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Abstract

Combinatorial sensor arrays, such as the olfactory system, can detect a large number of analytes using a relatively small
number of receptors. However, the complex pattern of receptor responses to even a single analyte, coupled with the non-
linearity of responses to mixtures of analytes, makes quantitative prediction of compound concentrations in a mixture a
challenging task. Here we develop a physical model that explicitly takes receptor-ligand interactions into account, and apply
it to infer concentrations of highly related sugar nucleotides from the output of four engineered G-protein-coupled
receptors. We also derive design principles that enable accurate mixture discrimination with cross-specific sensor arrays. The
optimal sensor parameters exhibit relatively weak dependence on component concentrations, making a single designed
array useful for analyzing a sizable range of mixtures. The maximum number of mixture components that can be
successfully discriminated is twice the number of sensors in the array. Finally, antagonistic receptor responses, well-known
to play an important role in natural olfactory systems, prove to be essential for the accurate prediction of component
concentrations.
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Introduction

Mammalian and insect olfactory systems are capable of

recognizing tens of thousands of odors – mostly organic

compounds with diverse chemical structures and properties [1–

4]. The olfactory tasks commonly faced by such systems include

detecting odors, estimating their strength, identifying their source,

and recognizing one specific odor in the background of another

[5]. The sense of smell exhibits amazing sensitivity and

discriminatory power, distinguishing between closely related

compounds and detecting vanishingly small odorant concentra-

tions [6]. Olfactory signaling is mediated by a superfamily of

several hundred G-protein-coupled receptors (GPCRs) – a

significant fraction of the total number of genes in many higher

eukaryotes [7–11]. In mammals, GPCRs are located on the

surfaces of the cilia projected from olfactory sensory neurons;

typically receptors of only one type are expressed in a given

neuron [12]. Odor recognition is combinatorial, with one odorant

activating multiple receptors and one receptor responding to

multiple odorants [12–16]. The resulting complex patterns of

receptor activation enable robust identification of many more

odors than would have been possible with ‘‘lock and key’’

receptors reacting to only one analyte. Moreover, several studies

provide evidence for widespread inhibitory responses in which

receptors are antagonized by odorants [14,15,17–20].

The idea of combinatorial recognition has been adapted to

artificial arrays in which multiple sensors with partially overlap-

ping selectivities respond to a given analyte [21–24]. While the

output of these cross-specific arrays in response to single

compounds can generally be interpreted through pattern recog-

nition algorithms [24–27], computational analysis becomes more

difficult when the array is presented with a mixture of compounds.

Indeed, the non-linear nature of sensor responses to multiple

ligands makes it hard to train discriminatory algorithms on a

‘‘typical’’ subset of patterns. The non-linear dependence of sensor

output on ligand concentrations is generic in reporter systems and

may be compounded by potential binding interference of the two

ligands, saturation of the sensor output [28] and, of particular

concern, potential antagonistic action of one ligand on another’s

activity [19]. As a result, responses to complex mixtures have

primarily been used to ‘‘fingerprint’’ specific mixtures rather than

identify their constituents quantitatively [29–32]. There are

relatively few studies which focus on the quantitative analysis of

mixtures: for example, Heilig et al. used a single sensor and

Fourier transformation techniques to analyze a binary mixture of

CO and NO2 [33], White et al. trained artificial neural networks

to identify relative concentrations in binary mixtures [34], and

Woodka et al. used a non-negative least squares method to

quantify the composition of analyte mixtures with up to five

components [35].
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Here we describe a physical model of receptor-ligand

recognition that explicitly relates observed response patterns to

component concentrations and receptor properties, making it

easier to quantify mixture constituents. We use Bayesian inference

to predict absolute concentrations of each ligand in arbitrary

mixtures of uridine diphosphate (UDP) sugar nucleotides applied

to a combinatorial array of four GPCRs. Furthermore, we develop

a universal metric of receptor array performance, and use it to

study the fundamental limits imposed on the accuracy of ligand

recognition by the physics and biology of receptor-ligand

interactions. Finally, we provide design guidelines for constructing

cross-specific arrays optimized for mixture recognition, and

demonstrate that inhibitory responses are essential for simulta-

neous detection of all components in a complex mixture.

Results

Biological implementation of the sensor array
Our sensor array is comprised of four engineered receptors (L-3,

H-20, K-3 and 2211) with distinct but overlapping specificities for

four types of nucleotide sugars: UDP-glucose (UDP-Glc), UDP-

galactose (UDP-Gal), UDP-glucosamine (UDP-GlcNAc) and

UDP. The receptors were evolved in vitro from the human UDP-

glucose receptor using directed mutagenesis of the residues

involved in ligand binding (see Materials and Methods) [36].

Nucleotide sugars and their derivatives are key constituents in

polysaccharide synthesis and other cellular processes. Their

structural similarity makes them a challenging target for array-

based discriminatory analysis. To assess receptor-ligand interac-

tions quantitatively in our sensor array, we functionally expressed

the receptors in S.cerevisiae. To do so, we replaced the yeast

pheromone receptor with one of the sensor GPCRs in strains in

which the pheromone response pathway was modified to respond

to the heterologous receptor by inducing transcription of the E. coli

lacZ gene [37]. In this fashion, the extent of GPCR activation

following ligand addition could be directly monitored as the level

of b{galactosidase produced in the cell, which we measured

using a fluorescence-based assay (Materials and Methods).

Applying a mixture of nucleotide sugars to the receptor array

yields a complex pattern of responses of the four receptor-bearing

strains. The response of each receptor depends on the concentra-

tion of all components in the mixture, on the receptor-ligand

binding affinities, and on the efficacy with which each ligand

activates the receptor. Nonetheless, the contents of arbitrary

nucleotide sugar mixtures can be deciphered using array readout

as input to a physical model of receptor-ligand interactions.

Physical model of the sensor array
Single-receptor, single-ligand model. We start with the

simplest case in which a receptor interacts with a single ligand. We

assume that the observed signal in our receptor-bearing reporter

strain is proportional to the probability that the receptor is bound

by the ligand. This proportionality value, A, which we refer to as

the receptor efficacy, can range from 1, for a full agonist, to 0, for a

full antagonist. Thus, for a single receptor interacting with a single

ligand, the amount of activation of the reporter in the receptor-

bearing strain is given by Eq. (1) (Materials and Methods).

Reporter activation measurements as a function of single ligand

concentration are shown in Fig. S1a. We use these data to

estimate the parameters of Eq. (1) (Fig. 1a) and the amount of

experimental noise ~ss for each single-receptor, single-ligand

combination using Bayesian inference with nested sampling [38]

(Materials and Methods). The most likely values of the

parameters (Table S1) are then used for subsequent evaluation of

mixtures of compounds. The accuracy of parameter predictions

depends on the range of concentrations available for these

calibration experiments (Fig. S2) and on the amount of

experimental noise (Fig. S3).

