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Inferring interaction partners from protein sequences
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Specific protein-protein interactions are crucial in the cell, both to ensure the formation and sta-
bility of multi-protein complexes, and to enable signal transduction in various pathways. Functional
interactions between proteins result in coevolution between the interaction partners, causing their
sequences to be correlated. Here we exploit these correlations to accurately identify which proteins
are specific interaction partners from sequence data alone. Our general approach, which employs a
pairwise maximum entropy model to infer couplings between residues, has been successfully used to
predict the three-dimensional structures of proteins from sequences. Thus inspired, we introduce an
iterative algorithm to predict specific interaction partners from two protein families whose members
are known to interact. We first assess the algorithm’s performance on histidine kinases and response
regulators from bacterial two-component signaling systems. We obtain a striking 0.93 true positive
fraction on our complete dataset without any a priori knowledge of interaction partners, and we un-
cover the origin of this success. We then apply the algorithm to proteins from ATP-binding cassette
(ABC) transporter complexes, and obtain accurate predictions in these systems as well. Finally,
we present two metrics that accurately distinguish interacting protein families from non-interacting
ones, using only sequence data.

SIGNIFICANCE

Specific protein-protein interactions play crucial roles
in the stability of multi-protein complexes and in signal
transduction. Thus, mapping these interactions is key
to a systems-level understanding of cells. Systematic ex-
perimental identification of protein interaction partners
is still challenging. However, a large and rapidly grow-
ing amount of sequence data is now available. Is it pos-
sible to identify which proteins interact just from their
sequences? We propose an approach based on sequence
covariation, building on methods used with success to
predict the three-dimensional structures of proteins from
sequences alone. Our method identifies specific interac-
tion partners with high accuracy among the members
of several ubiquitous prokaryotic protein families, and
provides a way to predict protein-protein interactions di-
rectly from sequence data.

INTRODUCTION

Many key cellular processes are carried out by inter-
acting proteins. For instance, specific protein-protein in-
teractions ensure proper signal transduction in various
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pathways. Hence, mapping specific protein-protein in-
teractions is central to a systems-level understanding of
cells, and has broad applications to areas such as drug
targeting. High-throughput experiments have recently
elucidated a substantial fraction of protein-protein inter-
actions in a few model organisms [1], but such experi-
ments remain challenging. Meanwhile, there has been an
explosion of available sequence data. Can we exploit this
abundant new sequence data to identify specific protein-
protein interaction partners?

Specific interactions between proteins imply evolution-
ary constraints on the interacting partners. For instance,
mutation of a contact residue in one partner generally im-
pairs binding, but may be compensated by a complemen-
tary mutation in the other partner. This co-evolution of
interaction partners results in correlations between their
amino-acid sequences. Similar correlations exist within
single proteins, for example between amino acids that
are in contact in the folded protein. However, the sim-
ple fact of a correlation between residues in a multiple
sequence alignment is only weakly predictive of a three-
dimensional contact [2–4], as correlation can also stem
from indirect effects. Fortunately, global statistical mod-
els allow direct and indirect interactions to be disentan-
gled [5–7]. In particular, the maximum entropy prin-
ciple [8] specifies the least-structured global statistical
model consistent with the one- and two-point statistics
of an alignment [5]. This approach has recently been
used with success to determine three-dimensional pro-
tein structures from sequences [9–11], to predict muta-
tional effects [12–14], and to find residue contacts be-
tween known interaction partners [7, 15–19]. Pairwise
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maximum entropy models have also been used produc-
tively in various other fields [20–26].
Here we present a pairwise maximum entropy approach

that uses sequence data to predict interaction partners
among the paralogous genes belonging to two interacting
protein families. We use histidine kinases (HKs) and re-
sponse regulators (RRs) from prokaryotic two-component
signaling systems (Fig. 1A) as our main benchmark.
Two-component systems constitute a major class of path-
ways that enable bacteria to sense and respond to envi-
ronment signals. Typically, a transmembrane HK senses
a signal, autophosphorylates, and transfers its phosphate
group to its cognate RR, which induces a cellular re-
sponse [28]. Most HKs are encoded in operons together
with their cognate RR, so interaction partners are known,
which enables us to assess performance. There are of-
ten dozens of paralogs of HKs and RRs in each genome,
making prediction of interaction partners from sequences
alone highly nontrivial.
To address this challenge, we developed an iterative

pairing algorithm (IPA, Fig. 1) that pairs proteins based
on their effective interaction energies as predicted by a
pairwise maximum entropy model. At each iteration, the
highest-scoring predicted HK-RR pairs are incorporated
into the concatenated sequence alignment from which the
model is built. This yields a major increase of predic-
tive accuracy through progressive training of the model.
First, we consider the case where the IPA starts with a
training set of known HK-RR partners. We obtain good
performance even with few training pairs. Then, we show
that the IPA can make accurate predictions starting with-
out any known pairings, as would be needed to predict
novel protein-protein interactions. We trace the origin of
this success to the preferential recruitment of new correct
pairs by those already in the concatenated alignment. We
also demonstrate how multiple random initializations can
be leveraged to improve performance. We show that our
algorithm works more generally by successfully applying
it to ATP-binding cassette (ABC) transporter proteins.
Finally, we develop two IPA-based methods that distin-
guish interacting protein families from non-interacting
ones, using only sequence data.

RESULTS

Iterative pairing algorithm (IPA)

We have developed an iterative method to predict
interaction partners among the paralogs of two pro-
tein families in each species, using just their sequences
(Fig. 1A,B). In each iteration (Fig. 1C; Materials and
Methods), we compute correlations between residues
from a concatenated alignment (CA) of paired sequences.
The initial CA is either built from a training set of correct
protein pairs, or made from random pairs, assuming no
prior knowledge of interacting pairs. We then infer cou-
plings for all residue pairs using a pairwise maximum en-

tropy model built from the CA using a mean-field approx-
imation [9, 29]. We calculate the interaction energy for
every possible protein pair within each species, by sum-
ming the inter-protein couplings assigned by the model.
Such “energies” capture evolutionary correlations, and
correlate to physical energies for lattice proteins [30]. Us-
ing these interaction energies, we predict protein pairs
(assuming one-to-one specific HK-RR interactions [28],
Fig. 1D). We attribute a confidence score to each pre-
dicted protein pair, using the energy gap between this
pair and the next best alternative (Fig. 1E). The CA
is then updated by including the highest-scoring protein
pairs, and the next iteration can begin. At each iteration,
all pairs in the CA are re-selected based on confidence
scores (except initial training pairs, if any), allowing for
error correction.
Unless otherwise specified in what follows, our re-

sults were obtained on a standard dataset comprising
5064 HK-RR pairs for which the correct pairings are
known from gene adjacency. Each species has on average
〈mp〉 = 11.0 pairs, and at least two pairs (see Materials
and Methods).

Starting from known pairings

We begin by predicting interaction partners starting
from a training set of known pairs. To implement this,
we pick a random set of Nstart known HK-RR pairs from
our standard dataset, and the first IPA iteration uses this
concatenated alignment (CA) to train the model. We
blind the pairings of the remaining test set, and predict
them. At each subsequent iteration n > 1, the CA used
to retrain the model contains the initial training pairs
plus the (n− 1)Nincrement highest-scoring predicted pairs
from the previous iteration (see Materials and Methods).
At the first iteration, the fraction of accurately pre-

dicted HK-RR pairs (true positive (TP) fraction) de-
pends strongly on Nstart, and is close to the random ex-
pectation (0.09) for small training sets, ranging from 0.13
at Nstart = 1 to 0.93 for Nstart = 2000 (Fig. 2, inset, blue
curve). The TP fraction increases with subsequent iter-
ations (Fig. 2, main panel). Strikingly, the final TP frac-
tion depends only weakly on Nstart. For Nstart = 1, the
IPA achieves a final TP fraction of 0.84, a huge increase
from the initial value of 0.13 (Fig. 2, inset, red curve).
This demonstrates the power of iterating: incorporating
high-scoring predicted pairs progressively increases the
predictive accuracy of the model.

