Similarly to the situation in Section III-A, for general values
of the available power P and the coherence length T , it is
difficult to obtain closed form expressions for the optimal
values of these parameters. In the following, we again consider
two asymptotic regimes to gather insight.

1) Long coherence time regime, in which T →∞.
We first look at the Rs term. For any values of Pτ , Tτ and

α, a simple calculation shows that

dRs

dσ2
z

< 0. (47)
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Hence

2TRs ≤

max
α,Tτ ,Pτ

log

 (σ2
h + σ2

(1−α)PτTτ
+ σ2

z)(σ
2
h + σ2

αPτTτ
)

(σ2
h + σ2

(1−α)PτTτ
+ σ2

z)(σ
2
h + σ2

αPτTτ
)− σ4

h


≤ max

α,Tτ ,Pτ

log

 (σ2
h + σ2

(1−α)PτTτ
)(σ2

h + σ2

αPτTτ
)

(σ2
h + σ2

(1−α)PτTτ
)(σ2

h + σ2

αPτTτ
)− σ4

h


≤ log

(
σ2

σ2
hPT

+ 1 +
1

4σ2
σ2
hPT

)
. (48)

Thus, as T → ∞, Rs → 0. As a result, in this regime, the
channel model is asymptotically optimal. The Rch term is the
same as that of the scenario with a public channel. Hence in
the long coherence time regime, the key rate is the same as
that of the scenario with a public channel.

2) High power regime, in which P →∞.
We can bound the Rch term in the same manner as that of

Section III-A. Hence, in the high power regime, the source
model is asymptotically optimal. In the following, we study
how Rs scales as P increases. From Section III-A, we know
that if there is a public channel with infinite capacity, Rs

scales logarithmically with P . Hence, in the absence of the
public channel, Rs scales at most logarithmically with P . In
the following, we show that Rs indeed scales logarithmically
with P . We set Pτ = P , Pd = P , Tτ = T/2 and α = 1/2.
Note that these parameters are not necessarily optimal.

Note that in the high power regime,

E
{
log

(
1 +

h2
AEPd

σ2

)}
.
= logP, (49)

E

log

1 +
ĥ2Pd

σ2 +
σ2
hPd

σ2
hαPτTτ+σ2

 .
= logP. (50)

Hence, if we choose σ2
z = P−2, (44) will be satisfied. Now,

we substitute these choices of parameters into (38) and obtain

Rs =
1

2T
log

(
(σ2

h + 4σ2

PT + P−2)(σ2
h + 4σ2

PT )

(σ2
h + 4σ2

PT + P−2)(σ2
h + 4σ2

PT )− σ4
h

)
(51)

∼ 1

2T
logP. (52)

Hence, Rkey ∼ 1
2T logP in the high power regime, which is

the same as that in the case with a public channel.

IV. KEY AGREEMENT WITH THE PRESENCE OF AN
ACTIVE ATTACKER

In this section, we extend the key generation approach
developed in Section III to the case of an active attacker
who can send attack signals to minimize the key rate. We
first investigate the attacker’s optimal attack strategy to this
protocol. We then evaluate the key rate that can be generated
under this active attack model. In this section, we consider
only the more practical model in which there is no public
channel.

A. Training Phase

As shown in Figure 1, our key generation protocol has two
phases: a training phase and a transmission phase. The active
attacker can initiate an attack during both these two phases.
We first characterize the attacker’s optimal strategy for the
training phase.

Suppose Alice sends a known sequence SA of size 1×αTτ ,
with 0 < α < 1 during the training stage, then Bob receives

YB,τ = hABSA +XE1 +NB , (53)

where NB = [NB(1), · · · , NB(αTτ )]
T . After that, Bob sends

a known sequence SB of size 1× (1−α)Tτ over the wireless
channel, and Alice receives

YA,τ = hABSB +XE2 +NA, (54)

where NA = [NA(1), · · · , NA((1− α)Tτ )]
T .

Following the protocol discussed in Section III, Alice com-
putes a statistic ỸA for YA,τ via

ỸA =
ST
B

||SB ||
YA,τ = hAB +

ST
B

||SB ||
(XE1 +NA), (55)

in which || · || denotes the norm of its argument. Similarly,
Bob computes a statistic ỸB for YB,τ via

ỸB =
ST
A

||SA||
YB,τ = hAB +

ST
A

||SA||
(XE2 +NB). (56)

We use Γ1 to denote ST
BXE1/||SB ||, N1 to denote

ST
BNA/||SB ||, Γ2 to denote ST

AXE1/||SA||, and N2 to de-
note ST

ANB/||SA|| respectively. Hence, (55) and (56) can be
rewritten as

ỸA = hAB + Γ1 +N1, (57)
ỸB = hAB + Γ2 +N2. (58)