Multiple-receptor, multiple-ligand model. Once all

receptor-ligand interaction parameters have been determined

through the analysis of single-ligand calibration experiments, we

can proceed to interrogating mixtures of ligands with receptor

arrays. In considering the response of receptor-bearing strains to

ligand mixtures, we note that each ligand contributes to the overall

receptor occupancy and that each receptor molecule on the cell

surface activates the reporter with an efficacy specified by the

ligand to which it is bound, which is often different for different

ligands (Table S1). Assuming that all ligands bind competitively

to the same site on the receptor, we model the response of the

receptor-bearing strain to mixtures of compounds by calculating

the total intensity as a sum of fractional occupancies of the

receptor by each ligand weighted by the corresponding efficacies

(Eq. (6)). We treat each of the receptor-bearing strains with an

unknown mixture, sequentially diluted to provide a series of

samples across a million-fold range of concentrations (Fig. S1b).

We carry out Bayesian inference for the entire receptor array,

predicting the total concentration of all ligands and the

concentration ratios of ligand pairs (Fig. 1b). From these values

we can deduce the absolute concentration of each ligand in the

mixture.

Tests of the physical model of mixture recognition. We

have tested our approach using a series of assays in which a known

combination of ligands was applied to the receptor-bearing strains.

As an initial test, we mixed equal proportions of two, three and four

ligands in all possible combinations and predicted absolute ligand

concentrations. We used a model in which four ligands interacted

with four receptors, even if only one, two or three ligands were

actually present in the mixture. As can be seen in Fig. 2 and Table
S2, our approach is generally quite successful in identifying both

zero and non-zero ligand concentrations in the mixtures. For

example, with single ligands and binary mixtures the correct

chemical or pair of chemicals is predicted to have the highest

Author Summary

Mammalian and insect olfactory systems are combinatorial
in nature - instead of activating a single specialized
receptor, each analyte invokes a complex pattern of
responses across the receptor array. The advantage of
such systems lies in their ability to detect a large number
of analytes with a relatively small number of receptors.
However, the complexity of array responses to mixtures of
analytes makes quantitative prediction of component
concentrations a challenging task. Here we show that
combinatorial output from an array of four engineered G-
protein-coupled receptors can be used to predict the
concentration of each component in mixtures of highly
related sugar nucleotides. We employ a physical model of
ligand-receptor interactions and carry out Bayesian anal-
ysis of the array output. Furthermore, our in silico designs
of receptor arrays reveal that antagonistic responses, in
which the receptor is bound by the ligand but there is no
downstream reporter activity, are necessary for precise
recognition of mixture components. This conclusion
provides a rationale for the widespread inhibitory respons-
es observed in olfactory systems. Our methodology can be
employed with both biological systems and artificial
receptor arrays (‘‘electronic noses’’) designed for various
industrial needs.

Analysing Mixtures of Chemicals with Sensor Arrays
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concentrations in all 10 cases. However, the inference is consistently

less accurate with UDP-containing mixtures, due in part to larger

errors in the predicted total concentration. Thus UDP-related

efficacies and binding free energies are less optimal than those of

other ligands, as will be demonstrated in detail below.

Our second test involved combining UDP-Glc and UDP-Gal in

several unequal proportions and applying the resulting mixture to

the four-receptor array (Fig. 3, Table S3). As before, we use a

four-ligand model, which should predict zero concentrations

for UDP-GlcNAc and UDP. The predicted values of a1~

½UDP{Glc�=½UDP{Gal� show that the ratio of [UDP-Glc] to

[UDP-Gal] is successfully ranked in all cases except for the 60/40

and 40/60 mixtures. Apart from the excessive values of

a2~½UDP{GlcNAc�=½UDP{Gal� in the 90/10 and 80/20

cases, which are nonetheless not as large as a1, concentrations of all

ligands absent from the mixture are correctly inferred to be close to

zero. We obtain similar results with the alternative definition of a’s

(a1~½UDP{Gal�=½UDP{Glc�, etc.) (Table S4), showing that

our approach is not overly sensitive to the arbitrary definition of

relative concentrations.

Figure 1. Bayesian algorithm for predicting ligand concentrations in mixtures. (a) Calibration of the algorithm: single-ligand, single-
receptor binding curves are used to infer binding free energy DG, efficacy A and background intensity b for every receptor-ligand combination.
Histograms for each predicted parameter are based on an ensemble of 50000 models sampled by Metropolis Monte Carlo [42] starting from the log-
likelighood maximum found by nested sampling [38]. Arrows and error bars indicate the most likely value of each parameter and its standard
deviation. (b) Inference of ligand concentrations in an unknown mixture. Model parameters from (a) together with the response curves for all
receptors serve as input to the nested sampling algorithm which predicts relative concentrations ai for each component (with respect to one
arbitrarily chosen component, cf. Eq. (7)) and the total concentration log10n of all ligands in the mixture. Together these predictions yield absolute
concentrations for each constituent ligand. Histograms, arrows and error bars have the same meaning as in (a), and experimental values are shown
below each panel ([Total] = 1 mM at the reference point). For each binding curve, intensity normalized by the maximum intensity on the plate is
plotted against log10 n (n is the total ligand concentration in M).
doi:10.1371/journal.pcbi.1002224.g001

Analysing Mixtures of Chemicals with Sensor Arrays
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Increasing the number of receptors should improve prediction

accuracy by providing additional information about the mixture. To

see the extent of these improvements, we have used a variable number

of receptors to infer component concentrations in six equal-proportion

mixtures of two nucleotide sugars from Fig. 2 (Fig. 4, Fig. S4). As

expected, the errors rapidly get smaller as the number of receptors is

increased, making larger arrays unnecessary. Surprisingly, in several

cases adding extra receptors makes the errors somewhat worse before

they become better again (see e.g. the R3 and R3/R4 error bars in the

UDP+UDP-Gal a1 panel of Fig. S4), indicating that the noise in the

new data outweighs the benefit of additional measurements.

As evident from the activation profile of each receptor in

response to each ligand (Fig. S1a), the receptors differ from each

other in fairly subtle ways. In particular, different ligands do not

invoke markedly orthogonal profiles of receptor responses.

Nonetheless, even with this suboptimal array design, our algorithm

provides accurate identification of ligands present in a mixture and

a reasonable assessment of the relative amounts of each.

Optimization of sensor array performance
Hessian analysis of sensor arrays. Our Bayesian

approach estimates posterior probabilities for the concentration

of each component in an arbitrary mixture. With sufficient data,

variation of the posterior probability with model parameters is

determined by the corresponding log-likelihood (Eq. (8)), which

can be visualized as a multidimensional landscape. The global

maximum on this landscape corresponds to the model that best

describes the data, while the curvature at the maximum shows

how sensitive the likelihood is to the change in each parameter.