Starting without known pairings

Given the success of the IPA with very small train-
ing sets, we next ask whether predictions can be made
without any prior knowledge of interacting pairs. To test
this, we randomly pair each HK with an RR from the
same species, and use these 5064 random pairs to train
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FIG. 1. Iterative pairing algorithm (IPA). (A) Surface representations of a histidine kinase dimer (HK, top) and a response
regulator (RR, bottom), from a co-crystal structure [27]; the HK-RR contacts in each molecule are highlighted in color. (B) To
correctly pair HKs and RRs in each species from their sequences alone, we start from multiple sequence alignments of HKs and
RRs, including 64 amino acids from the HK and 112 from the RR. (C) Schematic of the main steps of the IPA. (D, E) Example
of HK-RR pair assignment and ranking by energy gap for one species. (D) Color map of the matrix of HK-RR interaction
energies in E. coli K-12 MG1655 from the final iteration of the IPA performed on our standard dataset, with a training set
of Nstart = 100 HK-RR pairs, and an increment step of Nincrement = 200 pairs. As in every IPA iteration and every species,
the pair with the lowest interaction energy is selected first (here, HK 10 - RR 10, boxed in white), and this HK and RR are
removed from further consideration (black hatches). Then, the next pair with the lowest energy is chosen, and the process is
repeated until all HKs and RRs are paired. (E) Energy spectrum from (D), showing the interaction energies with all the HKs
for each RR, with the correct HK-RR pairs shown in red. The energy gap ∆E is shown for RR 10. A confidence score based
on the energy gap is used to rank all assigned HK-RR pairs, and this ranking is exploited in order to build the concatenated
alignment for the subsequent IPA iteration. See Materials and Methods for details.

the initial model. At each subsequent iteration n > 1,
the CA is built just from the (n − 1)Nincrement highest-
scoring pairs from the previous iteration (see Supporting
Information).

Fig. 3 shows the progression of the TP fraction for dif-
ferent values of Nincrement. It increases in all cases, and
the iterative method performs best for small increment
steps (Fig. 3, inset). The low–Nincrement limit of the fi-
nal TP fraction is 0.84, identical to that obtained with a
single training pair (Fig. 2). This striking TP fraction of
0.84 is attained without any prior knowledge of HK-RR
interactions: the IPA bootstraps its way toward high pre-
dictivity. The low–Nincrement limit is almost reached for
Nincrement = 6; thus we generically use Nincrement = 6 to
reduce computational time while retaining near-optimal
performance. The final TP fraction is robust with re-

spect to different initializations: for Nincrement = 6, its
standard deviation (over 500 replicates) is 0.04. For the
complete dataset (23,424 HK-RR pairs), the IPA yields
a TP fraction of 0.93 with no training data (see below).

Training process

The ability to accurately predict interaction partners
without training data is surprising. To understand it,
we examine the evolution of the model over iterations of
the IPA. In a well-trained model, the residue pairs with
the largest couplings have been shown to correspond to
contacts in the protein complex [7, 16, 31]. Up to iter-
ation ∼100 − 150 (with Nincrement = 6), models start-
ing from random pairings do no better than chance at
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FIG. 2. Fraction of predicted pairs that are true positives
(TP fraction), for different training set sizes Nstart. Main
panel: Progression of the TP fraction during iterations of the
IPA. The TP fraction is plotted versus the effective number
of HK-RR pairs (Meff , see Supporting Information, Eq. S1)
in the concatenated alignment, which includes Nincrement = 6
additional pairs at each iteration. The IPA is performed on
the standard dataset, and all results are averaged over 50
replicates that differ by the random choice of training pairs.
Dashed line: Average TP fraction obtained for random HK-
RR pairings. Inset: Initial and final TP fractions (at first and
last iteration) versus Nstart.

identifying contacts. Subsequently, they improve rapidly
and soon predict contacts nearly as well as models con-
structed from correct pairs (Figs. 4 and S1A).
At early stages, the model, constructed from few al-

most random HK-RR pairs, poorly predicts real contacts
and correct HK-RR pairs. However, couplings associated
to residue pairs that occur in the CA increase, raising the
scores of HK-RR pairs with high sequence similarity to
those already in the CA, and making them more likely to
be added to the CA. We thus examine sequence similar-
ity between the HK-RR pairs in the CA in consecutive
iterations. Specifically, we consider two HK-RR pairs to
be “neighbors” if the sequence identity between the two
HKs and between the two RRs are both > 70%. We find
that sequence similarity is crucial in the early recruitment
of new HK-RR pairs to the CA (Fig. S1B).
Understanding the initial increase of the TP fraction

requires a further observation. In our standard dataset,
among all possible, within-species HK-RR pairs, the av-
erage number of neighbor pairs per correct HK-RR pair
is 9.66, of which 99% are correct. In contrast, the aver-
age number of neighbor pairs per incorrect HK-RR pair
is 5.25, of which less than 1% are correct. Thus, correct
pairs are more similar to each other than they are to in-
correct pairs, or than incorrect pairs are to each other.
We call this the Anna Karenina effect, in reference to
the first sentence of Tolstoy’s novel [32]: All happy fami-

FIG. 3. Starting from random pairings, i.e. without known
pairings. Main panel: TP fraction during iterations of the
IPA versus the effective number of HK-RR pairs (Meff) in the
concatenated alignment, which includes Nincrement additional
pairs at each iteration. Different curves correspond to differ-
ent Nincrement. The IPA is performed on the standard dataset,
and all results are averaged over 50 replicates that differ in
their initial random pairings. Note that the first point of each
curve corresponds to the second iteration. Dashed line: Aver-
age TP fraction obtained for random HK-RR pairings. Inset:
Final TP fraction versus Nincrement.

lies are alike; each unhappy family is unhappy in its own
way. Biologically, this makes sense: each HK-RR pair is
an evolutionary unit, so a correct pair is likely to have
orthologs of both the HK and the RR in multiple other
species, whereas an incorrect pair is less likely to have
orthologs of both the HK and the (non-cognate) RR in
other species. Hence, in early iterations, the number of
neighbors recruited per correct pair is higher than per
wrong pair (Fig. S1B), increasing the TP fraction in the
CA. To summarize, sequence similarity is crucial at early
stages, and the Anna Karenina effect helps to increase
the TP fraction in the CA, thus promoting training of
the model. This suggests that the IPA might be further
enhanced by initially scoring HK-RR pairs based on sim-
ilarity [33].

Application of the IPA to ABC transporters

To demonstrate the utility of the IPA beyond HK-
RRs, we applied it to several protein families involved
in ABC transporter complexes. Bacterial genomes typi-
cally contain multiple paralogs of these transporters, in-
volved in the translocation of different substances [34].
We built alignments of homologs of the Escherichia coli

interacting protein pairs MALG-MALK, FBPB-FBPC,
and GSIC-GSID (see Supporting Information). These
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FIG. 4. Training of the couplings during the IPA. Residue
pairs comprised of an HK site and an RR site were scored
by the Frobenius norm (i.e. the square root of the summed
squares) of the couplings involving all possible residue types at
these two sites. The best-scored residue pairs were compared
to the 27 HK-RR contacts found experimentally in Ref. [27].
Solid curves: Fraction of residue pairs that are real contacts
(among the k best-scored pairs for four different values of k)
versus the iteration number in the IPA. Dashed curves: Ideal
case, where at each iteration Nincrement randomly-selected cor-
rect HK-RR pairs are added to the CA. The overall fraction
of residue pairs that are real HK-RR contacts, yielding the
chance expectation, is only 3.8× 10−3. The IPA is performed
on the standard dataset with Nincrement = 6, and all data is
averaged over 500 replicates that differ in their initial random
pairings.

protein pairs are respectively involved in maltose, iron
and glutathione transport systems. The IPA starting
from random pairings yields respective final TP fractions
0.90, 0.89, and 0.98 for these pairs in the low-Nincrement

limit (Fig. 5, black curves). These accurate predictions
demonstrate the broad applicability of the IPA beyond
HK-RRs.

