
ar
X

iv
:1

50
2.

01
06

5v
1 

 [c
s.

IT
]  

3 
F

eb
 2

01
5

1

Distributed Compressed Estimation for Wireless
Sensor Networks Based on Compressive Sensing
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Abstract—This letter proposes a novel distributed compressed
estimation scheme for sparse signals and systems based on
compressive sensing techniques. The proposed scheme consists of
compression and decompression modules inspired by compressive
sensing to perform distributed compressed estimation. A design
procedure is also presented and an algorithm is developed to
optimize measurement matrices, which can further improve the
performance of the proposed distributed compressed estimation
scheme. Simulations for a wireless sensor network illustrate the
advantages of the proposed scheme and algorithm in terms of
convergence rate and mean square error performance.

Index Terms—Distributed compressed estimation, compressive
sensing, measurement matrix optimization, sensor networks.

I. I NTRODUCTION

D ISTRIBUTED signal processing algorithms are of great
importance for statistical inference in wireless networks

and applications such as wireless sensor networks (WSNs) [1],
[2], [3], [4]. Distributed processing techniques deal withthe
extraction of information from data collected at nodes thatare
distributed over a geographic area [1]. In this context, foreach
node a set of neighbor nodes collect and process their local
information, and transmit their estimates to a specific node.
Then, each specific node combines the collected information
together with its local estimate to generate improved estimates.

In many scenarios, the unknown parameter vector to be
estimated can be sparse and contain only a few nonzero
coefficients. Many algorithms have been developed in the
literature for sparse signal estimation [5], [6], [7], [8],[9], [10],
[11], [12], [13], [14], [15], [16], [17], [18]. However, these
techniques are designed to take into account the full dimension
of the observed data, which increases the computational cost,
slows down the convergence rate and degrades mean square
error (MSE) performance.

Compressive sensing (CS) [19], [20] has recently received
considerable attention and been successfully applied to diverse
fields, e.g., image processing [21], wireless communications
[22] and MIMO radar [23]. The theory of CS states that an
S–sparse signalω0 of length M can be recovered exactly
with high probability fromO(S logM) measurements. Math-
ematically, the vector̄ω0 with dimensionD × 1 that carries
sufficient information aboutω0 (D ≪ M ) can be obtained
via a linear model [20]

ω̄0 = Φω0 (1)

whereΦ ∈ RD×M is the measurement matrix.
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The application of CS to WSNs has been recently investi-
gated in [22], [24], [25], [26]. A compressive wireless sensing
scheme was developed in [22] to save energy and bandwidth,
where CS is only employed in the transmit layer. In [24],
a greedy algorithm called precognition matching pursuit was
developed for CS and used at sensors and the fusion center to
achieve fast reconstruction. However, the sensors are assumed
to capture the target signal perfectly with only measurement
noise. The work of [25] introduced a theory for distributed
CS based on jointly sparse signal recovery. However, in
[25] CS techniques are only applied to the transmit layer,
whereas distributed CS in the estimation layer has not been
widely investigated. A sparse model that allows the use of
CS for the online recovery of large data sets in WSNs was
proposed in [26], but it assumes that the sensor measurements
could be gathered directly, without an estimation procedure.
In summary, prior work has focused on signal reconstruction
algorithms in a distributed manner but has not considered both
compressed transmit strategies and estimation techniques.

In this work, we focus on the design of an approach that
exploits lower dimensions, reduces the required bandwidth,
and improves the convergence rate and the MSE performance.
Inspired by CS, we introduce a scheme that incorporates
compression and decompression modules into the distributed
estimation procedure. In the compression module, we com-
press the unknown parameterω0 into a lower dimension. As a
result, the estimation procedure is performed in a compressed
dimension. After the estimation procedure is completed, the
decompression module recovers the compressed estimator into
its original dimension using an orthogonal matching pursuit
(OMP) algorithm [27], [28], [29]. We also present a design
procedure and develop an algorithm to optimize the measure-
ment matrices, which can further improve the performance
of the proposed scheme. Specifically, we derive an adap-
tive stochastic gradient recursion to update the measurement
matrix. Simulation results illustrate the performance of the
proposed scheme and algorithm against existing techniques.