Narrow peaks result in precisely defined parameter values,

whereas wide plateaus yield many nearly equivalent predictions

and therefore sizable uncertainties in parameter estimates.

Expanding the log-likelihood in the vicinity of its maximum

yields a Hessian matrix (Eq. (9)), which contains information about

standard deviation si of each model parameter ci (Eq. (10)) [39].

For example, if the observed receptor response does not depend on

ci, zero entries appear in the Hessian, leading to the infinite

uncertainty si. Making all Hessian matrix elements uniformly

larger leads to the smaller si for each predicted parameter ci.

Hessian analysis relies on the quadratic expansion in the vicinity

of the log-likelihood maximum and hence it is important to check

how well it captures the behavior of the more general but

computationally intensive nested sampling approach. To create a

test case for which the answer is known, we have used Eq. (6) to

Figure 2. Prediction of ligand concentrations in equal-proportion mixtures. We used nested sampling of a four-receptor, four-ligand model
to estimate means and standard deviations for the relative concentrations of all ligands in the mixture and the total ligand concentration at the 1 mM
reference point (see Materials and Methods). These predictions were converted into absolute concentrations (mM) for each ligand at the 1 mM
reference point. L1: UDP, L2: UDP-Gal, L3: UDP-Glc, L4: UDP-GlcNAc.
doi:10.1371/journal.pcbi.1002224.g002
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generate synthetic data for 15 equal-proportion mixtures from

Fig. 2 in the low-noise limit (~ss~0:01 for all receptors, several

times smaller than experimental values from Table S1). We

observe close correspondence between parameter uncertainties

inferred from nested sampling vs. Hessian analysis (Fig. S5).

Moreover, since larger uncertainties make it easier for the average

values of predicted parameters to be incorrect, there is also

correlation between Hessian errors and the absolute differences

between mean predicted and true values (Fig. S6). The Hessian-

based approach remains useful when experimental data, for which

the precise model is unknown and the noise is substantially higher

(Table S1), is analyzed in the same way: the average over 4
correlation coefficients between Hessian errors and standard

deviations from nested sampling (computed for a1, a2, a3 and

log10 n) is 0:85, and the average over 4 correlation coefficients

between Hessian errors and absolute differences between predict-

ed and true values is 0:69. In both real and synthetic cases, the

Hessian matrix was computed with correct relative and total

concentrations and fDG,A,bg values from Table S1. We

conclude that Hessian errors are a reasonable measure of sensor

array performance.

Not all receptors are equally good candidates for inclusion into

biosensor arrays – for example, receptors with similar sets of

efficacies and binding affinities should be less useful than receptors

with more orthogonal binding and activation patterns. Here we

make such qualitative insights precise by developing a Hessian

approach to biosensor array design. That is, given a certain

number of measurements with an array of fixed size (typically, a

series in which the total concentration is changed step-by-step

within a certain range), we wish to derive the most optimal choice

of receptor properties for deciphering the mixture. From the

Hessian point of view, the best array will have the smallest errors

in predicting component concentrations (Eq. (10)). Because each

error is inversely proportional to the determinant of the Hessian,

we maximize the determinant instead of minimizing the errors

directly. Similarly to the prediction of constituent concentrations,

the maximization is carried out by nested sampling [38]. In

general, the most optimal receptor parameters and their

robustness will depend on the relative concentration of each

component in a mixture and on the number of measurements

made with the array. For example, an array fine-tuned to detect

small admixtures of compound B in the background of compound

A may function less well if the concentrations of A and B become

approximately equal.

Optimal parameters for a single receptor interacting with

a two-ligand mixture. To demonstrate our approach, we first

optimize parameters of a single receptor discriminating a mixture

of two ligands. By maximizing the determinant of the Hessian, in

this case a 2|2 matrix, as a function of two efficacies and two

binding energies, we find that the best discrimination is achieved if

one ligand acts as an agonist and the other as an antagonist: A1~1
and A2~0 or A1~0 and A2~1 (for simplicity, background

intensities were set to 0 in all sensor array designs). Although in

both cases each ligand binds strongly to the receptor, there is a

unique set of optimal binding energies DG1 and DG2 for each

agonist-antagonist scenario (Fig. 5a, Fig. S7). The actual values

of the binding energies depend on the relative concentration a; for

unequal ligand concentrations the two fDG1,DG2g sets will in

general be distinct. This is not surprising since exchanging ligand

labels amounts to exchanging relative concentrations of the agonist

and the antagonist in the mixture. The height of the peak in both

determinant landscapes is the same, indicating that the two

alternative solutions lead to equally acceptable array designs as

long as the DG’s are tuned appropriately.

The fine-tuning of binding energies is not necessary if either the

total concentration log10 n is known and the task is to minimize the

error in predicting the relative concentration a, or vice versa (Fig.
S7 and S8). The single-peak landscape structure appears only if

Figure 3. Prediction of ligand concentrations in unequal-proportion binary mixtures of [UDP-Gal] and [UDP-Glc]. We used nested
sampling of a four-receptor, four-ligand model to estimate means and standard deviations for the relative concentrations
a1~½UDP{Glc�=½UDP{Gal�, a2~½UDP{GlcNAc�=½UDP{Gal�, a3~½UDP�=½UDP{Gal� and the total concentration (M) [Total] = [UDP-
Gal]+[UDP-Glc]+[UDP-GlcNAc]+[UDP] at the 1 mM reference point (see Materials and Methods). We found that our predictions were improved if
A’s and b’s were refit to account for ‘‘plate bias’’ (cf. header of Table S4): small deviations in the values of A and b (from the standard values shown in
Table S1 and used everywhere else) between measurements 1–3 (Plate 1) and 4–6 (Plate 2).
doi:10.1371/journal.pcbi.1002224.g003
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the absolute concentrations of both components need to be

predicted together. Strikingly, simultaneous prediction of the total

and relative concentrations is impossible with the agonist-agonist

receptor response (Fig. S9, Text S1). The dependence of the

optimal binding energies on the value of a is fairly weak (Fig.
S10). Thus one set of DG’s optimized for a specific value of a
provides a near-optimal solution for a sizable range of ligand

concentrations.

Design of multiple-receptor, multiple-ligand arrays. The

agonist-antagonist pattern observed in the one-receptor, two-ligand

case plays the role of a basic building block when two or more

receptors interact with multiple ligands: nested sampling

maximization of the Hessian determinant with respect to binding

energies DG and efficacies A reveals that the array as a whole

performs best if each receptor binds one agonist and one antagonist.