Dependence on features of the dataset

To apply the IPA approach more widely, it is important
to understand what dataset characteristics enable its suc-
cess. The number of paralogous pairs per species is likely
important, since pairing is more difficult when there are
more incorrect possibilities. Indeed, higher TP fractions
are obtained in datasets with fewer average pairs per
species both across different ABC transporter protein
pairs and across HK-RR datasets with different numbers
of pairs per species (Fig. 5). Moreover, the presence of
species with a small number of pairs is crucial (Fig. S2),
though in their absence, the TP fraction can be rescued
by a sufficiently large training set (Fig. S3). Perhaps

FIG. 5. Results for ABC transporter pairs and impact of the
number of pairs per species. Main panel: Final TP fraction
versus Nincrement for three different pairs of protein families
involved in ABC transport complexes (black curves), and for
three HK-RR datasets with different distributions of the num-
ber of pairs per species yielding different means 〈mp〉 (colored
curves). All datasets include ∼5000 protein pairs, and the IPA
is started from random pairings, apart from the red dashed
curve, where it is started from incorrect random pairings. All
results are averaged over 50 replicates that differ in their ini-
tial pairings. Arrows with the same line style as each curve
indicate the average TP fractions obtained for random pair-
ings in each dataset. Inset: Distribution of the number of
pairs per species in the three different HK-RR datasets (red:
standard dataset; green and blue: datasets comprised of the
species with lowest or highest numbers of pairs in the full
HK-RR dataset).

surprisingly, for small Nincrement, the final TP fraction
does not depend on how many pairs in the initial CA are
correct (Fig. 5, red curves, and Fig. S4). Hence, the im-
portance of species with few pairs does not stem from a
more favorable initialization. Rather, protein pairs from
species with few pairs tend to obtain higher confidence
scores since they have fewer competitors, making them
more likely to enter the CA at early stages (Fig. S5). This
bias in favor of species with few pairs combines with the
Anna Karenina effect to favor correct pairs early in the
learning process.

Since sequence similarity is crucial at early iterations,
it should strongly impact performance. Indeed, a lower
final TP fraction (0.58 vs. 0.84) is obtained in an HK-RR
dataset where no two correct pairs are > 70% identical,
but it can be rescued by a sufficiently large training set
(Fig. S6).

Another important parameter is dataset size. For HK-
RRs, the final TP fraction increases steeply above ∼1000
sequences, and saturates above ∼10, 000 (Fig. S7). For
the complete dataset (23,424 HK-RR pairs, see Materials
and Methods), we obtain a striking final TP fraction of
0.93. Larger datasets imply closer neighbors, which is
favorable to the success of the IPA, particularly in the
absence of training data.
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Optimization

To improve the predictive ability of the IPA, we ex-
ploit multiple different random initializations of the CA.
For each possible, within-species HK-RR pair, we calcu-
late the fraction fr of replicates of the IPA in which this
pair is predicted. High fr values are excellent predic-
tors of correct pairs, outperforming average TP fractions
from individual replicates (Fig. S8). The quality of fr
as a classifier is demonstrated by the area under the re-
ceiver operating characteristic: it is 0.991, very close to
1 (ideal). The very high TP fraction of the pairs with
highest fr can be exploited by taking some as training
pairs and running the IPA again. This “rebootstrapping”
process can be iterated, yielding further performance in-
creases, particularly for small datasets (Fig. S9).

Determining whether two protein families interact

The IPA correctly predicts most interacting protein
pairs no matter which initial random pairing is used.
This suggests that the distribution of replication fractions
fr (over all possible within-species pairs) should distin-
guish pairs of protein families that interact from those
that do not. To test this idea, we consider three pairs
of families with similar 〈mp〉: the subset of HK-RRs ho-
mologous to BASS-BASR, the homologs of the interact-
ing ABC transporter proteins MALG-MALK, and a pair
with no known interaction, homologs of BASR-MALK.
For both interacting protein families, the distribution of
replication fractions fr strongly favors values close to
0, mostly corresponding to wrong pairs, and close to 1,
mostly corresponding to correct pairs (Fig. 6A-B). No
such bimodality is observed for BASR-MALK (Fig. 6C).
We constructed null models for each dataset by randomly
scrambling the amino acids at each site (column) of the
alignment, thus retaining conservation while removing
correlations. For BASR-MALK, the observed fr distribu-
tion is very similar to the null-model distribution, while
for both interacting pairs the results and the null strongly
differ (Fig. 6). The standard HK-RR dataset can be sim-
ilarly contrasted with an HK-RR dataset lacking correct
pairs (Fig. S10). Comparing the observed fr distribu-
tion to the null thus distinguishes interacting from non-
interacting protein families using sequence data alone.
For these family pairs, the difference in fr distributions
is visible down to dataset sizes M ∼500. Another sig-
nature of interacting families is the strength of the top
predicted contacts (Fig. S11).

DISCUSSION

We have presented a method to infer interaction part-
ners among two protein families with multiple paralogs,
using only sequence data. Our approach is based on pair-
wise maximum entropy models, which have proved suc-

FIG. 6. An IPA-derived signature of protein-protein inter-
actions. For three pairs of protein families, we compute the
fraction fr of IPA replicates in which each possible within-
species protein pair is predicted as a pair. (A and B) Protein
families with known interactions: (A) BASS-BASR homologs
and (B) MALG-MALK homologs; (C) Protein families with
no known interaction (BASR-MALK homologs). Red curves:
Distribution of fr obtained for each alignment. Blue curves:
Same distribution obtained by running the IPA on alignments
where each column is scrambled (null model). Alignments in-
clude ∼5000 pairs, with 〈mp〉 ≈ 5, and each distribution is
estimated from 500 IPA replicates that differ in their initial
random pairings, using Nincrement = 50.

cessful at predicting residue contacts between known in-
teraction partners [7, 15–19]. To our knowledge, the im-
portant problem of predicting interaction partners among
paralogs from sequences has only been addressed by
Burger and van Nimwegen [6], who used a Bayesian
network method. Pairwise maximum entropy-based ap-
proaches were later shown to outperform this method
for orphan HK-RR partner predictions, starting from a
substantial training set of partners known from gene ad-
jacency [15]. Importantly, our method enables partner
prediction without any initial known pairs, whereas even
the seminal study [6] included a training set via species
that contain only a single pair. This lack of a training set
is important to predict novel protein-protein interactions,
since in this context no prior knowledge of interacting
pairs would be available.

We first benchmarked our iterative pairing algorithm
(IPA) on HK-RR pairs. The top-scoring predicted HK-
RR pairs are progressively incorporated into the con-
catenated alignment used to build the maximum entropy
model. This enables progressive training of the model,
providing major increases in predictive accuracy. Strik-
ingly, the IPA is very successful even in the absence of
any prior knowledge of HK-RR interactions, yielding a
0.93 TP fraction on our complete dataset. The success
of the IPA with no training data relies on initial recruit-
ment of pairs by sequence similarity. Correct pairs are
more similar to one another than incorrect pairs, favor-
ing recruitment of correct pairs - a process we called the
“Anna Karenina effect”.

IPA performance is best for large datasets (with strong
sequence similarity), and when species with few pairs are
included. The first condition is easily met for HK-RRs
(a 0.84 TP fraction was obtained with 5064 pairs, out of
23,424, and our rebootstrapping approach yields a 0.64
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TP fraction even for a dataset of only 502 pairs, Fig. S9B)
and is realized for a large and growing number of other
protein families. Indeed, in the protein family database
PfamA-30 [35], 62% of the 15,701 entries classified as
“domains” or “families” comprise more than 500 distinct
Uniprot sequences. The mean number of paralogs per
species in PfamA-30 domains or families is 3.9, so the
HK-RR system actually constitutes an unusually diffi-
cult case in this respect [28]. The success we obtained for
ABC transporter proteins, which form permanent com-
plexes, while HK-RRs interact transiently, further points
to the broad applicability of the IPA. So far we have
only applied the IPA to one-to-one interactions, but the
method should be fruitful beyond this domain.