If the attacker is passive, as discussed in Section III, ỸA and
ỸB are jointly Gaussian random variables. However, when the
attacker is active, the statistics of these two random variables
depend on the attacker’s strategy. Alice and Bob will generate
a key from these two correlated observations. As will be clear
in the sequel, our protocol will generate a key from (ỸA, ỸB)
with a rate

Rs =
1

T
(I(ỸA + Z; ỸB)− I(ỸA + Z; Γ1,Γ2)). (59)

Here Z is a zero mean Gaussian random variable with variance
σ2
z , and is independent of other random variables of interest in

the paper. The normalization factor 1/T comes from the fact
that the channel gain is fixed for T symbols, meaning that we
can observe only one value of (ỸA, ỸB) for every T symbols.
Roughly speaking, I(ỸA+Z; ỸB) is the common randomness
that both Alice and Bob share, and I(ỸA + Z; Γ1,Γ2) is the
amount of information that Eve knows about the value of
ỸA + Z. This is due to the fact that both ỸA and ỸB are
related to the signal transmitted by Eve. Hence, the attacker
will design its attack signal such that the mutual information
between the observations at Alice and Bob is small, while the
mutual information between the observations at Alice and the
attack signal at Eve is large.
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At the same time, Bob obtains a Minimum Mean Square
Error (MMSE) estimate ĥAB of the channel gain hAB in the
given coherence block. ĥAB will be treated as the true value
of the channel gain in the second phase of the key agreement
protocol. We can write hAB = ĥAB + h̄AB , in which h̄AB is
the estimation error. As will be clear in the sequel, the rate
of the key that can be generated using our protocol depends
on the variance of h̄AB , which will be denoted by σ2

est. The
larger the variance, the smaller the rate of the key.

Hence, the attacker needs to design its attack signal XE1

and XE2 to simultaneously maximize σ2
est and minimize Rs.

First, it is clear that the attacker should set E{Γ1} = E{Γ2} =
0. Assuming that Alice and Bob transmit with power Pτ

during the training period, we have ||SB || = (1−α)TτPτ and
||SA|| = αTτPτ . Also, assuming that the attacker transmits
at a power PE1 for XE1 and PE2 for XE2 respectively, then
Var{Γ1} = σ2

1 = PE2/Pτ and Var{Γ2} = σ2
2 = PE1/Pτ .

Assuming that the correlation coefficient between Γ1 and Γ2

is ρ, we need to characterize the distribution of (Γ1,Γ2) that
the attacker will adopt to maximize σ2

est and minimize Rs.
Theorem 4.1: Choosing (Γ1,Γ2) to be jointly Gaussian si-

multaneously minimizes Rs and maximizes σ2
est. Furthermore,

the optimal correlation coefficient between Γ1 and Γ2 is given
by

ρopt =

{
− σ2

h

σ1σ2
, if σ2

h ≤ σ1σ2

−1, otherwise.
(60)

Proof: First, from [25], we know that to maximize σ2
est,

one should use the Gaussian distribution. That is choosing
the probability density function (PDF) of Γ2 to be N (0, σ2

2)
maximizes σ2

est.
Next, we characterize the optimal distribution of (Γ1,Γ2)

that minimizes Rs. We can rewrite Rs as follows:

TRs

= I(ỸA + Z; ỸB)− I(ỸA + Z; Γ1,Γ2) (61)
= h(ỸA + Z)− h(ỸA + Z|ỸB)− h(ỸA + Z)

+h(ỸA + Z|Γ1,Γ2) (62)
= −h(ỸA + Z|ỸB) + h(hAB + Γ1 +N1 + Z|Γ1,Γ2)(63)
= −h(ỸA + Z|ỸB) + h(hAB +N1 + Z). (64)

The only term in (64) that the attacker can control is the
conditional entropy h(ỸA + Z|ỸB). Hence, to minimize Rs,
the attacker will choose its attack strategy to maximize h(ỸA+
Z|ỸB). Similar to [26], we have

h(ỸA + Z|ỸB) = h(ỸA + Z − cỸB |ỸB) (65)
(a)

≤ h(ỸA + Z − cỸB) (66)
(b)

≤ 1

2
log(2πeσ2

e). (67)

The equalities in (a) and (b) will hold, if c = σAB/σ
2
ỸB

and
(ỸA + Z, ỸB) are jointly Gaussian. Here σAB = E{(ỸA +
Z)ỸB} = σ2

h + ρσ1σ2, and σ2
ỸB

= σ2
h + σ2

2 + σ2/(αPτTτ ).
This is due to the fact that if (ỸA+Z, ỸB) are jointly Gaussian,
then equality in (b) holds. Furthermore, if (ỸA + Z, ỸB) are
jointly Gaussian and c is chosen in this manner, ỸA+Z−cỸB

will be independent of ỸB and thus equality in (a) holds. In
this case

σ2
e = E{(ỸA + Z − cỸB)

2} (68)

=

(
σ2
h + σ2

1 +
σ2

(1− α)PτTτ

)
− (σ2

h + ρσ1σ2)
2

σ2
h + σ2

2 + σ2/(αPτTτ )
.