For example, in the two-receptor, four-ligand case (Nrec~2,

Nlig~4) receptor 1 strongly binds ligands 1 and 3 with A1^1
and A3^0, whereas receptor 2 strongly binds ligands 2 and 4 with

A2^0 and A4^1 (Fig. 5b (i)). Each ligand preferentially binds to

only one receptor. When another receptor is added to the array, the

optimal binding and activation pattern becomes strikingly different:

each receptor once again binds both an agonist and an antagonist

but ligand 1 now acts as an antagonist to all three receptors (Fig. 5b
(ii)). Each of the other three ligands is an agonist to one of the

receptors. In the Nrec~4, Nlig~4 case each ligand is an agonist for

one receptor and an antagonist for another (Fig. 5b (iii)). Once

again, each receptor binds both an agonist and an antagonist. The

determinant of the Hessian is dominated by these agonist-antagonist

patterns, and is less sensitive to the changes in efficacies and binding

energies that do not affect them.

In the light of the observed agonist-antagonist behavior, it is not

surprising to see that each receptor can identify concentrations of

Figure 4. Inference of ligand concentrations is improved with the number of receptors interrogating the mixture. Shown on the
log-scale are means and standard deviations for a1~½UDP{Glc�=½UDP{Gal�, [Total] = [UDP-Glc]+[UDP-GlcNAc]+[UDP-Gal]+[UDP],
a2~½UDP{GlcNAc�=½UDP{Gal�, and a3~½UDP�=½UDP{Gal�. The data are for the 50-50 [UDP-Glc]-[UDP-Gal] binary mixture, leading to a1~1,
a2~a3~0, and log10½Total�~{3 at the reference point. The means and standard deviations were predicted by nested sampling using the four-ligand
model and up to four receptors: H-20 (R1), K-3 (R2), L-3 (R3), 2211 (R4).
doi:10.1371/journal.pcbi.1002224.g004
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Figure 5. Optimal design of receptor arrays. (a) Determinant of the Hessian in the one-receptor, two-ligand case, plotted as a function of
binding energies DG1 and DG2 . The binding energies at the peak are DG1~{11:45kcal=mol and DG2~{11:85kcal=mol. The efficacies are fixed at
A1~1, A2~0; a~0:25. (b) Optimal free energies DG and efficacies A obtained by maximizing the determinant of the Hessian in the (i) two-receptor,
four-ligand, (ii) three-receptor, four-ligand and (iii) four-receptor, four-ligand cases. a1~10{4,a2~0:1,a3~0:5. (c) The number of successfully
discriminated ligands increases linearly with the number of receptors: Nlig~2Nrec if the determinant of the Hessian is maximized with respect to all
binding energies DG and efficacies A (separately for each Nrec); Nlig~Nrec if all ligands are forced to be full agonists with unit efficacies. We call all
ligands successfully discriminated if s2

mv2, s2
ai
v2(Vi) in a given nested sampling run. Two alternative choices of relative concentrations: ai~1(Vi)

and ai~0:25(Vi) yielded the same linear dependence on the number of receptors. (d) Optimal DG values are shown for several cases: (i) one-
receptor, two-ligand, (ii) two-receptor, three-ligand, (iii) two-receptor, three-ligand (at a local maximum), (iv) two-receptor, four-ligand, (v) three-
receptor, four-ligand and (vi) four-receptor, four-ligand. Values in blue correspond to an efficacy of A~0 (full antagonist), while values in red
correspond to A~1 (full agonist). Nlig~2: a~0:25; Nlig~3: a1~10{4,a2~0:5; Nlig~4: a1~10{4,a2~0:1,a3~0:5. In all cases shown in (a)–(d), we
used 91 datapoints for each receptor (7 replicates with log10nl~f{3:0,{3:5, . . . ,{8:5,{9:0g).
doi:10.1371/journal.pcbi.1002224.g005

Analysing Mixtures of Chemicals with Sensor Arrays
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at most two ligands (Fig. 5c, blue dots). The uncertainty in

predicting components of the mixture is minimized if for every

receptor one ligand binds strongly as a full agonist and another as

a full antagonist. As we have seen, when receptor parameters are

less than optimal, the discrimination is still possible but additional

receptors may be required: three or four rather than two in the

four-ligand case (Fig. 4, Fig. S4). If we eliminate the agonist-

antagonist degree of freedom by setting all efficacies to 1,

discriminating Nlig requires twice as many receptors (Fig. 5c,

red dots). In this case each receptor is strongly bound by only one

ligand, measuring its concentration independently of the other

members of the array. Having access to the full range of receptor

responses makes it possible to double the number of ligands in the

mixture, but the relationship between Nrec and Nlig remains linear.

Symmetry properties of optimal sensor arrays. The

patterns shown in Fig. 5b are not unique – indeed, alternative

agonist-antagonist patterns can be generated simply by

exchanging receptor labels. Less trivially, a given ligand can be

an agonist or an antagonist for different combinations of receptors.

In the simplest case of one receptor interacting with two ligands,

this symmetry generates two equivalent global maxima discussed

above: A1~0, A2~1 and A1~1, A2~0 (Fig. 5d (i)). In the two-

receptor, three-ligand case symmetry arguments combined with

extensive sampling yield three global maxima of the Hessian

determinant. Each global maximum corresponds to the situation

where one of the three ligands acts as an antagonist to both

receptors (Fig. 5d (ii)). The red arrow in Fig. 5d (ii) indicates a

trivial exchange of receptor labels, whereas the black arrows

connect three different globally optimal solutions. In addition,

there are 9 local maxima with one of the ligands acting either as an

agonist to both receptors, or as an agonist to one receptor and an

antagonist to the other (e.g. Fig. 5d (iii); see Text S1 for a

complete enumeration).

In general, Nrec|Nlig DG’s are necessary to characterize all the

global and local peaks on the Hessian determinant landscape, with

2Nrec binding energies describing any given agonist-antagonist

pattern. The values of the binding energies depend on the

component concentrations in the interrogated mixture. In the

Nlig~2Nrec case all maxima are global and each receptor interacts

with two unique ligands. To estimate the benefit of additional

receptors, we increased the number of receptors from two to three

to four in the four-ligand case (Fig. 5d (iv), (v), (vi)). After adding

the third receptor the average uncertainty of one total and three

relative concentrations, Ss2
i T, decreased from 0:439 to 0:125.

However, only a slight gain was seen when the fourth receptor was

added, with Ss2
i T becoming 0:101. Thus adding more and more

receptors to the array yields increasingly marginal improvements

after a certain threshold.

The agonist-antagonist rules described above create readout

patterns that are not a simple sum of array responses to single-

ligand binding. For one receptor optimized to discriminate two

ligands (Fig. 5d (i)), fluorescent response to the mixture is

intermediate between full activation by the agonist and full

repression by the antagonist (Fig. S11a). This intensity modula-

tion provides enough information for decoding the contents of the

mixture. Similarly, in the two-receptor, three-ligand case (Fig. 5d
(ii)) a mixture of all three ligands induces a response with

intermediate fluorescense levels (Fig. S11b). This pattern is

distinct from those induced by single ligands and by binary

mixtures with the same relative concentrations as in the three-

ligand case.