Our approach could be combined with those of Refs. [7,
13, 15–19] to improve protein complex structure predic-
tion. It solves the major issue [17–19] of finding the cor-
rect interaction partners among paralogs, which is a pre-
requisite for accurate contact prediction. In particular,
better paralog-partner predictions will help extend ac-
curate contact prediction to currently-inaccessible cases
such as eukaryotic proteins, for which genome organiza-
tion cannot be used to find partners.

Finally, we have introduced two distinct IPA-based
signatures that distinguish between interacting and non-
interacting protein families. These results pave the way
toward predicting novel protein-protein interactions be-
tween protein families from sequence data alone.

MATERIALS AND METHODS

Extended Materials and Methods are presented in the
Supporting Information.

HK-RR dataset

Our dataset was built from the P2CS database [36, 37],
which includes two-component system proteins from all
fully-sequenced prokaryotic genomes. All data can thus
be accessed online. We considered the protein domains
through which HKs and RRs interact, namely the Pfam
HisKA domain present in most HKs (64 amino acids)
and the Pfam Response reg domain present in all RRs
(112 amino acids). We focused on proteins with known
partners, i.e. those encoded in the genome in pairs con-
taining an HK and an adjacent RR. Discarding species
with only one pair, for which pairing is unambiguous,
we obtained a complete dataset of 23,424 HK-RR pairs
from 2102 species. A smaller “standard dataset” of 5064
pairs from 459 species was extracted by picking species
randomly.

Iterative pairing algorithm (IPA)

Here, we summarize each of the steps of an iteration
of the IPA (Fig. 1C).
1. Correlations. Each iteration begins by the cal-

culation of empirical correlations from the CA of paired
HK-RR sequences. The empirical one- and two-site fre-
quencies, fi(α) and fij(α, β), of occurrence of amino-acid
states α (or β) at each site i (or j) are computed for
the CA, using a re-weighting of similar sequences, and a
pseudocount correction (Eqs. S1-S4) [7, 9, 15, 29]. The
correlations are then computed as

Cij(α, β) = fij(α, β)− fi(α)fj(β) . (1)

2. Couplings. Next, we construct a pairwise max-
imum entropy model of the CA (Eq. S6). It involves
one-body fields hi at each site i and (direct) couplings
eij between all sites i and j, which are determined by
imposing consistency of the pairwise maximum entropy
model with the empirical one- and two-point frequencies
of the CA (Eqs. S7-S8). We use the mean-field approx-
imation [9, 29]: couplings are obtained by inverting the
matrix of correlations:

eij(α, β) = C−1
ij (α, β) . (2)

We then transform to the zero-sum gauge [7, 31].
3. Interaction energies for all possible HK-RR

pairs. The interaction energy E of each possible HK-
RR pair within each species is calculated as a sum of
couplings:

E (α1, ..., αLHK
, αLHK+1, ..., αL) =

LHK
∑

i=1

L
∑

j=LHK+1

eij(αi, αj) ,

(3)
where LHK denotes the length of the HK sequence and
L that of the concatenated HK-RR sequence.
4. HK-RR pair assignments and ranking by

gap. In each species, the pair with the lowest interaction
energy is selected first, and the HK and RR involved are
removed from further consideration, assuming one-to-one
HK-RR matches (Fig. 1D). Then, the pair with the next
lowest energy is chosen, until all HKs and RRs are paired.
Each pair is scored at assignment by a confidence score
∆E/(n+ 1), where ∆E is the energy gap (Fig. 1E), and
n is the number of lower-energy matches discarded in
assignments made previously, within that species and at
that iteration (Fig. S12). All the assigned HK-RR pairs
are then ranked in order of decreasing confidence score.
5. Incrementation of the CA. At each iteration

n > 1, the (n − 1)Nincrement assigned pairs that had the
highest confidence scores at iteration n− 1 are included
in the CA. In the presence of an initial training set, the
Nstart training pairs are also included in the CA. Without
a training set, the initial CA is built by randomly pairing
each HK of the dataset to an RR from the same species,
and for n > 1, the CA only contains the above-mentioned
(n − 1)Nincrement assigned pairs. Once the new CA is
constructed, the next iteration can start.
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SUPPORTING INFORMATION

EXTENDED MATERIALS AND METHODS

I. DATASET CONSTRUCTION

A. Complete HK-RR dataset

Our dataset is built using the online database
P2CS (http://www.p2cs.org/) [36, 37], which in-
cludes two-component-system proteins from all fully-
sequenced prokaryotic genomes. In the construc-
tion of P2CS, these proteins were identified by
searching genomes for two-component system domains
from the Pfam (http://pfam.xfam.org/) and SMART
(http://smart.embl-heidelberg.de/) libraries. We
kept only chromosome-encoded proteins, due to strong
variability in plasmid presence. We also excluded hybrid
and unorthodox proteins, which involve both HK and
RR domains in the same protein, since the energetics of
partnering is different and often less constraining for such
proteins [13]. In HKs, there are different domain vari-
ants in the vicinity of the N-terminal Histidine-containing
phosphoacceptor site, including the region that interacts
with RRs. These variants are classified into several dif-
ferent Pfam domain families, which are all members of
the His Kinase A domain clan (CL0025). In order to re-
liably align all HK sequences, we chose to focus on only
one of these Pfam domain families, HisKA (PF00512).
Proteins containing a HisKA domain account for the ma-
jority (64%) of all chromosome-encoded, non-hybrid, or-
thodox HKs in P2CS.

Proteins in P2CS are annotated based on genetic orga-
nization [37]. As our aim was to benchmark our method
on known, specific interaction partners, we only consid-
ered HKs and RRs that are encoded by adjacent genes.
Note that 67% of all chromosome-encoded, non-hybrid,
orthodox HKs in P2CS are from such pairs. Suppressing
the (rare) HKs with multiple HisKA domains and RRs
with multiple Response reg domains for which the pair-
ing of domains is ambiguous, this yields 23,632 distinct
pairs that differ in either sequence or species. Discard-
ing the 208 pairs from species with only one such pair
(see discussion below) yields a dataset of 23,424 HK-RR
pairs. Grouping together sequences with mean Hamming
distance per site < 0.3 (i.e. with 70% sequence identity
or more) to estimate sequence diversity yields an effec-
tive number of HK-RR pairs Meff = 5391 in the complete
dataset.

These 23,424 HK-RR pairs are from 2102 different
species, with numbers of pairs per species ranging from
2 to 41, with mean 〈mp〉 = 11.1. The distribution of the
number of pairs per species in our complete dataset is
shown in Fig. S6A.

B. Standard HK-RR dataset

In most of our work, we focused on a smaller “standard
dataset” extracted from this complete dataset, both be-
cause protein families that possess as many members as
the HKs and RRs are atypical, and in view of compu-
tational time constraints. Note, however, that our IPA
was used to make predictions on the complete dataset,
yielding a striking 0.93 final TP fraction (Fig. S7).
Our standard dataset was constructed by picking

species randomly. Once 43 species with one single pair
are suppressed (see discussion below), it comprises 5064
pairs from 459 species, with an average number of pairs
per species 〈mp〉 = 11.0, which is very close to that of
the complete dataset (see Fig. S6A for the distributions
of the number of pairs per species). Grouping together
sequences with mean Hamming distance per site < 0.3
to estimate sequence diversity yields an effective number
of HK-RR pairs Meff = 2091 in the standard dataset.

C. Suppressing species with a single pair

In our datasets, we discarded sequences from species
that contain only one known pair, for which pairing is
therefore unambiguous. This allowed us to quantitatively
assess the impact of training set size (Nstart) without the
inclusion of an implicit training set via these pairs. More
importantly, this enabled us to address prediction in the
absence of any known pairs (no training set), which is
crucial for predicting unknown protein-protein interac-
tions between protein families, since no training set is
then available. For other purposes, pairs from species
with only one known pair might be included as a train-
ing set (but then one would need to be sure that they are
actually interacting, because any error in the training
set would be detrimental for the model). In our stan-
dard HK-RR dataset, if the 43 pairs from species with
a single pair are treated as a training set instead of be-
ing discarded, the IPA yields a final TP fraction of 0.88
(vs. 0.84 starting from random pairings, i.e. in the ab-
sence of any training set). This value is the same as the
one obtained for Nstart = 50 (0.88, value averaged over
50 different random choices of the 50 training pairs, see
Fig. 2). Interestingly, by exploiting multiple random ini-
tializations, a TP fraction of 0.89 is reached starting from
random pairings (Fig. S8).