This paper is organized as follows. Section II describes
the system model. In Section III, the proposed distributed
compressed estimation scheme is introduced. The proposed
measurement matrix optimization is illustrated in SectionIV.
Simulation results are provided in Section V. Finally, we
conclude the paper in Section VI.

Notation: We use boldface uppercase letters to denote
matrices and boldface lowercase letters to denote vectors.We
use (·)−1 to denote the inverse operator,(·)H for conjugate
transposition and(·)∗ for complex conjugate.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A wireless sensor network (WSN) with N nodes, which have
limited processing capabilities, is considered with a partially
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connected topology. A diffusion protocol is employed although
other strategies, such as incremental [30] and consensus [31]
could also be used. A partially connected network means that
nodes can exchange information only with their neighbors as
determined by the connectivity topology. In contrast, a fully
connected network means that, data broadcast by a node can be
captured by all other nodes in the network [32]. At every time
instanti, the sensor at each nodek takes a scalar measurement
dk(i) according to

dk(i) = ω
H
0 xk(i) + nk(i), i = 1, 2, . . . , I, (2)

where xk(i) is the M × 1 input signal vector with zero
mean and varianceσ2

x,k, nk(i) is the noise at each node
with zero mean and varianceσ2

n,k. From (2), we can see that
the measurements for all nodes are related to an unknown
parameter vectorω0 with sizeM×1 that should be estimated
by the network. We assume thatω0 is a sparse vector with
S ≪ M non-zero coefficients. The aim of such a network is
to compute an estimate ofω0 in a distributed fashion, which
minimizes the cost function

Jω(ω) =

N
∑

k=1

E{|dk(i)− ω
Hxk(i)|

2}, (3)

where E{·} denotes expectation. Distributed estimation of
ω0 is appealing because it provides robustness against noisy
measurements and improved performance as reported in [1],
[30], [31]. To solve this problem, a cost-effective technique is
the adapt–then–combine (ATC) diffusion strategy [1]










ψk(i) = ωk(i) + µkxk(i)
[

dk(i)− ωH
k (i)xk(i)

]∗
,

ωk(i + 1) =
∑

l∈Nk

cklψl(i),
(4)

whereNk indicates the set of neighbors for nodek, ψk(i) is
the local estimator of nodek, |Nk| denotes the cardinality of
Nk andckl is the combination coefficient, which is calculated
with respect to the Metropolis rule










ckl =
1

max(|Nk|,|Nl|)
, if k 6= l are linked

ckl = 0, for k and l not linked
ckk = 1−

∑

l∈Nk/k

ckl, for k = l

(5)
and should satisfy

∑

l

ckl = 1, l ∈ Nk∀k. (6)

Existing distributed sparsity-aware estimation strategies, e.g.,
[5], [6], [7], are designed using the full dimension signal space,
which reduces the convergence rate and degrades the MSE
performance. In order to improve performance, reduce the re-
quired bandwidth and optimize the distributed processing,we
incorporate at each node of the WSN the proposed distributed
compressed estimation scheme based on CS techniques, to-
gether with a measurement matrix optimization algorithm.

III. PROPOSEDDISTRIBUTED COMPRESSEDESTIMATION

SCHEME

In this section, we detail the proposed distributed com-
pressed estimation (DCE) scheme based on CS. The proposed
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Fig. 1. Proposed Compressive Sensing Modules

scheme, depicted in Fig. 1, employs compression and de-
compression modules inspired by CS techniques to perform
distributed compressed estimation. In the proposed scheme, at
each node, the sensor first observes theM × 1 vectorxk(i),
then with the help of theD×M measurement matrix obtains
the compressed version̄xk(i), and performs the estimation of
ω0 in the compressed domain. In other words, the proposed
scheme estimates theD × 1 vector ω̄0 instead of theM × 1
vectorω0, whereD ≪ M and theD–dimensional quantities
are designated with an overbar. At each node, a decompression
module employs aD × M measurement matrixΦk and a
reconstruction algorithm to compute an estimate ofω0. One
advantage for the DCE scheme is that fewer parameters need
to be transmitted between neighbour nodes.
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Combination