Performance analysis and improvement of the

experimental biosensor array. The design guidelines

described above can be used to predict which parameter

changes lead to most significant improvements in performance

compared to our currently implemented array. Although we do

not have direct experimental control over the values of A and DG,

such insights are useful e.g. for choosing the best combination of

several receptors from a larger library. Familiar agonist-antagonist

patterns emerge when DG’s and A’s are optimized either

separately or together to discriminate an equal-proportion, four-

ligand mixture (Fig. S12). In particular, if A’s are kept fixed, DG’s

for the most distant pair of A’s become more favorable for each

receptor, creating an agonist-antagonist pair (Fig. S12c).

Conversely, if DG’s are fixed, the values of A corresponding to

the two lowest DG’s become more distant from each other (Fig.
S12d). Not surprisingly, the agonist-antagonist patterns are even

more pronounced if both DG’s and A’s are allowed to relax (Fig.
S12e and S12f). Because two and certainly three optimized

receptors are sufficient for discriminating four-ligand mixtures

(Fig. 5c), the fourth receptor, which does not follow the usual

pattern as strongly as the other three, appears to be superfluous.

Similarly to the cases shown in Fig. 5d, Fig. S12e and S12f
represent only one solution from a large family of local and global

maxima of the Hessian determinant, which are related by

permutations of receptor and ligand indices. Optimizing

receptor-ligand parameters leads to a sizable improvement in

array performance: with ~ss~1 for all receptors, sm~2:64,
sa1

~5:46, sa2
~16:47, sa3

~3:19 for the original array, whereas

sm~0:69, sa1
~0:68, sa2

~0:95, sa3
~0:68 for the array in which

both A’s and DG’s have been optimized.

For the experimentally implemented four-receptor GPCR array,

nested sampling errors are consistently larger when UDP is present

in the mixture (Fig. 2, Table S2). This observation is consistent

with Hessian analysis: for example, the average Hessian uncertain-

ties for three UDP-free binary mixtures are SsmT~0:77,
Ssa1

T~6:12, Ssa2
T~11:09, Ssa3

T~0:0002. For three UDP-con-

taining binary mixtures, the average Hessian errors are

SsmT~19:09, Ssa1
T~5:57, Ssa2

T~113:44, Ssa3
T~57:72 (as be-

fore, all Hessian errors are computed with correct concentrations

and ~ss~1 for all receptors). The Hessian determinants are also

consistently smaller for UDP-containing binary mixtures. These

observations indicate that UDP parameters are further away from

the optimal four-receptor array designed to analyze an equal-

proportion binary mixture: either A’s or DG’s need to be changed in

order to create stronger agonist-antagonist patterns.

Discussion

We have developed a Bayesian algorithm that allows determi-

nation of all the constituents in an unknown mixture from the

output of a cross-specific sensor array. Our algorithm employs a

physical picture of sensor-analyte interactions to model the non-

linear relationship between ligand concentrations and the reporter

response. After appropriate calibration of each sensor’s response to

each analyte of interest, the algorithm interprets the integrated

output of the entire array and, with a sufficient number of variably

tuned sensors, reliably returns the amount of each chemical in a

complex mixture.

We also provide quantitative guidelines for designing optimal

sets of sensors. Three general principles emerged from our

computational and theoretical studies of array design. First, the

optimal parameters of the sensors exhibit weak dependence on the

relative amounts of compounds in a mixture. Thus a given set of

optimal sensors will remain near-optimal through a sizable range

of ligand concentrations. Nonetheless, analyzing a mixture where

both compounds are present in roughly similar amounts is better

accomplished with a set of sensors different from those fine-tuned

Analysing Mixtures of Chemicals with Sensor Arrays
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to measure a small amount of one compound in the presence of a

large excess of the other.

Second, the maximum number of ligands in a mixture whose

levels can all be determined simultaneously is simply twice the

number of sensors in the array. This linear relationship is different

from the exponential relationship between ligands and receptors in

olfactory systems [4,12]. The problem addressed by the olfactory

system, to recognize a very large number of individual odors with a

limited repertoire of receptors, is not the same as that solved by

our algorithm, to determine all the constituents in a complex

mixture. In fact, even the most skilled human nose can

simultaneously detect and distinguish no more than a handful of

odorants.

Third, the optimum design of receptors for the array demands

that one of the ligands function as a strong agonist of a receptor

and a second ligand as a strong antagonist of that receptor.

Antagonists sharpen the discriminatory powers of the array by

heightening the differences in the receptor response to individual

compounds. As a result, a mixture of chemicals produces an array

readout which is not a superposition of responses to individual

ligands, and whose intensity pattern may be fine-tuned for

maximum recognition through receptor-ligand binding energies.

Accordingly, odors that function as antagonists to a subset of

olfactory receptors could potentially increase the discriminatory

power of the olfactory system, and in particular enable it to resolve

mixtures that contain those odors. Recent analysis of olfactory

receptors suggests that some odorants do possess antagonist

activity [14,17–20]. Our theoretical framework provides a

rationale for the existence of such antagonists and underscores

their role in both olfactory systems and artificial receptor arrays.

Materials and Methods

Targeted mutagenesis and selection of functional
receptor mutants

The L-3 mutant was isolated using a procedure similar to that

previously employed with the H-20 and K-3 mutants [36]:

oligonucleotides with randomized sequences corresponding to the

codons to be mutagenized were utilized to generate overlapping

PCR products. The L-3 motif corresponds to amino acid residues

LLxSA on TM7. Mutant libraries were generated by gap repair

using overlapping PCR products and transformed to media

selective for recombined plasmids. To select for functional

mutants, libraries were replica-plated to selective SC-His media

[40] containing one of six ligands: UDP-Gal, UDP-Glc, UDP-

galNAc, UDP-GlcNAc, UDP or dTDP-glucose (50 mL of 1 mM

solution spread on 30 mL of SC ‘‘Leu-His agar medium in 8.5 cm

Petri plates). Yeast growth media was supplemented by 1 mM

3AT, a competitive inhibitor of the HIS3 reporter gene product,

which sets the threshold for reporter gene activation. Functional

receptor mutants that showed qualitatively disparate responses to

the panel of ligands were selected for further analysis. Among

these, the H-20 and K-3 mutants, described earlier [36], and the

L-3 mutant, described here, were selected to be utilized alongside

the 2211 ‘‘parent’’ in a four-receptor array for analysis of mixtures

of UDP-Glc, UDP-Gal, UDP-GlcNAc and UDP.

b{galactosidase assays
Our b{galactosidase assays were based on microtiter assays

described previously [41]. Yeast strains expressing each of the four

mutant receptors were diluted to OD600 of *0:05 in flasks.