D. Multiple sequence alignment of HKs and RRs

All HKs in our dataset were aligned to the profile hid-
den Markov model (HMM) representing the Pfam HisKA
domain (PF00512) using the hmmalign tool from the
HMMER suite (http://hmmer.org/). Similarly, all RRs
were aligned to the profile HMM representing the Pfam
Response reg domain (PF00072). The aligned sequences
of each HK were then concatenated to those of their
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RR partner, yielding a concatenated multiple sequence
alignment. The length of each concatenated sequence is
L = 176 amino acids, among which the LHK = 64 first
amino acids are from the HK, and the remaining 112
amino acids are from the RR. The full length of these
sequences was kept throughout.

E. Dataset construction for ABC transporter
proteins

While we used HK-RRs as the main benchmark for
the IPA, we also applied it to several pairs of pro-
tein families involved in ABC (ATP-binding cassette)
transporter complexes. These ubiquitous complexes en-
able ATP-powered translocation of various substances
through membranes [34]. As in the case of HK-RRs,
bacterial genomes typically contain multiple paralogs of
these transporters, and actual pairings are known from
genome proximity, enabling us to assess the success of
the IPA.
We built paired alignments of homologs of the

Escherichia coli interacting protein pairs MALG-
MALK, FBPB-FBPC, and GSIC-GSID, all involved in
ABC transporter complexes, using a method adapted
from Ref. [17] and http://gremlin.bakerlab.org/.
First, the homologs of each protein were re-
trieved from Uniprot (http://www.uniprot.org/)
using hhblits from the HH-suite
(https://github.com/soedinglab/hh-suite) with
main options -n 8 -e 1E-20. Then hhfilter from
the HH-suite was run with options -id 100 -cov 75
to only retain the homologs that have at least 75%
coverage. In order to focus on the relevant conserved
domains involved in binding, as we did for HK-RRs,
we then used hmmsearch from the HMMER suite to
align a subsequence of each homolog to the profile
HMM of the appropriate domain from Pfam. These
domains are ABC tran (PF00005) for MALK, and
BPD transp 1 (PF00528) for all other ABC transporter
proteins considered here. For each pair of interacting
protein families, sequences from the same species (found
via the OX/OS field in the Uniprot headers) were then
paired to their interacting partner by genome proximity
(assessed via the Uniprot accession numbers, and using
a maximum allowed difference of 20 between these IDs).
These pairings enabled us to evaluate IPA performance
(Fig. 5), as in the HK-RR case. Note that the paired
alignment of HK-RRs homologous to BASS-BASR was
constructed in the same way as the alignments of these
ABC-transporter protein pairs.
We also considered a pair of protein families with

no known interactions: BASR homologs (Response reg
domain) and MALK homologs (ABC tran domain).
These two protein families have very different biolog-
ical functions, and no interaction between BASR and
MALK has been reported in the STRING database
(http://string-db.org/).

As in the case of HK-RRs, for each pair of protein
families, we worked on subsets of ∼ 5000 protein pairs
extracted from the complete dataset by randomly picking
species, and we discarded species with a single pair.

II. STATISTICS OF THE CONCATENATED
ALIGNMENT (CA)

Henceforth, as in the main text, we will present our
general method in the specific case of HK-RRs. Note that
we applied it in the exact same way to ABC transporter
protein pairs.

Let us consider a CA of paired HK-RR sequences. At
each site i ∈ {1, .., L}, where L is the number of amino-
acid sites, a given concatenated sequence can feature any
amino acid (denoted by α with α ∈ {1, .., 20}), or a gap
(denoted by α = 21), yielding 21 possible states α for
each site i.

To describe the statistics of the alignment, we only
employ the single-site frequencies of occurrence of each
state α at each site i, denoted by fe

i (α), and the two-site
frequencies of occurrence of each ordered pair of states
(α, β) at each ordered pair of sites (i, j), denoted by
fe
ij(α, β) [7]. The raw empirical frequencies, obtained
by counting the sequences where given residues occur at
given sites and dividing by the number M of sequences in
the CA, are subject to sampling bias, due to phylogeny
and to the choice of species that are sequenced [9, 29].
Hence, to define fe

i and fe
ij , we use a standard cor-

rection that re-weights “neighboring” concatenated se-
quences with mean Hamming distance per site < 0.3.
The value of this similarity threshold is arbitrary, but
our results depend very weakly on this choice, even when
taking the threshold down to zero. The weight associ-
ated to a given concatenated sequence a is 1/ma, where
ma is the number of neighbors of a within the thresh-
old [9, 15, 29]. This allows one to define an effective
sequence number Meff via

Meff =

M
∑

a=1

1

ma
. (S1)

To avoid issues such as amino acids that never ap-
pear at some sites, which would present mathematical
difficulties, e.g. a non-invertible correlation matrix and
diverging couplings [29], we introduce pseudocounts via
a parameter Λ [7, 9, 15, 29]. The one-site frequencies fi
become

fi(α) =
Λ

q
+ (1 − Λ)fe

i (α) , (S2)

where q = 21 is the number of states (i.e. of amino
acids, including gaps) per site. Similarly, the two-site
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frequencies fij become

fij(α, β) =
Λ

q2
+ (1− Λ)fe

ij(α, β) if i 6= j , (S3)

fii(α, β) =
Λ

q
δαβ + (1− Λ)fe

ii(α, β) = fi(α)δαβ , (S4)

where δαβ = 1 if α = β and 0 otherwise. These pseudo-
count corrections are uniform (i.e. they have the same
weight 1/q on all amino-acid states), and their impor-
tance relative to the raw empirical frequencies can be
tuned through the parameter Λ. In practice, we take
Λ = 0.5, which has been shown to be a satisfactory
choice [9, 29]. Note that the correspondence of Λ with
the parameter λ in Refs. [9, 15, 29] is obtained by setting
Λ = λ/(λ+Meff).
From these quantities, we define the two-point corre-

lations

Cij(α, β) = fij(α, β) − fi(α)fj(β) . (S5)

III. MAXIMUM ENTROPY MODEL

A. Formulation

The maximum entropy principle [8] yields the following
form for the least-structured global (L-point) probability
distribution P of sequences consistent with the empirical
one- and two-point statistics of the CA:

P (α1, ..., αL) =
1

Z
exp







−





L
∑

i=1

hi(αi) +
∑

i<j

eij(αi, αj)











,

(S6)
where Z is a normalization constant. Each one-body
term hi is known as the field at site i, and each two-body
interaction term eij is known as the (direct) coupling
between sites i and j. The fields hi and the couplings
eij are determined by imposing that the probability dis-
tribution P be consistent with the empirical one- and
two-point frequencies fi and fij :

∑

αk,k 6=i

P (α1, ..., αL) = fi(αi) , (S7)

∑

αk,k/∈{i,j}

P (α1, ..., αL) = fij(αi, αj) . (S8)

Such pairwise interaction maximum entropy models
have proved very successful in various fields (see e.g.
Refs. [12, 14, 20–26]), including the prediction of pro-
tein structures and inter-protein contacts from multi-
ple sequence alignments (see e.g. Refs. [7, 9, 29]). In
particular, high couplings eij are better predictors of
real contacts in proteins than high correlations Cij , be-
cause the eij represent minimal direct couplings between
amino acids, while high Cij can arise from indirect ef-
fects [7, 9, 29].