Combine
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Module
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x̄k(i)
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φ̄6(i)
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Fig. 2. Proposed DCE Scheme

We start the description of the proposed DCE scheme with
the scalar measurementdk(i) given by

dk(i) = ω̄
H
0 x̄k(i) + nk(i), i = 1, 2, . . . , I, (7)

whereω̄0 = Φkω0 andx̄k(i) is theD×1 input signal vector.
This operation is depicted in Fig. 1 as the compression module.

Fig. 2 illustrates the proposed DCE scheme. The scheme
can be divided into three steps:

• Adaptation
In the adaptation step, at each time instanti=1,2, . . . , I, each
nodek=1,2, . . . , N, generates a local compressed estimator
ψ̄k(i) through

ψ̄k(i) = ω̄k(i) + µk(i)e
∗
k(i)x̄k(i), (8)

whereek(i) = dk(i)− ω̄H
k (i)x̄k(i) andµk(i) =

µ0

x̄H

k
(i)x̄k(i)

.

• Information exchange
Given the network topology structure, only the local com-
pressed estimator̄ψk(i) will be transmitted between nodek
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and all its neighbor nodes. The measurement matrixΦk will
be kept locally.

• Combination
At each time instanti=1,2, . . . , I, the combination step starts
after the information exchange is finished. Each node will
combine the local compressed estimators from its neighbor
nodes and itself through

ω̄k(i + 1) =
∑

l∈Nk

cklψ̄l(i), (9)

to compute the updated compressed estimatorω̄k(i+ 1).
After the final iterationI, each node will employ the OMP

reconstruction strategy to generate the decompressed estimator
ωk(I). Other reconstruction algorithms can also be used.
The decompression module described in Fig. 1 illustrates the
details. In summary, during the DCE procedure, only the
local compressed estimator̄ψk(i) will be transmitted over the
network resulting in a reduction of the number of parameters
to be transmitted fromM to D. The proposed DCE scheme
is given in Table I.

The computational complexity of the proposed DCE scheme
is O(NDI +ND3), whereN is the number of nodes in the
WSN andI is the number of time instants. The distributed
NLMS algorithm has a complexityO(NMI), while the
complexity of the sparse diffusion NLMS algorithm [6] is
O(3NMI). For the distributed compressive sensing algorithm
of [24], the computational complexity isO(NMI +ND3I).
In the proposed DCE scheme, only the local compressed
estimatorψ̄k(i) with D parameters will be transmitted through
the network, which means the transmission requirement is
greatly reduced as compared with the standard schemes that
transmitψk(i) with M parameters.

TABLE I
THE PROPOSEDDCE SCHEME

Initialize: ω̄k(1)=0
For each time instanti=1,2, . . . , I-1

For each nodek=1,2, . . . , N
ψ̄

k
(i) = ω̄k(i) + µ(i)e∗

k
(i)x̄k(i)

whereek(i) = dk(i) − ω̄
H

k
(i)x̄k(i),

dk(i) = ω̄H

0
x̄k(i) + nk(i) = (Φkω0)

H x̄k(i) + nk(i)
andΦk is theD × M random measurement matrix

end
For each nodek=1,2, . . . , N

ω̄k(i+ 1) =
∑

l∈N
k

cklψ̄l
(i)

end
end
After the final iterationI
For each nodek=1,2, . . . , N
ωk(I) = fOMP{ω̄k(I)}
whereωk(I) is the final decompressed estimator.

end

IV. M EASUREMENTMATRIX OPTIMIZATION

To further improve the performance of the proposed DCE
scheme, an optimization algorithm for the design of the
measurement matrixΦk(i), which is now time–variant, is
developed here. Unlike prior work [23], [33], this optimization
is distributed and adaptive. Let us consider the cost function