Cultures were then grown overnight in 100 mL selective media to

an OD600 of 0:1{0:2. Serial dilutions of each ligand or mixture of

ligands were prepared in yeast culture medium in 96-well culture

blocks. Ligands or mixtures of ligands were transferred in 20 mL
aliquots in quadruplicate to deep-well polypropylene 384{well
plates using a BioMek robotic liquid handler. 180 mL of suspended

yeast cells in medium (undiluted from the overnight cultures) were

then aliquotted into each well and mixed. The cultures were sealed

with foil tape and incubated at 300C on a plate shaker at 400–

500 rpm for 4 hours (H-20, K-3 and L-3 receptors) or overnight

(2211 receptor). After incubation, b{galactosidase substrate [41]

(FDG solution; 0.5 mM fluorescein di-beta-D-galactopyranoside,

2.3% Triton X-100, and 0.127 M Pipes, pH 7.2) was mixed with

an equal volume of Pierce Y-PER solution (Thermo Scientific) and

distributed in 25 mL aliquots to black 384{well plates. 50 mL
aliquots of the yeast/ligand cultures were then transferred into the

black 384{well plates and mixed gently but thoroughly by

pipetting, taking care to avoid generating bubbles. A single layer of

paper towel was placed on top of each plate and the plates were

then individually wrapped in aluminum foil and incubated without

shaking at 370C for approximately one hour before reading on an

automated fluorescent plate reader (Perkin Elmer EnVision).

Microtiter plate-based assays are often subject to edge- or plate-

bias due to uneven heating or discrepancies in timing across a

single plate or among plates. While no obvious plate effects were

seen, it is very difficult to control for all possible variations in a

single experiment. Due to the number of samples and the need to

make efficient use of materials, each of the mixture experiments

was split across two plates per receptor. In mixtures of equal

proportions, samples containing UDP, UDP-Gal and UDP-

GlcNAc but lacking UDP-Glc were on Plate 1, while all mixtures

containing UDP-Glc were on Plate 2. In the UDP-Gal/UDP-Glc

binary mixtures of unequal proportions, samples containing 90%,

80% or 60% UDP-Glc were on Plate 1, while samples containing

40%, 20% or 10% UDP-Glc were on Plate 2.

For each single ligand or combination of ligands, a series of

measurements was performed at several values of the total

concentration nl~
XNlig

i~1
nl

i (M): log10nl~f{3:0,{3:5, . . . ,

{6:5,{9:0g for H-20, K-3, L-3 and f{5:0,{5:5, . . . ,{9:0g
for 2211. The total chemical potential ml~kBT lognl is then given

by ml~m{
Xl{1

i~1
Dmi (l~1 . . . N), where N is the number of

measurements in the series, Dml are known chemical potential

differences between two consecutive measurements, and

m~{3kBT log (10) is the chemical potential at the 1 mM

reference point. Note that in order to reconstruct the total

chemical potential for all points in the series, only m needs to be

predicted. Each series of measurements was replicated four times;

fluorescence counts were normalized to 1:0 separately for each

plate (Dataset S1).

Models of receptor response to ligand binding
For a single receptor interacting with a single ligand, we model

the normalized reporter fluorescent intensity as:

I l(DG,A,b)~A
e{b(DG{ml )

1ze{b(DG{ml )
zb, ð1Þ

where A is the receptor efficacy, b is the background intensity (a

small amount of background fluorescence observed in the absence

of ligand binding), DG is the free energy of receptor-ligand

binding, b~1=kBT (kB is the Boltzmann constant, and T is the

temperature), and ml is the chemical potential.

We compute the log-likelihood of the data by assuming that

fluorescence measurements are Gaussian-distributed around

values from Eq. (1):

Analysing Mixtures of Chemicals with Sensor Arrays

PLoS Computational Biology | www.ploscompbiol.org 9 October 2011 | Volume 7 | Issue 10 | e1002224



L~ log P(f~IIgjDG,A,b,~ss)

~{
1

2~ss2

XN

l~1

I l(DG,A,b){~II l
� �2

{
N

2
log (2p~ss2),

ð2Þ

where ~II l(l~1 . . . N) are measured intensities and ~ss is the noise

parameter. The log-likelihood is used to estimate the posterior

probability of all model parameters according to the Bayes’

formula [38]:

P(DG,A,b,~ssjf~IIg)~ P(f~IIgjDG,A,b,~ss)P(DG)P(A)P(b)P(~ss)

P(f~IIg)
, ð3Þ

where on the right-hand side the likelihood from Eq. (2) is

multiplied by the product of priors for each model parameter and

divided by evidence. f~IIg combines data from all experimental

replicates. We use uniform priors (invariant with respect to

translations, x?xza):

P(x)~
1=(xmax{xmin) if x[½xmin,xmax�,
0 otherwise

�
ð4Þ

for DG, A and b, and Jeffrey’s priors (invariant with respect to

rescaling, x?ax) for ~ss:

P(x)~
1=(x log (xmax=xmin)) if x[½xmin,xmax�,
0 otherwise

�
ð5Þ

We have used (DGmin,DGmax)~({20:0,5:0)kcal=mol, (Amin,Amax)
~(0:0,1:0), (bmin,bmax)~(0:0,1:0), (~ssmin,~ssmax)~(0:001,100:0) in

our calculations.

The reporter response to a mixture of ligands is given by

I l
k~

XNlig

m~1

Ak
mpk,l

m zbk, ð6Þ

where pk,l
m ~e{b(DGk

m{ml
m)=Zk,l is the probability that receptor k is

bound by ligand m and Zk,l~1z
XNlig

i~1
e
{b(DGk

i
{ml

i
)

is the

partition function. DGk
m is the binding free energy between

receptor k and ligand m (k~1 . . . Nrec, m~1 . . . Nlig ), Ak
m is the

efficacy, and bk is the background intensity. The background

intensity for receptor k is the average from all calibration

experiments involving that receptor. ml
m~kBT log nl

m is the

chemical potential of ligand m, which can be expressed through

the total chemical potential ml and the relative concentrations

am~nl
mz1=nl

1 (Vl, m~1 . . . Nlig{1):

ml
1~mlzkBT log

1

S
, ð7Þ

ml
m~mlzkBT log

am{1

S
,m~2,3, . . .

where S~1z
XNlig{1

i~1
ai. Note that an arbitrary choice of the

ligand in the denominator leads to several equivalent representa-

tions of the relative concentrations.