B. Inference of the parameters

Eqs. S7 and S8 alone do not uniquely define all the
fields hi(α) and couplings eij(α, β) with 1 ≤ i < j ≤ L
involved in Eq. S6, which amount to Lq + L(L− 1)q2/2
parameters, where q = 21 is the number of amino-
acid states α. Indeed, while the number of equations
in Eqs. S7 and S8 is the same as that of the empiri-
cal frequencies, the latter are not all independent. The
two-site frequencies are symmetric (fij(α, β) = fji(β, α))
and consistent with the one-site frequencies (fii(α, β) =
fi(α)δαβ ;

∑

β fij(α, β) = fi(α); and
∑

α fij(α, β) =

fj(β)), which sum to one (
∑

α fi(α) = 1). All these
constraints reduce the number of independent variables
among the one- and two-site frequencies, and thus of
independent equations, to L(q − 1) + L(L − 1)(q −
1)2/2 [7, 29]. This yields a degree of freedom in the deter-
mination of the fields and couplings from Eqs. S7 and S8.
Given the number of independent equations, one possible
gauge choice is to set to zero the fields and couplings for
one given state, e.g. state q (the gap) [9, 29]: hi(q) = 0
and, for all α,

eij(α, q) = eij(q, α) = 0 . (S9)

Determining the remaining fields hi and the couplings
eij from Eqs. S7 and S8 is difficult, and various ap-
proximations have been developed to solve this prob-
lem. Following Refs [9, 29], we use the mean-field or
small-coupling approximation, which was introduced in
Ref. [38] for the Ising spin-glass model. In this approxi-
mation, for i 6= j and α, β < q, the couplings are given by
eij(α, β) = A−1

kl , where A is a (q−1)L× (q−1)L correla-
tion matrix: Akl = Cij(α, β), where k = (q−1)(i−1)+α
and l = (q − 1)(j − 1) + β [31]. This can be summarized
as

eij(α, β) = C−1
ij (α, β) . (S10)

Together, Eqs. S9 and S10 yield all the couplings. Note
that the couplings are symmetric (eij(α, β) = eji(β, α))
since the correlations are.
This simple mean-field approximation has been used

with success for protein structure prediction [9, 29].
(More sophisticated approximations typically improve
performance by less than ten percent [16, 31].) More-
over, this approximation is computationally fast, since
it only requires the inversion of a (20L) × (20L) corre-
lation matrix. Computational rapidity is a considerable
asset for our purpose, given that the IPA performs better
with smaller increment step size Nincrement (see Fig. 3),
i.e. with more iterations, and that the couplings eij are
computed at each iteration. This approximation also en-
abled us to use the full-length sequences of domains to
infer couplings, without needing to restrict to a subset
of amino-acid sites as in some other works using more
sophisticated approximations [7, 15]. We find that using
full-length sequences increases the resulting TP fraction.
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C. Gauge choice

Qualitatively, the gauge degree of freedom means that
contributions to the effective energy of the system

H =

L
∑

i=1

hi(αi) +
∑

i<j

eij(αi, αj) (S11)

can be shifted between the fields and the couplings [7].
Since our focus is on interactions, we do not want the
couplings to include contributions that can be accounted
for by the (one-body) fields [39]. The zero-sum (or Ising)
gauge, where the couplings satisfy

∑

α

eij(α, β) =
∑

β

eij(α, β) = 0 , (S12)

minimizes the Frobenius norms of the couplings

‖eij‖ =

√

√

√

√

q
∑

α,β=1

[eij(α, β)]
2
. (S13)

Hence, the zero-sum gauge attributes the smallest possi-
ble fraction of the energy in Eq. S6 to the couplings, and
the largest possible fraction to the fields [7, 31]. Further-
more, when employing this gauge, the Frobenius norm
has proved to be a successful predictor of contacts in
proteins [16, 31]. In particular, within the mean-field
approximation Eq. S10, the use of the Frobenius norm
(with an average-product correction) improves over the
results obtained using direct information [31].

Thus, after calculating the couplings as described
above, we change the gauge from the one defined in
Eq. S9 to the one defined in Eq. S12, by replacing each
coupling eij(α, β) by

eij(α, β) − 〈eij(γ, β)〉γ − 〈eij(α, δ)〉δ + 〈eij(γ, δ)〉γ,δ ,
(S14)

where 〈.〉γ denotes an average over γ ∈ {1, ..., q} [31].

Note that in Fig. 4, we use the Frobenius norm without
the average-product correction [31]. With this correction,
implemented by averaging within single proteins [17], we
obtained similar results (see Fig. S13). Overall, with the
correction, final performance is slightly worse, but train-
ing is visible slightly earlier in the IPA.

IV. ITERATIVE PAIRING ALGORITHM (IPA)

The main steps of the IPA are shown in Fig. 1C. Here,
we describe each of these steps in detail, after explaining
how the CA is constructed for the very first iteration.

Initialization of the CA

Starting from a training set of HK-RR pairs

The CA for the first iteration of the IPA is built from
the pairs in the training set, which are considered as
known interaction partners. In subsequent iterations, the
training set pairs are always kept in the CA, and addi-
tional pairs with the highest confidence scores (see below)
are added to the CA.

Starting from random pairings

In the absence of a training set, each HK of the dataset
is randomly paired with an RR from its species. All
M pairs, where M represents the total number of HKs,
or, equivalently, RRs, in the dataset, are included in the
CA for the first iteration of the IPA. Hence, this initial
CA contains a mixture of correct and incorrect pairs,
with one correct pair per species on average. At the
second iteration, the CA is built using only the Nincrement

HK-RR pairs with the highest confidence scores obtained
from this first iteration.

There are other ways to initialize the CA in the ab-
sence of a training set. We varied the number of pairs
included at the second iteration (Nincrement in the above
scheme), and we also tried constructing the first CA from
all possible HK-RR pairs from the species with few pairs
(as for these species, exhaustive pairing yields a larger
proportion of true pairs). These variants did not sig-
nificantly increase the final TP fraction. Moreover, the
random initialization of the CA can be exploited to in-
crease the TP fraction (Figs. S10 and S9), which would
be impossible for exhaustive initializations.

Now that we have described the initial construction of
the CA, we describe each step of an iteration of the IPA
(Fig. 1C).

Step 1: Correlations

At each iteration, the empirical one- and two-body fre-
quencies are computed for the CA, using the re-weighting
of neighbor sequences and the pseudocount correction de-
scribed above (see Eqs. S1-S4). The empirical correla-
tions Cij are then deduced using Eq. S5.

Step 2: Direct couplings

The direct couplings in the pairwise maximum entropy
model of the CA are inferred from the empirical correla-
tions using Eqs. S9 and S10. The gauge is then changed
to the zero-sum gauge (Eq. S12) using Eq. S14.
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Step 3: Interaction energies for all possible HK-RR
pairs

The interaction energy E of each possible HK-RR pair
within each species of the dataset is calculated by sum-
ming the appropriate direct couplings:

E (α1, ..., αLHK
, αLHK+1, ..., αL) =

LHK
∑

i=1

L
∑

j=LHK+1

eij(αi, αj) ,

(S15)
where LHK denotes the length (i.e. the number of amino-
acid sites) of the HK sequence and L that of concatenated
HK-RR sequence. Note that this HK-RR interaction en-
ergy only involves the inter-molecular couplings (i ≤ LHK

and j > LHK; the case i > LHK and j ≤ LHK does not
need to be considered as the couplings are symmetric).

Step 4: HK-RR pair assignments and ranking by
energy gap

HK-RR pair assignments

In each separate species, the pair with the lowest inter-
action energy is selected first, and the HK and RR from
this pair are removed from further consideration, since we
assume one-to-one HK-RR matches (see Fig. 1D). Then,
the pair with the next lowest energy is chosen, and the
process is repeated until all HKs and RRs are paired.