J = E{|ek(i)|
2} = E{|dk(i)− yk(i)|

2}

= E{|dk(i)|
2} − E{d∗k(i)yk(i)} − E{dk(i)y

∗
k(i)}

+ E{|yk(i)|
2},

(10)

whereyk(i) = ω̄H
k (i)x̄k(i). To minimize the cost function,

we need to compute the gradient ofJ with respect toΦ∗
k(i)

and equate it to a null vector, i.e.,∇JΦ
∗
k
(i) = 0. As a result,

only the first three terms in (10) need to be considered. Taking
the first three terms of (10) we arrive at

E{|dk(i)|
2} − E{d∗k(i)yk(i)} − E{dk(i)y

∗
k(i)}

= E{|ωH
0 Φ

H
k (i)x̄k(i) + nk(i)|

2}

− E{(ωH
0 Φ

H
k (i)x̄k(i) + nk(i))

∗yk(i)}

− E{(ωH
0 Φ

H
k (i)x̄k(i) + nk(i))y

∗
k(i)}

= E{|ωH
0 Φ

H
k (i)x̄k(i)|

2}+ E{(ωH
0 Φ

H
k (i)x̄k(i))

∗nk(i)}

+ E{(ωH
0 Φ

H
k (i)x̄k(i))n

∗
k(i)}+ E{|nk(i)|

2}

− E{(ωH
0 Φ

H
k (i)x̄k(i))

∗yk(i)} − E{n∗
k(i)yk(i)}

− E{(ωH
0 Φ

H
k (i)x̄k(i))y

∗
k(i)} − E{nk(i)y

∗
k(i)}. (11)

Because the random variablenk(i) is statistically independent
from the other parameters and has zero mean, (11) can be
further simplified as

E{|dk(i)|
2} − E{d∗k(i)yk(i)} − E{dk(i)y

∗
k(i)}

= E{|ωH
0 Φ

H
k (i)x̄k(i)|

2}+ σ2
n,k − E{(ωH

0 Φ
H
k (i)x̄k(i))

∗yk(i)}

− E{(ωH
0 Φ

H
k (i)xk(i))y

∗
k(i)}. (12)

Then, we have

∇JΦ
∗
k
(i) = Rk(i)Φk(i)Rω0

− P k(i), (13)

whereRk(i) = E{x̄k(i)x̄
H
k (i)}, Rω0

= E{ω0ω
H
0 } and

P k(i) = E{y∗k(i)x̄k(i)ω
H
0 }. Equating (13) to a null vector,

we obtain
Rk(i)Φk(i)Rω0

− P k(i) = 0, (14)

Φk(i) = R
−1
k (i)P k(i)R

−1
ω0

. (15)

The expression in (15) cannot be solved in closed–form
becauseω0 is an unknown parameter. As a result, we employ
the previous estimatēωk(i) to replaceω0. However,ω̄k(i)
andΦk(i) depend on each other, thus, it is necessary to iterate
(15) with an initial guess to obtain a solution. In particular, we
replace the expected values with instantaneous values. Starting
from (13), we use instantaneous estimates to compute

R̂k(i) = x̄k(i)x̄
H
k (i), (16)

R̂ω0
= ω0ω

H
0 (17)

and
P̂ k(i) = y∗k(i)x̄k(i)ω

H
0 . (18)

According to the method of steepest descent [34], the updated
parameters of the measurement matrixΦk(i) at timei+1 are
computed by using the simple recursive relation

Φk(i+ 1) = Φk(i) + η[−∇JΦ
∗
k
(i)]

= Φk(i) + η[P̂ k(i)− R̂k(i)Φk(i)R̂ω0
] (19)

= Φk(i) + η[y∗k(i)x̄k(i)ω
H
0 − x̄k(i)x̄

H
k (i)Φk(i)ω0ω

H
0 ].

where η is the step size andω0 is the M × 1 unknown
parameter vector that must be estimated by the network. Then,
the parameter vector̄ωk(i) is used to reconstruct the estimate
of ω0 as follows

ωrek(i) = fOMP{ω̄k(i)}, (20)
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where the operatorfOMP{·} denotes the OMP reconstruction
algorithm. Note that other reconstruction algorithms could
also be employed. Replacingω0 by ωrek(i), we arrive at the
expression for updating the measurement matrix described by

Φk(i + 1) = Φk(i) + η
[

y∗k(i)x̄k(i)ω
H
rek(i)

− x̄k(i)x̄
H
k (i)Φk(i)ωrek(i)ω

H
rek(i)

]

. (21)

The computational complexity of the proposed scheme with
measurement matrix optimization isO(NDI +ND3I).