The log-likelihood of the observed pattern of fluorescence

intensities from multiple receptors interrogated by a mixture of

ligands is given by

L~ log P(f~IIgjfag,m,f~ssg)

~{
XNrec

k~1

1

2~ss2
k

XNk

l~1

½I l
k(fag,m){~II l

k�
2
z

Nk

2
log (2p~ss2

k)

( )
:
ð8Þ

Here I l
k(fag,m) is defined in Eq. (6) (in the interests of brevity, we

suppress its dependence on fA,b,DGg for each receptor-ligand

combination). ~II l
k denotes fluorescence measured for receptor k at

the total chemical potential ml , Nk is the total number of

measurements, and ~ssk is the noise parameter. Similarly to Eq. (3),

the log-likelihood is used to estimate the posterior probability

P(fag,m,f~ssgjf~IIg). We employ a uniform prior for m with

(mmin,mmax)~({10:0,{2:0) and a Jeffrey’s prior for a’s with

(amin,amax)~(0:0001,100:0).

We estimate all posterior probabilities by nested sampling [38] –

a Bayesian Monte-Carlo (MC) technique that yields an ensemble

of models from which the average value of each parameter and its

standard deviation are computed. Unlike other methods such as

MC sampling of the product of likelihood and priors, nested

sampling allows us to keep track of the evidence, yielding absolute

values of the posterior probability.

Hessian analysis
The Hessian matrix in the low-noise limit can be written as

(Text S1):

L2L

LciLcj

~{
XNrec

k~1

1

~ss2
k

XNk

l~1

LI l
k

Lci

LI l
k

Lcj

, ð9Þ

where fcg~(fag,m), L is the log-likelihood, Nk is the total

number of measurements for receptor k, and ~ssk is the noise

parameter. Uncertainties si for each predicted parameter ci are

given by the diagonal elements of the inverse Hessian matrix:

s2
i ~{E L2L

LciLcj

E{1

ii : ð10Þ

Software used in this study, called RANSA (Receptor Array

Nested Sampling Algorithm), is available at http://olfaction.

rutgers.edu.

Supporting Information

Figure S1 Overview of the GPCR-based biosensor array.
(a) Each receptor-ligand combination is tested for functional

activation, yielding 16 binding curves. For each curve, intensity

normalized by the maximum intensity on the plate is plotted against

log10n (n is the ligand concentration in M). The error bars on each

curve are from four biological replicates. The single-receptor, single-

ligand binding curves are used to calibrate the physical model by

inferring DG, A and b separately for each receptor-ligand

combination. (b) An unknown mixture of four ligands is applied to

each of the four receptors. The resulting fluorescent response curves

together with the fDG,A,bg predictions are used as input to the

Bayesian algorithm designed to predict absolute concentrations of

each ligand in the mixture. R1: H-20, R2: K-3, R3: L-3, R4: 2211.

(EPS)
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Figure S2 Prediction accuracy increases with the num-
ber of measurements at different total concentrations.
Synthetic data was generated using Eq. (1) in the main text, with

A~0:8, b~0:2, and DG~{6:5 kcal/mol. To account for

experimental error, Gaussian noise with ~ss~0:02 was added to the

intensity from Eq. (1). The maximum total concentration of the ligand

was gradually increased as shown in the nine panels on top, yielding

more and more complete binding curves: log10½max�~f{4:75,
{4:5,{4:25,{4:0,{3:75,{3:5,{3:0,{2:75,{2:5g. log10½min�
was {9:0 in all cases, and 4 replicates with 9 datapoints per curve

were created for each concentration range. In each panel I l is plotted

as a function of ml in the absence of noise. For each concentration

range, 1000 nested sampling runs were carried out to predict DG, A
and b. The standard deviation sDG from each run was averaged and

plotted in the bottom panel as a function of the total range of ligand

concentrations kBT ln (½max�=½min�). Each dot in the bottom panel

is color-coded to correspond to a particular binding curve on top.

(EPS)

Figure S3 Prediction accuracy decreases with the amount
of noise in the data. Synthetic data was generated using Eq. (1) in

the main text, with A~0:8, b~0:2, and DG~{6:5 kcal/mol. In

analogy with the experiments, we used the concentration range

log10 nl~f{3:0,{3:5, . . . ,{6:5,{9:0g and created 4 replicates,

yielding 36 datapoints. To model the increase in experimental error,

Gaussian noise with ~ss ranging from 0:01 to 0:17 was added to the

intensity from Eq. (1). For each value of ~ss, 1000 nested sampling runs

were carried out to predict DG, A and b. The standard deviation sDG

from each run was averaged and plotted as a function of ~ss.

(EPS)

Figure S4 Inference of ligand concentrations is im-
proved with the number of receptors interrogating the
mixture. Shown on the log-scale are means and standard

deviations for three relative concentrations (a1, a2, a3) and the total

concentration, predicted by nested sampling using the four-ligand

model and up to four receptors: H-20 (R1), K-3 (R2), L-3 (R3), 2211

(R4). Each experiment has a 50-50 binary mixture of two ligands

indicated on top of each panel, leading to a1~1, a2~a3~0,

and log10½Total�~{3 at the reference point ([Total] =

[UDP-Glc]+[UDP-GlcNAc]+[UDP-Gal]+[UDP]). UDP-Gal+
UDP-GlcNAc mixture: a1~½UDP{GlcNAc�=½UDP{Gal�,
a2~½UDP { Glc� = ½UDP { Gal�, a3~½UDP�=½UDP{Gal�.
UDP-Glc+UDP-GlcNAc mixture: a1~½UDP{GlcNAc�=
½UDP{Glc�, a2~½UDP{Gal�=½UDP{Glc�, a3~½UDP�=
½UDP{Glc�. UDP+UDP-Glc mixture: a1~½UDP�=
½UDP{Glc�, a2~½UDP{Gal�=½UDP{Glc�, a3~½UDP{
GlcNAc�=½UDP{Glc�. UDP+UDP-GlcNAc mixture: a1~
½UDP�=½UDP{GlcNAc�, a2~½UDP{Glc�=½UDP{GlcNAc�,
a3~½UDP{Gal�=½UDP{GlcNAc�. UDP+UDP-Gal mixture:
a1~½UDP�=½UDP{Gal�, a2~½UDP{Glc�=½UDP{Gal�, a3~
½UDP{GlcNAc�=½UDP{Gal�.
(EPS)

Figure S5 Hessian uncertainties vs. standard deviations
from nested sampling. Synthetic data was generated as four

replicates for each of the 15 equal-proportion mixtures from Fig. 2,

using parameters from Table S1 and ~ss~0:01 for all receptors

(Eq. (6) in the main text). For each receptor, concentration ranges

were taken from the corresponding experiment (Materials and
Methods). For each parameter, a Hessian error computed using Eq.

(10) in the main text (x-axis) is compared with the standard deviation

from a nested sampling run (y-axis). Nested sampling simultaneously

infers relative concentrations a1, a2, a3, the total concentration and

~ss’s given receptor-ligand parameters from Table S1.