Scoring by gap

Each assigned HK-RR pair is scored at the time of as-
signment by ∆E/(n + 1), where ∆E is the energy gap
between the match with the lowest energy and the next
best one (see Fig. 1E), and n is the number of lower-
energy matches discarded in assignments made previ-
ously (within that species and at that iteration). Qual-
itatively, the larger the energy gap, and the smaller the
number n of rejected better candidates, the more reliable
we expect the assignment to be.
More precisely, ∆ERR = ERR,2 − ERR,1 > 0 is com-

puted for the RR involved as minus the difference of the
interaction energy ERR,1 of this RR with its assigned
partner (i.e. the “best” HK, which yields the lowest in-
teraction energy with this RR, among the HKs that are

still unpaired) and that ERR,2 with the second-best HK
among the HKs that are still unpaired. Meanwhile, nRR is
the number of HKs of that species that had lower interac-
tion energies with this RR than the assigned partner, but
that have been eliminated previously in that iteration’s
pairing process, because they were paired to other RRs
with a lower interaction energy. A schematic example is
shown on Fig. S12A. Similarly, the value of ∆EHK and of
nHK are calculated for the HK involved in the assigned
pair. Finally, the lowest score among the two obtained is

kept:

∆E

n+ 1
= min

(

∆ERR

nRR + 1
,

∆EHK

nHK + 1

)

. (S16)

We have chosen to divide the energy gap ∆E by n+1
in order to penalize the HK-RR pairs made after bet-
ter candidates were discarded, even if their current gap
among remaining candidates appears large, as illustrated
by the second assignment in Fig. S12A. However, one
could consider other definitions of confidence scores, such
as ∆E/(n + 1)α, where α is a parameter. In Fig. S12B,
we show that our confidence score significantly improves
TP fraction over the raw energy gap ∆E, and that α = 1
yields an optimal TP fraction.
This definition of the confidence score leaves an am-

biguity for the last assigned pair of each species, since
there is no remaining second-best match to define the
energy gap. We have chosen to assign to this pair a con-
fidence score equal to the lowest other one within the
species, given that this pair, made by default, should
not be deemed more reliable than any other pair in the
species.
Another ambiguity exists when several pairs have ex-

actly the same interaction energy. This mostly occurs
when the model is built from one single HK-RR con-
catenated sequence (this case is not singular thanks to
the pseudocount correction, and the model then yields
a lower energy contribution for each residue pair iden-
tical to the initial concatenated sequence, and a higher
energy contribution for each residue pair comprising one
same and one different residue compared to the initial
concatenated sequence). It also occurs in the extremely
rare case where two identical HK (or RR) sequences are
found in the same genome. In this case, we chose to ran-
domly make one pair assignment between the equivalent
matches, and to leave the other equal energy HKs and/or
RRs to be paired later. We checked that the impact of
this choice on final results is very small.

Ranking of pairs

Once all the HK-RR pairs are assigned and scored, we
rank them in order of decreasing confidence score.

Step 5: Incrementation of the CA

The ranking of the HK-RR pairs is used to pick those
pairs that are included in the CA at the next iteration.
Pairs with a high confidence score are more likely to be
correct because there was less ambiguity in the assign-
ment. The number of pairs in the CA is increased by
Nincrement at each iteration, and the IPA is run until all
the HKs and RRs in the dataset have been paired and
added to the CA. In the last iteration, all pairs assigned
at the second to last iteration are included in the CA.
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Starting from a training set of HK-RR pairs

The Nstart training pairs remain in the CA through-
out and the HKs and RRs involved in these pairs are
not paired or scored by the IPA. The HKs and RRs from
all the other pairs in the CA are re-paired and re-scored
at each iteration, and only re-enter the CA if their confi-
dence score is sufficiently high. In other words, at the first
iteration, the CA only contains the Nstart training pairs.
Then, for any iteration number n > 1, it contains these
exact sameNstart training pairs, plus the (n−1)Nincrement

assigned HK-RR pairs that had the highest confidence
scores at iteration number n− 1.

Starting from random pairings

In the absence of a training set, all M HKs and RRs
in the dataset are paired and scored at each iteration,
and all the pairs of the CA are fully re-picked at each
iteration based on the confidence score. The first it-
eration is special, since the CA is made of M random
within-species HK-RR pairs (see above, “Initialization of
the CA”). Then, for any iteration number n > 1, the
CA contains the (n− 1)Nincrement assigned HK-RR pairs
that had the highest confidence scores at iteration num-
ber n− 1.
Once the new CA is constructed, the iteration is com-

pleted, and the next one can start with Step 1, the com-
putation of the empirical correlations in this CA.

Run time

The run time of the IPA strongly depends onNincrement

and on dataset size (length of concatenated sequences,
number of such sequences in the dataset). For our stan-
dard HK-RR dataset, all single-processor run times for a
Matlab-coded version of the IPA were shorter than one
day down to Nincrement = 6.
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SUPPORTING FIGURES

FIG. S1. Evolution of the coupling matrix and of the concatenated alignment (CA) during the IPA. (A) Training of the
coupling matrix. As in Fig. 4A, pairs comprised of an HK residue site and an RR residue site are scored by the Frobenius norm
(i.e. the square root of the summed squares) of the couplings involving all possible residue types at these two sites. The 10
best-scored pairs are compared to the main specificity residues determined experimentally in Refs. [4, 40–42] (5 HK residues,
T267, A268, A271, Y272, and T275 in the sequence of T. maritima HK853, and 5 RR residues, V13, L14, I17, N20, and F21 in
the sequence of T. maritima RR468 [41]). Solid curves: Fraction of the 10 best-scored residue pairs that include HK and/or
RR specificity residues versus the iteration number in the IPA. Dashed curves: Ideal case, where at each iteration Nincrement

randomly-selected correct HK-RR pairs are added to the CA. Dash-dotted curves: Case where random HK-RR pairs are added
to the CA. Dotted lines: Overall fraction of residue pairs that include specificity residues. (B) Neighbor recruitment. Average
number of neighbors an HK-RR pair of the CA has among the new HK-RR pairs of the next CA versus iteration number.
Two pairs are considered neighbors if the mean Hamming distance per site between the two HKs and between the two RRs
are both < 0.3. Dashed line: Null model – at each iteration, Nincrement new correct HK-RR pairs are chosen at random and
added to the CA. Inset: Expanded view of the first 50 iterations. In both panels, the IPA is performed on the standard dataset
with Nincrement = 6. In panel A (resp. B), data is averaged over 500 (resp. 5193) replicates that differ in their initial random
pairings.
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FIG. S2. Impact of the distribution of the number of HK-RR pairs per species. (A) Distribution of the number of pairs per
species in two different datasets: the standard one (red) and one with the same total number of HK-RR pairs M and the same
mean number of pairs per species 〈mp〉, but with a more strongly peaked distribution (blue). (B) Final TP fraction versus
Nincrement for the two datasets described in (A). All results are averaged over 50 replicates that differ in their initial random
pairings. Dashed line: Average TP fraction obtained for random HK-RR pairings.

FIG. S3. Impact of the number of HK-RR pairs per species: starting from a training set. Final TP fraction versus Nstart for
the three datasets with different distributions of the number of pairs per species yielding different means 〈mp〉 presented in
Fig. 5. Colored arrows indicate the average TP fractions obtained for random HK-RR pairings in each dataset. The IPA is
performed on the standard dataset with Nincrement = 6. All results are averaged over 50 replicates that differ by the random
choice of pairs in the training set.
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FIG. S4. Impact of the initial correct pairs. TP fraction versus effective number of HK-RR pairs (Meff ) in the concatenated
alignment during iterations of the IPA, for different values of Nincrement. Solid curves: Starting from random pairings (data
also shown in Fig. 3). Dashed curves: Starting from random pairings with no initial correct pair (the color and symbol codes
are the same as for the solid curves). The standard dataset is used. All results are averaged over 50 replicates that differ in
their initial random pairings. Dotted line: Average TP fraction obtained for random HK-RR pairings.