V. SIMULATIONS

We assess the proposed DCE scheme and the measurement
matrix optimization algorithm in a WSN application, where a
partially connected network withN = 20 nodes is considered.
We compare the proposed DCE scheme with uncompressed
schemes, including the distributed NLMS (dNLMS) algorithm
(normalized version of [1]), sparse diffusion NLMS algo-
rithm [6], sparsity-promoting adaptive algorithm [8], andthe
distributed compressive sensing algorithm [24], in terms of
MSE performance. Note that other metrics such as mean-
square deviation (MSD) could be used but result in the same
performance hierarchy between the analyzed algorithms.

The input signal is generated asxk(i) = [xk(i) xk(i −
1) ... xk(i − M + 1)]T and xk(i) = uk(i) + αkxk(i −
1), whereαk is a correlation coefficient anduk(i) is a white
noise process with varianceσ2

u,k = 1 − |αk|2, to ensure the
variance ofxk(i) is σ2

x,k = 1. The compressed input signal is
obtained byx̄k(i) = Φkxk(i). The measurement matrixΦk

is an i.i.d. Gaussian random matrix that is kept constant. The
noise samples are modeled as complex Gaussian noise with
varianceσ2

n,k = 0.001. The unknownM ×1 parameter vector
ω0 has sparsityS, whereM=50,D=10 andS=3. The step size
µ0 for the distributed NLMS, distributed compressive sensing,
sparse diffusion LMS and the proposed DCE algorithms is
0.45. The parameter that controls the shrinkage in [6] is set
to 0.001. For [8], the number of hyperslabs equals 55 and the
width of the hyperslabs is 0.01.

Fig. 3 illustrates the comparison between the DCE scheme
with other existing algorithms, without the measurement ma-
trix optimization. It is clear that, when compared with the
existing algorithms, the DCE scheme has a significantly faster
convergence rate and a better MSE performance. These ad-
vantages consist in two features: the compressed dimension
brought by the proposed scheme and CS being implemented
in the estimation layer. As a result, the number of parameters
for transmission in the network is significantly reduced.

In the second scenario, we employ the measurement matrix
optimization algorithm to in the DCE scheme. The parameter
η for the measurement matrix optimization algorithm is set
to 0.08 and all other parameters remain the same as in
the previous scenario. In Fig. 4, we observe that with the
help of the measurement matrix optimization algorithm, DCE
can achieve a faster convergence when compared with DCE
without the measurement matrix optimization.

In the third scenario, we compare the DCE scheme with the
distributed NLMS algorithm with different levels of resolution
in bits per coefficient, reduced dimensionD and sparsity level
S. The x-axis stands for the reduced dimensionD and their
corresponding sparsity levelS can be found in Fig. 5. In Fig. 5,

it is clear that with the increase of the sparsity levelS the MSE
performance degrades. In addition, the MSE performance will
increase when the transmission has more bits per coefficient.
For the DCE scheme, the total number of bits required for
transmission isD times the number of bits per coefficient,
whereas for the distributed NLMS algorithm it isM times the
number of bits per coefficient. A certain level of redundancyis
required between the sparsity level and the reduced dimension
due to the error introduced by the estimation procedure.
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VI. CONCLUSIONS

We have proposed a novel DCE scheme and algorithms
for sparse signals and systems based on CS techniques and
a measurement matrix optimization. In the DCE scheme, the
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estimation procedure is performed in a compressed dimension.
The results for a WSN application show that the DCE scheme
outperforms existing strategies in terms of convergence rate,
reduced bandwidth and MSE performance.
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