(EPS)

Figure S6 Hessian uncertainties vs. errors in parameter
predictions. Synthetic data was generated as four replicates for

each of the 15 equal-proportion mixtures from Fig. 2, using

parameters from Table S1 and ~ss~0:01 for all receptors (Eq. (6) in

the main text). For each receptor, concentration ranges were taken

from the corresponding experiment (Materials and Methods).

For each parameter, a Hessian error computed using Eq. (10) in the

main text (x-axis) is compared with the absolute magnitude of the

difference between the mean value predicted by nested sampling

and the correct value (y-axis). Nested sampling simultaneously infers

relative concentrations a1, a2, a3, the total concentration and ~ss’s

given receptor-ligand parameters from Table S1.

(EPS)

Figure S7 Matrix elements and the determinant of
the Hessian in the antagonist-agonist case, plotted
as a function of binding energies DG1 and DG2 in the
one-receptor, two-ligand system. The efficacies are fixed at

A1~0, A2~1; a~0:25. We used 7 replicates with log10 nl~
f{3:0,{3:5, . . . ,{8:5,{9:0g. The values of the binding ener-

gies at the peak of the determinant landscape are DG1~

{11:05kcal=mol and DG2~{12:30kcal=mol.

(EPS)

Figure S8 Matrix elements of the Hessian in the
agonist-antagonist case, plotted as a function of binding
energies DG1 and DG2 in the one-receptor, two-ligand
system. The efficacies are fixed at A1~1, A2~0; a~0:25. We

used 7 replicates with log10 nl~f{3:0,{3:5, . . . ,{8:5,{9:0g.
(EPS)

Figure S9 Matrix elements and the determinant of the
Hessian in the agonist-agonist case, plotted as a function
of binding energies DG1 and DG2 in the one-receptor, two-
ligand system. The efficacies are fixed at A1~1, A2~1; a~1. We

used 7 replicates with log10 nl~f{3:0,{3:5, . . . ,{8:5,{9:0g.
(EPS)

Figure S10 Changes in the Hessian determinant with
the concentration of the second ligand. Each determinant is

plotted as a function of binding energies DG1 and DG2 for a given

value of a~n2=n1. The efficacies are fixed at A1~1, A2~0. We

used 7 replicates with log10 nl~f{3:0,{3:5, . . . ,{8:5,{9:0g.
Shown in each panel are the optimal DG1 and DG2 corresponding

to the maximum value of the determinant.

(EPS)

Figure S11 Schematic diagram of receptor activation by
single ligands and ligand mixtures with optimized
binding affinities and efficacies. (a) Two cases of agonist-

antagonist single-receptor arrays designed to discriminate a mixture

of two ligands (Fig. 5d (i)). (b) Array of two receptors designed to

discriminate a mixture of three ligands (Fig. 5d (ii)). In both cases

we show relative intensities (normalized to 1:0) corresponding to

log10 n~{3:0. Nlig~2: a~0:25; Nlig~3: a1~10{4,a2~0:5
(leading to a~10{4, 0:5 and 5|103 for the binary combina-

tions of ligands 1–2, 2–3 and 1–3, respectively). 4:7(0:99) and

{1:8(0:47) are DG’s and A’s (in parentheses) for receptor-ligand

interactions outside of the dominant agonist-antagonist pattern.

(EPS)

Figure S12 Improving performance of the experimen-
tally implemented sensor array. Free energies DG (a) and

efficacies A (b) in the experimentally implemented sensor array

with parameters from Table S1. Free energies DG (c) and

efficacies A (d) from two sensor arrays in which the determinant of

the Hessian was maximized only with respect to DG’s and A’s,
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respectively. Free energies DG (e) and efficacies A (f) in the

optimal sensor array in which the determinant of the Hessian was

maximized with respect to both DG’s and A’s. The determinant

was computed using four replicates of an equal-proportion mixture

of four ligands and ~ss~1 for all receptors. For each receptor,

concentrations were taken from the corresponding experiment

(Materials and Methods). In panels a–d, the order of ligands is

L1: UDP, L2: UDP-Gal, L3: UDP-Glc, L4: UDP-GlcNAc. The

order of receptors is R1: H-20, R2: K-3, R3: L-3, R4: 2211. Note

that ligand and receptor identities are lost in panels e,f since all

parameters have been optimized.

(EPS)

Dataset S1 Normalized fluorescence intensity measure-
ments from experiments with equal-proportion (Fig. 2)
and unequal-proportion (Fig. 3) mixtures.
(XLS)

Table S1 Parameters of receptor-ligand interactions
predicted from one-receptor, one-ligand binding curves
(UDP-Gal, UDP-Glc, UDP-GlcNAc) and one-receptor,
two-ligand binding curves (UDP). DG is the receptor-ligand

binding free energy (kcal/mol), A is the receptor efficacy, b is the

background intensity, and ~ss is the noise parameter which

quantifies the discrepancy between the model and the observed

binding curves. Due to antagonistic activity of UDP, 50/50

UDP+UDP-Glc binary mixture was used with K-3, L-3, 2211 and

50/50 UDP+UDP-Gal binary mixture was used with H-20 to

predict UDP parameters (compound concentrations were set to

their exact values for these calibration predictions). In each case,

the mixture was chosen on the basis of the smallest standard

deviation of DG.

(PDF)

Table S2 Prediction of ligand concentrations in equal-
proportion mixtures (data for Fig. 2).
(PDF)

Table S3 Prediction of ligand concentrations in un-
equal-proportion binary mixtures of [UDP-Gal] and
[UDP-Glc] (data for Fig. 3).

(PDF)

Table S4 Prediction of ligand concentrations in un-
equal-proportion binary mixtures of [UDP-Gal] and
[UDP-Glc] using an alternative definition of relative
concentrations. We used nested sampling of a four-receptor, four-

ligand model to infer relative concentrations a1~½UDP{Gal�=
½UDP{Glc�, a2~½UDP{GlcNAc�=½UDP{Glc�, a3~½UDP�=
½UDP{Glc�, as well as the total concentration [Total] = [UDP-

Gal]+[UDP-Glc]+[UDP-GlcNAc]+[UDP] at the 1 mM reference

point. A’s and b’s were refit to account for ‘‘plate bias’’: small

systematic deviations in the values of A and b (from the standard

values shown in Table S1 and used everywhere else) between

different plates. For Plate 1 (measurements 1–3), AUDP{Gal,

AUDP{Glc and b were set to f0:94,0:79,0:64,0:50g, f0:91,0:81,
0:90,0:81g and f0:02,0:15,0:02,0:12g for H-20, K-3, L-3 and 2211,

respectively. For Plate 2 (measurements 4–6), the corresponding values

were f0:96,0:93,0:94,0:94g, f0:85,0:79,0:86,0:95g and f0:02,0:13,
0:03,0:11g. AUDP{GlcNAc and AUDP were taken from Table S1.

(PDF)

Text S1 Supplementary Materials and Methods.

(PDF)
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