FIG. S5. Evolution of the concatenated alignment (CA) during the IPA. Average number of HK-RR pairs present in the
species to which the pairs of the CA belong versus iteration number. The IPA is performed on the standard dataset, with
Nincrement = 6, and all data is averaged over 5193 replicates that differ in their initial random pairings. Dashed line: At each
iteration, 6 new correct HK-RR pairs are chosen at random and added to the CA. This chance result just matches the average
number of pairs in a pair’s species: 16.1. Note that this number is different from the above-discussed average number of pairs
per species 〈mp〉, which is 11.0 in the standard dataset (because the average over the pairs is not the same as the average over
the species).
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FIG. S6. Impact of sequence similarity in the dataset. (A) Distribution of the number of pairs per species in the complete
dataset (black) and in two smaller selected datasets each with the same effective number of HK-RR pairs Meff : the standard
one (red) and one where similar sequences have been suppressed such that no two pairs have a mean Hamming distance per
site < 0.3 (blue). (B) Final TP fraction versus Nincrement for the two selected datasets described in (A), starting from random
pairings. Dashed line: Average TP fraction obtained for random HK-RR pairings. (C) Starting from a training set. Final
TP fraction versus Nstart for the two selected datasets presented in (A), with Nincrement = 6. In (B) and (C), all results are
averaged over 50 replicates.
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FIG. S7. Impact of the total number of HK-RR pairs in the dataset. Final TP fraction versus the total number M of HK-RR
pairs in the dataset, starting from random pairings. For each M , datasets are constructed by picking species randomly from
the full dataset, preserving the average distribution of the number of HK-RR pairs per species. For each M except the largest,
results are averaged over multiple different such alignments (from 50 up to 500 for small M). For the largest M (full dataset),
averaging is done on 50 different initial random pairings. All results correspond to the small-Nincrement limit.

FIG. S8. Improved accuracy from multiple initial random pairings. Red curve: All possible HK-RR pairs (within each species)
are ranked by the fraction fr of replicates of the IPA in which they are predicted. The TP fraction up to each pair is plotted
versus the rank of this pair. The standard dataset is used, with Nincrement = 6. 500 replicates that differ in their initial random
pairings are considered. Blue curve: For each separate replicate, pairs are ranked by their confidence score, in decreasing order.
The TP fraction up to each pair is computed, and the mean of these curves is shown. Dashed curve: Ideal classification, where
the M = 5064 first pairs (dotted line) are correct, while all the others are incorrect. When ranking pairs by decreasing fr
(red curve), the TP fraction among the M = 5064 best-ranked pairs is 0.89, a significant improvement over the average of TP
fractions from individual replicates, 0.84 (blue curve).
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FIG. S9. Rebootstrapping: exploiting the high TP fraction of the HK-RR pairs predicted to be correct in most replicates of
the IPA, which differ in their initial random pairings. (A) Rebootstrapping on the standard dataset (M = 5064 HK-RR pairs).
The final TP fraction is plotted versus rebootstrapping step number. Step 0 corresponds to the standard procedure described
in the main text (IPA starting from random pairings, see Fig. 6). 500 replicates are computed. We then take as a training
set 1000 HK-RR pairs chosen randomly among those predicted to be correct in more than 50% of replicates. These pairs are
chosen with probability equal to the fraction of replicates in which they are predicted to be true. The IPA is then performed
again starting from such training sets. The process is then iterated. Here, 50 replicates were computed for steps 1, 2, and 3.
The average final TP fraction is plotted (blue curve), as well as the TP fraction for the best M = 5064 pairs ranked by the
fraction of replicates in which they are predicted to be true (red curve, see Fig. 6). Here, Nincrement = 6. (B) Rebootstrapping
on a smaller dataset with M = 502 HK-RR pairs from 40 species (mean number of pairs per species 〈mp〉 = 12.6). The process
is the same as in (A), but here, at each rebootstrapping step, we take as a training set 200 HK-RR pairs chosen randomly
among those predicted to be true in more than 25% of replicates at the previous step, and Nincrement = 1.
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FIG. S10. Distribution of the fraction of replicates fr of the IPA in which each possible within-species HK-RR pair is predicted
as a pair. (A) Red curve: Distribution of fr obtained by applying the IPA to the standard dataset (same data as in Fig. S8).
Blue curve: Same dataset, but with each column of the alignment randomly scrambled. (B) HK-RR dataset with no correct
pairs; a dataset of the same size as the standard one (M = 5062 in practice) that does not include any true HK-RR pairs was
constructed. Red curve: Distribution of fr obtained by applying the IPA to this dataset with no correct pairs. Blue curve:
Same alignment, but with each column randomly scrambled. For each curve, 500 IPA replicates that differ in their initial
random pairings were used, with Nincrement = 6. All data is binned into 50 equally-spaced bins between fr = 0 and fr = 1.
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FIG. S11. Residue-based signature of protein-protein interactions. The Frobenius norm of the amino-acid couplings was
evaluated for each pair of residue sites at the final iteration of the IPA, for datasets comprising ∼5000 homologs of the
interacting pairs BASS-BASR and MALG-MALK, and of the non-interacting pair BASR-MALK. For each of these protein
family pairs, the Frobenius norms were also calculated at the final iteration of the IPA on scrambled-within-column datasets
(null model). (A) Frobenius norms averaged over 500 IPA replicates that differ in their initial random pairings, and then ranked
by decreasing value. (B) Same average Frobenius norms, normalized by subtracting the average null value for each residue
pair. For each curve, the IPA was run with Nincrement = 50. The pairs with highest Frobenius norms, corresponding to the top
predicted contacts, are outliers for both interacting family pairs, but not for the non-interacting pair BASR-MALK.
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FIG. S12. Scoring by gap. (A) Determination of the confidence score of each assigned HK-RR pair in a given iteration of the
IPA. In this schematic, we consider a species with three HKs and RRs. In the energy spectra showing the interaction energies
for each RR with all three HKs, each color represents a given HK (red: HK 1, partner of RR 1; blue: 2; green: 3). Assignment
1: The pair with the lowest interaction energy (HK 2 - RR 2, boxed) is selected. The energy gap ∆ERR is shown. Here nRR = 0
since no HK has been removed from consideration yet. Assignment 2: The HK and RR previously paired are removed from
further consideration (dashed energy levels). The next pair with the lowest energy (HK 1 - RR 3, boxed) is chosen among
the remaining ones. Here nRR = 1 since HK 2, which was paired previously, had a lower interaction energy with RR 3 than
HK 1. Using the ad hoc confidence score ∆ERR/(nRR + 1), this (incorrect) pair is penalized with respect to the (correct) one
made in the first assignment, even though their energy gaps are similar. Assignment 3: Only one possible pair remains. It is
made, and its confidence score is taken to be equal to the lowest previously calculated confidence score for that species (the
second one here). At each HK-RR pair assignment, symmetric confidence scores ∆EHK/(nHK + 1) are also calculated from the
energy spectra showing the interaction energies for each HK with all three RRs. The final confidence score of a pair, denoted
by ∆E/(n+ 1), is the smallest of these two scores, i.e. min{∆ERR/(nRR + 1), ∆EHK/(nHK + 1)}. (B) More generally, in every
iteration of the IPA, each predicted HK-RR pair can be scored by ∆E/(n + 1)α, where α is a parameter. Red curve: Average
final TP fraction obtained versus α; error bars: 95% confidence intervals around the mean. The IPA was performed on the
standard dataset, with Nincrement = 6. Results are averaged over 200 replicates that differ in their initial random pairings for
all α except α = 1, for which 500 replicates were computed. As we found the highest TP fraction for α = 1, all the results
elsewhere in the paper were obtained using α = 1.
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FIG. S13. Training of the couplings during the IPA: effect of the average product correction. Residue pairs comprised of an
HK site and an RR site were scored by the average-product corrected Frobenius norm of the couplings involving all possible
residue types at these two sites. The best-scored residue pairs were compared to the 27 HK-RR contacts found experimentally
in Ref. [27]. Solid curves: Fraction of residue pairs that are real contacts (among the k best-scored pairs for four different values
of k) versus the iteration number in the IPA. Dashed curves: Ideal case, where at each iteration Nincrement randomly-selected
correct HK-RR pairs are added to the CA. The overall fraction of residue pairs that are real HK-RR contacts, yielding the
chance expectation, is only 3.8 × 10−3. As in Fig. 4, the IPA was performed on the standard dataset with Nincrement = 6, and
all data is averaged over 500 replicates that differ in their initial random pairings.