To make (ỸA + Z, ỸB) jointly Gaussian, (Γ1,Γ2) should
be jointly Gaussian. Combined with the fact that choosing
Γ2 to be Gaussian maximizes σ2

est, we know that choosing
(Γ1,Γ2) to be jointly Gaussian simultaneously minimizes Rs

and maximizes the variance of h̄AB .
Since only Rs depends on ρ, the attacker should choose ρ

to minimize Rs, which is equivalent to maximizing σ2
e in (68).

It is easy to see from (68) that

ρopt =

{
− σ2

h

σ1σ2
, if σ2

h ≤ σ1σ2

−1, otherwise.
(69)

Hence, during the training stage, the attacker should adopt
a correlated jamming attack with ρopt given in (60).

B. Key Generation Phase

As discussed in Section III, after the training period of Tτ

symbols, Alice will send two pieces of information to Bob
via the wireless channel: 1) the information needed to distill a
key from the correlated estimations (ỸA, ỸB) obtained in the
first phase, which is public information and does not need to
be kept secure, and 2) a new randomly generated key with a
rate Rch, which needs to be kept secure from the attacker. The
total key rate will be Rch +Rs.

1) Key generation from the correlated observations: We
first look at the key distillation part, in which we generate
a key from the correlated observations (ỸA, ỸB). Compared
with the scenario discussed in Section III-B, the attacker now
possesses observations (Γ1,Γ2) that are correlated with the
observations (ỸA, ỸB) at the legitimate users. The problem of
key generation from correlated sources through a channel with
limited capacity has been studied in [24]. More precisely, if
the channel has a rate constraint R, then the following secret
key rate can be generated from the correlated observations
(ỸA, ỸB) with Eve observing (Γ1,Γ2) [24]:

R∗
s =

[
I(U ; ỸB)− I(U ; Γ1,Γ2)

]+
(70)

s.t. U → ỸA → ỸB , (71)
and I(U ; ỸA)− I(U ; ỸB) ≤ R, (72)

where U is an auxiliary random variable subject to the Markov
chain relationship given to it in (71).

More precisely, for every N symbol times, Alice has
m = ⌊N/T ⌋ observations of the random variable ỸA. We
call these N symbols a group. Here ⌊·⌋ is the largest integer
that is smaller than its argument. These observations are
collected into a vector ỸA = [ỸA(1), · · · , ỸA(m)]T . Here,
the ỸA(i)’s are independent of each other. Similarly, Bob
has a vector of observations ỸB = [ỸB(1), · · · , ỸB(m)]T .
Furthermore, this rate can be achieved by sending from Alice
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only. Roughly speaking, we generate 2mI(U ;ỸA) typical U
sequences. We then divide these typical sequences into bins,
each bin containing 2mI(U ;ỸB) sequences. Hence, each Um

sequence can be specified by two indices (i, j) with i being
the bin number (ranging from 1 to 2m(I(U ;ỸA)−I(U ;ỸB))), and
j being the index of the sequence within each bin. Now, after
observing ỸA = [ỸA(1), · · · , ỸA(m)]T , Alice finds a Um

sequence that is jointly-typical with ỸA. (This step will be
successful with a probability very close to one.) Alice sets the
key value as the j mod 2mI(U ;Γ1,Γ2), and sends the value of
i to Bob, which requires a rate of I(U ; ỸA)− I(U ; ỸB). After
receiving the bin number i, Bob obtains an estimate Ûm by
looking for a unique sequence in the bin specified by the bin
number that is jointly typical with its observation ỸB . Ûm

will be equal to Um with probability 1, thus Bob can then
recover the key value by setting it as ĵ mod 2mI(U ;Γ1,Γ2). In
our protocol, we adopt a simple strategy and set U = ỸA+Z,
with Z being N (0, σ2

z) and independent of other random
variables of interest. Hence, the key rate that can be generated
from the correlated observations is Rs = R∗

s/T . Again, the
normalization term 1/T comes from the fact that we have one
observation for every T seconds. To generate this, we need
to transmit the bin number i over the wireless channel, which
requires a rate of R = [I(U ; ỸA)− I(U ; ỸB)]/T .

2) Key generation from the channel: Now, we look at how
to send a newly generated key over the wireless channel. There
are two main difference from that of Section III-B: 1) the
channel estimation is more coarse due to the attack in the
channel estimation stage; and 2) the attacker will send attack
signal in this stage.

More specifically, Bob still obtains an MMSE estimate ĥAB

of the channel gain hAB in the given coherence block,

ĥAB =
σ2
h

σ2 + σ2
2 + αPτTτσ2

h

ST
AYB,τ . (73)

Bob will treat this as the true value of the channel gain. We can
write hAB = ĥAB+h̄AB , in which h̄AB is the estimation error.
h̄AB is a zero mean Gaussian random variable with variance

σ2
h/(σ

2
hαPτTτ + σ2 + σ2

2).

Now, when Alice transmits, Bob and Eve receive

YB = ĥABXA + h̄ABXA +XE +NB , (74)
and YE = hAEXA +NE . (75)

Eve will choose attack signal XE to minimize Rch specified
by (21), which we reproduce here for the easiness of presen-
tation:

Rch =
T − Tτ

T
[I(XA;YB |ĥAB)− I(XA;YE |hAE)]

+. (76)

Obviously, the attacker will design XE such that
I(XA;YB |ĥAB) is minimized. Since the attacker receives
YE which is correlated with XA, the attacker can design XE

based on its knowledge of XA.
To characterize the attacker’s optimal attack strategy, we

need a result from [27]. The result says that if hAB is inde-
pendent of XA in the system and XA is Gaussian, then even if
Eve knows XA completely, the optimal attack strategy of the

Eve is to send i.i.d. Gaussian noise that is independent of XA.
When one tries to use this result, caution should be exercised
to satisfy this condition. As discussed in Section III-B, XA

contains two pieces of information: the number of the bin
to which the channel gain belongs, and the newly generated
key. That is XA is specified by the bin number i, which
contains some information about the channel gain hAB . We
can overcome this issue by using the scheme illustrated in
Figure 2. More specifically, as discussed in Section IV-B1, we
divide the time into groups, each containing N symbol times
(i.e., m fading blocks). In group k, Alice collects a vector
of channel observations ỸA, and determines the bin number
ik of this vector. Instead of transmitting ik to Bob using the
wireless channel during the kth group (which will introduce
correlation between the channel gain and the codeword sent
over the channel), we will transmit ik over the k+1th block.
With this idea, we can use the result of [27] and know that
the optimal strategy of the attacker is to send i.i.d. Gaussian
noise.

group k

fb 1

Channel observations 

of group k

group k+1

Channel observations 

of group k+1

fb m fb 1 fb m

bin number

Fig. 2: A scheme to avoid correlation between the channel
gain and the transmitted codeword.

Suppose the power used by Alice and Eve during this stage
are Pd and PE3 respectively, then (76) is

Rch =
T − Tτ

2T

[
E

{
log

(
1 +

ĥ2Pd

σ2 + PE3 + σ2
est

)
(77)

− log

(
1 +

h2
AEPd

σ2

)}]+
. (78)

In summary, we have the following.
Theorem 4.2: Using a fading wireless channel, a key rate

of

Rkey = min
PE1,PE2,PE3

max
α,Pτ ,Tτ

{Rs +Rch} , (79)

is achievable. Here, we require that

PτTτ + Pd(T − Tτ )≤PT, (80)
PE1αTτ + PE2(1− α)Tτ + PE3(T − Tτ )≤PET. (81)

At the same time, σ2
z should be chosen to satisfy the following

condition:

I(U ; ỸA)− I(U ; ỸB)

T − Tτ
≤ (82)

min

{
E

{
log

(
1 +

ĥ2Pd

σ2 + PE3 + σ2
est

)}
, (83)

E
{
log

(
1 +

h2
AEPd

σ2

)}}
. (84)
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V. CONCLUSIONS

In this paper, we have developed a joint source-channel ap-
proach for key agreement over wireless channels that combines
benefits of existing models. We have shown that in general,
one can increase the key rate by using both the channel model
and the source model. We have further shown that in the long
coherence time regime, the channel model is asymptotically
optimal. On the other hand, we have shown that in the high
power regime, the source model is asymptotically optimal. We
have further extended the protocol to the scenario with an
active attacker. We have characterized the attacker’s optimal
attack strategy to the adopted key agreement protocol. We have
also quantified the rate of the key that can be generated under
this attack strategy. We have shown that, unlike the situation
in wireline communications, one can generate a key with a
nonzero rate over unauthenticated wireless fading channels.

In terms of future research, it will be interesting to extend
our study to the multiple antennas case. It is also important
to study the arbitrary channel model in which the adversary
is more powerful. It is also of interest to study the scenarios
in which the attackers have objectives other than minimizing
key rate.
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